1
|
Pal C. Mitochondria-targeting by small molecules against Alzheimer's disease: A mechanistic perspective. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167617. [PMID: 39647244 DOI: 10.1016/j.bbadis.2024.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) poses a considerable worldwide health obstacle, marked by gradual cognitive deterioration and neuronal loss. While the molecular mechanisms underlying AD pathology have been elucidated to some extent, therapeutic options remain limited. Mitochondrial dysfunction has become recognized as a significant factor in the development of AD, with oxidative stress and disrupted energy metabolism being critical elements. This review explores the mechanistic aspects of small molecule targeting of mitochondria as a potential therapeutic approach for AD. The review explores the role of mitochondrial dysfunction in AD, including its involvement in the accumulation of β-amyloid plaques and neurofibrillary tangles, synaptic dysfunction, and neuronal death. Furthermore, the effects of oxidative stress on mitochondrial function were investigated, including the resulting damage to mitochondrial components. Mitochondrial-targeted therapies have attracted attention for their potential to restore mitochondrial function and reduce AD pathology. The review outlines the latest preclinical and clinical evidence supporting the effectiveness of small molecules in targeting mitochondrial dysfunction in AD. Additionally, it discusses the molecular pathways involved in mitochondrial dysfunction and examines how small molecules can intervene to address these abnormalities. By providing a comprehensive overview of the latest research in this field, this review aims to shed light on the therapeutic potential of small molecule targeting of mitochondria in AD and stimulate further research in this promising area of drug development.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
2
|
Jia Z, Li H, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke. Front Cell Neurosci 2024; 18:1470144. [PMID: 39640236 PMCID: PMC11617170 DOI: 10.3389/fncel.2024.1470144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is the predominant subtype of stroke and a leading contributor to global mortality. The mitochondrial-associated endoplasmic reticulum membrane (MAM) is a specialized region that facilitates communication between the endoplasmic reticulum and mitochondria, and has been extensively investigated in the context of neurodegenerative diseases. Nevertheless, its precise involvement in IS remains elusive. This literature review elucidates the intricate involvement of MAM in mitophagy and endoplasmic reticulum stress during IS. PINK1, FUNDC1, Beclin1, and Mfn2 are highly concentrated in the MAM and play a crucial role in regulating mitochondrial autophagy. GRP78, IRE1, PERK, and Sig-1R participate in the unfolded protein response (UPR) within the MAM, regulating endoplasmic reticulum stress during IS. Hence, the diverse molecules on MAM operate independently and interact with each other, collectively contributing to the pathogenesis of IS as the covert orchestrator.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Caruso V, Raia A, Rigoli L. Wolfram Syndrome 1: A Neuropsychiatric Perspective on a Rare Disease. Genes (Basel) 2024; 15:984. [PMID: 39202345 PMCID: PMC11353439 DOI: 10.3390/genes15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Wolfram syndrome 1 (WS1) is an uncommon autosomal recessive neurological disorder that is characterized by diabetes insipidus, early-onset non-autoimmune diabetes mellitus, optic atrophy, and deafness (DIDMOAD). Other clinical manifestations are neuropsychiatric symptoms, urinary tract alterations, and endocrinological disorders. The rapid clinical course of WS1 results in death by the age of 30. Severe brain atrophy leads to central respiratory failure, which is the main cause of death in WS1 patients. Mutations in the WFS1 gene, located on chromosome 4p16, account for approximately 90% of WS1 cases. The gene produces wolframin, a transmembrane glycoprotein widely distributed and highly expressed in retinal, neural, and muscular tissues. Wolframin plays a crucial role in the regulation of apoptosis, insulin signaling, and ER calcium homeostasis, as well as the ER stress response. WS1 has been designated as a neurodegenerative and neurodevelopmental disorder due to the numerous abnormalities in the ER stress-mediated system. WS1 is a devastating neurodegenerative disease that affects patients and their families. Early diagnosis and recognition of the initial clinical signs may slow the disease's progression and improve symptomatology. Moreover, genetic counseling should be provided to the patient's relatives to extend multidisciplinary care to their first-degree family members. Regrettably, there are currently no specific drugs for the therapy of this fatal disease. A better understanding of the etiology of WS1 will make possible the development of new therapeutic approaches that may enhance the life expectancy of patients. This review will examine the pathogenetic mechanisms, development, and progression of neuropsychiatric symptoms commonly associated with WS1. A thorough understanding of WS1's neurophysiopathology is critical for achieving the goal of improving patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Valerio Caruso
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Accursio Raia
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Zhang X, He L, Li Y, Qiu Y, Hu W, Lu W, Du H, Yang D. Compound 225# inhibits the proliferation of human colorectal cancer cells by promoting cell cycle arrest and apoptosis induction. Oncol Rep 2024; 51:70. [PMID: 38577924 PMCID: PMC11017819 DOI: 10.3892/or.2024.8729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/01/2023] [Indexed: 04/06/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer‑related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry‑GFP‑LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time‑ and dose‑dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3‑II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M‑phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, P.R. China
| | - Liujun He
- College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Yong Li
- College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Yifei Qiu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, P.R. China
| | - Wujing Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, P.R. China
| | - Wanying Lu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, P.R. China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, P.R. China
| | - Donglin Yang
- College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| |
Collapse
|
6
|
Milani M, Pihán P, Hetz C. Mitochondria-associated niches in health and disease. J Cell Sci 2022; 135:285141. [DOI: 10.1242/jcs.259634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
ABSTRACT
The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions – the mitochondria-associated niches – focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.
Collapse
Affiliation(s)
- Mateus Milani
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile 1 , Santiago 8380000 , Chile
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO) 2 , Santiago 7750000 , Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile 3 , Santiago 8380000 , Chile
- Buck Institute for Research on Aging 4 , Novato, CA 94945 , USA
| |
Collapse
|
7
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Curtiss ML, Deshane JS. "Stick a Fork in Me; I'm Done": Epithelial Cell Expression of ORMDL Sphingolipid Biosynthesis Regulator 3 Mediates Autophagic Cell Death. Am J Respir Cell Mol Biol 2022; 66:593-595. [PMID: 35377833 PMCID: PMC9163635 DOI: 10.1165/rcmb.2022-0023ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Miranda L Curtiss
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine University of Alabama at Birmingham Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
9
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
10
|
Rigoli L, Caruso V, Salzano G, Lombardo F. Wolfram Syndrome 1: From Genetics to Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3225. [PMID: 35328914 PMCID: PMC8949990 DOI: 10.3390/ijerph19063225] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Valerio Caruso
- Psychiatry 2 Unit, Clinical and Experimental Medicine Department, University of Pisa, 56126 Pisa, Italy;
| | - Giuseppina Salzano
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| | - Fortunato Lombardo
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy; (G.S.); (F.L.)
| |
Collapse
|
11
|
Carpio MA, Means RE, Brill AL, Sainz A, Ehrlich BE, Katz SG. BOK controls apoptosis by Ca 2+ transfer through ER-mitochondrial contact sites. Cell Rep 2021; 34:108827. [PMID: 33691099 PMCID: PMC7995216 DOI: 10.1016/j.celrep.2021.108827] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 11/20/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium transfer from the endoplasmic reticulum (ER) to mitochondria is a critical contributor to apoptosis. B cell lymphoma 2 (BCL-2) ovarian killer (BOK) localizes to the ER and binds the inositol 1,4,5-trisphosophate receptor (IP3R). Here, we show that BOK is necessary for baseline mitochondrial calcium levels and stimulus-induced calcium transfer from the ER to the mitochondria. Murine embryonic fibroblasts deficient for BOK have decreased proximity of the ER to the mitochondria and altered protein composition of mitochondria-associated membranes (MAMs), which form essential calcium microdomains. Rescue of the ER-mitochondrial juxtaposition with drug-inducible interorganelle linkers reveals a kinetic disruption, which when overcome in Bok−/− cells is still insufficient to rescue thapsigargin-induced calcium transfer and apoptosis. Likewise, a BOK mutant unable to interact with IP3R restores ER-mitochondrial proximity, but not ER-mitochondrial calcium transfer, MAM protein composition, or apoptosis. This work identifies the dynamic coordination of ER-mitochondrial contact by BOK as an important control point for apoptosis. Carpio et al. demonstrate that the proapoptotic BCL-2 family member BOK is present in mitochondrial associated membranes (MAMs). The interaction of BOK with the IP3Rs is critical for its regulation of Ca2+ transfer to the mitochondria, ER-mitochondrial contact sites, and apoptosis.
Collapse
Affiliation(s)
- Marcos A Carpio
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Robert E Means
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Allison L Brill
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Alva Sainz
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06525, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA.
| |
Collapse
|
12
|
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Commun Biol 2021; 4:127. [PMID: 33514811 PMCID: PMC7846573 DOI: 10.1038/s42003-021-01647-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Collapse
|
13
|
Bradley KL, Stokes CA, Marciniak SJ, Parker LC, Condliffe AM. Role of unfolded proteins in lung disease. Thorax 2021; 76:92-99. [PMID: 33077618 PMCID: PMC7803888 DOI: 10.1136/thoraxjnl-2019-213738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Clare A Stokes
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | | | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Cortesi M, Zamagni A, Pignatta S, Zanoni M, Arienti C, Rossi D, Collina S, Tesei A. Pan-Sigma Receptor Modulator RC-106 Induces Terminal Unfolded Protein Response In In Vitro Pancreatic Cancer Model. Int J Mol Sci 2020; 21:ijms21239012. [PMID: 33260926 PMCID: PMC7734580 DOI: 10.3390/ijms21239012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy; (D.R.); (S.C.)
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (A.Z.); (S.P.); (M.Z.); (C.A.)
- Correspondence: (M.C.); (A.T.)
| |
Collapse
|
15
|
Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and Antidepressant Effect. Int J Mol Sci 2020; 21:E7088. [PMID: 32992988 PMCID: PMC7582751 DOI: 10.3390/ijms21197088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| |
Collapse
|
16
|
Gioran A, Chondrogianni N. Mitochondria (cross)talk with proteostatic mechanisms: Focusing on ageing and neurodegenerative diseases. Mech Ageing Dev 2020; 190:111324. [DOI: 10.1016/j.mad.2020.111324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
|
17
|
Díaz MI, Díaz P, Bennett JC, Urra H, Ortiz R, Orellana PC, Hetz C, Quest AFG. Caveolin-1 suppresses tumor formation through the inhibition of the unfolded protein response. Cell Death Dis 2020; 11:648. [PMID: 32811828 PMCID: PMC7434918 DOI: 10.1038/s41419-020-02792-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.
Collapse
Affiliation(s)
- María I Díaz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Paula Díaz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Jimena Castillo Bennett
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Laboratory of Proteostasis Control and Biomedicine, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rina Ortiz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Pamela Contreras Orellana
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
- FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Laboratory of Proteostasis Control and Biomedicine, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
18
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
19
|
Chiaratti MR, Macabelli CH, Augusto Neto JD, Grejo MP, Pandey AK, Perecin F, Collado MD. Maternal transmission of mitochondrial diseases. Genet Mol Biol 2020; 43:e20190095. [PMID: 32141474 PMCID: PMC7197987 DOI: 10.1590/1678-4685-gmb-2019-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Given the major role of the mitochondrion in cellular homeostasis, dysfunctions of this organelle may lead to several common diseases in humans. Among these, maternal diseases linked to mitochondrial DNA (mtDNA) mutations are of special interest due to the unclear pattern of mitochondrial inheritance. Multiple copies of mtDNA are present in a cell, each encoding for 37 genes essential for mitochondrial function. In cases of mtDNA mutations, mitochondrial malfunctioning relies on mutation load, as mutant and wild-type molecules may co-exist within the cell. Since the mutation load associated with disease manifestation varies for different mutations and tissues, it is hard to predict the progeny phenotype based on mutation load in the progenitor. In addition, poorly understood mechanisms act in the female germline to prevent the accumulation of deleterious mtDNA in the following generations. In this review, we outline basic aspects of mitochondrial inheritance in mammals and how they may lead to maternally-inherited diseases. Furthermore, we discuss potential therapeutic strategies for these diseases, which may be used in the future to prevent their transmission.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Carolina H Macabelli
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - José Djaci Augusto Neto
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Mateus Priolo Grejo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Genética e Biotecnologia, São Carlos, SP, Brazil
| | - Anand Kumar Pandey
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Felipe Perecin
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Morfofisiologia Molecular e Desenvolvimento, Pirassununga, SP, Brazil
| | - Maite Del Collado
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Morfofisiologia Molecular e Desenvolvimento, Pirassununga, SP, Brazil
| |
Collapse
|
20
|
Arrieta A, Blackwood EA, Stauffer WT, Glembotski CC. Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart. Front Cardiovasc Med 2020; 6:193. [PMID: 32010709 PMCID: PMC6974444 DOI: 10.3389/fcvm.2019.00193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The integrity of the proteome in cardiac myocytes is critical for robust heart function. Proteome integrity in all cells is managed by protein homeostasis or proteostasis, which encompasses processes that maintain the balance of protein synthesis, folding, and degradation in ways that allow cells to adapt to conditions that present a potential challenge to viability (1). While there are processes in various cellular locations in cardiac myocytes that contribute to proteostasis, those in the cytosol, mitochondria and endoplasmic reticulum (ER) have dominant roles in maintaining cardiac contractile function. Cytosolic proteostasis has been reviewed elsewhere (2, 3); accordingly, this review focuses on proteostasis in the ER and mitochondria, and how they might influence each other and, thus, impact heart function in the settings of cardiac physiology and disease.
Collapse
Affiliation(s)
- Adrian Arrieta
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Christopher C Glembotski
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
21
|
Delprat B, Crouzier L, Su TP, Maurice T. At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:699-718. [PMID: 31646531 DOI: 10.1007/978-3-030-12457-1_28] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Baltimore, MD, USA
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| |
Collapse
|
22
|
Samara A, Rahn R, Neyman O, Park KY, Samara A, Marshall B, Dougherty J, Hershey T. Developmental hypomyelination in Wolfram syndrome: new insights from neuroimaging and gene expression analyses. Orphanet J Rare Dis 2019; 14:279. [PMID: 31796109 PMCID: PMC6889680 DOI: 10.1186/s13023-019-1260-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Wolfram syndrome is a rare multisystem disorder caused by mutations in WFS1 or CISD2 genes leading to brain structural abnormalities and neurological symptoms. These abnormalities appear in early stages of the disease. The pathogenesis of Wolfram syndrome involves abnormalities in the endoplasmic reticulum (ER) and mitochondrial dynamics, which are common features in several other neurodegenerative disorders. Mutations in WFS1 are responsible for the majority of Wolfram syndrome cases. WFS1 encodes for an endoplasmic reticulum (ER) protein, wolframin. It is proposed that wolframin deficiency triggers the unfolded protein response (UPR) pathway resulting in an increased ER stress-mediated neuronal loss. Recent neuroimaging studies showed marked alteration in early brain development, primarily characterized by abnormal white matter myelination. Interestingly, ER stress and the UPR pathway are implicated in the pathogenesis of some inherited myelin disorders like Pelizaeus-Merzbacher disease, and Vanishing White Matter disease. In addition, exploratory gene-expression network-based analyses suggest that WFS1 expression occurs preferentially in oligodendrocytes during early brain development. Therefore, we propose that Wolfram syndrome could belong to a category of neurodevelopmental disorders characterized by ER stress-mediated myelination impairment. Further studies of myelination and oligodendrocyte function in Wolfram syndrome could provide new insights into the underlying mechanisms of the Wolfram syndrome-associated brain changes and identify potential connections between neurodevelopmental disorders and neurodegeneration.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Rachel Rahn
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Olga Neyman
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Ki Yun Park
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Ahmad Samara
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Bess Marshall
- Department of Pediatrics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Joseph Dougherty
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA. .,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
24
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
25
|
Ferreira LMR, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM. Impact of Carcinogenic Chromium on the Cellular Response to Proteotoxic Stress. Int J Mol Sci 2019; 20:ijms20194901. [PMID: 31623305 PMCID: PMC6801751 DOI: 10.3390/ijms20194901] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery and Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Margarida C Sobral
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Patrícia L Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | - Maria Carmen Alpoim
- Department of Life Sciences, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Ana M Urbano
- Department of Life Sciences, Molecular Physical Chemistry Research Unit and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
26
|
Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol 2019; 21:755-767. [PMID: 31110288 DOI: 10.1038/s41556-019-0329-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Mitochondria-associated membranes (MAMs) are central microdomains that fine-tune bioenergetics by the local transfer of calcium from the endoplasmic reticulum to the mitochondrial matrix. Here, we report an unexpected function of the endoplasmic reticulum stress transducer IRE1α as a structural determinant of MAMs that controls mitochondrial calcium uptake. IRE1α deficiency resulted in marked alterations in mitochondrial physiology and energy metabolism under resting conditions. IRE1α determined the distribution of inositol-1,4,5-trisphosphate receptors at MAMs by operating as a scaffold. Using mutagenesis analysis, we separated the housekeeping activity of IRE1α at MAMs from its canonical role in the unfolded protein response. These observations were validated in vivo in the liver of IRE1α conditional knockout mice, revealing broad implications for cellular metabolism. Our results support an alternative function of IRE1α in orchestrating the communication between the endoplasmic reticulum and mitochondria to sustain bioenergetics.
Collapse
|
27
|
Folch J, Busquets O, Ettcheto M, Sánchez-López E, Pallàs M, Beas-Zarate C, Marin M, Casadesus G, Olloquequi J, Auladell C, Camins A. Experimental Models for Aging and their Potential for Novel Drug Discovery. Curr Neuropharmacol 2018; 16:1466-1483. [PMID: 28685671 PMCID: PMC6295931 DOI: 10.2174/1570159x15666170707155345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: An interesting area of scientific research is the development of potential antiaging drugs. In order to pursue this goal, it is necessary to gather the specific knowledge about the adequate preclinical models that are available to evaluate the beneficial effects of new potential drugs. This review is focused on invertebrate and vertebrate preclinical models used to evaluate the efficacy of antiaging compounds, with the objective to extend life span and health span. Methods: Research and online content related to aging, antiaging drugs, experimental aging models is reviewed. Moreover, in this review, the main experimental preclinical models of organisms that have contributed to the research in the pharmacol-ogy of lifespan extension and the understanding of the aging process are discussed. Results: Dietary restriction (DR) constitutes a common experimental process to extend life span in all organisms. Besides, classical antiaging drugs such as resveratrol, rapamycin and metformin denominated as DR mimetics are also discussed. Likewise, the main therapeutic targets of these drugs include sirtuins, IGF-1, and mTOR, all of them being modulated by DR. Conclusion: Advances in molecular biology have uncovered the potential molecular pathways involved in the aging process. Due to their characteristics, invertebrate models are mainly used for drug screening. The National Institute on Aging (NIA) developed the Interventions Testing Program (ITP). At the pre-clinical level, the ITP uses Heterogeneous mouse model (HET) which is probably the most suitable rodent model to study potential drugs against aging prevention. The accelerated-senescence mouse P8 is also a mammalian rodent model for aging research. However, when evaluating the effect of drugs on a preclinical level, the evaluation must be done in non-human primates since it is the mammalian specie closest to humans. Research is needed to investigate the impact of new potential drugs for the increase of human quality of
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Busquets
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unitat de Farmacia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Departamento de Biologia Celulary Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico
| | - Miguel Marin
- Centro de Biotecnologia. Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia. Loja, Ecuador
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jordi Olloquequi
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| | - Carme Auladell
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Departamento de Biologia Celulary Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico.,Departament de Biologia Cellular, Fisiologia i Inmunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Biotecnologia. Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia. Loja, Ecuador
| |
Collapse
|
28
|
Hyttinen JMT, Viiri J, Kaarniranta K, Błasiak J. Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell Mol Life Sci 2018; 75:2991-3008. [PMID: 29777261 PMCID: PMC11105454 DOI: 10.1007/s00018-018-2843-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle's homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all contribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other degenerative diseases is as well explored.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
29
|
van Vliet AR, Sassano ML, Agostinis P. The Unfolded Protein Response and Membrane Contact Sites: Tethering as a Matter of Life and Death? ACTA ACUST UNITED AC 2018. [DOI: 10.1177/2515256418770512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is the most extensive organelle of the eukaryotic cell and constitutes the major site of protein and lipid synthesis and regulation of intracellular Ca2+ levels. To exert these functions properly, the ER network is shaped in structurally and functionally distinct domains that dynamically remodel in response to intrinsic and extrinsic cues. Moreover, the ER establishes a tight communication with virtually all organelles of the cell through specific subdomains called membrane contact sites. These contact sites allow preferential, nonvesicular channeling of key biological mediators including lipids and Ca2+ between organelles and are harnessed by the ER to interface with and coregulate a variety of organellar functions that are vital to maintain homeostasis. When ER homeostasis is lost, a condition that triggers the activation of an evolutionarily conserved pathway called the unfolded protein response (UPR), the ER undergoes rapid remodeling. These dynamic changes in ER morphology are functionally coupled to the modulation or formation of contact sites with key organelles, such as mitochondria and the plasma membrane, which critically regulate cell fate decisions of the ER-stressed cells. Certain components of the UPR have been shown to facilitate the formation of contact sites through various mechanisms including remodeling of the actin cytoskeleton. In this review, we discuss old and emerging evidence linking the UPR machinery to contact site formation in mammalian cells and discuss their important role in cellular homeostasis.
Collapse
Affiliation(s)
- Alexander R. van Vliet
- Cell Death Research & Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
30
|
Delprat B, Maurice T, Delettre C. Wolfram syndrome: MAMs' connection? Cell Death Dis 2018; 9:364. [PMID: 29511163 PMCID: PMC5840383 DOI: 10.1038/s41419-018-0406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease, the main pathological hallmarks of which associate with diabetes, optic atrophy, and deafness. Other symptoms may be identified in some but not all patients. Prognosis is poor, with death occurring around 35 years of age. To date, no treatment is available. WS was first described as a mitochondriopathy. However, the localization of the protein on the endoplasmic reticulum (ER) membrane challenged this hypothesis. ER contacts mitochondria to ensure effective Ca2+ transfer, lipids transfer, and apoptosis within stabilized and functionalized microdomains, termed “mitochondria-associated ER membranes” (MAMs). Two types of WS are characterized so far and Wolfram syndrome type 2 is due to mutation in CISD2, a protein mostly expressed in MAMs. The aim of the present review is to collect evidences showing that WS is indeed a mitochondriopathy, with established MAM dysfunction, and thus share commonalities with several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as metabolic diseases, such as diabetes.
Collapse
Affiliation(s)
- Benjamin Delprat
- INSERM UMR-S1198, 34095, Montpellier, France. .,University of Montpellier, 34095, Montpellier, France.
| | - Tangui Maurice
- INSERM UMR-S1198, 34095, Montpellier, France.,University of Montpellier, 34095, Montpellier, France
| | - Cécile Delettre
- University of Montpellier, 34095, Montpellier, France. .,INSERM UMR-S1051, Institute of Neurosciences of Montpellier, 34090, Montpellier, France.
| |
Collapse
|
31
|
Bambino K, Zhang C, Austin C, Amarasiriwardena C, Arora M, Chu J, Sadler KC. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 2018; 11:dmm.031575. [PMID: 29361514 PMCID: PMC5894941 DOI: 10.1242/dmm.031575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Collapse
Affiliation(s)
- Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jaime Chu
- Department of Pediatrics, Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
32
|
Zhang JM, Zhu XL, Xue J, Liu X, Long Zheng X, Chang YJ, Liu KY, Huang XJ, Zhang XH. Integrated mRNA and miRNA profiling revealed deregulation of cellular stress response in bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia. Funct Integr Genomics 2018; 18:287-299. [DOI: 10.1007/s10142-018-0591-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 02/01/2023]
|
33
|
Sassano ML, van Vliet AR, Agostinis P. Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate. Front Oncol 2017; 7:174. [PMID: 28868254 PMCID: PMC5563315 DOI: 10.3389/fonc.2017.00174] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
The tight cross talk between two essential organelles of the cell, the endoplasmic reticulum (ER) and mitochondria, is spatially and functionally regulated by specific microdomains known as the mitochondria-associated membranes (MAMs). MAMs are hot spots of Ca2+ transfer between the ER and mitochondria, and emerging data indicate their vital role in the regulation of fundamental physiological processes, chief among them mitochondria bioenergetics, proteostasis, cell death, and autophagy. Moreover, and perhaps not surprisingly, it has become clear that signaling events regulated at the ER-mitochondria intersection regulate key processes in oncogenesis and in the response of cancer cells to therapeutics. ER-mitochondria appositions have been shown to dynamically recruit oncogenes and tumor suppressors, modulating their activity and protein complex formation, adapt the bioenergetic demand of cancer cells and to regulate cell death pathways and redox signaling in cancer cells. In this review, we discuss some emerging players of the ER-mitochondria contact sites in mammalian cells, the key processes they regulate and recent evidence highlighting the role of MAMs in shaping cell-autonomous and non-autonomous signals that regulate cancer growth.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Hamilton KL, Miller BF. Mitochondrial proteostasis as a shared characteristic of slowed aging: the importance of considering cell proliferation. J Physiol 2017; 595:6401-6407. [PMID: 28719097 DOI: 10.1113/jp274335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Proteostasis is one of the seven "pillars of aging research" identified by the Trans-NIH Geroscience Initiative and loss of proteostasis is associated with aging and age-related chronic disease. Accumulated protein damage and resultant cellular dysfunction are consequences of limited protein repair systems and slowed protein turnover. When relatively high rates of protein turnover are maintained despite advancing age, damaged proteins are more quickly degraded and replaced, maintaining proteome fidelity. Therefore, maintenance of protein turnover represents an important proteostatic mechanism. However, measurement of protein synthesis without consideration for cell proliferation can result in an incomplete picture, devoid of information about how new proteins are being allocated. Simultaneous measurement of protein and DNA synthesis provides necessary mechanistic insight about proteins apportioned for newly proliferating cells versus for somatic maintenance. Using this approach with a number of murine models of slowed aging shows that, compared to controls, energetic resources are directed more toward somatic maintenance and proteostasis, and away from cell growth and proliferation. In particular, slowed aging models are associated with heightened mechanisms of mitochondrial proteostatic maintenance. Taking cell proliferation into account may explain the paradoxical findings that aging itself and slowed aging interventions can both be characterized by slower rates of protein synthesis.
Collapse
Affiliation(s)
- Karyn L Hamilton
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Benjamin F Miller
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| |
Collapse
|