1
|
Chen F, Qiu S, Gui A, Jiang S, Yan Y, Wu J, Chen G, Zhu S, Liu Y, Xia Z, Yu B, Sun X, Gu JJ, Wang L, Liu W, Yang L, Zhang Q, Zuo J. Reduced OTUD7B expression correlates with poor prognosis in PTCL via non-canonical NF-κB. Int J Hematol 2025; 121:194-205. [PMID: 39636331 DOI: 10.1007/s12185-024-03877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Peripheral T cell lymphoma (PTCL) is an aggressive and highly heterogeneous lymphoma with a bleak prognosis, highlighting the urgent need for an effective biomarker to guide therapeutic strategies. Ovarian tumor domain-containing 7B (OTUD7B) has been shown to have a critical function in the progression of cancers. However, the prognostic significance of OTUD7B in PTCL remains unexplored. In this study, we demonstrated for the first time that PTCL patients with low expression of OTUD7B had shorter progression-free survival (PFS) and overall survival (OS). In addition, OTUD7B knockdown promoted chemoresistance to doxorubicin in PTCL cell lines, and led to increased translocation of p52 from the cytoplasm to the nucleus. Inhibition of non-canonical NF-κB partially restored the sensitivity of PTCL cells to doxorubicin. Remarkably, 5-azacytidine and cytarabine upregulated the expression of OTUD7B and exhibited a synergistic anti-lymphoma effect in PTCL. In summary, our study confirmed the prognostic role of OTUD7B in PTCL and the promising therapeutic potential of combining 5-azacytidine or cytarabine and doxorubicin for PTCL treatment.
Collapse
MESH Headings
- Humans
- Prognosis
- Female
- NF-kappa B/metabolism
- Lymphoma, T-Cell, Peripheral/mortality
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/diagnosis
- Cell Line, Tumor
- Doxorubicin/therapeutic use
- Gene Expression Regulation, Neoplastic
- Male
- Drug Resistance, Neoplasm/genetics
- Middle Aged
- Endopeptidases/genetics
Collapse
Affiliation(s)
- Feng Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shi Qiu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ailing Gui
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shiyu Jiang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yichen Yan
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jichuan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangliang Chen
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shun Zhu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zuguang Xia
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Baohua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Jennifer Gu
- Department of Medicine & Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qunling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Vuorinen A, Kennedy CR, McPhie KA, McCarthy W, Pettinger J, Skehel JM, House D, Bush JT, Rittinger K. Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation. Commun Chem 2025; 8:12. [PMID: 39809917 PMCID: PMC11732987 DOI: 10.1038/s42004-025-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.
Collapse
Affiliation(s)
- Aini Vuorinen
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Cassandra R Kennedy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katherine A McPhie
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - William McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | | | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK.
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Liu XL, Zhao SY, Zhang MH, Zhang PZ, Liu XP. OTUD7B promotes cell migration and invasion, predicting poor prognosis of gastric cancer. Pathol Res Pract 2024; 264:155689. [PMID: 39531873 DOI: 10.1016/j.prp.2024.155689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND OTUD7B, a member of the ovarian tumor (OTU) protein superfamily, functions as a deubiquitinating enzyme and is associated with various biological processes and disease conditions, including tumors. In this study, we aimed to explore the expression patterns, prognostic significance, and the functional roles and underlying mechanisms of OTUD7B in gastric cancer (GC). MATERIALS AND METHODS Using a blend of bioinformatics, clinical case reviews, and molecular experiments, we evaluated the expression of OTUD7B in GC at both mRNA and protein levels. We examined the relationship between OTUD7B expression and clinicopathological characteristics of GC patients. Additionally, in vitro assays were utilized to assess the effects of OTUD7B on the migratory and invasive capabilities of GC cells. RNA sequencing analysis was conducted to identify critical genes and pathways linked to OTUD7B in GC. RESULTS OTUD7B was found to be significantly overexpressed in GC, both at mRNA and protein levels. Higher levels of OTUD7B were positively associated with advanced tumor TNM stage, higher histological grade, and presence of lymph/vein invasion. These correlations were indicative of poorer overall survival (OS) and disease-free survival (DFS) in GC patients. In vitro assays revealed that genetic knockout of OTUD7B markedly reduced the migration and invasion of GC cells, while overexpression of OTUD7B led to enhanced cellular migration and invasion. Furthermore, RNA sequencing and bioinformatic analyses indicated that the absence of OTUD7B suppressed signaling pathways related to cancer progression, metastasis, and metabolism. Mechanistically, OTUD7B likely promotes GC metastasis through the WNT signaling pathway, specifically targeting β-catenin. CONCLUSIONS OTUD7B serves as a novel marker for poor prognosis in GC and actively promotes tumor metastasis. Our results shed light on the signaling pathways regulated by OTUD7B and highlight potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao-Li Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Pathology, General hospital of Ningxia Medical University, Yinchuan, PR China
| | - Shan-Yu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Ming-Hui Zhang
- Department of Pathology, General hospital of Ningxia Medical University, Yinchuan, PR China
| | - Ping-Zhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Pathology, General hospital of Ningxia Medical University, Yinchuan, PR China.
| |
Collapse
|
4
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Chen X, He L, Zhong H, Yan C, Ke B, Shi L. The suppression of OTUD7B by miR-491-5p enhances the ubiquitination of VEGFA to suppress vascular mimicry in non-small cell lung cancer. J Gene Med 2024; 26:e3743. [PMID: 39376029 DOI: 10.1002/jgm.3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the main type of lung cancer with high morbidity and mortality. Vascular mimicry (VM), a distinct microcirculation model in tumors that differs from classical angiogenesis, is strongly associated with poor clinical outcomes in cancer patients. miR-491-5p has been reported to prevent NSCLC progression, including proliferation, metastasis, and angiogenesis. However, the effect and mechanism of miR-491-5p on VM have not been studied in NSCLC. METHODS The expression of miR-491-5p was detected by quantitative reverse transcription PCR (qPCR) and fluorescence in situ hybridization (FISH). Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining assays were used to examine cell growth. Tube formation assay was used to assess VM in NSCLC cells. Immunohistochemistry (IHC) and western blot were performed to detect protein expression. Immunoprecipitation was used to confirm the interaction between OTU deubiquitinase 7B (OTUD7B) and vascular endothelial growth factor A (VEGFA), and the level of ubiquitinated VEGFA. A nude mouse tumorigenesis model was used to evaluate the carcinogenic capacity of NSCLC cells in vivo. Luciferase reporter assay was used to identify the potential target of miR-491-5p. RESULTS MiR-491-5p was found downregulated in NSCLC tissues, and miR-491-5p deficiency was strongly associated with angiogenesis. miR-491-5p mimics suppressed cell viability, migration, and VM. Conversely, an inhibitor of miR-491-5p had the opposite effect. OTUD7B, a deubiquitinase, was identified as a downstream target of miR-491-5p. A luciferase reporter assay indicated that miR-491-5p directly binds to the 3'UTR of OTUD7B. Moreover, mimics of miR-491-5p caused a significant reduction in the OTUD7B protein in NSCLC cells, and an inhibitor of miR-491-5p stabilized the OTUD7B protein. In addition, overexpression of OTUD7B promoted cell proliferation, migration, and VM, similar to the effects of an inhibitor of miR-491-5p. Further exploration revealed that OTUD7B interacts with VEGFA and that the miR-491-5p-OTUD7B axis modulates the ubiquitination of VEGFA. The rescue experiment indicated that OTUD7B compromised the inhibitory effects of miR-491-5p on the cellular function of NSCLC cells. CONCLUSIONS Overall, our study first proved that miR-491-5p impedes VM by suppressing OUTD7B and promoting the ubiquitination of VEGFA. The miR-491-5p/OTUD7B axis may be a novel target for antiangiogenic therapy in NSCLC.
Collapse
Affiliation(s)
- Xiaofei Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun He
- Dongguan Humen Hospital, Dongguan, Guangdong, China
| | - Hai Zhong
- Department of Thoracic Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Chenxin Yan
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Ke
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Kim YJ, Lee HJ, Kim KH, Cho SP, Jung JY. OTUD7B knockdown inhibits proliferation and autophagy through AKT/mTOR signaling pathway in human prostate cancer cell. Discov Oncol 2024; 15:247. [PMID: 38935308 PMCID: PMC11211289 DOI: 10.1007/s12672-024-01073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer (PCa) is the second leading disease of cancer-related death in men around the world, and it is almost impossible to treat advanced PCa. OTUD7B is a member of the deubiquitinase family that undergoes a post-translational transformation process, which is essential for cell stability and signaling and is known to play a critical role in cancer. However, its role in PCa has not been discovered. The aim of the study was to investigate the expression and mechanism of OTUD7B in PCa cells. According to the database, high OTUD7B expression showed a poor prognosis. Therefore, we downregulated OTUD7B using siRNA and confirmed the role of OTUD7B in PC3 prostate cancer cells. OTUD7B knockdown effectively induced apoptosis and inhibited the proliferation in PC3 cells. OTUD7B knockdown inhibited autophagy through AKT/mTOR signaling. We also confirmed the relationship between AKT/mTOR signaling and autophagy through rapamycin, an mTOR inhibitor. Taken together, OTUD7B promotes the proliferation, and autophagy, and inhibits apoptosis of prostate cancer cells via the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yae Ji Kim
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Hui Ju Lee
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Kyung Hyun Kim
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Sung Pil Cho
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Ju Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Sun C, Bai J, Sun J, Sun Y, Zhang F, Li H, Liu Y, Meng L, Wang X. OTU deubiquitinase 7B facilitates the hyperthermia-induced inhibition of lung cancer progression through enhancing Smac-mediated mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2024; 39:1989-2005. [PMID: 38088504 DOI: 10.1002/tox.24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Hyperthermia, as an adjuvant therapy, has shown promising anti-tumor effects. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme that is frequently found in a variety of cancers. The aim of this study is to investigate the role of OTUD7B in lung cancer hyperthermia and the underlying mechanism. A549 and CALU-3 cells were respectively exposed to 42 or 44°C for the indicated times (0, 1, 3, or 6 h) followed by incubation at 37°C for 24 h. We found a temperature- and time-dependent decrease in cell viability and an increase in apoptosis levels. Compared with 0 h, heat treatment for 3 h inhibited the proliferation and invasion of A549 cells, reduced the expression levels of mitochondrial membrane potential, IAP family members (cIAP-1 and XIAP) proteins and ubiquitination of Smac, and increased Smac protein expression. Treatment with 10 μM Smac mimic BV6 further enhanced the anti-tumor effect of hyperthermia. Next, co-IP validation showed that OTUD7B interacted with Smac and stabilized Smac through deubiquitination. OTUD7B overexpression induced damage in A549 and CALU-3 cells, while silencing OTUD7B caused opposite effects. Overexpressing OTUD7B enhanced the anti-cancer effect of hyperthermia, while si-OTUD7B reversed the anti-cancer effect of hyperthermia, which was verified in the xenograft tumor model in nude mice. Taken together, OTUD7B may serve as a potential anticancer factor with potential clinical efficacy in the thermotherapeutic treatment of lung cancer.
Collapse
Affiliation(s)
- Chao Sun
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jun Bai
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Sun
- Data Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fan Zhang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - He Li
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ying Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lian Meng
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Xifang Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
8
|
Wang H, Han S, Xiao J, Fu X, Chen W, Zhuo D. OTUD7B knockdown inhibits the proliferation and stemness of breast cancer cells by destabilizing FOXM1. Oncol Lett 2024; 27:102. [PMID: 38298430 PMCID: PMC10829069 DOI: 10.3892/ol.2024.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 10/16/2023] [Indexed: 02/02/2024] Open
Abstract
Breast cancer is a leading cause of cancer-related death in women worldwide; therefore, there is an urgent need to develop novel therapies and drugs that prolong the survival and improve the quality of life of patients with breast cancer. In the present study, the effects and underlying mechanisms of OTU domain-containing 7B (OTUD7B) knockdown on breast cancer were investigated using MDA-MB-468, MDA-MB-453 and MCF7 cell lines. The results of Cell Counting Kit 8, colony formation and tumor sphere formation experiments showed that OTUD7B knockdown caused a significant decrease in the proliferation and sphere formation ability of MDA-MB-468, MDA-MB-453 and MCF7 cells in vitro. Moreover, western blotting results showed that CD44, EpCAM, SOX2 and Nanog protein levels were significantly decreased following OTUD7B knockdown. These findings indicated that OTUD7B knockdown reduced the proliferation and stemness of breast cancer cells. Co-immunoprecipitation assays demonstrated that OTUD7B interacted with forkhead box protein M1 (FOXM1) and reduced the polyubiquitylation of FOXM1 in breast cancer cells; accordingly, FOXM1 protein levels were significantly decreased by OTUD7B knockdown. Furthermore, the overexpression of FOXM1 reduced the inhibitory effects of OTUD7B knockdown on breast cancer cells. The findings of the present study provide new insights into the oncogenic role of OTUD7B in breast cancer and indicate that OTUD7B may serve as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hebing Wang
- Department of Breast Surgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Sumei Han
- Department of Dermatology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Jian Xiao
- Department of Breast Surgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Xinghang Fu
- Department of Breast Surgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Wenfeng Chen
- Department of Dermatology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Dexiang Zhuo
- Department of Laboratory Medicine, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| |
Collapse
|
9
|
Du B, Zhang J, Kong L, Shi H, Zhang D, Wang X, Yang C, Li P, Yao R, Liang C, Wu L, Huang Z. Ovarian Tumor Domain-Containing 7B Attenuates Pathological Cardiac Hypertrophy by Inhibiting Ubiquitination and Degradation of Krüppel-Like Factor 4. J Am Heart Assoc 2023; 12:e029745. [PMID: 38084712 PMCID: PMC10863784 DOI: 10.1161/jaha.123.029745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Cardiac hypertrophy (CH) is a well-established risk factor for many cardiovascular diseases and a primary cause of mortality and morbidity among older adults. Currently, no pharmacological interventions have been specifically tailored to treat CH. OTUD7B (ovarian tumor domain-containing 7B) is a member of the ovarian tumor-related protease (OTU) family that regulates many important cell signaling pathways. However, the role of OTUD7B in the development of CH is unclear. Therefore, we investigated the role of OTUD7B in CH. METHODS AND RESULTS OTUD7B knockout mice were used to assay the role of OTUD7B in CH after transverse aortic coarctation surgery. We further assayed the specific functions of OTUD7B in isolated neonatal rat cardiomyocytes. We found that OTUD7B expression decreased in hypertrophic mice hearts and phenylephrine-stimulated neonatal rat cardiomyocytes. Furthermore, OTUD7B deficiency exacerbated transverse aortic coarctation surgery-induced myocardial hypertrophy, abnormal cardiac function, and fibrosis. In cardiac myocytes, OTUD7B knockdown promoted phenylephrine stimulation-induced myocardial hypertrophy, whereas OTUD7B overexpression had the opposite effect. An immunoprecipitation-mass spectrometry analysis showed that OTUD7B directly binds to KLF4 (Krüppel-like factor 4). Additional molecular experiments showed that OTUD7B impedes KLF4 degradation by inhibiting lysine residue at 48 site-linked ubiquitination and suppressing myocardial hypertrophy by activating the serine/threonine kinase pathway. CONCLUSIONS These results demonstrate that the OTUD7B-KLF4 axis is a novel molecular target for CH treatment.
Collapse
Affiliation(s)
- Bin‐Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jie‐Lei Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling‐Yao Kong
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Hui‐Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Dian‐Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xing Wang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Chun‐Lei Yang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Peng‐Cheng Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Lei‐Ming Wu
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
10
|
Xu Q, He L, Zhang S, Di X, Jiang H. Deubiquitinase OTUD3: a double-edged sword in immunity and disease. Front Cell Dev Biol 2023; 11:1237530. [PMID: 37829187 PMCID: PMC10566363 DOI: 10.3389/fcell.2023.1237530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Lee Y, Piao HL, Kim J. OTUD7B Activates Wnt Signaling Pathway through the Interaction with LEF1. Biomolecules 2023; 13:1001. [PMID: 37371581 DOI: 10.3390/biom13061001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The Wnt signaling pathway plays a critical role in regulating normal cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of Wnt signaling has been implicated in various human diseases, including cancer. β-catenin and LEF1 are key mediators of Wnt signaling, and their dysregulation is a hallmark of many cancer types. In this study, we aimed to identify the deubiquitinases (DUBs) that regulate the Wnt signaling pathway through the essential component LEF1. Screening candidate DUBs from the human DUB library, we discovered that OTUD7B interacts with LEF1 and activates Wnt signaling. OTUD7B and LEF1 interact with each other through the UBA and HMG domains, respectively. Furthermore, OTUD7B promotes the nuclear localization of LEF1, leading to an increased interaction with β-catenin in the nucleus while not noticeably affecting ubiquitination on LEF1. Using qPCR array analysis, we found that OTUD7B overexpression leads to an upregulation of 75% of the tested Wnt target genes compared to the control. These findings suggest that OTUD7B may serve as a potential therapeutic target in human diseases, including cancers where Wnt signaling is frequently dysregulated.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
12
|
Zhang J, Zha Y, Jiao Y, Li Y, Zhang S. Protective role of cezanne in doxorubicin-induced cardiotoxicity by inhibiting autophagy, apoptosis and oxidative stress. Toxicology 2023; 485:153426. [PMID: 36639017 DOI: 10.1016/j.tox.2023.153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Doxorubicin (DOX) is frequently used in clinical practice for its broad-spectrum effects. However, its benefit is limited by a series of complications, including excessive apoptosis and autophagy of cardiomyocytes, overproduction of reactive oxygen species (ROS) and high level of oxidative stress. As a new protein, OTU domain-containing 7B (OTUD7B), also called Cezanne, has been reported to regulate many pathological processes. However, whether it plays a role in DOX-induced cardiotoxicity is still unclear. We discovered that the Cezanne level was significantly increased in DOX-treated neonatal rat cardiomyocytes (NRCMs) and C57BL/6 J mice hearts. In vitro, the knockdown of Cezanne with adenovirus in NRCMs significantly worsened DOX-induced apoptosis, autophagy and oxidative stress, while Cezanne overexpression showed opposite results. In vivo, the overexpression of Cezanne using cardiomyocyte-targeted adeno-associated virus 9 (AAV9) significantly reduced cardiomyocyte apoptosis, autophagy and oxidative stress level when C57BL/6 J mice were subjected to DOX. Mechanistically, the overexpression of Cezanne significantly reversed the in-activation of the PI3K/AKT/mTOR pathway induced by DOX, while the inhibitors of this pathway abolished the effect of Cezanne, suggesting that the PI3K/AKT/mTOR pathway plays a role in the protective function of Cezanne. These findings indicate that Cezanne could ameliorate DOX-induced cardiotoxicity by attenuating the apoptosis and autophagy of cardiomyocytes and decreasing the level of oxidative stress.
Collapse
Affiliation(s)
- Jiayan Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yafang Zha
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yuheng Jiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yanyan Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Song Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
13
|
Chen J, Bolhuis DL, Laggner C, Kong D, Yu L, Wang X, Emanuele MJ, Brown NG, Liu P. AtomNet-Aided OTUD7B Inhibitor Discovery and Validation. Cancers (Basel) 2023; 15:517. [PMID: 36672466 PMCID: PMC9856706 DOI: 10.3390/cancers15020517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Protein deubiquitinases play critical pathophysiological roles in cancer. Among all deubiquitinases, an oncogenic function for OTUD7B has been established in genetic NSCLC murine models. However, few deubiquitinase inhibitors have been developed due to technical challenges. Here, we report a putative small molecule OTUD7B inhibitor obtained from an AI-aided screen of a 4 million compound library. We validated the effects of the OTUD7B inhibitor (7Bi) in reducing Akt-pS473 signals in multiple NSCLC and HEK293 cells by blocking OTUD7B-governed GβL deubiquitination in cells, as well as inhibiting OTUD7B-mediated cleavage of K11-linked di-ub in an in vitro enzyme assay. Furthermore, we report in leukemia cells, either genetic depletion or 7Bi-mediated pharmacological inhibition of OTUD7B reduces Akt-pS473 via inhibiting the OTUD7B/GβL signaling axis. Together, our study identifies the first putative OTUD7B inhibitor showing activities both in cells and in vitro, with promising applications as a therapeutic agent in treating cancer with OTUD7B overexpression.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek L. Bolhuis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Deyu Kong
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G. Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Peng W, Yao C, Pan Q, Zhang Z, Ye J, Shen B, Zhou G, Fang Y. Novel considerations on EGFR-based therapy as a contributor to cancer cell death in NSCLC. Front Oncol 2023; 13:1120278. [PMID: 36910653 PMCID: PMC9995697 DOI: 10.3389/fonc.2023.1120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) represented by gefitinib and erlotinib are widely used in treating non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR-TKI treatment remains a clinical challenge. In recent years, emerging research investigated in EGFR-TKI-based combination therapy regimens, and remarkable achievements have been reported. This article focuses on EGFR-TKI-based regimens, reviews the standard and novel application of EGFR targets, and summarizes the mechanisms of EGFR-TKI combinations including chemotherapy, anti-vascular endothelial growth factor monoclonal antibodies, and immunotherapy in the treatment of NSCLC. Additionally, we summarize clinical trials of EGFR-TKI-based combination therapy expanding indications to EGFR mutation-negative lung malignancies. Moreover, novel strategies are under research to explore new drugs with good biocompatibility. Nanoparticles encapsulating non-coding RNA and chemotherapy of new dosage forms drawn great attention and showed promising prospects in effective delivery and stable release. Overall, as the development of resistance to EGFR-TKIs treatment is inevitable in most of the cases, further research is needed to clarify the underlying mechanism of the resistance, and to evaluate and establish EGFR-TKI combination therapies to diversify the treatment landscape for NSCLC.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyun Yao
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Pan
- Department of Medical Oncology, Liyang People's Hospital, Liyang, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjun Ye
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Fang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
16
|
OTUD7B (Cezanne) ameliorates fibrosis after myocardial infarction via FAK-ERK/P38 MAPK signaling pathway. Arch Biochem Biophys 2022; 724:109266. [PMID: 35523269 DOI: 10.1016/j.abb.2022.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
Fibrosis is one of the crucial reasons for cardiac dysfunction after myocardial infarction (MI). Understanding the underlying molecular mechanism that causes fibrosis is crucial to developing effective therapy. Recently, OUT domain-containing 7B (OTUD7B), also called Cezanne, a multifunctional deubiquitylate, has been found to play various roles in cancer and vascular diseases and control many important signaling pathways, including inflammation, proliferation, and so on. However, whether OTUD7B plays a role in fibrosis caused by MI remains unclear. Our study aimed to explore the function of OTUD7B in cardiac fibrosis and investigate the underlying mechanism. We found that the expression of OTUD7B was downregulated in the MI rat model and cultured cardiac fibroblasts (CFs) in hypoxic conditions and after TGF-β1 treatment. In vitro, silencing OTUD7B using small interfering RNA (siRNA) increased α-SMA (smooth muscle actin α) and collagen Ⅰ levels in CFs, whereas the overexpression of OTUD7B using adenovirus decreased their expression. Mechanistically, OTUD7B could regulate the phosphorylation of focal adhesion kinase (FAK), a non-receptor tyrosine kinase that has been proved to act as a potential mediator of fibrosis, and ERK/P38 MAPK was involved in this regulation process. In vitro, overexpression of OTUD7B downregulated the phosphorylation level of FAK and then inhibited ERK/P38 phosphorylation, thus leading to decreased α-SMA and collagen Ⅰ expressions, while OTUD7B knockdown showed an opposite result. These findings suggest that OTUD7B could become a potentially effective therapeutic strategy against fibrosis after MI.
Collapse
|
17
|
Liu Y, Jiang J, Liu L, Wang Z, Yu B, Xia Z, Zhang Q, Ji D, Liu X, Lv F, Hong X, Song S, Cao J. Prognostic significance of clinical characteristics and 18Fluorodeoxyglucose-positron emission tomography/computed tomography quantitative parameters in patients with primary mediastinal B-cell lymphoma. J Int Med Res 2022; 50:3000605211063027. [PMID: 35001690 PMCID: PMC8743955 DOI: 10.1177/03000605211063027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective Primary mediastinal B-cell lymphoma (PMBCL) lacks standard treatment regimens. This study aimed to identify the disease’s clinical features and prognostic factors. Methods This retrospective study included 56 patients with PMBCL. Patient demographic details and clinicopathological characteristics were summarized, and their effects on progression-free survival (PFS) and overall survival (OS) were analyzed. Results The median patient age was 29 years (range, 14–56). Twenty-two patients received DA-EPOCH-R (dose-adjusted etoposide, vincristine, and doxorubicin for 96 hours with bolus doses of cyclophosphamide and oral prednisone, as well as rituximab), and 34 patients received R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone). Clinical/laboratory parameters, overall response rates, and 5-year PFS and OS rates did not differ between the treatment groups. Kaplan–Meier analysis indicated that late-stage disease and a higher International Prognostic Index (IPI) were associated with shorter PFS and OS. Furthermore, patients with B symptoms and first-line treatment non-responders exhibited worse OS. 18Fluorodeoxyglucose-positron emission tomography/computed tomography quantitative parameters, such as higher metabolic tumor volume (MTV) and total lesion glycolysis (TLG), were corrected with shorter PFS. Conclusions This study revealed that stage IV disease, higher IPI, and B symptoms were poor prognostic factors in patients with PMBCL. Significantly, higher MTV and TLG portended worse PFS.
Collapse
Affiliation(s)
- Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinjin Jiang
- Department of Nuclear Medicine, 89667Fudan University Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lianfang Liu
- Department of Medical Oncology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zezhou Wang
- Department of Cancer Prevention, 89667Fudan University Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Baohua Yu
- Department of Pathology, 89667Fudan University Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zuguang Xia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qunling Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojian Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangfang Lv
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Hong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, 89667Fudan University Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junning Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Xu J, Xu W, Xuan Y, Liu Z, Sun Q, Lan C. Pancreatic Cancer Progression Is Regulated by IPO7/p53/LncRNA MALAT1/MiR-129-5p Positive Feedback Loop. Front Cell Dev Biol 2021; 9:630262. [PMID: 34660566 PMCID: PMC8517143 DOI: 10.3389/fcell.2021.630262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic cancer is a malignancy with poor prognosis. Importin 7 (IPO7) is a soluble nuclear transport factor, which has been linked to the pathogenesis of several human diseases. However, its role and underlying mechanism in pancreatic cancer are still obscure. Methods: Immunohistochemical staining and quantitative real-time polymerase chain reaction (qPCR) were performed to determine IPO7 expression in pancreatic cancer tissues and adjacent tissues. Western blot was used to measure IPO7 expression at the protein level in cell lines. Cell Counting Kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU), flow cytometry, and Transwell assays were employed to explore the biological functions of IPO7. Subcutaneous xenograft transplanted tumor model and caudal vein injection model in mice were also established to validate the oncogenic role of IPO7. Western blot and qPCR were utilized to detect the regulatory function of IPO7 on p53 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), respectively. Interaction between MALAT1 and miR-129-5p and interaction between miR-129-5p and IPO7 were verified by bioinformatics prediction, qPCR, dual-luciferase reporter gene experiment, RNA immunoprecipitation (RIP), and pull-down assay. Results: Upregulation of IPO7 in pancreatic cancer tissues was associated with adverse prognosis of the patients with pancreatic cancer. Knocking down IPO7 remarkably suppressed cancer cell proliferation and metastasis, while it promoted apoptosis. Overexpression of IPO7 facilitated the malignant phenotypes of pancreatic cancer cells. Mechanistically, IPO7 could repress the expression of p53 and induce the expression of MALAT1 but reduce miR-129-5p expression. Furthermore, miR-129-5p was identified as a posttranscriptional regulator for IPO7, and its inhibition led to IPO7 overexpression in pancreatic cancer cells. Conclusion: IPO7 is a novel oncogene for pancreatic cancer, and IPO7/p53/MALAT1/miR-129-5p positive feedback loop facilitates the progression of this deadly disease.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yang Xuan
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhen Liu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qinyun Sun
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Cheng Lan
- Department of Gastroenterology, Affiliated Hainan Hospital, Hainan Medical University, Hainan General Hospital, Hainan, China
| |
Collapse
|
19
|
Li Y, Li R, Qin Y, Lin C, Yang Y. Robust group variable screening based on maximum Lq-likelihood estimation. Stat Med 2021; 40:6818-6834. [PMID: 34658050 DOI: 10.1002/sim.9212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 11/06/2022]
Abstract
Variable screening plays an important role in ultra-high-dimensional data analysis. Most of the previous analyses have focused on individual predictor screening using marginal correlation or other rank-based techniques. When predictors can be naturally grouped, the structure information should be incorporated while applying variable screening. This study presents a group screening procedure that is based on maximum Lq-likelihood estimation, which is being increasingly used for robust estimation. The proposed method is robust against data contamination, including a heavy-tailed distribution of the response and a mixture of observations from different distributions. The sure screening property is rigorously established. Simulations demonstrate the competitive performance of the proposed method, especially in terms of its robustness against data contamination. Two real data analyses are presented to further illustrate its performance.
Collapse
Affiliation(s)
- Yang Li
- Center for Applied Statistics, Renmin University of China, Beijing, China.,School of Statistics, Renmin University of China, Beijing, China.,Statistical Consulting Center, Renmin University of China, Beijing, China
| | - Rong Li
- School of Statistics, Renmin University of China, Beijing, China.,Statistical Consulting Center, Renmin University of China, Beijing, China
| | - Yichen Qin
- Department of Operations, Business Analytics, and Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| | - Cunjie Lin
- Center for Applied Statistics, Renmin University of China, Beijing, China.,School of Statistics, Renmin University of China, Beijing, China.,Statistical Consulting Center, Renmin University of China, Beijing, China
| | - Yuhong Yang
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. Int J Mol Sci 2021; 22:ijms22126173. [PMID: 34201062 PMCID: PMC8226939 DOI: 10.3390/ijms22126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin-proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.
Collapse
|
21
|
Li J, Wang J, Xie D, Pei Q, Wan X, Xing H, Ye T. Characteristics of the PI3K/AKT and MAPK/ERK pathways involved in the maintenance of self-renewal in lung cancer stem-like cells. Int J Biol Sci 2021; 17:1191-1202. [PMID: 33867839 PMCID: PMC8040472 DOI: 10.7150/ijbs.57871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide due to its early asymptomatic and late metastasis. While cancer stem cells (CSCs) may play a vital role in oncogenesis and development of lung cancer, mechanisms underlying CSCs self-renewal remain less clear. In the present study, we constructed a clinically relevant CSCs enrichment recognition model and evaluated the potential functions of phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT) and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways in lung cancer via bioinformatic analysis, providing the basis for in depth mechanistic inquisition. Experimentally, we confirmed that PI3K/AKT pathway predominantly promotes proliferation through anti-apoptosis in lung adenocarcinoma cells, while MAPK/ERK pathway has an overwhelming superiority in regulating the proliferation in lung CSCs. Further, utilizing stemness score model, LLC-Symmetric Division (LLC-SD) cells and mouse orthotopic lung transplantation model, we elucidated an intricate cross-talk between the oncogenic pathway and the stem cell reprograming pathway that impact stem cell characteristics as well as cancer biology features of lung CSCs both in vitro and in vivo. In summary, our findings uncovered a new insight that PI3K/AKT and MAPK/ERK pathways as oncogenic signaling pathway and/or stem cell signaling pathway act distinctively and synergistically to regulate lung CSCs self-renewal.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Dan Xie
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - H.Rosie Xing
- College of Biomedical Engineering, State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
22
|
Stahlhut M, Ha TC, Takmakova E, Morgan MA, Schwarzer A, Schaudien D, Eder M, Schambach A, Kustikova OS. Conditionally immortalised leukaemia initiating cells co-expressing Hoxa9/Meis1 demonstrate microenvironmental adaptation properties ex vivo while maintaining myelomonocytic memory. Sci Rep 2021; 11:5294. [PMID: 33674652 PMCID: PMC7935976 DOI: 10.1038/s41598-021-84468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Regulation of haematopoietic stem cell fate through conditional gene expression could improve understanding of healthy haematopoietic and leukaemia initiating cell (LIC) biology. We established conditionally immortalised myeloid progenitor cell lines co-expressing constitutive Hoxa9.EGFP and inducible Meis1.dTomato (H9M-ciMP) to study growth behaviour, immunophenotype and morphology under different cytokine/microenvironmental conditions ex vivo upon doxycycline (DOX) induction or removal. The vector design and drug-dependent selection approach identified new retroviral insertion (RVI) sites that potentially collaborate with Meis1/Hoxa9 and define H9M-ciMP fate. For most cell lines, myelomonocytic conditions supported reversible H9M-ciMP differentiation into neutrophils and macrophages with DOX-dependent modulation of Hoxa9/Meis1 and CD11b/Gr-1 expression. Here, up-regulation of Meis1/Hoxa9 promoted reconstitution of exponential expansion of immature H9M-ciMPs after DOX reapplication. Stem cell maintaining conditions supported selective H9M-ciMP exponential growth. H9M-ciMPs that had Ninj2 RVI and were cultured under myelomonocytic or stem cell maintaining conditions revealed the development of DOX-dependent acute myeloid leukaemia in a murine transplantation model. Transcriptional dysregulation of Ninj2 and distal genes surrounding RVI (Rad52, Kdm5a) was detected. All studied H9M-ciMPs demonstrated adaptation to T-lymphoid microenvironmental conditions while maintaining immature myelomonocytic features. Thus, the established system is relevant to leukaemia and stem cell biology.
Collapse
Affiliation(s)
- Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Teng Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ekaterina Takmakova
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Matthias Eder
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Olga S Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
23
|
Yin S, Liu L, Gan W. The Roles of Post-Translational Modifications on mTOR Signaling. Int J Mol Sci 2021; 22:ijms22041784. [PMID: 33670113 PMCID: PMC7916890 DOI: 10.3390/ijms22041784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
Collapse
|
24
|
LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers (Basel) 2020; 12:cancers12123867. [PMID: 33371395 PMCID: PMC7767460 DOI: 10.3390/cancers12123867] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most frequent primary tumor of the eye in adults. Although molecular alterations on protein-coding genes have been associated with the development of UM, the role of non-coding RNAs and their competitive endogenous networks remain poorly investigated. Starting from a computational analysis on UM expression dataset deposited in The Cancer Genome Atlas, we identified the long non-coding RNA LINC00518 as a potential oncogene. We then experimentally evaluated LINC00518 and its supposed RNA signaling in human biopsies and in vitro functional assays. The results obtained suggest that LINC00518, under potential transcriptional control by MITF, regulates an RNA–RNA network promoting cancer-related processes (i.e., cell proliferation and migration). These findings open the way to the characterization of the unknown RNA signaling associated with UM and pave the way to the exploitation of a potential target for RNA-based therapeutics. Abstract Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults; little is known about the contribution of non-coding RNAs (ncRNAs) to UM pathogenesis. Competitive endogenous RNA (ceRNA) networks based on RNA–RNA interactions regulate physiological and pathological processes. Through a combined approach of in silico and experimental biology, we investigated the expression of a set of long non-coding RNAs (lncRNAs) in patient biopsies, identifying LINC00518 as a potential oncogene in UM. The detection of LINC00518 dysregulation associated with several in vitro functional assays allowed us to investigate its ceRNA regulatory network and shed light on its potential involvement in cancer-related processes, such as epithelial to mesenchymal transition (EMT) and CoCl2-induced hypoxia-like response. In vitro transient silencing of LINC00518 impaired cell proliferation and migration, and affected mRNA expression of LINGO2, NFIA, OTUD7B, SEC22C, and VAMP3. A “miRNA sponge” and “miRNA protector” model have been hypothesized for LINC00518-induced regulation of mRNAs. In vitro inhibition of MITF suggested its role as a potential activator of LINC00518 expression. Comprehensively, LINC00518 may be considered a new oncogene in UM and a potential target for RNA-based therapeutic approaches.
Collapse
|
25
|
OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:244. [PMID: 33198776 PMCID: PMC7667862 DOI: 10.1186/s13046-020-01751-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Background Smac mimetics are a type of drug that can induce apoptosis by antagonizing IAP family members in cancer treatment. However, a recent study showed that Smac mimetics can trigger cell invasion and migration in cancer cells by activating the NF-κB pathway. Methods We assessed lung cancer cell elongation, invasion and migration under treatment with the Smac mimetic LCL161. Functional analyses (in vitro and in vivo) were performed to detect the contribution of NIK and OTUD7B to LCL161-induced cell invasion and migration. The role of OTUD7B in regulation of the TRAF3/NIK/NF-κB pathway under LCL161 treatment was analysed by immunoblotting, immunoprecipitation, luciferase and ubiquitin assays, shRNA silencing and plasmid overexpression. Expression levels of OTUD7B, NIK and TRAF3 in tissue samples from lung cancer patients were examined by immunohistochemistry. Results We found that LCL161 stimulates lung cancer cell elongation, invasion and migration at non-toxic concentrations. Mechanistically, LCL161 results in NIK accumulation and activates the non-canonical rather than the canonical NF-κB pathway to enhance the transcription of target genes, such as IL-2 and MMP-9. Importantly, knockdown of NIK dramatically suppresses LCL161-induced cell invasion and migration by reducing the proteolytic processing of p100 to p52 and target gene transcription. Interestingly, we discovered that OTUD7B increases TRAF3 and decreases NIK to inhibit the non-canonical NF-κB pathway and that overexpression of OTUD7B suppresses LCL161-induced cell invasion and migration. Notably, OTUD7B directly binds to TRAF3 rather than to NIK and deubiquitinates TRAF3, thereby inhibiting TRAF3 proteolysis and preventing NIK accumulation and NF-κB pathway activation. Furthermore, the OTU domain of OTUD7B is required for the inhibition of LCL161-induced cell invasion and migration, as demonstrated by transfection of the C194S/H358R(CH) mutant OTUD7B. Finally, we investigated whether OTUD7B inhibits LCL161-induced lung cancer cell intrapulmonary metastasis in vivo, and our analysis of clinical samples was consistent with the above findings. Conclusions Our study highlights the importance of OTUD7B in the suppression of LCL161-induced lung cancer cell invasion and migration, and the results are meaningful for selecting lung cancer patients suitable for LCL161 treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01751-3.
Collapse
|
26
|
Chen H, Miao L, Huang F, Yu Y, Peng Q, Liu Y, Li X, Liu H. Glochidiol, a natural triterpenoid, exerts its anti-cancer effects by targeting the colchicine binding site of tubulin. Invest New Drugs 2020; 39:578-586. [PMID: 33026557 DOI: 10.1007/s10637-020-01013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Glochidiol has been shown to have potentially antiproliferative activity in vitro, however its anticancer mechanisms specifically against lung cancer remain unknown. This study aimed to investigate the anti-lung cancer effects of glochidiol in HCC-44 cells in vitro and in vivo. In the present study, glochidiol was found to have potent antiproliferative activity against lung cancer cell lines NCI-H2087, HOP-62, NCI-H520, HCC-44, HARA, EPLC-272H, NCI-H3122, COR-L105 and Calu-6 with IC50 values of 4.12 µM, 2.01 µM, 7.53 µM, 1.62 µM, 4.79 µM, 7.69 µM, 2.36 µM, 6.07 µM and 2.10 µM, respectively. In vivo, glochidiol was found to effectively inhibit lung cancer HCC-44 xenograft tumor growth in nude mice. Docking analysis found that glochidiol forms hydrogen bonds with residues of tubulin. Glochidiol was also found to inhibit tubulin polymerization in vitro with an IC50 value of 2.76 µM. Immunofluorescence staining and EBI competition assay suggest that glochidiol may interact with tubulin by targeting the colchicine binding site. Thus, glochidiol might be a novel colchicine binding site inhibitor with the potential to treat lung cancer.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lijun Miao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fengxiang Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yali Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiang Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xixi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
27
|
Liu Z, Ning Z, Lu H, Cao T, Zhou F, Ye X, Chen C. Long non-coding RNA RFPL3S is a novel prognostic biomarker in lung cancer. Oncol Lett 2020; 20:1270-1280. [PMID: 32724368 PMCID: PMC7377115 DOI: 10.3892/ol.2020.11642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are functional components of the human genome. Recent studies have demonstrated that lncRNAs play essential roles in tumorigenesis, and are involved in cell proliferation, apoptosis, migration and invasion in several types of tumor, including lung cancer. However, the clinical relevance of lncRNA expression in lung cancer remains unknown. The aim of the present study was to investigate the expression pattern of RFPL3 antisense (RFPL3S) and its associations with clinicopathological characteristics in patients with lung cancer. Whether RFPL3S can act as a potential prognostic biomarker for lung cancer was also investigated. RFPL3S expression in tumor samples and cells was assessed using the Oncomine database and the Cancer Cell Line Encyclopedia, respectively. Based on Kaplan-Meier Plotter analyses, the prognostic values of RFPL3S were further evaluated. It was revealed that RFPL3S was highly expressed in lung cancer tissues when compared with normal tissues and was significantly associated with pN factor, pTNM stage and Ki-67 labeling index. In the survival analyses, increased RFPL3S expression was associated with poor survival and was inversely associated with first progression in all patients. These results indicate that RFPL3S may be of clinical significance and may act as a prognostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Zhiqiang Ning
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Hailin Lu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Tinghua Cao
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Feng Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xia Ye
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chao Chen
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| |
Collapse
|
28
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
29
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
30
|
Lei S, He Z, Chen T, Guo X, Zeng Z, Shen Y, Jiang J. Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:470. [PMID: 31747939 PMCID: PMC6868788 DOI: 10.1186/s13046-019-1388-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. METHODS In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. RESULTS linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. CONCLUSION The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Shan Lei
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.,Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Zhirui Zeng
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Yiyi Shen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China. .,Hubei Key Laboratory of Digestive System Disease of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|