1
|
Nitz A, Giraldez Chavez JH, Eliason ZG, Payne SH. Are We There Yet? Assessing the Readiness of Single-Cell Proteomics to Answer Biological Hypotheses. J Proteome Res 2025; 24:1482-1492. [PMID: 38981598 PMCID: PMC11976870 DOI: 10.1021/acs.jproteome.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Single-cell analysis is an active area of research in many fields of biology. Measurements at single-cell resolution allow researchers to study diverse populations without losing biologically meaningful information to sample averages. Many technologies have been used to study single cells, including mass spectrometry-based single-cell proteomics (SCP). SCP has seen a lot of growth over the past couple of years through improvements in data acquisition and analysis, leading to greater proteomic depth. Because method development has been the main focus in SCP, biological applications have been sprinkled in only as proof-of-concept. However, SCP methods now provide significant coverage of the proteome and have been implemented in many laboratories. Thus, a primary question to address in our community is whether the current state of technology is ready for widespread adoption for biological inquiry. In this Perspective, we examine the potential for SCP in three thematic areas of biological investigation: cell annotation, developmental trajectories, and spatial mapping. We identify that the primary limitation of SCP is sample throughput. As proteome depth has been the primary target for method development to date, we advocate for a change in focus to facilitate measuring tens of thousands of single-cell proteomes to enable biological applications beyond proof-of-concept.
Collapse
Affiliation(s)
- Alyssa
A. Nitz
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | | | - Zachary G. Eliason
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H. Payne
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
2
|
Theodorou SDP, Ntostoglou K, Nikas IP, Goutas D, Georgoulias V, Kittas C, Pateras IS. Double-Multiplex Immunostainings for Immune Profiling of Invasive Breast Carcinoma: Emerging Novel Immune-Based Biomarkers. Int J Mol Sci 2025; 26:2838. [PMID: 40243442 PMCID: PMC11988469 DOI: 10.3390/ijms26072838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The role of tumor microenvironment in invasive breast cancer prognosis and treatment is highly appreciated. With the advent of immunotherapy, immunophenotypic characterization in primary tumors is gaining attention as it can improve patient stratification. Here, we discuss the benefits of spatial analysis employing double and multiplex immunostaining, allowing the simultaneous detection of more than one protein on the same tissue section, which in turn helps us provide functional insight into infiltrating immune cells within tumors. We focus on studies demonstrating the prognostic and predictive impact of distinct tumor-infiltrating lymphocyte subpopulations including different CD8(+) T subsets as well as CD4(+) T cells and tumor-associated macrophages in invasive breast carcinoma. The clinical value of immune cell topography is also appreciated. We further refer to how the integration of digital pathology and artificial intelligence in routine practice could enhance the accuracy of multiplex immunostainings evaluation within the tumor microenvironment, maximizing our perception of host immune response, improving in turn decision-making towards more precise immune-associated therapies.
Collapse
Affiliation(s)
- Sofia D. P. Theodorou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.P.T.); (K.N.); (C.K.)
| | - Konstantinos Ntostoglou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.P.T.); (K.N.); (C.K.)
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus;
| | - Dimitrios Goutas
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | | | - Christos Kittas
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.P.T.); (K.N.); (C.K.)
| | - Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
3
|
Krestensen K, Hendriks TFE, Grgic A, Derweduwe M, De Smet F, Heeren RMA, Cuypers E. Molecular Profiling of Glioblastoma Patient-Derived Single Cells Using Combined MALDI-MSI and MALDI-IHC. Anal Chem 2025; 97:3846-3854. [PMID: 39932302 PMCID: PMC11866282 DOI: 10.1021/acs.analchem.4c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
In recent years, mass spectrometry-based imaging techniques have improved at unprecedented speeds, particularly in spatial resolution, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) experiments can now routinely image molecular profiles of single cells in an untargeted fashion. With the introduction of MALDI-immunohistochemistry (IHC), multiplexed visualization of targeted proteins in their native tissue location has become accessible and joins the suite of multimodal imaging techniques that help unravel molecular complexities. However, MALDI-IHC has not been validated for use with cell cultures at single-cell level. Here, we introduce a workflow for combining MALDI-MSI and MALDI-IHC on single, isolated cells. Patient-derived cells from glioblastoma tumor samples were imaged, first with high-resolution MSI to obtain a lipid profile, followed by MALDI-IHC highlighting cell-specific protein markers. The multimodal imaging revealed cell type specific lipid profiles when comparing glioblastoma cells and neuronal cells. Furthermore, the initial MSI measurement and its sample preparation showed no significant differences in the subsequent MALDI-IHC ion intensities. Finally, an automated recognition model was created based on the MALDI-MSI data and was able to accurately classify cells into their respective cell type in agreement with the MALDI-IHC markers, with triglycerides, phosphatidylcholines, and sphingomyelins being the most important classifiers. These results show how MALDI-IHC can provide additional valuable molecular information on single-cell measurements, even after an initial MSI measurement without reduced efficacy. Investigation of heterogeneous single-cell samples has the potential of giving a unique insight into the dynamics of how cell-to-cell interaction drives intratumor heterogeneity, thus highlighting the perspective of this work.
Collapse
Affiliation(s)
- Kasper
K. Krestensen
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Tim F. E. Hendriks
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Marleen Derweduwe
- Laboratory
for Precision Cancer Medicine, Translational Cell and Tissue Unit, KU Leuven, 3001 Leuven, Belgium
| | - Frederik De Smet
- Laboratory
for Precision Cancer Medicine, Translational Cell and Tissue Unit, KU Leuven, 3001 Leuven, Belgium
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Eva Cuypers
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Clarke KM, Etemadmoghadam S, Danner B, Corbett C, Ghaseminejad‐Bandpey A, Dopler M, Parker‐Garza J, Alhneif M, Babu S, Ogunbona OB, Gonzalez AD, Salardini A, Flanagan ME. The Nun Study: Insights from 30 years of aging and dementia research. Alzheimers Dement 2025; 21:e14626. [PMID: 39998266 PMCID: PMC11852352 DOI: 10.1002/alz.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
The Nun Study is an iconic longitudinal study of aging and dementia on a cohort of 678 Catholic nuns from the School Sisters of Notre Dame. Participants consented to undergoing annual neuropsychological assessments, allowing researchers access to convent archives and medical records and post mortem brain donation. This study investigated the associations between epidemiological factors, cognitive function, and brain pathology. By examining published literature that reports on or utilizes Nun Study data, we provide an overview of its methodology and key findings, emphasizing its significant contributions to understanding cognitive impairment and related neuropathologies. Seminal findings on early-life factors affecting cognitive health, clinicopathological correlations, and apparent resistance and resilience to neuropathology are discussed. Decades of Nun Study research have made critical contributions to our understanding of Alzheimer's disease and related dementias and highlight continuing objectives for future research. HIGHLIGHTS: The uniform lifestyles of participants minimized potential confounds of the study. Early-life cognitive ability influenced late-life cognitive outcomes. Some participants with AD pathology did not exhibit dementia. Neuropathological comorbidities were common and increased the risk of dementia.
Collapse
Affiliation(s)
- Kyra M. Clarke
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Shahroo Etemadmoghadam
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Benjamin Danner
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Cole Corbett
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Ali Ghaseminejad‐Bandpey
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Matthew Dopler
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Julie Parker‐Garza
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Mohammad Alhneif
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Sahana Babu
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Oluwaseun B. Ogunbona
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of PathologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Angelique D. Gonzalez
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Margaret E. Flanagan
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of PathologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
5
|
Sun AK, Fan S, Choi SW. Exploring Multiplex Immunohistochemistry (mIHC) Techniques and Histopathology Image Analysis: Current Practice and Potential for Clinical Incorporation. Cancer Med 2025; 14:e70523. [PMID: 39764760 PMCID: PMC11705464 DOI: 10.1002/cam4.70523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND By simultaneously staining multiple immunomarkers on a single tissue section, multiplexed immunohistochemistry (mIHC) enhances the amount of information that can be observed in a single tissue section and thus can be a powerful tool to visualise cellular interactions directly in the tumour microenvironment. Performing mIHC remains technically and practically challenging, and this technique has many limitations if not properly validated. However, with proper validation, heterogeneity between histopathological images can be avoided. AIMS This review aimed to summarize the currently used methods and to propose a standardised method for effective mIHC. MATERIALS AND METHODS An extensive literature review was conducted to identify different methods currently in use for mIHC. RESULTS Guidelines for antibody selection, panel design, antibody validation and analytical strategies are given. The advantages and disadvantages of each method are discussed. CONCLUSION This review summarizes widely used pathology imaging software and discusses the potential for automation of pathology image analysis so that mIHC technology can be a truly powerful tool for research as well as clinical use.
Collapse
Affiliation(s)
- Aria Kaiyuan Sun
- Department of Anaesthesiology, School of Clinical Medicine, Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalGuangzhouChina
| | - Siu Wai Choi
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of MedicineThe University of Hong KongHong KongHong Kong
| |
Collapse
|
6
|
Sheikh E, Liu Q, Burk D, Beavers WN, Fu X, Gartia MR. Mapping lipid species remodeling in high fat diet-fed mice: Unveiling adipose tissue dysfunction with Raman microspectroscopy. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159557. [PMID: 39128539 PMCID: PMC11380576 DOI: 10.1016/j.bbalip.2024.159557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Dysregulated lipid metabolism in obesity leads to adipose tissue expansion, a major contributor to metabolic dysfunction and chronic disease. Lipid metabolism and fatty acid changes play vital roles in the progression of obesity. In this proof-of-concept study, Raman techniques combined with histochemical imaging methods were utilized to analyze the impact of a high-fat diet (HFD) on different types of adipose tissue in mice, using a small sample size (n = 3 per group). After six weeks of high-fat diet (HFD) feeding, our findings showed hypertrophy, elevated collagen levels, and increased macrophage presence in the adipose tissues of the HFD group compared to the low-fat diet (LFD) group. Statistical analysis of Raman spectra revealed significantly lower unsaturated lipid levels and higher lipid to protein content in different fat pads (brown adipose tissue (BAT), subcutaneous white adipose tissue (SWAT), and visceral white adipose tissue (VWAT)) with HFD. Raman images of adipose tissues were analyzed using Empty modeling and DCLS methods to spatially profile unsaturated and saturated lipid species in the tissues. It revealed elevated levels of ω-3, ω-6, cholesterol, and triacylglycerols in BAT adipose tissues of HFD compared to LFD tissues. These findings indicated that while cholesterol, ω-6/ω-3 ratio, and triacylglycerol levels have risen in the SWAT and VWAT adipose tissues of the HFD group, the levels of ω-3 and ω-6 have decreased following the HFD. The study showed that Raman spectroscopy provided invaluable information at the molecular level for investigating lipid species remodeling and spatial mapping of adipose tissues during HFD.
Collapse
Affiliation(s)
- Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Louisiana State University School of Veterinary Medicine, Mass Spectrometry Resource Center, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
7
|
Tasca P, van den Berg BM, Rabelink TJ, Wang G, Heijs B, van Kooten C, de Vries APJ, Kers J. Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat Rev Nephrol 2024; 20:755-766. [PMID: 38965417 DOI: 10.1038/s41581-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Improvement of long-term outcomes through targeted treatment is a primary concern in kidney transplant medicine. Currently, the validation of a rejection diagnosis and subsequent treatment depends on the histological assessment of allograft biopsy samples, according to the Banff classification system. However, the lack of (early) disease-specific tissue markers hinders accurate diagnosis and thus timely intervention. This challenge mainly results from an incomplete understanding of the pathophysiological processes underlying late allograft failure. Integration of large-scale multimodal approaches for investigating allograft biopsy samples might offer new insights into this pathophysiology, which are necessary for the identification of novel therapeutic targets and the development of tailored immunotherapeutic interventions. Several omics technologies - including transcriptomic, proteomic, lipidomic and metabolomic tools (and multimodal data analysis strategies) - can be applied to allograft biopsy investigation. However, despite their successful application in research settings and their potential clinical value, several barriers limit the broad implementation of many of these tools into clinical practice. Among spatial-omics technologies, mass spectrometry imaging, which is under-represented in the transplant field, has the potential to enable multi-omics investigations that might expand the insights gained with current clinical analysis technologies.
Collapse
Affiliation(s)
- Paola Tasca
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (Renew), Leiden University Medical Center, Leiden, the Netherlands
| | - Gangqi Wang
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (Renew), Leiden University Medical Center, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Cees van Kooten
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P J de Vries
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jesper Kers
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Center for Analytical Sciences Amsterdam, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
9
|
Mebratie DY, Dagnaw GG. Review of immunohistochemistry techniques: Applications, current status, and future perspectives. Semin Diagn Pathol 2024; 41:154-160. [PMID: 38744555 DOI: 10.1053/j.semdp.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
The Hematoxylin and Eosin stain is a cornerstone in histopathology that facilitates the microscopic examination of tissue samples for identifying infections and tumors. However, challenges arise from the similar appearances of diseases and cells, prompting the emergence of Immunohistochemistry (IHC) as an important technique. This review summarizes the principles, procedures, and applications and future perspectives of IHC, a prevalent immunostaining method allowing the detection of specific proteins in tissue sections. The multistep IHC process involves fixation, embedding, sectioning, antigen retrieval, blocking, detection, counterstaining, mounting, and visualization, with interpretation relying on factors such as microanatomic distribution and staining intensity. Common errors in IHC such as non-specific staining, tissue artifacts, inadequately inactivation of endogenous peroxidase activity and cross-reactivity, can substantially affect the accuracy and reliability of results, thereby impacting the interpretation of biological findings. Serving diagnostic, prognostic, predictive, and therapeutic roles in various conditions, including tumors, infectious diseases, neurodegenerative disorders, and muscle diseases, IHC remains pivotal despite its intricate nature. The adoption of digital pathology emerges as a progressive enhancement, addressing limitations and ensuring more accurate analyses in histopathology.
Collapse
Affiliation(s)
- Dinku Yigzaw Mebratie
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Department of Pathobiology, Ethiopia
| | - Gashaw Getaneh Dagnaw
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Department of Biomedical Sciences, Ethiopia.
| |
Collapse
|
10
|
Augustin RC, Cai WL, Luke JJ, Bao R. Facts and Hopes in Using Omics to Advance Combined Immunotherapy Strategies. Clin Cancer Res 2024; 30:1724-1732. [PMID: 38236069 PMCID: PMC11062841 DOI: 10.1158/1078-0432.ccr-22-2241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
The field of oncology has been transformed by immune checkpoint inhibitors (ICI) and other immune-based agents; however, many patients do not receive a durable benefit. While biomarker assessments from pivotal ICI trials have uncovered certain mechanisms of resistance, results thus far have only scraped the surface. Mechanisms of resistance are as complex as the tumor microenvironment (TME) itself, and the development of effective therapeutic strategies will only be possible by building accurate models of the tumor-immune interface. With advancement of multi-omic technologies, high-resolution characterization of the TME is now possible. In addition to sequencing of bulk tumor, single-cell transcriptomic, proteomic, and epigenomic data as well as T-cell receptor profiling can now be simultaneously measured and compared between responders and nonresponders to ICI. Spatial sequencing and imaging platforms have further expanded the dimensionality of existing technologies. Rapid advancements in computation and data sharing strategies enable development of biologically interpretable machine learning models to integrate data from high-resolution, multi-omic platforms. These models catalyze the identification of resistance mechanisms and predictors of benefit in ICI-treated patients, providing scientific foundation for novel clinical trials. Moving forward, we propose a framework by which in silico screening, functional validation, and clinical trial biomarker assessment can be used for the advancement of combined immunotherapy strategies.
Collapse
Affiliation(s)
- Ryan C. Augustin
- UPMC Hillman Cancer Center, Pittsburgh, PA
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
- Mayo Clinic, Department of Medical Oncology, Rochester, MN
| | - Wesley L. Cai
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| | - Jason J. Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| |
Collapse
|
11
|
Barbetta A, Rocque B, Bangerth S, Street K, Weaver C, Chopra S, Kim J, Sher L, Gaudilliere B, Akbari O, Kohli R, Emamaullee J. Spatially resolved immune exhaustion within the alloreactive microenvironment predicts liver transplant rejection. SCIENCE ADVANCES 2024; 10:eadm8841. [PMID: 38608023 PMCID: PMC11014454 DOI: 10.1126/sciadv.adm8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Allograft rejection is common following clinical organ transplantation, but defining specific immune subsets mediating alloimmunity has been elusive. Calcineurin inhibitor dose escalation, corticosteroids, and/or lymphocyte depleting antibodies have remained the primary options for treatment of clinical rejection episodes. Here, we developed a highly multiplexed imaging mass cytometry panel to study the immune response in archival biopsies from 79 liver transplant (LT) recipients with either no rejection (NR), acute T cell-mediated rejection (TCMR), or chronic rejection (CR). This approach generated a spatially resolved proteomic atlas of 461,816 cells (42 phenotypes) derived from 96 pathologist-selected regions of interest. Our analysis revealed that regulatory (HLADR+ Treg) and PD1+ T cell phenotypes (CD4+ and CD8+ subsets), combined with variations in M2 macrophage polarization, were a unique signature of active TCMR. These data provide insights into the alloimmune microenvironment in clinical LT, including identification of potential targets for focused immunotherapy during rejection episodes and suggestion of a substantial role for immune exhaustion in TCMR.
Collapse
Affiliation(s)
- Arianna Barbetta
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brittany Rocque
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Bangerth
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kelly Street
- Division of Biostatistics, Department of Population and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carly Weaver
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Shefali Chopra
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Janet Kim
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda Sher
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Abdominal Organ Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Juliet Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Abdominal Organ Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Yan H, Ju X, Huang A, Yuan J. Advancements in technology for characterizing the tumor immune microenvironment. Int J Biol Sci 2024; 20:2151-2167. [PMID: 38617534 PMCID: PMC11008272 DOI: 10.7150/ijbs.92525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Immunotherapy plays a key role in cancer treatment, however, responses are limited to a small number of patients. The biological basis for the success of immunotherapy is the complex interaction between tumor cells and tumor immune microenvironment (TIME). Historically, research on tumor immune constitution was limited to the analysis of one or two markers, more novel technologies are needed to interpret the complex interactions between tumor cells and TIME. In recent years, major advances have already been made in depicting TIME at a considerably elevated degree of throughput, dimensionality and resolution, allowing dozens of markers to be labeled simultaneously, and analyzing the heterogeneity of tumour-immune infiltrates in detail at the single cell level, depicting the spatial landscape of the entire microenvironment, as well as applying artificial intelligence (AI) to interpret a large amount of complex data from TIME. In this review, we summarized emerging technologies that have made contributions to the field of TIME, and provided prospects for future research.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | | | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
13
|
Humenick A, Johnson M, Chen B, Wee M, Wattchow D, Costa M, Dinning P, Brookes S. Antibody elution with 2-me/SDS solution: Uses for multi-layer immunohistochemical analysis of wholemount preparations of human colonic myenteric plexus. Heliyon 2024; 10:e26522. [PMID: 38434276 PMCID: PMC10904250 DOI: 10.1016/j.heliyon.2024.e26522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Indirect immunofluorescence is usually restricted to 3-5 markers per preparation, limiting analysis of coexistence. A solution containing 2-mercaptoethanol and sodium dodecyl sulfate (2-ME/SDS) can elute indirect immunofluorescence labelling (i.e. primary antisera followed by fluorophore-conjugated secondary antisera) and has been used for sequential staining of sections. The aim of this study was to test whether 2-ME/SDS is effective for eluting indirect immunofluorescent staining (with primary antisera visualised by fluorophore-coupled secondary antisera) in wholemount preparations. We also analysed how 2-ME/SDS may work and used this understanding to devise additional uses for immunofluorescence in the nervous system. 2-ME/SDS appears to denature unfixed proteins (including antisera used as reagents) but has much less effect on antigenicity of formaldehyde-fixed epitopes. Moieties linked by strong biotin-streptavidin bonds are highly resistant to elution by 2-ME/SDS. Two primary antisera raised in the same species can be applied without spurious cross-reactivity, if a specific order of labelling is followed. The first primary antiserum is followed by a biotinylated secondary, then a tertiary of fluorophore-conjugated streptavidin. The preparation is then exposed to 2-ME/SDS, which has minimal impact on labelling by the first primary/secondary/tertiary combination. However, when this is followed by a second primary antiserum (raised in the same species), followed by a fluorophore-conjugated secondary antiserum, the intervening 2-ME/SDS exposure prevents cross-reactivity between primary and secondary antisera of the two layers. A third property of 2-ME/SDS is that it reduces lipofuscin autofluorescence, although it also raises background fluorescence and strongly enhances autofluorescence of erythrocytes. In summary, 2-ME/SDS is easy to use, cost-effective and does not require modified primary antisera. It can be used as the basis of a multi-layer immunohistochemistry protocol and allows 2 primary antisera raised in the same species to be used together.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M.E. Johnson
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - B.N. Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M. Wee
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - D.A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - M. Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - P.G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - S.J.H. Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| |
Collapse
|
14
|
Piga I, Magni F, Smith A. The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations. FEBS Lett 2024; 598:621-634. [PMID: 38140823 DOI: 10.1002/1873-3468.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
15
|
Navikas V, Kowal J, Rodriguez D, Rivest F, Brajkovic S, Cassano M, Dupouy D. Semi-automated approaches for interrogating spatial heterogeneity of tissue samples. Sci Rep 2024; 14:5025. [PMID: 38424144 PMCID: PMC10904364 DOI: 10.1038/s41598-024-55387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Tissues are spatially orchestrated ecosystems composed of heterogeneous cell populations and non-cellular elements. Tissue components' interactions shape the biological processes that govern homeostasis and disease, thus comprehensive insights into tissues' composition are crucial for understanding their biology. Recently, advancements in the spatial biology field enabled the in-depth analyses of tissue architecture at single-cell resolution, while preserving the structural context. The increasing number of biomarkers analyzed, together with whole tissue imaging, generate datasets approaching several hundreds of gigabytes in size, which are rich sources of valuable knowledge but require investments in infrastructure and resources for extracting quantitative information. The analysis of multiplex whole-tissue images requires extensive training and experience in data analysis. Here, we showcase how a set of open-source tools can allow semi-automated image data extraction to study the spatial composition of tissues with a focus on tumor microenvironment (TME). With the use of Lunaphore COMET platform, we interrogated lung cancer specimens where we examined the expression of 20 biomarkers. Subsequently, the tissue composition was interrogated using an in-house optimized nuclei detection algorithm followed by a newly developed image artifact exclusion approach. Thereafter, the data was processed using several publicly available tools, highlighting the compatibility of COMET-derived data with currently available image analysis frameworks. In summary, we showcased an innovative semi-automated workflow that highlights the ease of adoption of multiplex imaging to explore TME composition at single-cell resolution using a simple slide in, data out approach. Our workflow is easily transferrable to various cohorts of specimens to provide a toolset for spatial cellular dissection of the tissue composition.
Collapse
Affiliation(s)
| | - Joanna Kowal
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | | | | | | | | | - Diego Dupouy
- Lunaphore Technologies SA, Tolochenaz, Switzerland.
| |
Collapse
|
16
|
Baldwin M, Buckley CD, Guilak F, Hulley P, Cribbs AP, Snelling S. A roadmap for delivering a human musculoskeletal cell atlas. Nat Rev Rheumatol 2023; 19:738-752. [PMID: 37798481 DOI: 10.1038/s41584-023-01031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Advances in single-cell technologies have transformed the ability to identify the individual cell types present within tissues and organs. The musculoskeletal bionetwork, part of the wider Human Cell Atlas project, aims to create a detailed map of the healthy musculoskeletal system at a single-cell resolution throughout tissue development and across the human lifespan, with complementary generation of data from diseased tissues. Given the prevalence of musculoskeletal disorders, this detailed reference dataset will be critical to understanding normal musculoskeletal function in growth, homeostasis and ageing. The endeavour will also help to identify the cellular basis for disease and lay the foundations for novel therapeutic approaches to treating diseases of the joints, soft tissues and bone. Here, we present a Roadmap delineating the critical steps required to construct the first draft of a human musculoskeletal cell atlas. We describe the key challenges involved in mapping the extracellular matrix-rich, but cell-poor, tissues of the musculoskeletal system, outline early milestones that have been achieved and describe the vision and directions for a comprehensive musculoskeletal cell atlas. By embracing cutting-edge technologies, integrating diverse datasets and fostering international collaborations, this endeavour has the potential to drive transformative changes in musculoskeletal medicine.
Collapse
Affiliation(s)
- Mathew Baldwin
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Philippa Hulley
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Sarah Snelling
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Kendall TJ, Jimenez-Ramos M, Turner F, Ramachandran P, Minnier J, McColgan MD, Alam M, Ellis H, Dunbar DR, Kohnen G, Konanahalli P, Oien KA, Bandiera L, Menolascina F, Juncker-Jensen A, Alexander D, Mayor C, Guha IN, Fallowfield JA. An integrated gene-to-outcome multimodal database for metabolic dysfunction-associated steatotic liver disease. Nat Med 2023; 29:2939-2953. [PMID: 37903863 PMCID: PMC10667096 DOI: 10.1038/s41591-023-02602-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the commonest cause of chronic liver disease worldwide and represents an unmet precision medicine challenge. We established a retrospective national cohort of 940 histologically defined patients (55.4% men, 44.6% women; median body mass index 31.3; 32% with type 2 diabetes) covering the complete MASLD severity spectrum, and created a secure, searchable, open resource (SteatoSITE). In 668 cases and 39 controls, we generated hepatic bulk RNA sequencing data and performed differential gene expression and pathway analysis, including exploration of gender-specific differences. A web-based gene browser was also developed. We integrated histopathological assessments, transcriptomic data and 5.67 million days of time-stamped longitudinal electronic health record data to define disease-stage-specific gene expression signatures, pathogenic hepatic cell subpopulations and master regulator networks associated with adverse outcomes in MASLD. We constructed a 15-gene transcriptional risk score to predict future hepatic decompensation events (area under the receiver operating characteristic curve 0.86, 0.81 and 0.83 for 1-, 3- and 5-year risk, respectively). Additionally, thyroid hormone receptor beta regulon activity was identified as a critical suppressor of disease progression. SteatoSITE supports rational biomarker and drug development and facilitates precision medicine approaches for patients with MASLD.
Collapse
Affiliation(s)
- Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Maria Jimenez-Ramos
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Frances Turner
- Edinburgh Genomics (Bioinformatics), University of Edinburgh, Edinburgh, UK
| | | | - Jessica Minnier
- OHSU-PSU School of Public Health, Oregon Health & Sciences University, Portland, OR, USA
- Knight Cancer Institute Biostatistics Shared Resource, Oregon Health & Sciences University, Portland, OR, USA
| | - Michael D McColgan
- Precision Medicine Scotland-Innovation Centre (PMS-IC), University of Glasgow, Glasgow, UK
| | - Masood Alam
- Precision Medicine Scotland-Innovation Centre (PMS-IC), University of Glasgow, Glasgow, UK
| | - Harriet Ellis
- Precision Medicine Scotland-Innovation Centre (PMS-IC), University of Glasgow, Glasgow, UK
| | - Donald R Dunbar
- Edinburgh Genomics (Bioinformatics), University of Edinburgh, Edinburgh, UK
| | - Gabriele Kohnen
- Pathology Department, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Karin A Oien
- Pathology Department, Queen Elizabeth University Hospital, Glasgow, UK
| | - Lucia Bandiera
- School of Engineering, Institute of Bioengineering, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - Filippo Menolascina
- School of Engineering, Institute of Bioengineering, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Charlie Mayor
- NHS Greater Glasgow and Clyde Safe Haven, Glasgow, UK
| | - Indra Neil Guha
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | | |
Collapse
|
18
|
Rivest F, Eroglu D, Pelz B, Kowal J, Kehren A, Navikas V, Procopio MG, Bordignon P, Pérès E, Ammann M, Dorel E, Scalmazzi S, Bruno L, Ruegg M, Campargue G, Casqueiro G, Arn L, Fischer J, Brajkovic S, Joris P, Cassano M, Dupouy D. Fully automated sequential immunofluorescence (seqIF) for hyperplex spatial proteomics. Sci Rep 2023; 13:16994. [PMID: 37813886 PMCID: PMC10562446 DOI: 10.1038/s41598-023-43435-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023] Open
Abstract
Tissues are complex environments where different cell types are in constant interaction with each other and with non-cellular components. Preserving the spatial context during proteomics analyses of tissue samples has become an important objective for different applications, one of the most important being the investigation of the tumor microenvironment. Here, we describe a multiplexed protein biomarker detection method on the COMET instrument, coined sequential ImmunoFluorescence (seqIF). The fully automated method uses successive applications of antibody incubation and elution, and in-situ imaging enabled by an integrated microscope and a microfluidic chip that provides optimized optical access to the sample. We show seqIF data on different sample types such as tumor and healthy tissue, including 40-plex on a single tissue section that is obtained in less than 24 h, using off-the-shelf antibodies. We also present extensive characterization of the developed method, including elution efficiency, epitope stability, repeatability and reproducibility, signal uniformity, and dynamic range, in addition to marker and panel optimization strategies. The streamlined workflow using off-the-shelf antibodies, data quality enabling downstream analysis, and ease of reaching hyperplex levels make seqIF suitable for immune-oncology research and other disciplines requiring spatial analysis, paving the way for its adoption in clinical settings.
Collapse
Affiliation(s)
| | - Deniz Eroglu
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | | | - Joanna Kowal
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | | | | | | | | | - Emilie Pérès
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | - Marco Ammann
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | | | | | | | | | | | | | - Lionel Arn
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | | | | | - Pierre Joris
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | | | - Diego Dupouy
- Lunaphore Technologies SA, Tolochenaz, Switzerland.
| |
Collapse
|
19
|
Parra ER, Ilié M, Wistuba II, Hofman P. Quantitative multiplexed imaging technologies for single-cell analysis to assess predictive markers for immunotherapy in thoracic immuno-oncology: promises and challenges. Br J Cancer 2023; 129:1417-1431. [PMID: 37391504 PMCID: PMC10628288 DOI: 10.1038/s41416-023-02318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The past decade has witnessed a revolution in cancer treatment by the shift from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular the immune-checkpoint inhibitors (ICIs). These immunotherapies selectively release the host immune system against the tumour and have shown unprecedented durable remission for patients with cancers that were thought incurable such as advanced non-small cell lung cancer (aNSCLC). The prediction of therapy response is based since the first anti-PD-1/PD-L1 molecules FDA and EMA approvals on the level of PD-L1 tumour cells expression evaluated by immunohistochemistry, and recently more or less on tumour mutation burden in the USA. However, not all aNSCLC patients benefit from immunotherapy equally, since only around 30% of them received ICIs and among them 30% have an initial response to these treatments. Conversely, a few aNSCLC patients could have an efficacy ICIs response despite low PD-L1 tumour cells expression. In this context, there is an urgent need to look for additional robust predictive markers for ICIs efficacy in thoracic oncology. Understanding of the mechanisms that enable cancer cells to adapt to and eventually overcome therapy and identifying such mechanisms can help circumvent resistance and improve treatment. However, more than a unique universal marker, the evaluation of several molecules in the tumour at the same time, particularly by using multiplex immunostaining is a promising open room to optimise the selection of patients who benefit from ICIs. Therefore, urgent further efforts are needed to optimise to individualise immunotherapy based on both patient-specific and tumour-specific characteristics. This review aims to rethink the role of multiplex immunostaining in immuno-thoracic oncology, with the current advantages and limitations in the near-daily practice use.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France.
| |
Collapse
|
20
|
Barbetta A, Rocque B, Bangerth S, Street K, Weaver C, Chopra S, Kim J, Sher L, Gaudilliere B, Akbari O, Kohli R, Emamaullee J. Spatially resolved immune exhaustion within the alloreactive microenvironment predicts liver transplant rejection. RESEARCH SQUARE 2023:rs.3.rs-3044385. [PMID: 37461437 PMCID: PMC10350170 DOI: 10.21203/rs.3.rs-3044385/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Allograft rejection is a frequent complication following solid organ transplantation, but defining specific immune subsets mediating alloimmunity has been elusive due to the scarcity of tissue in clinical biopsy specimens. Single cell techniques have emerged as valuable tools for studying mechanisms of disease in complex tissue microenvironments. Here, we developed a highly multiplexed imaging mass cytometry panel, single cell analysis pipeline, and semi-supervised immune cell clustering algorithm to study archival biopsy specimens from 79 liver transplant (LT) recipients with histopathological diagnoses of either no rejection (NR), acute T-cell mediated rejection (TCMR), or chronic rejection (CR). This approach generated a spatially resolved proteomic atlas of 461,816 cells derived from 98 pathologist-selected regions of interest relevant to clinical diagnosis of rejection. We identified 41 distinct cell populations (32 immune and 9 parenchymal cell phenotypes) that defined key elements of the alloimmune microenvironment (AME), identified significant cell-cell interactions, and established higher order cellular neighborhoods. Our analysis revealed that both regulatory (HLA-DR+ Treg) and exhausted T-cell phenotypes (PD1+CD4+ and PD1+CD8+ T-cells), combined with variations in M2 macrophage polarization, were a unique signature of TCMR. TCMR was further characterized by alterations in cell-to-cell interactions among both exhausted immune subsets and inflammatory populations, with expansion of a CD8 enriched cellular neighborhood comprised of Treg, exhausted T-cell subsets, proliferating CD8+ T-cells, and cytotoxic T-cells. These data enabled creation of a predictive model of clinical outcomes using a subset of cell types to differentiate TCMR from NR (AUC = 0.96 ± 0.04) and TCMR from CR (AUC = 0.96 ± 0.06) with high sensitivity and specificity. Collectively, these data provide mechanistic insights into the AME in clinical LT, including a substantial role for immune exhaustion in TCMR with identification of novel targets for more focused immunotherapy in allograft rejection. Our study also offers a conceptual framework for applying spatial proteomics to study immunological diseases in archival clinical specimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linda Sher
- University of Southern California Keck School of Mdicine
| | | | - Omid Akbari
- University of Southern California, Keck School of Medicine
| | | | | |
Collapse
|
21
|
Andhari MD, Antoranz A, De Smet F, Bosisio FM. Recent advancements in tumour microenvironment landscaping for target selection and response prediction in immune checkpoint therapies achieved through spatial protein multiplexing analysis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:207-237. [PMID: 38225104 DOI: 10.1016/bs.ircmb.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Immune checkpoint therapies have significantly advanced cancer treatment. Nevertheless, the high costs and potential adverse effects associated with these therapies highlight the need for better predictive biomarkers to identify patients who are most likely to benefit from treatment. Unfortunately, the existing biomarkers are insufficient to identify such patients. New high-dimensional spatial technologies have emerged as a valuable tool for discovering novel biomarkers by analysing multiple protein markers at a single-cell resolution in tissue samples. These technologies provide a more comprehensive map of tissue composition, cell functionality, and interactions between different cell types in the tumour microenvironment. In this review, we provide an overview of how spatial protein-based multiplexing technologies have fuelled biomarker discovery and advanced the field of immunotherapy. In particular, we will focus on how these technologies contributed to (i) characterise the tumour microenvironment, (ii) understand the role of tumour heterogeneity, (iii) study the interplay of the immune microenvironment and tumour progression, (iv) discover biomarkers for immune checkpoint therapies (v) suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Madhavi Dipak Andhari
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Lee RY, Ng CW, Rajapakse MP, Ang N, Yeong JPS, Lau MC. The promise and challenge of spatial omics in dissecting tumour microenvironment and the role of AI. Front Oncol 2023; 13:1172314. [PMID: 37197415 PMCID: PMC10183599 DOI: 10.3389/fonc.2023.1172314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Growing evidence supports the critical role of tumour microenvironment (TME) in tumour progression, metastases, and treatment response. However, the in-situ interplay among various TME components, particularly between immune and tumour cells, are largely unknown, hindering our understanding of how tumour progresses and responds to treatment. While mainstream single-cell omics techniques allow deep, single-cell phenotyping, they lack crucial spatial information for in-situ cell-cell interaction analysis. On the other hand, tissue-based approaches such as hematoxylin and eosin and chromogenic immunohistochemistry staining can preserve the spatial information of TME components but are limited by their low-content staining. High-content spatial profiling technologies, termed spatial omics, have greatly advanced in the past decades to overcome these limitations. These technologies continue to emerge to include more molecular features (RNAs and/or proteins) and to enhance spatial resolution, opening new opportunities for discovering novel biological knowledge, biomarkers, and therapeutic targets. These advancements also spur the need for novel computational methods to mine useful TME insights from the increasing data complexity confounded by high molecular features and spatial resolution. In this review, we present state-of-the-art spatial omics technologies, their applications, major strengths, and limitations as well as the role of artificial intelligence (AI) in TME studies.
Collapse
Affiliation(s)
- Ren Yuan Lee
- Singapore Thong Chai Medical Institution, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan Way Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
23
|
Verduin M, Hoosemans L, Vanmechelen M, van Heumen M, Piepers JAF, Astuti G, Ackermans L, Schijns OEMG, Kampen KR, Tjan-Heijnen VCG, de Barbanson BA, Postma AA, Eekers DBP, Broen MPG, Beckervordersandforth J, Staňková K, de Smet F, Rich J, Hubert CG, Gimenez G, Chatterjee A, Hoeben A, Vooijs MA. Patient-derived glioblastoma organoids reflect tumor heterogeneity and treatment sensitivity. Neurooncol Adv 2023; 5:vdad152. [PMID: 38130902 PMCID: PMC10733660 DOI: 10.1093/noajnl/vdad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived GBM organoids (PGO) to investigate treatment response and resistance. Methods GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA sequencing was performed before and after TMZ. Results WES analysis on individual PGOs cultured for 3 time points (1-3 months) showed a high inter-organoid correlation and retention of genetic variants (range 92.3%-97.7%). Most variants were retained in the PGO compared to the tumor (range 58%-90%) and exhibited similar copy number variations. Single-cell karyotype sequencing demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed maintenance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated a synergistic effect. Conclusions Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phenotypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These data show that PGOs have the potential to be further developed into avatars for personalized adaptive treatment selection and actionable drug target discovery and as a platform to study GBM biology.
Collapse
Affiliation(s)
- Maikel Verduin
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Linde Hoosemans
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maxime Vanmechelen
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO—KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Mike van Heumen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jolanda A F Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Galuh Astuti
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht—Heeze, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Vivianne C G Tjan-Heijnen
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn P G Broen
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Katerina Staňková
- Institute for Health Systems Science, Delft University of Technology, Delft, The Netherlands
| | - Frederik de Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO—KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Jeremy Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher G Hubert
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
24
|
Li Z, Muench G, Goebel S, Uhland K, Wenhart C, Reimann A. Flow chamber staining modality for real-time inspection of dynamic phenotypes in multiple histological stains. PLoS One 2023; 18:e0284444. [PMID: 37141296 PMCID: PMC10159194 DOI: 10.1371/journal.pone.0284444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Traditional histological stains, such as hematoxylin-eosin (HE), special stains, and immunofluorescence (IF), have defined myriads of cellular phenotypes and tissue structures in a separate stained section. However, the precise connection of information conveyed by the various stains in the same section, which may be important for diagnosis, is absent. Here, we present a new staining modality-Flow chamber stain, which complies with the current staining workflow but possesses newly additional features non-seen in conventional stains, allowing for (1) quickly switching staining modes between destain and restain for multiplex staining in one single section from routinely histological preparation, (2) real-time inspecting and digitally capturing each specific stained phenotype, and (3) efficiently synthesizing graphs containing the tissue multiple-stained components at site-specific regions. Comparisons of its stains with those by the conventional staining fashions using the microscopic images of mouse tissues (lung, heart, liver, kidney, esophagus, and brain), involving stains of HE, Periodic acid-Schiff, Sirius red, and IF for Human IgG, and mouse CD45, hemoglobin, and CD31, showed no major discordance. Repetitive experiments testing on targeted areas of stained sections confirmed the method is reliable with accuracy and high reproducibility. Using the technique, the targets of IF were easily localized and seen structurally in HE- or special-stained sections, and the unknown or suspected components or structures in HE-stained sections were further determined in histological special stains or IF. By the technique, staining processing was videoed and made a backup for off-site pathologists, which facilitates tele-consultation or -education in current digital pathology. Mistakes, which might occur during the staining process, can be immediately found and amended accordingly. With the technique, a single section can provide much more information than the traditional stained counterpart. The staining mode bears great potential to become a common supplementary tool for traditional histopathology.
Collapse
|
25
|
Single-cell technologies uncover intra-tumor heterogeneity in childhood cancers. Semin Immunopathol 2023; 45:61-69. [PMID: 36625902 DOI: 10.1007/s00281-022-00981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/11/2022] [Indexed: 01/11/2023]
Abstract
Childhood cancer is the second leading cause of death in children aged 1 to 14. Although survival rates have vastly improved over the past 40 years, cancer resistance and relapse remain a significant challenge. Advances in single-cell technologies enable dissection of tumors to unprecedented resolution. This facilitates unraveling the heterogeneity of childhood cancers to identify cell subtypes that are prone to treatment resistance. The rapid accumulation of single-cell data from different modalities necessitates the development of novel computational approaches for processing, visualizing, and analyzing single-cell data. Here, we review single-cell approaches utilized or under development in the context of childhood cancers. We review computational methods for analyzing single-cell data and discuss best practices for their application. Finally, we review the impact of several studies of childhood tumors analyzed with these approaches and future directions to implement single-cell studies into translational cancer research in pediatric oncology.
Collapse
|
26
|
Lukyanov KA. Fluorescent proteins for a brighter science. Biochem Biophys Res Commun 2022; 633:29-32. [DOI: 10.1016/j.bbrc.2022.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
|