1
|
Lin Y, Guo T, Che L, Dong J, Yu T, Zeng C, Wu Z. β-Elemene Inhibits Adrenocortical Carcinoma Cell Proliferation and Migration, and Induces Apoptosis by Up-Regulating miR-486-3p/Targeting NPTX1 Axis. Mol Carcinog 2025; 64:691-702. [PMID: 39803746 DOI: 10.1002/mc.23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 03/10/2025]
Abstract
β-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression. The impacts of β-elemene on ACC cell viability, proliferation, migration, and apoptosis were investigated through CCK-8 assay, clone formation assay, Transwell experiment, Wound healing assay, and flow cytometry. The miR-486-3p expression was analyzed utilizing RT-qPCR. According to different databases, neuronal pentraxin 1 (NPTX1) is the predicted downstream target gene of miR-486-3p. Western blot and RT-qPCR were utilized to examine NPTX1 expression. Silencing miR-486-3p or Overexpression NPTX1 in ACC cells further explored whether β-elemene affects ACC cells by regulating miR-486-3p/NPTX1. Finally, a subcutaneous graft tumor model was constructed to investigate how β-elemene may impact tumor growth in vivo. β-elemene decreased the cell viability, hindered cell proliferation and migration capacity, and induced apoptosis of ACC cells. miR-486-3p level in ACC cells was notably reduced in comparison to normal cells, but treatment with β-elemene markedly increased miR-486-3p expression. Additionally, ACC cells showed high level of NPTX1, while miR-486-3p targeted negative regulation of NPTX1. Overexpression miR-486-3p hindered the malignant progression of ACC cells, whereas overexpression NPTX1 reversed the impact of overexpression miR-486-3p. Silencing miR-486-3p or overexpression NPTX1 both attenuated the suppressive influence of β-elemene on the malignant behavior of ACC cells. Additionally, tumor growth was suppressed and apoptosis was induced in tumor cells in vivo by β-elemene. In conclusion, β-elemene reduces ACC cell viability, hinders proliferation and migration, and induces apoptosis through the miR-486-3p/NPTX1 axis.
Collapse
Affiliation(s)
- Yan Lin
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Tailin Guo
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Lishuang Che
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jieqiong Dong
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Ting Yu
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Chaiming Zeng
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Ziyu Wu
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Kasarinaite A, Ramos MJ, Beltran-Sierra M, Sutherland EF, Rei PA, Zhao M, Chi Y, Beniazza M, Corsinotti A, Kendall TJ, Henderson NC, Fallowfield JA, Saunders PTK, Hay DC. Hormone correction of dysfunctional metabolic gene expression in stem cell-derived liver tissue. Stem Cell Res Ther 2025; 16:130. [PMID: 40069876 PMCID: PMC11899078 DOI: 10.1186/s13287-025-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The increase in metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to metabolic dysfunction-associated steatohepatitis (MASH) is a worldwide healthcare challenge. Heterogeneity between men and women in the prevalence and mechanisms of MASLD and MASH is related to differential sex hormone signalling within the liver, and declining hormone levels during aging. In this study we used biochemically characterised pluripotent stem cell derived 3D liver spheres to model the protective effects of testosterone and estrogen signalling on metabolic liver disease 'in the dish'. We identified sex steroid-dependent changes in gene expression which were protective against metabolic dysfunction, fibrosis, and advanced cirrhosis patterns of gene expression, providing new insight into the pathogenesis of MASLD and MASH, and highlighting new druggable targets. Additionally, we highlight gene targets for which drugs already exist for future translational studies.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Maria Jimenez Ramos
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Mariana Beltran-Sierra
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Elena F Sutherland
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Pedro Arede Rei
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Make Zhao
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Ying Chi
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Meryam Beniazza
- Single-Cell Multi-Omics Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Andrea Corsinotti
- Single-Cell Multi-Omics Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonathan A Fallowfield
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Philippa T K Saunders
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China.
| |
Collapse
|
3
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
4
|
Suzuki H, Fujiwara N, Singal AG, Baumert TF, Chung RT, Kawaguchi T, Hoshida Y. Prevention of liver cancer in the era of next-generation antivirals and obesity epidemic. Hepatology 2025:01515467-990000000-01139. [PMID: 39808821 PMCID: PMC7617594 DOI: 10.1097/hep.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Preventive interventions are expected to substantially improve the prognosis of patients with primary liver cancer, predominantly HCC and cholangiocarcinoma. HCC prevention is challenging in the face of the evolving etiological landscape, particularly the sharp increase in obesity-associated metabolic disorders, including metabolic dysfunction-associated steatotic liver disease. Next-generation anti-HCV and HBV drugs have substantially reduced, but not eliminated, the risk of HCC and have given way to new challenges in identifying at-risk patients. The recent development of new therapeutic agents and modalities has opened unprecedented opportunities to refine primary, secondary, and tertiary HCC prevention strategies. For primary prevention (before exposure to risk factors), public health policies, such as universal HBV vaccination, have had a substantial prognostic impact. Secondary prevention (after or during active exposure to risk factors) includes regular HCC screening and chemoprevention. Emerging biomarkers and imaging modalities for HCC risk stratification and detection may enable individual risk-based personalized and cost-effective HCC screening. Clinical studies have suggested the potential utility of lipid-lowering, antidiabetic/obesity, and anti-inflammatory agents for secondary prevention, and some of them are being evaluated in prospective clinical trials. Computational and experimental studies have identified potential chemopreventive strategies directed at diverse molecular, cellular, and systemic targets for etiology-specific and/or agnostic interventions. Tertiary prevention (in conjunction with curative-intent therapies for HCC) is an area of active research with the development of new immune-based neoadjuvant/adjuvant therapies. Cholangiocarcinoma prevention may advance with recent efforts to elucidate risk factors. These advances will collectively lead to substantial improvements in liver cancer mortality rates.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas F. Baumert
- Inserm, U1110, Institute for Translational Medicine and Liver Diseases, University of Strasbourg, F-67000, France
- IHU Strasbourg, F-67000 Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, F-67000Strasbourg, France
| | - Raymond T. Chung
- Liver Center, GI Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Zhan Y, Wang R, Huang C, Xu X, Xiao X, Wu L, Wei J, Long T, Gao C. Digitoxin inhibits ICC cell properties via the NF‑κB/ST6GAL1 signaling pathway. Oncol Rep 2024; 52:103. [PMID: 38940341 PMCID: PMC11229393 DOI: 10.3892/or.2024.8762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a type of liver cancer associated with poor prognosis and increased mortality; the limited treatment strategy highlights the urgent need for investigation. Traditional Chinese Medicine (TCM), used alone or in combination with other treatments, can enhance therapeutic efficacy, improve life quality of patients and extend overall survival. In total, two rounds of screening of a TCM library of 2,538 active compounds were conducted using a Cell Counting Kit‑8 assay and ICC cell lines. Cell proliferation and migration abilities were assessed through colony formation, 5‑ethynyl‑2'‑deoxyuridine, would healing and Transwell assays. The impact of digitoxin (DT) on signaling pathways was initially investigated using RNA sequencing and further validated using reverse transcription‑quantitative PCR, western blotting, lectin blotting and flow cytometry. ICC cells stably overexpressing ST6 β‑galactoside α‑2,6‑sialyltransferase 1 (ST6GAL1) were generated through lentiviral transfection. It was shown that DT emerged as a highly effective anti‑ICC candidate from two rounds high‑throughput library screening. DT could inhibit the proliferation and migration of ICC cells by suppressing NF‑κB activation and reducing nuclear phosphorylated‑NF‑κB levels, along with diminishing ST6GAL1 mRNA and protein expression. The aforementioned biological effects and signal pathways of DT could be counteracted by overexpressing ST6GAL1 in ICC cells. In conclusion, DT suppressed ICC cell proliferation and migration by targeting the NF‑κB/ST6GAL1 signaling axis. The findings of the present study indicated the promising therapeutic effects of DT in managing ICC, offering new avenues for treatment strategies.
Collapse
Affiliation(s)
- Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Rong Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Linlin Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jiao Wei
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Tian Long
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
6
|
Cen M, Jiang G, Zhao Y, Yu Z, Li M. Prevalence of inappropriateness of elemene injection for hospitalized cancer patients: a multicenter retrospective study. Front Pharmacol 2024; 15:1334701. [PMID: 38464712 PMCID: PMC10920215 DOI: 10.3389/fphar.2024.1334701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Background: Elemene injection could provide clinical benefit for the treatment of various cancers, but the clinical evidence is weak. Thus, its wide use in China has raised concerns about the appropriateness of its use. Methods: This was a multicenter retrospective study to evaluate the prevalence of inappropriateness of elemene injection for hospitalized cancer patients. Patients who met the inclusion criteria were retrospectively included, and demographic characteristics were extracted from the hospital information systems. The inappropriateness of elemene injection use was assessed using the preset criteria, and the prevalence was calculated. Multivariate logistic analysis was applied to identify any factors associated with inappropriate use. Results: A total of 275 patients were included in the analysis. The median age was 62 years, and 30.9% were females. The most common cancer was lung cancer (24.0%), and 68.2% of the patients were receiving chemotherapy. The overall prevalence of inappropriateness was 61.8%. The most common reason for inappropriateness was inappropriate indications, and the second was inappropriate doses. Age and oncological department were significant risk factors associated with inappropriate use, while lung cancer, liver cancer and admission to cardiothoracic surgery were associated with a low risk of inappropriate use. Conclusion: The prevalence of inappropriateness among hospitalized elemene injection users was high. More efforts, especially those to improve the appropriateness of indications, should be made to improve the rational use of elemene, as well as other complementary medicines. Physicians should take caution to avoid inappropriate use when prescribing drugs with limited clinical evidence.
Collapse
Affiliation(s)
- Mingzheng Cen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Guojun Jiang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yuhua Zhao
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Zhenwei Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minxian Li
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Wang Z, Chen Y, Yang L, Yao D, Shen Y. Combinative effects of β-elemene and propranolol on the proliferation, migration, and angiogenesis of hemangioma. PeerJ 2023; 11:e15643. [PMID: 37456875 PMCID: PMC10349565 DOI: 10.7717/peerj.15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Hemangioma (HA) is one of the most common benign vascular tumors among children. Propranolol is used as the first-line treatment for hemangioma and is a non-selective blocker of the β-adrenergic receptor. β-elemene is a compound extracted from Rhizoma zedoariae and has been approved for the treatment of tumors in clinical practice. However, the combinatorial effects of β-elemene and propranolol in the treatment of HA remains unclear. This study explored the combinative effects and mechanisms of β-elemene and propranolol using hemangioma-derived endothelial cells (HemECs). Cytotoxic assays showed that the combinatorial treatment of β-elemene and propranolol did not increase the cytotoxic effects of HemECs. Furthermore, functional analysis showed that the combinatorial treatment with β-elemene and propranolol significantly inhibited the proliferation, migration, and tube formation of the HemECs compared to the single treatment regimens. Mechanistic analysis showed that combinative treatment with β-elemene and propranolol synergistically down-regulated the hypoxia-inducible factor-1 alpha/vascular endothelial growth factor-A (HIF-1-α/VEGFA) signaling pathway. Additionally, in a xenograft tumor model, angiogenesis in the combinatorial treatment group was significantly lower than in the control, propranolol, and β-elemene treatment alone groups. Our results suggest that β-elemene combined with propranolol can significantly inhibit the proliferation, migration, and tube formation of HemECs via synergistically down-regulating the HIF-1-α/VEGFA signaling pathway without increasing any cytotoxic side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Pediatric Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yinxian Chen
- Department of Pediatric Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lin Yang
- Department of Urinary Surgery, Cengong County People’s Hospital, Guizhou, China
| | - Dunbiao Yao
- Department of Orthopedics, Cengong County People’s Hospital, Guizhou, China
| | - Yang Shen
- Department of Pediatric Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Gu L, Wu H, Zhang Y, Wu Y, Jin Y, Li T, Ma L, Zheng J. The effects of elemene emulsion injection on rat fecal microbiota and metabolites: Evidence from metagenomic exploration and liquid chromatography-mass spectrometry. Front Microbiol 2022; 13:913461. [PMID: 36504762 PMCID: PMC9730252 DOI: 10.3389/fmicb.2022.913461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Elemene emulsion injection (EEI) has been approved for interventional and intracavitary chemotherapy in treating malignant ascites in China, but few studies have focused on the effects of EEI on gut microbiota and metabolites. In this study, we investigated the effects of EEI on the fecal microbiota and metabolites in healthy Sprague-Dawley (SD) rats. METHODS We randomly assigned 18 male SD rats to three groups (n = 6 in each group): the sham group (group S), the low-concentration EEI group (L-EEI), and the high-concentration EEI group (H-EEI). The L-EEI and H-EEI rats were administered 14 days of consecutive EEI, 20 mg/kg, and 40 mg/kg intraperitoneally (IP). Group S rats were administered the same volume of normal saline. On day 14, each animal's feces were collected for metagenomic sequencing and metabolomic analysis, and the colonic contents were collected for 16S rRNA sequencing. RESULTS EEI could alter the β-diversity but not the α-diversity of the fecal microbiota and induce structural changes in the fecal microbiota. Different concentrations of EEI affect the fecal microbiota differently. The effects of different EEI concentrations on the top 20 bacteria with significant differences at the species level among the three groups were roughly divided into three categories: (1) A positive or negative correlation with the different EEI concentrations. The abundance of Ileibacterium Valens increased as the EEI concentration increased, while the abundance of Firmicutes bacteria and Clostridium sp. CAC: 273 decreased. (2) The microbiota showed a tendency to increase first, then decrease or decrease first, and then increase as EEI concentration increased-the abundance of Prevotella sp. PCHR, Escherichia coli, and Candidatus Amulumruptor caecigallinarius tended to decrease with L-EEI but significantly increased with H-EEI. In contrast, L-EEI significantly increased Ruminococcus bromii and Dorea sp. 5-2 abundance, and Oscillibacter sp. 1-3 abundance tended to increase, while H-EEI significantly decreased them. (3) L-EEI and H-EEI decreased the abundance of bacteria (Ruminococcaceae bacterium, Romboutsia ilealis, and Staphylococcus xylosus). Fecal metabolites, like microbiota, were sensitive to different EEI concentrations and correlated with fecal microbiota and potential biomarkers. CONCLUSION This study shows that intraperitoneal EEI modulates the composition of rat fecal microbiota and metabolites, particularly the gut microbiota's sensitivity to different concentrations of EEI. The impact of changes in the microbiota on human health remains unknown, particularly EEI's efficacy in treating tumors.
Collapse
Affiliation(s)
- Lei Gu
- Department of Cardiology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Hao Wu
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yang Zhang
- Health Center of 95816 of the People's Liberation Army, Wuhan, China
| | - Yousheng Wu
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University, Xi'an, China
| | - Yuan Jin
- Department of Internal Medicine, The Third Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Litian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
9
|
He Y, Shi H, Li Z, Kang J, Li M, Liu M, Liu Y, Zhao J, Dou T, Jia J, Duan Y, Wang K, Ge C. Identification of New Genes and Genetic Variant Loci Associated with Breast Muscle Development in the Mini-Cobb F2 Chicken Population Using a Genome-Wide Association Study. Genes (Basel) 2022; 13:2153. [PMID: 36421827 PMCID: PMC9690689 DOI: 10.3390/genes13112153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/22/2024] Open
Abstract
Native chicken has become a favorite choice for consumers in many Asian countries recently, not only for its potential nutritional value but also for its deep ties to local food culture. However, low growth performance and limited meat production restrict their economic potential. Conducting a genome-wide association study (GWAS) for chicken-breast muscle development will help identify loci or candidate genes for different traits and potentially provide new insight into this phenotype in chickens and other species. To improve native chicken growth performance, especially breast muscle development, we performed a GWAS to explore the potential genetic mechanisms of breast muscle development in an F2 population constructed by reciprocal crosses between a fast-growing broiler chicken (Cobb500) and a slow-growing native chicken (Daweishan mini chicken). The results showed that 11 SNPs, which exceeded the 10% genome significance level (p = 1.79 × 10-8) were considered associated with breast muscle development traits, where six SNPS, NC_006126.5: g.3138376T>G, NC_006126.5: g.3138452A>G, NC_006088.5: g.73837197A>G, NC_006088.5: g.159574275A>G, NC_006089.5: g.80832197A>G, and NC_006127.5: g.48759869G>T was first identified in this study. In total, 13 genes near the SNPs were chosen as candidate genes, and none of them had previously been studied for their role in breast muscle development. After grouping the F2 population according to partial SNPs, significant differences in breast muscle weight were found among different genotypes (p < 0.05), and the expression levels of ALOX5AP, USPL1, CHRNA9, and EFNA5 among candidate genes were also significantly different (p < 0.05). The results of this study will contribute to the future exploration of the potential genetic mechanisms of breast muscle development in domestic chickens and also support the expansion of the market for native chicken in the world.
Collapse
Affiliation(s)
- Yang He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongmei Shi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengyuan Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengqian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jinbo Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junjing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Duan
- Kunming Animal Health Supervision, 118 Gulou Road, Kunming 650000, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|