1
|
Zhu M, Lu Z, Liao X, Liang Q, Xu C, Luo X, Li J. Clinical value of dysregulated miR-125b-5p in severe pneumonia children. BMC Immunol 2025; 26:31. [PMID: 40221643 PMCID: PMC11993971 DOI: 10.1186/s12865-025-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Severe pneumonia is an important contributor to the high mortality of sick young children. The microRNA-125b-5p (miR-125b-5p), which is widely involved in various cancers, is closely related to a variety of lung diseases. However, its role in severe pneumonia children remains to be studied. OBJECTIVE This study focused on the expression and clinical value of miR-125b-5p in severe pneumonia children. MATERIALS AND METHODS The study subjects included 96 pneumonia children and 127 severe pneumonia children. These children were aged between 2-10 years. The expression level of serum miR-125b-5p was assessed by qRT-PCR. The receiver operator characteristic (ROC) curve was employed to identify severe pneumonia children from pneumonia individuals. Kaplan-Meier curve was plotted based on follow-up results and multivariate Cox regression analysis was applied to evaluate the contribution of miR-125b-5p to poor prognostic in severe pneumonia children. RESULTS MiR-125b-5p was remarkedly reduced in severe pneumonia children compared to pneumonia individuals. The area under the curve (AUC) was 0.9267 and the sensitivity and specificity were 84.25% and 89.58%, respectively. The accumulative survival rate in low miR-125b-5p group showed a remarkable decrease compared to the high miR-125b-5p group (P = 0.033). Increased procalcitonin (PCT, HR: 2.631, 95% CI: 1.029-6.732, P = 0.043) and reduced miR-125b-5p (HR: 0.301, 95% CI: 0.110-0.826, P = 0.020) were found to be related to the poor prognosis in severe pneumonia children. CONCLUSION The reduced miR-125b-5p was an underlying diagnostic indicator of severe pneumonia and was an independent risk factor of poor prognosis in severe pneumonia children.
Collapse
Affiliation(s)
- Meiqin Zhu
- Department of Respiratory, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternal and Child Health Hospital), Zhenjiang, 212001, China
| | - Ziyan Lu
- Department of Pediatrics, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
| | - Xingjuan Liao
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Qin Liang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Chao Xu
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Xinbing Luo
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Li
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Lianhu District, Xi'an, 710003, China.
| |
Collapse
|
2
|
Benariba MA, Hannachi K, Wang S, Zhang Y, Wang X, Wang L, Zhou N. Liposome-encapsulated lambda exonuclease-based amplification system for enhanced detection of miRNA in platelet-derived microvesicles of non-small cell lung cancer. J Mater Chem B 2025; 13:2666-2673. [PMID: 39881659 DOI: 10.1039/d4tb02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Platelet-derived microvesicles (PMVs) and their encapsulated microRNAs (miRNAs) hold immense potential as biomarkers for early non-small cell lung cancer (NSCLC) diagnosis. This study presents a pioneering liposome-based approach for enhanced miRNA detection within PMVs, employing a lambda exonuclease (λ EXO)-based amplification system encapsulated in immunoliposomes. The platform exploits the novel catalytic functionality of λ EXO, demonstrating its unprecedented capability to catalyze RNA-DNA hybrid substrates. The λ EXO-based amplification system exhibited high sensitivity and specificity in detecting miRNA-21, a key miRNA associated with NSCLC, demonstrating a limit of detection (LOD) of 33.11 fg mL-1. The system was successfully encapsulated within liposomes, which were then functionalized with CD41 antibody to facilitate targeted delivery and fusion with PMVs. The results reveal a significant difference in miRNA-21 levels between PMVs from NSCLC patients and healthy individuals, with a 2.06-fold higher abundance observed in NSCLC patients. This research presents a significant technological advancement in miRNA detection, paving the way for improved early diagnosis and personalized medicine approaches.
Collapse
Affiliation(s)
- Mohamed Aimene Benariba
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
- Bioengineering Laboratory, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Kanza Hannachi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Sanxia Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Chen H, Liu L, Xing G, Zhang D, A. N, Huang J, Li Y, Zhao G, Liu M. Exosome tropism and various pathways in lung cancer metastasis. Front Immunol 2025; 16:1517495. [PMID: 40028322 PMCID: PMC11868168 DOI: 10.3389/fimmu.2025.1517495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer, characterized by its high morbidity and mortality rates, has the capability to metastasize to various organs, thereby amplifying its detrimental impact and fatality. The metastasis of lung cancer is a complex biological phenomenon involving numerous physiological transformations. Exosomes, small membranous vesicles enriched with biologically active components, are pivotal in mediating intercellular communication and regulating physiological functions due to their specificity and stability. Extensive research has elucidated the production and functions of exosomes in cancer contexts. Multitude of evidence demonstrates a strong association between lung cancer metastasis and exosomes. Additionally, the concept of the pre-metastatic niche is crucial in the metastatic process facilitated by exosomes. This review emphasizes the role of exosomes in mediating lung cancer metastasis and their impact on the disease's development and the progression to other tissues. Furthermore, it explores the potential of exosomes as biomarkers for lung cancer metastasis, offering significant insights for future clinical advancements.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Drug Dispensing, The Third Hospital of Mianyang, Sichuan Mental Health Center, MianYang, China
| | - Gang Xing
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Niumuqie A.
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianlin Huang
- Department of Pharmacy, Luzhou Naxi District People’s Hospital, Luzhou, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ge Zhao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
5
|
Kumar RMR. Exosomal microRNAs: impact on cancer detection, treatment, and monitoring. Clin Transl Oncol 2025; 27:83-94. [PMID: 38971914 DOI: 10.1007/s12094-024-03590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Exosomes, measuring between 30 and 150 nm in diameter, are small vesicles enclosed by a lipid bilayer membrane. They are released by various cells in the body and carry a diverse payload of molecules, including proteins, lipids, mRNA, and different RNA species such as long non-coding RNA, circular RNA, and microRNA (miRNA). With lengths of approximately 19-22 nucleotides, miRNAs constitute the predominant cargo in exosomes and serve as crucial regulators of protein biosynthesis. In cancer detection, exosomal miRNAs show promise as non-invasive biomarkers due to their stability and presence in various bodily fluids, aiding in early detection and precise diagnosis with specific miRNA signatures linked to different cancer types. Moreover, exosomal miRNAs influence treatment outcomes by affecting cellular processes like cell growth, cell death, and drug resistance, thereby impacting response to therapy. Additionally, they serve as indicators of disease progression and treatment response, providing insights that can guide treatment decisions and improve patient care. Through longitudinal studies, changes in exosomal miRNA profiles have been observed to correlate with disease progression, metastasis, and response to therapy, highlighting their potential for real-time monitoring of tumor dynamics and treatment efficacy. Understanding the intricate roles of exosomal miRNAs in cancer biology offers opportunities for developing innovative diagnostic tools and therapeutic strategies tailored to individual patients, ultimately advancing precision medicine approaches and improving outcomes for cancer patients. This review aims to provide an understanding of the role of exosomal miRNAs in cancer detection, treatment, and monitoring, shedding light on their potential for revolutionising oncology practices and patient care.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| |
Collapse
|
6
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Martínez-Espinosa I, Serrato JA, Cabello-Gutiérrez C, Carlos-Reyes Á, Ortiz-Quintero B. Exosome-Derived miRNAs in Liquid Biopsy for Lung Cancer. Life (Basel) 2024; 14:1608. [PMID: 39768316 PMCID: PMC11678223 DOI: 10.3390/life14121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Exosome-derived microRNAs (miRNAs) are potential biomarkers for lung cancer detection and monitoring through liquid biopsy. These small, non-coding RNA molecules are found within exosomes, which are extracellular vesicles released from cells. Their stability in biofluids, such as blood, positions them as candidates for minimally invasive diagnostics. Multiple studies have shown that lung cancer patients exhibit distinct miRNA profiles compared to healthy individuals. This finding suggests that exosome-derived miRNAs could serve as valuable biomarkers for diagnosis, prognosis, and evaluating therapeutic responses. This review summarizes recent research on exosome-derived miRNAs in liquid biopsies, including blood, pleural effusion, and pleural lavage, as biomarkers for lung cancer, focusing on publications from the last five years.
Collapse
Affiliation(s)
- Israel Martínez-Espinosa
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - José A. Serrato
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Carlos Cabello-Gutiérrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángeles Carlos-Reyes
- Laboratory of Onco-Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
8
|
Peng J, Bu F, Duan L, Song A, Wang G, Zhang Z. Serum extracellular vesicles 3'tRF-ThrCGTand 3'tRF-mtlleGAT combined with tumor markers can serve as minimally invasive diagnostic predictors for colorectal cancer. Front Oncol 2024; 14:1474095. [PMID: 39497718 PMCID: PMC11532659 DOI: 10.3389/fonc.2024.1474095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of morbidity and mortality, and timely diagnosis and intervention are crucial for cancer patients. Transfer RNA-derived fragments (tRFs) play a noncoding regulatory role in organisms. Serum EV(extracellular vesicles), as an integral mediator of intercellular transmission of genetic information vesicles in Transfer RNA-derived fragment (tRF RNA), are expected to be minimally invasive diagnostic and predictive biologic factors of CRC. Methods Collect serum samples from 205 CRC patients, and then isolate extracellular vesicles from the serum. Captured the physical morphology of EV through transmission electron microscopy. The particle size was detected by particle size assay, and protein expression on the surface of EV was verified by Western blot. Gene microarrays were screened for differentially expressed tRF-RNA. TRF RNAs were verified by qPCR for differential expression in 205 CRC patients and 201 healthy donors, assessing the CRC diagnostic efficiency by area under the curve (AUC). Results Compared with 201 healthy donors, CRC patients experienced significantly down-regulated serum EV 3'tRF-ThrCGT while significantly up-regulated 3'tRF-mtlleGAT. Serum EV 3'tRF-ThrCGT and 3'tRF-mtlleGAT predictive diagnostic efficiency: 0.669 and 0.656, and the combination of CEA and CA724 predictive diagnostic efficiency was 0.938. Conclusion The study data showed that 3'tRF-ThrCGT and 3'tRF-mtlelGAT can be minimally invasive diagnostic CRC indicators. The combination of tumor markers CEA and CA724 has important diagnostic significance.
Collapse
Affiliation(s)
- Jiefei Peng
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Fan Bu
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Lei Duan
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Anna Song
- Department of Reproduction and Genetics, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Zhijun Zhang
- Department of Clinical Laboratory, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-Drug Resistant Drug Research, Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
9
|
Khan A, Raza F, He N. Nanoscale Extracellular Vesicle-Enabled Liquid Biopsy: Advances and Challenges for Lung Cancer Detection. MICROMACHINES 2024; 15:1181. [PMID: 39459055 PMCID: PMC11509190 DOI: 10.3390/mi15101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer is responsible for the death of over a million people worldwide every year. With its high mortality rate and exponentially growing number of new cases, lung cancer is a major threat to public health. The high mortality and poor survival rates of lung cancer patients can be attributed to its stealth progression and late diagnosis. For a long time, intrusive tissue biopsy has been considered the gold standard for lung cancer diagnosis and subtyping; however, the intrinsic limitations of tissue biopsy cannot be overlooked. In addition to being invasive and costly, it also suffers from limitations in sensitivity and specificity, is not suitable for repeated sampling, provides restricted information about the tumor and its molecular landscape, and is inaccessible in several cases. To cope with this, advancements in diagnostic technologies, such as liquid biopsy, have shown great prospects. Liquid biopsy is an innovative non-invasive approach in which cancer-related components called biomarkers are detected in body fluids, such as blood, urine, saliva and others. It offers a less invasive alternative with the potential for applications such as routine screening, predicting treatment outcomes, evaluating treatment effectiveness, detecting residual disease, or disease recurrence. A large number of research articles have indicated extracellular vesicles (EVs) as ideal biomarkers for liquid biopsy. EVs are a heterogeneous collection of membranous nanoparticles with diverse sizes, contents, and surface markers. EVs play a critical role in pathophysiological states and have gained prominence as diagnostic and prognostic biomarkers for multiple diseases, including lung cancer. In this review, we provide a detailed overview of the potential of EV-based liquid biopsy for lung cancer. Moreover, it highlights the strengths and weaknesses of various contemporary techniques for EV isolation and analysis in addition to the challenges that need to be addressed to ensure the widespread clinical application of EV-based liquid biopsies for lung cancer. In summary, EV-based liquid biopsies present interesting opportunities for the development of novel diagnostic and prognostic platforms for lung cancer, one of the most abundant cancers responsible for millions of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Yang M, Zhou W, Han X, Xu M, Wang Z, Shi M, Shi Y, Yu Y. Modified bone marrow mesenchymal stem cells derived exosomes loaded with MiRNA ameliorates non-small cell lung cancer. J Cell Mol Med 2024; 28:e70115. [PMID: 39320274 PMCID: PMC11423648 DOI: 10.1111/jcmm.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
The study aimed to reveal the function of LXY30 peptide-modified bone marrow mesenchymal stem cell-derived exosomes (LXY30-Exos) in NSCLC. LXY30 peptide is a peptide ligand targeting α3β1 integrin, and LXY30 specifically binds to Exos derived from different cells. We use transmission electron microscopy to identify LXY30-Exos and tracking analysis for particles, and the LXY30-Exos internalized by NSCLC cells in vitro and targeted NSCLC tumours in vivo were verified by multiple molecular technologies. The functions of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 were assessed using cell proliferation, migration and cell apoptosis assays. Meanwhile, the safety of the above engineered Exos was evaluated in vivo. After LXY30-Exos were isolated and identified, LXY30-Exos were confirmed to be internalized by NSCLC cells in vitro and specifically targeted NSCLC tumours in vivo. Functionally, LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 weakened the proliferation, migration and cell cycle of NSCLC cells induced cellular apoptosis in vitro and restrained the tumour progression in vivo. Meanwhile, the safety of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 was confirmed in vivo. Overall, miR-30c, miR-181b and miR-613 encapsulated in LXY30 peptide-modified BMSC-Exos relieved NSCLC.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Wen Zhou
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Xiao Han
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Mingming Xu
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhipeng Wang
- Department of Thoracic SurgeryHaimen People's HospitalNantongJiangsuChina
| | - Min Shi
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yanyan Shi
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yunchi Yu
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| |
Collapse
|
11
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
12
|
Yang B, Xin X, Cao X, Nasifu L, Nie Z, He B. The diagnostic and prognostic value of exosomal microRNAs in lung cancer: a systematic review. Clin Transl Oncol 2024; 26:1921-1933. [PMID: 38485857 DOI: 10.1007/s12094-024-03414-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Studies have shown that many exosomal microRNAs (miRNAs) can be used as non-invasive biomarkers of lung cancer, but their diagnostic and prognostic values need to be further clarified. METHODS We conducted a systematic literature search in Web of Science, PubMed, and ScienceDirect databases, obtained relevant articles and extracted data, and used statistical methods and statistical software to comprehensively evaluate the diagnostic and prognostic value of exosomal miRNAs in lung cancer. REGISTRATION NUMBER PROSPERO CRD42023447398. RESULTS In terms of diagnosis, two exosomal miRNAs (miR-486-5p and miR-451a) were reported with the highest frequency in lung cancer patients, both of which had good diagnostic value. Compared with the control group, the pooled sensitivities of miR-486-5p and miR-451a were 0.80 (95% CI: 0.73-0.86) and 0.76 (95% CI: 0.60-0.87), specificities: 0.93 (95% CI: 0.63-0.99) and 0.85 (95% CI: 0.72-0.92), and AUCs: 0.85 (95% CI: 0.81-0.88) and 0.88 (95% CI: 0.84-0.90), for the respective miRNAs. For prognosis, in lung cancer patients with abnormally expressed exosomal miRNAs, miR-1290 was associated with PFS outcome; miR-382, miR-1246, miR-23b-3p, miR-21-5p, and miR-10b-5p were associated with OS outcome; miR-21 and miR-4257 were associated with DFS outcome; miR-125a-3p and miR-625-5p were associated with PFS and OS outcomes; miR-216b and miR-451a were associated with OS and DFS outcomes. CONCLUSIONS Exosomal miRNAs are valuable biomarkers in lung cancer patients. Exosomal miR-486-5p and miR-451a can be used as new diagnostic biomarkers for lung cancer. Dysregulated exosomal miRNAs could serve as indicators of survival outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqi Xin
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lubanga Nasifu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Biology, Muni University, Arua, Uganda
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
13
|
Peng J, Zhang Y, Zhou G, Shao L, Li L, Zhang Z. Circulating serum exosomes i-tRF-AspGTC and tRF-1-SerCGA as diagnostic indicators for non-small cell lung cancer. Clin Transl Oncol 2024; 26:1988-1997. [PMID: 38502292 DOI: 10.1007/s12094-024-03423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND tRF-RNA-a representative of non-coding RNA (ncRNA)-is a precursor or fragment of mature tRNA and plays a crucial regulatory role in the occurrence and development of cancer. There is currently little research on tRF-RNA as a diagnostic marker in cancer, especially for NSCLC from serum exosomes. METHOD Serum exosomes were successfully extracted from serum; their physical morphology was captured by transmission electron microscopy (TEM); appropriate particle size detection was performed using qNano; surface labeling was verified through western blotting. Serum exosomes i-tRF-AspGTC and tRF-1-SerCGA were selected through gene microarray, and qPCR was used to validate their significance in 242 patients and 201 healthy individuals. The area under the curve (AUC) was used to evaluate the diagnostic indicators of non-small cell lung cancer (NSCLC). RESULT Compared with 201 healthy individuals, i-tRF-AspGTC and tRF-1-SerCGA were significantly downregulated in 242 NSCLC patients and 95 early-stage patients. For tRF-AspGTC and tRF-1-SerCGA, the predictive diagnostic efficiency rates of AUC were 0.690 and 0.680, respectively, whereas the early diagnostic efficiency rates were 0.656 and 0.688, respectively. The result of combined diagnosis with CEA and CYFRA21-1 was 0.928, and the early diagnostic efficiency was 0.843, which is a very high biological predictive factor for NSCLC. CONCLUSION The expression of serum exosomes i-tRF-AspGTC and tRF-1-SerCGA was significantly downregulated in NSCLC patients. These exosomes could be used as predictive indicators for diagnosis or early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Jiefei Peng
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian, 271000, China
| | - Yue Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Guangfei Zhou
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Luolin Shao
- Department of Dermatology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Lin Li
- Pharmacy Intravenous Admixture Services, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Zhijun Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian, 271000, China.
| |
Collapse
|
14
|
Modarresi Chahardehi A, Afrooghe A, Emtiazi N, Rafiei S, Rezaei NJ, Dahmardeh S, Farz F, Naderi Z, Arefnezhad R, Motedayyen H. MicroRNAs and angiosarcoma: are there promising reports? Front Oncol 2024; 14:1385632. [PMID: 38826780 PMCID: PMC11143796 DOI: 10.3389/fonc.2024.1385632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
In recent years, microRNAs (miRNAs) have garnered increasing attention for their potential implications in cancer pathogenesis, functioning either as oncogenes or tumor suppressors. Notably, angiosarcoma, along with various other cardiovascular tumors such as lipomas, rhabdomyomas, hemangiomas, and myxomas, has shown variations in the expression of specific miRNA subtypes. A substantial body of evidence underscores the pivotal involvement of miRNAs in the genesis of angiosarcoma and certain cardiovascular tumors. This review aims to delve into the current literature on miRNAs and their prospective applications in cardiovascular malignancies, with a specific focus on angiosarcoma. It comprehensively covers diagnostic methods, prognostic evaluations, and potential treatments while providing a recapitulation of angiosarcoma's risk factors and molecular pathogenesis, with an emphasis on the role of miRNAs. These insights can serve as the groundwork for designing randomized control trials, ultimately facilitating the translation of these findings into clinical applications. Moving forward, it is imperative for studies to thoroughly scrutinize the advantages and disadvantages of miRNAs compared to current diagnostic and prognostic approaches in angiosarcoma and other cardiovascular tumors. Closing these knowledge gaps will be crucial for harnessing the full potential of miRNAs in the realm of angiosarcoma and cardiovascular tumor research.
Collapse
Affiliation(s)
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Rafiei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sarvin Dahmardeh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Farz
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Naderi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Cao Y, Liu X, Liu J, Su Z, Liu W, Yang L, Zhang L. Diagnostic value of exosomal noncoding RNA in lung cancer: a meta-analysis. Front Oncol 2024; 14:1357248. [PMID: 38694786 PMCID: PMC11061461 DOI: 10.3389/fonc.2024.1357248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Background Lung cancer is one of the most dangerous cancers in the world. Most lung cancer patients are diagnosed in the middle and later stages, which can lead to poor survival rates. The development of lung cancer is often accompanied by abnormal expression of exosomal non-coding RNAs, which means that they have the potential to serve as noninvasive novel molecular markers for lung cancer diagnosis. Methods For this study, we conducted a comprehensive literature search in PubMed, Web of science, Science direct, Embase, Cochrane, and Medline databases, and by reviewing published literature, The diagnostic capacity of exosomal microRNAs (miRNAs), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) for lung cancer was evaluated. Functional enrichment analysis of miRNA target genes was performed. Results The study included 41 papers, a total of 68 studies. More than 60 miRNAs, 9 lncRNAs and 14 circRNAs were involved. The combined sensitivity and specificity were 0.83(95%CI, 0.80~0.86) and 0.83(95% CI,0.79~0.87); 0.71(95% CI,0.68~0.74) and 0.79(95%CI, 0.75~0.82); 0.79(95%CI,0.67~0.87) and 0.81(95%CI,0.74~0.86), and constructed overall subject operating characteristic curves with the summarized area under the curve values of 0.90, 0.82, and 0.86. Conclusion Our study shows that exosomes miRNAs, lncRNAs and circRNAs are effective in the diagnosis of lung cancer, providing evidence for studies related to novel lung cancer diagnostic markers. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023457087.
Collapse
Affiliation(s)
- Yuxuan Cao
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xinbo Liu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayi Liu
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ziyi Su
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Liwen Zhang
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Rahimian S, Najafi H, Afzali B, Doroudian M. Extracellular Vesicles and Exosomes: Novel Insights and Perspectives on Lung Cancer from Early Detection to Targeted Treatment. Biomedicines 2024; 12:123. [PMID: 38255228 PMCID: PMC10813125 DOI: 10.3390/biomedicines12010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lung cancer demands innovative approaches for early detection and targeted treatment. In addressing this urgent need, exosomes play a pivotal role in revolutionizing both the early detection and targeted treatment of lung cancer. Their remarkable capacity to encapsulate a diverse range of biomolecules, traverse biological barriers, and be engineered with specific targeting molecules makes them highly promising for both diagnostic markers and precise drug delivery to cancer cells. Furthermore, an in-depth analysis of exosomal content and biogenesis offers crucial insights into the molecular profile of lung tumors. This knowledge holds significant potential for the development of targeted therapies and innovative diagnostic strategies for cancer. Despite notable progress in this field, challenges in standardization and cargo loading persist. Collaborative research efforts are imperative to maximize the potential of exosomes and advance the field of precision medicine for the benefit of lung cancer patients.
Collapse
Affiliation(s)
| | | | | | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran; (S.R.); (H.N.); (B.A.)
| |
Collapse
|
17
|
Jing Z, Guo Z, Zhang C. Plasma-derived Exosomal miR-25-3p and miR-23b-3p as Predictors of Response to Chemoradiotherapy in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241289520. [PMID: 39380461 PMCID: PMC11465297 DOI: 10.1177/15330338241289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exosomal miRNAs have emerged as promising biomarkers for cancer. However, little is known about the role of exosomal miRNAs in the response prediction of esophageal squamous cell carcinoma (ESCC) patients treated with chemoradiotherapy (CRT). METHODS In this prospective study, 40 ESCC patients treated by CRT were enrolled from January 2021 to June 2022. Exosomes were isolated from plasma through EXODUS platform. We used small RNA sequencing in 14 samples of ESCC patients (7 responders, 7 non-responders) and the selected exosomal miRNAs were further validated in the extended cohort of 40 ESCC patients by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS In the discovery phase, we identified five significantly differentially expressed exosomal miRNAs from miRNA sequencing data between the responder and non-responder patients. In the extended groups of responders (n = 27) and non-responders (n = 13), only miR-23b-3p (p = 0.035, AUC = 0.708) and miR-25-3p (p < 0.001, AUC = 0.932) were confirmed to have the predictive ability to distinguish non-responders from responders. The patients with low levels of miR-25-3p had a significantly shorter progression-free survival (PFS) than those with high levels (p = 0.035). Multivariate Cox regression analysis revealed that miR-25-3p may serve as an independent predictive biomarker of PFS in ESCC patients received CRT. CONCLUSION Exosomal miR-25-3p and miR-23b-3p serve as promising biomarkers for predicting the early effectiveness of CRT in locally advanced ESCC patients, whereas miR-25-3p is a novel prognostic marker for ESCC. However, further larger prospective studies are needed to confirm their utility for individualized treatment decision in ESCC.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Guo
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanfeng Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Zhao K, Jia C, Wang J, Shi W, Wang X, Song Y, Peng C. Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential novel biomarkers for predicting bone metastasis in lung cancer. Aging (Albany NY) 2023; 15:14864-14888. [PMID: 38180107 PMCID: PMC10781484 DOI: 10.18632/aging.205314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer's apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel biomarkers for predicting BM in lung cancer.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changji Jia
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jin Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Weiye Shi
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
19
|
Lohajová Behulová R, Bugalová A, Bugala J, Struhárňanská E, Šafranek M, Juráš I. Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer. Physiol Res 2023; 72:S193-S207. [PMID: 37888964 PMCID: PMC10669947 DOI: 10.33549/physiolres.935153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer belongs to multifactorial diseases characterized by uncontrolled growth and proliferation of abnormal cells. Breast cancer, non-small cell lung cancer, and colorectal cancer are the most frequently diagnosed malignancies with a high mortality rate. These carcinomas typically contain multiple genetically distinct subpopulations of tumor cells leading to tumor heterogeneity, which promotes the aggressiveness of the disease. Early diagnosis is necessary to increase patient progression-free survival. Particularly, miRNAs present in exosomes derived from tumors represent potential biomarkers suitable for early cancer diagnosis. Identification of miRNAs by liquid biopsy enables a personalized approach with the subsequent better clinical management of patients. This review article highlights the potential of circulating exosomal miRNAs in early breast, non-small cell lung, and colorectal cancer diagnosis.
Collapse
Affiliation(s)
- R Lohajová Behulová
- Department of Clinical Genetics, St Elizabeth's Cancer Institute, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
20
|
Baran K, Waśko J, Kryczka J, Boncela J, Jabłoński S, Kolesińska B, Brzeziańska-Lasota E, Kordiak J. The Comparison of Serum Exosome Protein Profile in Diagnosis of NSCLC Patients. Int J Mol Sci 2023; 24:13669. [PMID: 37761972 PMCID: PMC10650331 DOI: 10.3390/ijms241813669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
A thorough study of the exosomal proteomic cargo may enable the identification of proteins that play an important role in cancer development. The aim of this study was to compare the protein profiles of the serum exosomes derived from non-small lung cancer (NSCLC) patients and healthy volunteers (control) using the high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) method to identify potentially new diagnostic and/or prognostic protein biomarkers. Proteins exclusively identified in NSCLC and control groups were analyzed using several bioinformatic tools and platforms (FunRich, Vesiclepedia, STRING, and TIMER2.0) to find key protein hubs involved in NSCLC progression and the acquisition of metastatic potential. This analysis revealed 150 NSCLC proteins, which are significantly involved in osmoregulation, cell-cell adhesion, cell motility, and differentiation. Among them, 3 proteins: Interleukin-34 (IL-34), HLA class II histocompatibility antigen, DM alpha chain (HLA-DMA), and HLA class II histocompatibility antigen, DO beta chain (HLA-DOB) were shown to be significantly involved in the cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) infiltration processes. Additionally, detected proteins were analyzed according to the presence of lymph node metastasis, showing that differences in frequency of detection of protein FAM166B, killer cell immunoglobulin-like receptor 2DL1, and olfactory receptor 52R1 correlate with the N feature according to the TNM Classification of Malignant Tumors. These results prove their involvement in NSCLC lymph node spread and metastasis. However, this study requires further investigation.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Joanna Waśko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (J.W.); (B.K.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (J.B.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (J.B.)
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-549 Lodz, Poland; (S.J.); (J.K.)
| | - Beata Kolesińska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (J.W.); (B.K.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-549 Lodz, Poland; (S.J.); (J.K.)
| |
Collapse
|
21
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
22
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Raczkowska J, Bielska A, Krętowski A, Niemira M. Extracellular circulating miRNAs as potential non-invasive biomarkers in non-small cell lung cancer patients. Front Oncol 2023; 13:1209299. [PMID: 37546401 PMCID: PMC10401434 DOI: 10.3389/fonc.2023.1209299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) comprises 85% of all lung cancers and is a malignant condition resistant to advanced-stage treatment. Despite the advancement in detection and treatment techniques, the disease is taking a deadly toll worldwide, being the leading cause of cancer death every year. Current diagnostic methods do not ensure the detection of the disease at an early stage, nor can they predict the risk of its development. There is an urgent need to identify biomarkers that can help predict an individual's risk of developing NSCLC, distinguish NSCLC subtype, allow monitor disease and treatment progression which can improve patient survival. Micro RNAs (miRNAs) represent the class of small and non-coding RNAs involved in gene expression regulation, influencing many biological processes such as proliferation, differentiation, and carcinogenesis. Research reports significant differences in miRNA profiles between healthy and neoplastic tissues in NSCLC. Its abundant presence in biofluids, such as serum, blood, urine, and saliva, makes them easily detectable and does not require invasive collection techniques. Many studies support miRNAs' importance in detecting, predicting, and prognosis of NSCLC, indicating their utility as a promising biomarker. In this work, we reviewed up-to-date research focusing on biofluid miRNAs' role as a diagnostic tool in NSCLC cases. We also discussed the limitations of applying miRNAs as biomarkers and highlighted future areas of interest.
Collapse
Affiliation(s)
- Justyna Raczkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
24
|
Abstract
Peripheral blood is a source for liquid biopsy, which can meet the requirements of pretreatment disease typing to determine precise targeted therapy and monitoring of posttreatment minimal residual disease monitoring. Compared with ctDNA and CTC, exosomes have a higher concentration, good biostability, biocompatibility, low immunogenicity, and low toxicity in peripheral blood. Tumors generally secrete a large amounts of exosomes, which have potential pathophysiological roles in tumor progression. With the continuous improvement of liquid biopsy technology, many researchers have found that exosomes are the key for tumor PD-L1 to exert its role, which may be the mechanism that leads to PD-L1 and/or PD-1 inhibitor therapy resistance. Namely, tumor-derived exosomes may mediate systemic immunosuppression against PD-1 or PD-L1 inhibitor therapy, endogenous tumor cell-derived exosomal PD-L1, and tumor microenvironment-derived exosomes. Induction of PD-L1 by exosomes may be a crucial mechanisms of exosome-mediated antitumor immune tolerance. This article reviews the relationship between the detection of peripheral blood exosomal PD-L1 and tumor progression and the mechanism of exosomal PD-L1 in tumor immunotherapy.
Collapse
Affiliation(s)
- Rui Wang
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Yanjia Yang
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Jiajun Huang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China
| | - Yandan Yao
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Wang S, Song X, Wang K, Zheng B, Lin Q, Yu M, Xie L, Chen L, Song X. Plasma exosomal miR-320d, miR-4479, and miR-6763-5p as diagnostic biomarkers in epithelial ovarian cancer. Front Oncol 2022; 12:986343. [PMID: 36591520 PMCID: PMC9795228 DOI: 10.3389/fonc.2022.986343] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Exosomal miRNA had been proved as the promising biomarkers for multiple cancers including epithelial ovarian cancer (EOC). This study aimed to validate the diagnostic accuracy of exosomal miR-320d, miR-4479, and miR-6763-5p for EOC. Materials and methods Exosomes isolated from the plasma by ultracentrifugation were verified using TEM, qNano and western blot. MiRNAs sequencing was used to screen out the differential exosomal miRNAs and miR-320d, miR-4479, and miR-6763-5p were selected as candidates, which were further verified by RT-qPCR in 168 healthy donors and 161 primary EOC patients. Besides, the diagnostic accuracy of these three exosomal miRNAs were evaluated using the receiver operating characteristic curve (ROC). Results MiRNAs sequencing revealed 95 differential exosomal miRNAs between EOC patients and healthy donors. Subsequently, exosomal miR-320d, miR-4479, and miR-6763-5p were significantly down regulated in EOC patients compared with healthy controls and benign patients. More importantly, these three miRNAs could serve as circulating diagnostics biomarkers for EOC, possessing areas under the curve (AUC) of 0.6549, 0.7781, and 0.6834, respectively. Moreover, these three exosomal miRNAs levels were closely associated with lymph node metastasis, meanwhile exosomal miR-320d and miR-4479 expression was related to tumor stage. Conclusion Exosomal miR-320d, miR-4479, and miR-6763-5p might serve as potential biomarkers for EOC.
Collapse
Affiliation(s)
- Shiwen Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kangyu Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Baibing Zheng
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miao Yu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Xianrang Song,
| |
Collapse
|
27
|
Li Y, Dong Y, Zhao S, Gao J, Hao X, Wang Z, Li M, Wang M, Liu Y, Yu X, Xu W. Serum-derived piR-hsa-164586 of extracellular vesicles as a novel biomarker for early diagnosis of non-small cell lung cancer. Front Oncol 2022; 12:850363. [PMID: 36249068 PMCID: PMC9559724 DOI: 10.3389/fonc.2022.850363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of death in those with malignant tumors. To achieve the early diagnosis of NSCLC, we investigated serum-derived Piwi-interacting RNA (piRNA) of extracellular vesicles to filter diagnostic biomarkers for NSCLC. High-throughput sequencing from cancerous tissues and adjacent noncancerous tissues in patients with NSCLC was first applied to recognize candidate piRNAs as diagnostic biomarkers. These screened piRNAs were further validated in 115 patients (including 95 cases in stage I) and 47 healthy individuals using quantitative real-time PCR (qRT-PCR). We showed that piR-hsa-164586 was significantly upregulated compared with paracancerous tissues and extracellular vesicles from the serum samples of healthy individuals. Moreover, the area under the curve (AUC) value of piR-hsa-164586 was 0.623 and 0.624 to distinguish patients with all stages or stage I of NSCLC, respectively, from healthy individuals. The diagnostic performance of piR-hsa-164586 was greatly improved compared with the cytokeratin-19-fragment (CYFRA21-1). Additionally, piR-hs-164586 was associated with the clinical characteristics of patients with NSCLC. Its expression was associated with the age and TNM stage of patients with NSCLC, indicating that it can serve as an effective and promising biomarker for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yanli Li
- Department of Pathology and Pathophysiology, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yanhan Dong
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Shupeng Zhao
- Asset and Laboratory Management Office, Qingdao University, Qingdao, China
| | - Jinning Gao
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaodan Hao
- Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Zibo Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Meng Li
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Mengyuan Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yiming Liu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Xiaoling Yu
- Department of Pathology and Pathophysiology, The Medical Faculty of Qingdao University, Qingdao, China
- *Correspondence: Xiaoling Yu, ; Wenhua Xu,
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
- *Correspondence: Xiaoling Yu, ; Wenhua Xu,
| |
Collapse
|
28
|
Chen X, Yu L, Hao K, Yin X, Tu M, Cai L, Zhang L, Pan X, Gao Q, Huang Y. Fucosylated exosomal miRNAs as promising biomarkers for the diagnosis of early lung adenocarcinoma. Front Oncol 2022; 12:935184. [PMID: 36033494 PMCID: PMC9414872 DOI: 10.3389/fonc.2022.935184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Considering the absence of apparent symptoms at the early stage, most patients with lung adenocarcinoma (LUAD) present at an advanced stage, leading to a dismal 5-year survival rate of <20%. Thus, finding perspective non-invasive biomarkers for early LUAD is very essential. Methods We developed a fucose-captured strategy based on lentil lectin-magnetic beads to isolate fucosylated exosomes from serum. Then, a prospective study was conducted to define the diagnostic value of serum exosomal miRNAs for early LUAD. A total of 310 participants were enrolled, including 146 LUAD, 98 benign pulmonary nodules (BPNs), and 66 healthy controls (HCs). Firstly, exosome miRNAs in the discovery cohort (n = 24) were profiled by small RNA sequencing. Secondly, 12 differentially expressed miRNAs (DEmiRs) were selected for further screening in a screening cohort (n = 64) by qRT-PCR. Finally, four candidate miRNAs were selected for further validation in a validating cohort (n = 222). Results This study demonstrated the feasibility of a fucose-captured strategy for the isolation of fucosylated exosomes from serum, evidenced with exosomal characteristics identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting, as well as rapid and convenient operation of <10 min. Furthermore, a miRNA panel for early LUAD composed of miR4732-5p, miR451a, miR486-5p, and miR139-3p was defined with an AUC of 0.8554 at 91.07% sensitivity and 66.36% specificity. Conclusions The fucose-captured strategy provides a reliable, as well as rapid and convenient, approach for the isolation of tumor-derived exosomes from serum. A four-fucosylated exosomal miRNA panel presents good performance for early LUAD diagnosis.
Collapse
Affiliation(s)
- Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, China
| | - Lili Yu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Kun Hao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
| | - Xiaoqing Yin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingshu Tu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liqing Cai
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liangming Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Qi Gao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
- *Correspondence: Yi Huang, ; Qi Gao,
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Yi Huang, ; Qi Gao,
| |
Collapse
|
29
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Yu F, Lin Y, Tan G, Ai M, Gong H, Liu W, Huang J, Zou Z. Tumor-derived exosomal microRNA-15b-5p augments laryngeal cancer by targeting TXNIP. Cell Cycle 2022; 21:730-740. [PMID: 35156506 PMCID: PMC8973331 DOI: 10.1080/15384101.2021.2022845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tumor-derived exosomes (EXO) are information carriers of microRNA (miR) in cancer development. Here, we explored the synergism of tumor-derived EXO and miR-15b-5p in laryngeal cancer (LCa). miR-15b-5p and thioredoxin-interacting protein (TXNIP) levels were firstly measured in clinical LCa tissues. The association between miR-15b-5p and TXNIP was determined. miR-15b-5p mimic was transfected into HEP-2 cells, and the corresponding exosomes were extracted. miR-15b-5p mimic-modified EXO were co-cultured with HEP-2 cells, and TXNIP low expression/high expression vector was transfected into HEP-2 cells Finally, cell growth was observed in vitro and in vivo. miR-15b-5p level was high while TXNIP level was low in LCa, and miR-15b-5p negatively modulated TXNIP expression. HEP-2 cells-derived EXO or inhibition of TXNIP enhanced HEP-2 cell growth in vitro and in vivo. Up-regulated miR-15b-5p further strengthened the pro-tumor effect of EXO, but this effect was reversed by overexpression of TXNIP. Overall, tumor-derived exosomal miR-15b-5p augments LCa through targeting down-regulation of TXNIP.
Collapse
Affiliation(s)
- Feng Yu
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China,CONTACT Feng Yu Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery,Jinan University, Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital,No. 396 Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong Province510220, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| | - Guojie Tan
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Maomao Ai
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| | - Huicheng Gong
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Twelfth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiali Huang
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| | - Zirou Zou
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital, Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Emerging function and clinical significance of extracellular vesicle noncoding RNAs in lung cancer. Mol Ther Oncolytics 2022; 24:814-833. [PMID: 35317517 PMCID: PMC8908047 DOI: 10.1016/j.omto.2022.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a commonly diagnosed cancer with an unsatisfactory prognosis. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that mediate cell-cell communication by transporting various biomacromolecules, such as nucleic acids, proteins, and lipids. Noncoding RNAs (ncRNAs), including microRNAs, circular RNAs, and long noncoding RNAs, are important noncoding transcripts that play critical roles in a variety of physiological and pathological processes, especially in cancer. ncRNAs have been verified to be packaged into EVs and transported between LC cells and stromal cells, regulating multiple LC malignant phenotypes, such as proliferation, migration, invasion, epithelial-mesenchymal transition, metastasis, and treatment resistance. Additionally, EVs can be detected in various body fluids and are associated with the stage, grade, and metastasis of LC. Herein, we summarize the biological characteristics and functions of EV ncRNAs in the biological processes of LC, focusing on their potential to serve as diagnostic and prognostic biomarkers of LC as well as their probable role in the clinical treatment of LC. EV ncRNAs provide a new perspective for understanding the mechanism underlying LC pathogenesis and development, which might benefit numerous LC patients in the future.
Collapse
|
32
|
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 2022; 21:54. [PMID: 35172817 PMCID: PMC8848669 DOI: 10.1186/s12943-022-01525-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Detecting cancer at an early stage before clinical manifestation could be an effective strategy to decrease cancer mortality. Thus, identifying liquid biopsy biomarkers with high efficacy could be a promising approach for non-invasive diagnosis of cancer. MAIN TEXT Liquid biopsies are increasingly used as a supplement to biopsy, as it enables disease progression to be detected months before clinical and radiographic confirmation. Many bodily fluids contain exosomal microRNAs (miRNAs) which could provide a new class of biomarkers for early and minimally invasive cancer diagnosis due to the stability of miRNAs in exosomes. In this review, we mainly focused on the exosomal miRNAs (liquid biopsy) as biomarkers in the diagnosis and prognosis of various cancers. CONCLUSION Exosomal miRNAs can be used as diagnostic and prognosis biomarkers that provide unique insights and a more dynamic perspective of the progression and therapeutic responses in various malignancies. Therefore, the development of novel and more sensitive technologies that exploit exosomal miRNAs should be a priority for cancer management.
Collapse
Affiliation(s)
- K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077 India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077 India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077 India
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077 India
| |
Collapse
|
33
|
Zhang L, Peng H, Xu Z, Yang Q, Wang Y, Wang H, Bu L. Circular RNA SOX13 promotes malignant behavior and cisplatin resistance in non-small cell lung cancer through targeting microRNA-3194-3p/microtubule-associated protein RP/EB family member 1. Bioengineered 2022; 13:1814-1827. [PMID: 34709968 PMCID: PMC8805859 DOI: 10.1080/21655979.2021.1997223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNA (circRNA) presents an essential regulatory role in affecting the occurrence and acquired resistance in non-small cell lung cancer (NSCLC), but how circSOX13 impacts NSCLC is unclear. In this work it was found that compared with adjacent normal tissues, circSOX13 and the microtubule-associated protein RP/EB family member 1 (MAPRE1) were signally up-regulated in NSCLC while miR-3194-3p was signally lowered. Pulmonary function tests (PETs) revealed that knocking down circSOX13 or overexpressing miR-3194-3p inhibited NSCLC proliferation, invasion and migration but promoted its apoptosis. The promoting effect of overexpressing circSOX13 on NSCLC was reversed via knocking down MAPRE1. Additionally, knocking down circSOX13 reduced cisplatin resistance in NSCLC. Furthermore, circSOX13 mediated MAPRE1 expression via competitively binding miR-3194-3p to exert its tumorigenic impact. To conclude, this work clarified the carcinogenic impact of circSOX13-miR-3194-3p-MAPRE1 axis on NSCLC and DDP resistance. CircSOX13 can be a potential diagnostic marker and therapeutic target for NSCLC, thus providing a new insight for clinically reversing its acquired resistance.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Hao Peng
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Zheyuan Xu
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Qiuju Yang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yang Wang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Han Wang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Liang Bu
- Department of Thoracic Surgery, Kunming University of Science and Technology, School of Medicine, Kunming City, Yunnan Province, China
| |
Collapse
|
34
|
Circulating exosomal miRNAs and cancer early diagnosis. Clin Transl Oncol 2021; 24:393-406. [PMID: 34524618 DOI: 10.1007/s12094-021-02706-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Microribonucleic acids (miRNAs) are small non-coding ribonucleic acids (ncRNAs), which can affect recognition of homologous sequences and interfere with transcription. It plays key roles in the initiation, development, resistance, metastasis or recurrence of cancers. Identifying circulatory indicators will positively improve the prognosis and quality of life of patients with early cancer. Previous studies have shown that miRNA is highly involved in cancer. In addition, miRNA derived from cancers can be encapsulated as exosomes and further extracted into circulatory systems to realize malignant functions. It indicates that circulating exosome-derived miRNAs have the potential to replace conventional biomarkers as cancer derived exosomes carrying miRNAs can be identified by specific markers and might be more stable and accurate for early diagnosis.
Collapse
|
35
|
Exosomes in Lung Cancer: Actors and Heralds of Tumor Development. Cancers (Basel) 2021; 13:cancers13174330. [PMID: 34503141 PMCID: PMC8431734 DOI: 10.3390/cancers13174330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related death worldwide and in most cases, diagnosis is reached when the tumor has already spread and prognosis is quite poor. For that reason, the research for new biomarkers that could improve early diagnosis and its management is essential. Exosomes are microvesicles actively secreted by cells, especially by tumor cells, hauling molecules that mimic molecules of the producing cells. There are multiple methods for exosome isolation and analysis, although not standardized, and cancer exosomes from biological fluids are especially difficult to study. Exosomes' cargo proteins, RNA, and DNA participate in the communication between cells, favoring lung cancer development by delivering signals for growth, metastasis, epithelial mesenchymal transition, angiogenesis, immunosuppression and even drug resistance. Exosome analysis can be useful as a type of liquid biopsy in the diagnosis, prognosis and follow-up of lung cancer. In this review, we will discuss recent advances in the role of exosomes in lung cancer and their utility as liquid biopsy, with special attention to isolating methods.
Collapse
|
36
|
Small Extracellular Vesicles in Pre-Therapy Plasma Predict Clinical Outcome in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092041. [PMID: 33922569 PMCID: PMC8122966 DOI: 10.3390/cancers13092041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of plasma-derived small extracellular vesicles (sEV) as predictors of response to therapy and clinical outcome in chemotherapy-naïve patients with non-small-cell lung cancer (NSCLC) was explored. sEV were isolated by size-exclusion chromatography from the plasma of 79 chemotherapy-naïve NSCLC patients and 12 healthy donors (HD). sEV were characterized with regard to protein content, particle size, counts by qNano, morphology by transmission electron microscopy, and molecular profiles by Western blots. PD-1 and PD-L1 expression on circulating immune cells was analysed by flow cytometry. Pre-treatment levels of total sEV protein (TEP) were correlated with overall (OS) and progression-free survival (PFS). The sEV numbers and protein levels were significantly elevated in the plasma of NSCLC patients compared to HD (p = 0.009 and 0.0001, respectively). Baseline TEP levels were higher in patients who developed progressive disease compared to patients with stable disease (p = 0.007 and 0.001, stage III and IV, respectively). Patient-derived sEV were enriched in immunosuppressive proteins as compared to proteins carried by sEV from HD. TEP levels were positively correlated with CD8+PD-1+ and CD8+PD-L1+ circulating T cell percentages and were independently associated with poorer PFS (p < 0.00001) and OS (p < 0.00001). Pre-therapy sEV could be useful as non-invasive biomarkers of response to therapy and clinical outcome in NSCLC.
Collapse
|
37
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
38
|
Gayosso-Gómez LV, Ortiz-Quintero B. Circulating MicroRNAs in Blood and Other Body Fluids as Biomarkers for Diagnosis, Prognosis, and Therapy Response in Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030421. [PMID: 33801442 PMCID: PMC7999833 DOI: 10.3390/diagnostics11030421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
The identification of circulating microRNAs (miRNAs) in peripheral blood and other body fluids has led to considerable research interest in investigating their potential clinical application as non-invasive biomarkers of cancer, including lung cancer, the deadliest malignancy worldwide. Several studies have found that alterations in the levels of miRNAs in circulation are able to discriminate lung cancer patients from healthy individuals (diagnosis) and are associated with patient outcome (prognosis) and treatment response (prediction). Increasing evidence indicates that circulating miRNAs may function as mediators of cell-to-cell communication, affecting biological processes associated with tumor initiation and progression. This review is focused on the most recent studies that provide evidence of the potential value of circulating miRNAs in blood and other body fluids as non-invasive biomarkers of lung cancer in terms of diagnosis, prognosis, and response to treatment. The status of their potential clinical application in lung cancer is also discussed, and relevant clinical trials were sought and are described. Because of the relevance of their biological characteristics and potential value as biomarkers, this review provides an overview of the canonical biogenesis, release mechanisms, and biological role of miRNAs in lung cancer.
Collapse
|
39
|
Dong X, Chang M, Song X, Ding S, Xie L, Song X. Plasma miR-1247-5p, miR-301b-3p and miR-105-5p as potential biomarkers for early diagnosis of non-small cell lung cancer. Thorac Cancer 2020; 12:539-548. [PMID: 33372399 PMCID: PMC7882392 DOI: 10.1111/1759-7714.13800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence shows that microRNAs are aberrantly expressed and exert essential roles in the tumorigenesis and tumor progression of non‐small cell lung cancer (NSCLC). Methods The plasma miRNAs from five healthy donors and four NSCLC patients were profiled by miRNA microarray. The differentially expressed miRNAs from 154 primary NSCLC patients and 146 healthy donors were subjected to RNA isolation and verified by quantitative PCR (qPCR). Results The miRNA microarray analysis revealed that 40 differential miRNAs between NSCLC patients and healthy donors were selected. We found that the plasma miR‐1247‐5p, miR‐301b‐3p and miR‐105‐5p levels of patients were significantly higher than those of healthy controls. The receiver operating characteristic curve (ROC) analyses revealed higher area under the ROC curve (AUC) values and higher sensitivity/specificity of carcinoembryonic antigen (CEA) in combination with miR‐1247‐5p, miR‐301b‐3p, or miR‐105‐5p were superior to that of CEA alone. Conclusions High miR‐1247‐5p, miR‐301b‐3p and miR‐105‐5p expression have been demonstrated to accelerate tumorigenesis, and these three miRNAs in plasma act as novel biomarkers for the early diagnosis of NSCLC patients. Key points Plasma miR‐1247‐5p, miR‐301b‐3p and miR‐105‐5p act as novel biomarkers for early NSCLC and NSCLC.
Collapse
Affiliation(s)
- Xiaohan Dong
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China.,Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Minghui Chang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China.,Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|