1
|
Gu Z, Heng Y, Fan R, Luo J, Ju L. Single-cell RNA sequencing reveals cellular and molecular heterogeneity in extensive-stage small cell lung cancer with different chemotherapy responses. Cancer Cell Int 2025; 25:157. [PMID: 40259334 PMCID: PMC12013103 DOI: 10.1186/s12935-025-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025] Open
Abstract
Despite its rapid growth and early metastasis, small cell lung cancer (SCLC) is more chemosensitive than other lung cancers. However, some patients with extensive-stage SCLC (ES-SCLC) do not respond to first-line chemotherapy, resulting in poorer prognoses due to inter- and intratumoral heterogeneity. In this study, we conducted single-cell RNA sequencing of 9 treatment-naive ES-SCLC samples. Based on comprehensive imaging evidence collected before and after two cycles of first-line chemotherapy and sample types, the 9 samples were categorized into three groups: progressive disease with the pleural effusion sample (PD_PE group, n = 1), progressive disease with the primary tumor samples (PD_TU group, n = 2), and partial response with the primary tumor samples (PR_TU group, n = 6). Based on transcriptomic landscape and cell type composition, the PD samples represent a multicellular ecosystem distinct from PR samples. The immune response, along with the elevated expression of immune-related genes such as LTF, SLPI, SPARC and IGLV1-51, might correlate with a poor first-line chemotherapy response in ES-SCLC. We also observed that T cells, particularly effector T cells, were more abundant in PD_TU group, with TNFA signaling via NFκB being significantly enriched. The PD_TU group was strongly enriched with macrophages and tumor-associated macrophages (TAMs), and angiogenesis in TAMs was highly enriched. Immunomodulatory fibroblasts were highly abundant in PD_TU group, and the pathways of epithelial-mesenchymal transition and angiogenesis were upregulated. This study offers the first comprehensive insights into the cellular and molecular heterogeneity in treatment-naive patients with ES-SCLC with different chemotherapy responses.
Collapse
Affiliation(s)
- Zhan Gu
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Fan
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixia Ju
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Duzgun D, Oltean S. Aberrant Splicing as a Mechanism for Resistance to Cancer Therapies. Cancers (Basel) 2025; 17:1381. [PMID: 40282556 PMCID: PMC12025770 DOI: 10.3390/cancers17081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer is biologically diverse, highly heterogeneous, and associated with molecular alterations, significantly contributing to mortality worldwide. Currently, cancer patients are subjected to single or combination treatments comprising chemotherapy, surgery, immunotherapy, radiation therapy, and targeted therapy. Chemotherapy remains the first line of treatment in cancer but faces a major obstacle in the form of chemoresistance. This obstacle has resulted in relapses and poor patient survival due to decreased treatment efficacy. Aberrant pre-mRNA alternative splicing can significantly modulate gene expression and function involved in the resistance mechanisms, potentially shaping the intricate landscape of tumour chemoresistance. Thus, novel strategies targeting abnormal pre-mRNA alternative splicing and understanding the molecular mechanisms of chemotherapy resistance could aid in overcoming the chemotherapeutic challenges. This review first highlights drug targets, drug pumps, detoxification mechanisms, DNA damage response, and evasion of apoptosis and cell death as key molecular mechanisms involved in chemotherapy resistance. Furthermore, the review discusses the progress of research on the dysregulation of alternative splicing and molecular targets involved in chemotherapy resistance in major cancer types.
Collapse
Affiliation(s)
| | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
3
|
Ali A, Azmat U, Khatoon A, Akbar K, Murtaza B, Ji Z, Irshad U, Su Z. From gene editing to tumor eradication: The CRISPR revolution in cancer therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:114-131. [PMID: 40250571 DOI: 10.1016/j.pbiomolbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Cancer continues to be a significant worldwide health concern, characterized by high rates of occurrence and death. Unfortunately, existing treatments frequently fall short of delivering satisfying therapeutic outcomes. Immunotherapy has ushered in a new era in the treatment of solid tumors, yet its effectiveness is still constrained and comes with unwanted side effects. The advancement of cutting-edge technology, propelled by gene analysis and manipulation at the molecular scale, shows potential for enhancing these therapies. The advent of genome editing technologies, including CRISPR-Cas9, can greatly augment the efficacy of cancer immunotherapy. This review explores the mechanism of CRISPR-Cas9-mediated genome editing and its wide range of tools. The study focuses on analyzing the effects of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy, specifically by gene knockdown or knockin. In addition, the study emphasizes the utilization of CRISPR-Cas9-based genome-wide screening to identify targets, the potential of spatial CRISPR genomics, and the extensive applications and difficulties of CRISPR-Cas9 in fundamental research, translational medicine, and clinical environments.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology Dalian, China
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Urooj Irshad
- Department of Zoology, Faculty of Sciences, Superior University, Lahore, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Hashem H, Abdelfattah S, Hassan HM, Al-Emam A, Alqarni M, Alotaibi G, Radwan IT, Kaur K, Rao DP, Bräse S, Alkhammash A. Discovery of a novel 4-pyridyl SLC-0111 analog targeting tumor-associated carbonic anhydrase isoform IX through tail-based design approach with potent anticancer activity. Front Chem 2025; 13:1571646. [PMID: 40255643 PMCID: PMC12006758 DOI: 10.3389/fchem.2025.1571646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction: Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme involved in cancer progression and survival. Targeting CA IX with selective inhibitors like SLC-0111 has shown therapeutic potential. This study aimed to develop a novel 4-pyridyl analog (Pyr) of SLC-0111 with enhanced anticancer activity. Methods: Pyr was synthesized using a tail-based design and characterized by NMR. Its cytotoxicity was tested against cancer and normal cell lines. CA inhibition, cell cycle effects, apoptosis induction, and protein expression changes were evaluated. Molecular docking and ADMET predictions assessed binding and drug-like properties. Results and Discussion: Pyr showed selective cytotoxicity toward cancer cells and potent CA IX inhibition. It induced G0/G1 arrest, apoptosis, and modulated p53, Bax, and Bcl-2 levels. Docking confirmed strong CA IX binding, and ADMET analysis indicated good oral bioavailability. These results support Pyr as a promising anticancer candidate.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Shadwa Abdelfattah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag, Egypt
| | - Hesham M. Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Mohammed Alqarni
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur, Uttar Pradesh, India
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
5
|
Moosavi F, Firoozi R, Tavakkoli M, Nazari S, Alipour A, Firuzi O. Combination of chemotherapy and c-MET inhibitors has synergistic effects in c-MET overexpressing pancreatic cancer cells. Biochimie 2025; 231:73-83. [PMID: 39675659 DOI: 10.1016/j.biochi.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains as one of the most lethal malignancies. c-MET is an important oncogenic kinase involved in PDAC progression. We determined the anticancer effect of c-MET inhibitors, crizotinib and cabozantinib, combined with chemotherapeutic agents, doxorubicin, oxaliplatin and gemcitabine, against different PDAC and a lung adenocarcinoma cell line expressing different levels of c-MET. MTT assay was performed to assess cell growth inhibition. Synergistic combinations were evaluated in spheroid cultures, while apoptosis was determined through Hoechst33258 staining. The effect of drug combinations on cell cycle and apoptosis induction was examined by RNase/PI flow cytometric assay. We also evaluated reactive oxygen species (ROS) levels using 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay to explore the possible mechanisms contributing to synergism. Combination of crizotinib or cabozantinib with doxorubicin exhibited synergistic effects in c-MET overexpressing cells. Conversely, combinations of c-MET inhibitors with other agents were additive or even antagonistic. Combination index (CI) values calculated with Calcusyn software were 0.631-0.730 for crizotinib and 0.542-0.746 for cabozantinib co-administered with doxorubicin. These synergistic combinations showed significant spheroid growth inhibition and apoptosis induction in Suit-2, c-MET dependent PDAC cells. These combinations also significantly increased the number of cells in both apoptotic sub-G1 phase and the G2/M phase compared to single-drug treatment. Increased ROS production seemed to be a possible mechanism underlying synergism. In conclusion, c-MET inhibitors synergize with DNA damaging agent, doxorubicin, in cancer cells with c-MET overexpression, indicating that these combination therapies may be a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Firoozi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Alipour
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Fu J, Zhao W, Liang N, Sun S. Functionalized hydroxypropyl-β-cyclodextrin inclusion complex for combined tumor therapy through intelligent delivery of paclitaxel and polarization of M2-like tumor associated macrophages. Colloids Surf B Biointerfaces 2025; 252:114654. [PMID: 40158248 DOI: 10.1016/j.colsurfb.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The treatment outcomes of chemotherapy are far from satisfactory due to suboptimal cellular uptake and inadequate intracellular release of antitumor drugs. Meanwhile, M2-like tumor associated macrophages (TAMs) in the tumor microenvironment promote cancer growth and metastasis. The combined strategy of chemotherapy and reprogramming M2-like TAMs within tumor microenvironment has emerged as a novel paradigm for cancer therapy. Hence, a pH-sensitive double-targeted inclusion complex was constructed for combined cancer therapy through the controlled paclitaxel (PTX) delivery and re-education of M2-like TAMs. The inclusion complex employed arginine and biotin modified hydroxypropyl-β-cyclodextrin (Arg-CD-Bio) as the host, with benzimidazole and mannose modified hyaluronic acid (BM-HA-Man) as the pH-sensitive plug. PTX was encapsulated in the inclusion complex. In vitro experiments indicated that the Arg-CD-Bio/BM-HA-Man inclusion complex could facilitate the specific release of PTX at the tumor site. The inclusion complex could be effectively internalized by M2-like TAMs and MCF-7 cells and further reprogramme M2-like TAMs to M1-like TAMs. In vivo antitumor therapy in 4T1 tumor-bearing mice had achieved remarkable suppression efficacy. These results suggested that the PTX-loaded Arg-CD-Bio/BM-HA-Man inclusion complex was a promising platform for efficient cancer treatment.
Collapse
Affiliation(s)
- Jia Fu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| | - Wei Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
7
|
Zhang B, Zhang Z, Gao J, Lu S, Pang R, Li D, Huang X, Qin N, Liu L, Wang Z. Targeting FAK improves the tumor uptake of antibody-drug conjugates to strengthen the anti-cancer responses. iScience 2025; 28:111536. [PMID: 40040813 PMCID: PMC11879607 DOI: 10.1016/j.isci.2024.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 12/03/2024] [Indexed: 03/06/2025] Open
Abstract
Antibody-drug conjugates (ADCs), exemplified by HER2-targeted Enhertu and TROP2-targeted Trodelvy, have demonstrated significant therapeutic potential in cancers. However, a subset of patients remains refractory to ADC treatment, suggesting that the efficacy requires further optimization. Here, we demonstrate that excessive cancer-associated fibroblasts (CAFs) can form a fibrotic barrier, impeding the tissue uptake of ADCs to dampen the anti-tumor efficacy. Mechanistically, cancer cells transform normal fibroblasts into FAK-activated CAFs. The proliferation of these CAFs reduces the tumor uptake of macromolecular drugs, conferring resistance to ADCs. Targeting FAK with a small molecule inhibitor IN10018 effectively diminishes the CAF-associated tumor barrier, enhancing the tumor uptake of various ADCs irrespective of their specific targets. Combination therapy with IN10018 and ADCs targeting either HER2 or TROP2 consistently yielded superior antitumor outcomes compared to monotherapies in animal models. These findings provide compelling preclinical evidence supporting the clinical evaluation of IN10018 in combination with ADCs.
Collapse
Affiliation(s)
| | | | - Jiaming Gao
- InxMed (Shanghai) Co., Ltd., Shanghai, China
| | - Shiqiang Lu
- InxMed (Shanghai) Co., Ltd., Shanghai, China
| | - Ran Pang
- InxMed (Shanghai) Co., Ltd., Shanghai, China
| | | | | | - Natasha Qin
- InxMed (Shanghai) Co., Ltd., Shanghai, China
| | - Leo Liu
- InxMed (Shanghai) Co., Ltd., Shanghai, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
8
|
Noh I, Guo Z, Wang R, Zhu AT, Krishnan N, Mohapatra A, Gao W, Fang RH, Zhang L. Modular functionalization of cellular nanodiscs enables targeted delivery of chemotherapeutics into tumors. J Control Release 2025; 378:145-152. [PMID: 39657891 PMCID: PMC11933242 DOI: 10.1016/j.jconrel.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
The effective delivery of chemotherapeutic drugs to tumor sites is critical for cancer treatment and remains a significant challenge. The advent of nanomedicine has provided additional avenues for altering the in vivo distribution of drug payloads and increasing tumor localization. More recently, cell-derived nanoparticles, with their biocompatibility and unique biointerfacing properties, have demonstrated considerable utility for drug delivery applications. Here, we demonstrate that cell membrane-derived nanodiscs can be employed for tumor-targeted delivery. To bestow active targeting capabilities to the cellular nanodiscs, we utilize a modular functionalization strategy based on the SpyCatcher system. This enables the nanodiscs to be covalently modified with any targeting ligand labeled with a short SpyTag peptide sequence. As a proof-of-concept, a model chemotherapeutic doxorubicin is loaded into nanodiscs functionalized with an affibody targeting epidermal growth factor receptor. The resulting nanoformulation demonstrates strong tumor targeting both in vitro and in vivo, and it is able to significantly inhibit tumor growth in a murine breast cancer model.
Collapse
Affiliation(s)
- Ilkoo Noh
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Rui Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Audrey T Zhu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Nishta Krishnan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Kuzu B, Arzuk E. Discovery of New Pyrazole-Tosylamide Derivatives as Apoptosis Inducers Through BCL-2 Inhibition and Caspase-3 Activation. Chem Biodivers 2025; 22:e202401673. [PMID: 39353043 DOI: 10.1002/cbdv.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In this presented study, a series of new carbonitrile-substituted pyrazole-tosyl amide derivatives were designed and synthesized according to previous studies. The antiproliferative effects of the synthesized compounds on MDA-MB-231, MCF-7, HepG2, PC-3, and A549 cancer cell lines were assessed by MTT assay compared with non-cancerous cells. The results demonstrate that compounds 9d, 9e, and 9f had a higher antiproliferative effect (IC50 <10 μM) against both breast cancer cells. To investigate the ability of these compounds (9d-f) to induce apoptosis against breast cancer cells, BCL-2 levels and Caspase-3 activities of compound-treated breast cancer cell lines were measured by ELISA. The results revealed that these compounds significantly inhibited the levels of anti-apoptotic protein BCL-2 and increased the activity of apoptotic protein Caspase-3 in MDA-MB-231 and MCF-7 cells. Molecular docking studies confirmed that the selected compounds have high binding affinity towards the active site in the crystal structures of BCL-2 and Caspase-3. Moreover, drug-likeness and pre-ADMET evaluation showed that the compounds had suitable drug properties. This study may be a new milestone in terms of the promising importance of carbonitrile-substituted pyrazole-tosyl amide scaffolds as apoptosis-inducing agents for cancer therapy in the future.
Collapse
Affiliation(s)
- Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, 65080, Türkiye
| | - Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, İzmir, 35040, Türkiye
| |
Collapse
|
10
|
Thomas NM, Alharbi M, Muripiti V, Banothu J. Quinoline and quinolone carboxamides: A review of anticancer activity with detailed structure-activity relationship analysis. Mol Divers 2025:10.1007/s11030-024-11092-4. [PMID: 39873887 DOI: 10.1007/s11030-024-11092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency. Consequently, various scientific communities have explored quinoline and quinolone carboxamides for their anticancer activities, introducing modifications at key positions. This review article aims to compile the anticancer activity of various quinoline and quinolone carboxamide derivatives, accompanied by a detailed structure-activity relationship (SAR) analysis. It also categorizes the data into activities of isolated/fused quinoline and quinolone carboxamide derivatives, which were further subclassified based on the mechanisms of anticancer action. Among the numerous derivatives studied, compounds 8, 19, 31, 34, 40, 68, 108, 116, and 132 have emerged as the most potent anticancer agents, making them strong candidates for further drug design and development. The mechanisms underlying the anticancer activity of these potent compounds have been identified as inhibitors of topoisomerase (8, 19, 31, and 34), protein kinase (40, 108, and 116), human dihydroorotate dehydrogenase (68), and as a cannabinoid receptor 2 agonist (132). We anticipate this review will be valuable to researchers engaged in the structural design and development of quinoline and quinolone carboxamide-based anticancer drugs with high efficacy.
Collapse
Affiliation(s)
- Neethu Mariam Thomas
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Venkanna Muripiti
- Department of Education, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671320, Kerala, India
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India.
| |
Collapse
|
11
|
Ghai S, Shrestha R, Su KH. HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms. Front Cell Dev Biol 2025; 12:1500880. [PMID: 39850800 PMCID: PMC11754285 DOI: 10.3389/fcell.2024.1500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit. In addition, we discuss emerging research implicating HSF1's roles in autophagy, apoptosis, DNA damage repair, drug efflux, and thus chemoresistance. This article highlights the significance of HSF1 in cancer chemoresistance and its potential as a target for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
| | | | - Kuo-Hui Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| |
Collapse
|
12
|
Ren T, Wang J, Ma Y, Huang Y, Yoon S, Mu L, Li R, Wang X, Zhang L, Li P, Ji L. Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms. Pharmaceutics 2025; 17:66. [PMID: 39861714 PMCID: PMC11768977 DOI: 10.3390/pharmaceutics17010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility. We also prepared nanoparticles with pH-responsive properties to explore their potential for controlled drug delivery. The physicochemical properties of Tan IIA/CA nanoparticles were evaluated, including their size, stability, and release profile. We also utilized RNA sequencing to further investigate the underlying anticancer mechanisms of Tan IIA/CA nanoparticles. Results: The Tan IIA/CA nanoparticles demonstrated enhanced solubility and exhibited potent anticancer activity in vitro. Additionally, the nanoparticles showed promising pH-responsive behavior, which is beneficial for controlled release applications. Further investigation into the molecular mechanisms revealed that the anticancer effects of Tan IIA/CA were mediated through apoptosis, ferroptosis, and autophagy pathways. Conclusions: This study confirms the anticancer potential and mechanisms of Tan IIA, while also presenting an innovative approach to enhance the solubility of this poorly soluble compound. The use of CA-based nanoparticles could be a valuable strategy for improving the therapeutic efficacy of Tan IIA in cancer treatment.
Collapse
Affiliation(s)
- Tianying Ren
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng 252000, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Yichen Huang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Ru Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Lina Zhang
- College of Medicine, Liaocheng Vocational and Technical College, Liaocheng 252000, China;
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| |
Collapse
|
13
|
Santos EEP, de Oliveira Andrade ML, Dos Santos Nascimento IJ, Cibulski SP, da Silva Alves H. Potential Anti-tumor Effects and Apoptosis-inducing Mechanisms of Saponins: A Review. Curr Top Med Chem 2025; 25:378-394. [PMID: 39440734 DOI: 10.2174/0115680266315197241015101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
The search for effective cancer therapies highlights saponins, natural plant-derived compounds, as promising anticancer agents. These compounds induce apoptosis in cancer cells by activating caspases, essential enzymes for cell death. For example, Soyasapogenol B from Glycine max and Astragaloside IV from Astragalus membranaceus effectively trigger apoptosis in cancer cells. Additionally, saponins, such as Compound K from American ginseng and Saikosaponin from Bupleurum falcatum, affect extrinsic and intrinsic pathways, including mitochondrial release of cytochrome C and activation of caspase-9. Ziyuglycoside II also acts on both pathways and activates the ROS/JNK pathway. Understanding these mechanisms provides promising prospects for developing more specific and safer anticancer therapies. The review utilized the ScienceDirect, PubMed, and Google Scholar databases. It was found that original articles and reviews from journals indexed in these sources emphasized the antitumor capabilities of saponins and discussed their role in apoptosis induction and caspase activation. The activation of caspases by saponins in the apoptotic pathway involves two main pathways: the extrinsic pathway is initiated by external signals that activate caspase-8, while the intrinsic pathway starts with internal stimuli, causing the release of cytochrome c and the activation of caspase-9. These pathways both lead to the activation of effector caspases (caspases 3, 6, and 7), culminating in apoptosis, an essential process for maintaining cellular balance and eliminating damaged cells. Identifying saponins in the context of cancer and their mechanisms of action is an ever-evolving field. Future research may lead to more targeted and personalized therapies, highlighting the collaboration between basic and clinical research in this promising area of medicine.
Collapse
Affiliation(s)
- Edvania Emannuelle Pinheiro Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Maria Lorena de Oliveira Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Igor José Dos Santos Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Samuel Paulo Cibulski
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| | - Harley da Silva Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas. Universidade Estadual da Paraíba. Rua Baraúnas, 351, Bairro Universitário 58429-500 Campina Grande-PB, Brasil
| |
Collapse
|
14
|
Thanneeru VS, Panigrahi N. Novel Quinoline Nitrate Derivatives: Synthesis, Characterization, and Evaluation of their Anticancer Activity with a Focus on Molecular Docking and NO Release. Anticancer Agents Med Chem 2025; 25:272-280. [PMID: 39354754 DOI: 10.2174/0118715206315415240830052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Nitric Oxide (NO) has recently gained recognition as a promising approach in the field of cancer therapy. The quinoline scaffold is pivotal in cancer drug research and is known for its versatility and diverse mechanisms of action. OBJECTIVE This study presents the synthesis, characterization, and evaluation of novel quinoline nitrate derivatives as potential anticancer agents. METHODS The compounds were synthesized through a multi-step process involving the preparation of substituted 1-(2-aminophenyl) ethan-1-one, followed by the synthesis of substituted 2- (chloromethyl)-3,4-dimethylquinolines, and finally, the formation of substituted (3,4- dimethylquinolin-2-yl) methyl nitrate derivatives. The synthesized compounds were characterized using various spectroscopic techniques. Molecular docking studies were conducted to assess the binding affinity of the compounds to the EGFR tyrosine kinase domain. RESULTS The docking scores revealed varying degrees of binding affinity, with compound 6k exhibiting the highest score. The results suggested a correlation between molecular docking scores and anticancer activity. Further evaluations included MTT assays to determine the cytotoxicity of the compounds against Non-Small Cell Lung Cancer (A-549) and pancreatic cancer (PANC-1) cell lines. Compounds with electron-donating groups displayed notable anticancer potential, and there was a correlation between NO release and anticancer activity. The study also investigated nitric oxide release from the compounds, revealing compound 6g as the highest NO releaser. CONCLUSION The synthesized quinoline nitrate derivatives showed promising anticancer activity, with compound 6g standing out as a potential lead compound. The correlation between molecular docking, NO release, and anticancer activity suggests the importance of specific structural features in the design of effective anticancer agents.
Collapse
Affiliation(s)
| | - Naresh Panigrahi
- Department of Pharmaceutical Chemistry, GITAM Deemed to be University, Vishakapatnam, India
| |
Collapse
|
15
|
Ingman WV. What is the best time of the month to treat breast cancer? Nature 2025; 637:39-41. [PMID: 39633123 DOI: 10.1038/d41586-024-03847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
|
16
|
Kuzmich AS, Filshtein AP, Likhatskaya GN, Gorpenchenko TY, Chikalovets IV, Mizgina TO, Hua KF, von Amsberg G, Dyshlovoy SA, Chernikov OV. Lectins CGL and MTL, representatives of mytilectin family, exhibit different antiproliferative activity in Burkitt's lymphoma cells. IUBMB Life 2024; 76:1279-1294. [PMID: 39166889 DOI: 10.1002/iub.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Lectins are carbohydrate-binding proteins, whose biological effects are exerted via binding to glycoconjugates expressed on the surface of cells. Exposure to lectins can lead not only to a change in the structure and properties of cells but also to their death. Here, we studied the biological activity of lectins from the mussels Crenomytilus graynus (CGL) and Mytilus trossulus (MTL) and showed that these proteins can affect the proliferation of human lymphoma cells. Both lectins suppressed the formation of colonies as well as cell cycle progression. The mechanism of action of these lectins was not mediated by reactive oxygen species but included damaging of mitochondria, inhibition of key cell cycle points, and activation of MAPK signaling pathway in tumor cells. Computer modeling suggested that various effects of CGL and MTL on lymphoma cells may be due to the difference in the energy of binding of these lectins to carbohydrate ligands on the cell surface. Thus, molecular recognition of residues of terminal carbohydrates on the surface of tumor cells is a key factor in the manifestation of the biological action of lectins.
Collapse
Affiliation(s)
- Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Galina N Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Irina V Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatyana O Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
17
|
Dutta B, Barick KC, Hassan PA, Tyagi AK. Recent progress and current status of surface engineered magnetic nanostructures in cancer theranostics. Adv Colloid Interface Sci 2024; 334:103320. [PMID: 39515063 DOI: 10.1016/j.cis.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - A K Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
18
|
Petrosian A, Pinheiro PF, Ribeiro APC, Martins LMDRS, Justino GC. The Elusive Biological Activity of Scorpionates: A Useful Scaffold for Cancer Therapy? Molecules 2024; 29:5672. [PMID: 39683831 DOI: 10.3390/molecules29235672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer remains a formidable challenge, requiring the constant pursuit of novel therapeutic agents and strategies. Scorpionates, known for their unique coordination properties, have recently gained attention for their anticancer potential. Traditionally applied in catalysis, these compounds have demonstrated notable cytotoxicity across various cancer cell lines, often surpassing the efficacy of conventional chemotherapeutics. This review addresses recent findings on scorpionate complexes, emphasizing the impact of metal choice and ligand design on biological activity. Copper and ruthenium scorpionates show promise, leveraging redox activity and mitochondrial disruption mechanisms to selectively induce cancer cell death. Ligand modifications, including sulfur-containing heterocycles and unsubstituted pyrazoles, have proven effective in enhancing cytotoxicity and selectivity. Furthermore, dipodal ligands show unique potential, with selective binding sites that improve stability and facilitate specific cellular interactions, such as targeting metastatic pathways. These findings highlight the largely unexplored potential of scorpionate complexes, positioning them as candidates for next-generation anticancer therapies. Continued research into structure-activity relationships and precise mechanisms of action could pave the way for developing highly potent and selective anticancer agents based on scorpionate chemistry.
Collapse
Affiliation(s)
- Artem Petrosian
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Pedro F Pinheiro
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
| | - Ana P C Ribeiro
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Luísa M D R S Martins
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Gonçalo C Justino
- Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
| |
Collapse
|
19
|
Druzhkova I, Potapov A, Ignatova N, Bugrova M, Shchechkin I, Lukina M, Shimolina L, Kolesnikova E, Shirmanova M, Zagaynova E. Cell hiding in colorectal cancer: correlation with response to chemotherapy in vitro and in vivo. Sci Rep 2024; 14:28762. [PMID: 39567584 PMCID: PMC11579335 DOI: 10.1038/s41598-024-79948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Resistance to chemotherapy remains the main challenge for cancer treatment. One of the mechanisms of tumor escape from cytotoxic agents could be the formation of cell-in-cell (CIC) structures, in which the outer cell protects the inner cell from unfavorable environment. Such structures have been found in many tumor types, however, their link to chemosensitivity is elusive. Here, we tested whether the CIC structures can promote resistance of colorectal cancer cells to chemotherapy. To identify CIC structures in cell cultures and in tumor xenografts, both transmission electron microscopy and confocal fluorescence microscopy of live and fixed cells as well as tissue slices and histopathology were used. Cytogenetic analysis was performed to detect chromosome instability associated with the drug resistance. It was found that in the five colorectal cancer cell lines intrinsic chemoresistance positively correlated with the ability of cells to spontaneously form CIC structures. Cultured cells treated with oxaliplatin and Irinotecan and tumor xenografts treated with FOLFOX or FOLFIRI regimens displayed an increased number of CICs after the treatment. The release of the inner cell from CIC structure was observed after removal of the drug. The number of CICs in the cell lines and tumors with acquired resistance to oxaliplatin was higher than in the drug-naive counterparts. The development of chemoresistance was also accompanied by the changes in the cell's ploidy. These preliminary data clearly demonstrate the associations of CIC structures with chemoresistance of colorectal cancer in cultured cells and tumor xenografts and show the prospect of further clinical validation of CICs as a potential prognostic marker for treatment efficiency.
Collapse
Affiliation(s)
- I Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| | - A Potapov
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - N Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - M Bugrova
- Faculty of Histology with Cytology and Embryology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - I Shchechkin
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russian Federation
| | - L Shimolina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - E Kolesnikova
- Nizhny Novgorod Regional Oncologic Hospital, Nizhny Novgorod, Russia
| | - M Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - E Zagaynova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russian Federation
| |
Collapse
|
20
|
Rogalewicz B, Sierański T, Szczesio M, Olczak A, Gobis K, Orlewska C, Korona-Głowniak I, Korga-Plewko A, Iwan M, Michalczuk M, Kubik J, Adamczuk G, Korga M, Rutkowska N, Boruta T, Gas K, Sawicki M, Poleszak E, Maniukiewicz W, Świątkowski M, Czylkowska A. Physicochemical properties and mechanism of action of a new copper(ii) pyrazine-based complex with high anticancer activity and selectivity towards cancer cells. RSC Adv 2024; 14:36295-36307. [PMID: 39534047 PMCID: PMC11556459 DOI: 10.1039/d4ra06874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Two compounds, benzyl-2-(amino(pyrazin-2-yl)methylene)-1-methylhydrazine-1-carbodithioate (L) and its copper(ii) complex Cu(L) were synthesized and studied in terms of their physicochemical properties, including single crystal, spectroscopic and magnetic properties; in silico simulations, including DFT calculations and pharmacokinetic profile analysis; and in vitro biological activity. The Cu(L) compound was found to exhibit good anticancer activity against A375, PANC-1, MKN-74, T-47D, HeLa, and NCI-H1563 cells, with the IC50 value against the HeLa cell line reaching 17.50 μM, significantly surpassing the activity of the organic ligand. Moreover, at the same time, the Cu(L) complex did not exhibit significant toxicity towards healthy cells. Mechanism of action studies revealed that its activity is connected with the oxidative stress and redox imbalance caused by the upregulation of genes encoding superoxide dismutase (SOD2) and catalase (CAT) antioxidant enzymes. The reported results further underscore the anticancer potential of pyrazine-based copper(ii) complexes.
Collapse
Affiliation(s)
- B Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - T Sierański
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - M Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - A Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - K Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk Gen. Hallera 107 Gdańsk 80-416 Poland
| | - C Orlewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk Gen. Hallera 107 Gdańsk 80-416 Poland
| | - I Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin Lublin 20-093 Poland
| | - A Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - M Iwan
- Department of Toxicology, Medical University of Lublin Chodźki 8b Lublin 20-093 Poland
| | - M Michalczuk
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - J Kubik
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - G Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - M Korga
- Independent Medical Biology Unit, Medical University of Lublin Jaczewskiego 8b Lublin 20-093 Poland
| | - N Rutkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Stefanowskiego 2/22 Lodz 90-537 Poland
| | - T Boruta
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology ul. Wolczanska 213 Lodz 93-005 Poland
| | - K Gas
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 Warsaw PL-02668 Poland
| | - M Sawicki
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 Warsaw PL-02668 Poland
| | - E Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin Chodzki 1 Lublin 20-093 Poland
| | - W Maniukiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - M Świątkowski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| | - A Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 Lodz 90-924 Poland
| |
Collapse
|
21
|
Bidgoli AD, Farmany A, Taheri M, Soleimani M, Nouri F. Preparation and characterization of calcium-doped graphene oxide-chitosan Nanocarrier to enhance the gene delivery in MCF-7 cell line. Sci Rep 2024; 14:27434. [PMID: 39521829 PMCID: PMC11550409 DOI: 10.1038/s41598-024-78958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Gene delivery has emerged as a novel and effective method in the treatment of malignancies within medical interventions by applying nanotechnology. Consequently, the development of appropriate nanocarriers is a key focus of this research. Dynamic light scattering (DLS), fourier transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD), and thermal gravimetric analysis (TGA) were employed for the characterization of the synthesized nanocarrier. Furthermore, to assess the gene transfer capability of the nanocarrier, various techniques such as gel retardation assay, nuclease resistance assay, cytotoxicity assay, flow cytometry, and transfection were employed. The average particle size and zeta potential of the GO-CS@Ca nanocarrier were obtained as 319.8 nm and + 92.8 mv, respectively. In the gel retardation test, it was observed that pDNA was effectively condensed by the GO-CS@Ca nanocarrier. The results of the MTT assay indicated that both GO-CS@Ca nanocarrier and the GO-CS@Ca/pDNA nanoplex with low toxicity. In flow cytometry analysis, it was observed that the complexation of pDNA with the GO-CS@Ca nanocarrier resulted in effective gene delivery to the MCF-7 cell line and consequently increased apoptosis induction.
Collapse
Affiliation(s)
- Amirreza Diari Bidgoli
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Implant Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Friedman-DeLuca M, Karagiannis GS, Condeelis JS, Oktay MH, Entenberg D. Macrophages in tumor cell migration and metastasis. Front Immunol 2024; 15:1494462. [PMID: 39555068 PMCID: PMC11563815 DOI: 10.3389/fimmu.2024.1494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression. In brief, TAMs induce epithelial-mesenchymal transition (EMT) in tumor cells, giving them a migratory phenotype. They promote extracellular matrix (ECM) remodeling, allowing tumor cells to migrate more easily. TAMs also provide chemotactic signals that promote tumor cell directional migration towards blood vessels, and then participate in the signaling cascade at the blood vessel that allows tumor cells to intravasate and disseminate throughout the body. Furthermore, while chemotherapy can repolarize TAMs to induce an anti-tumor response, these cytotoxic drugs can also lead to macrophage-mediated tumor relapse and metastasis. Patient response to chemotherapy may be dependent on patient-specific factors such as diet, obesity, and race, as these factors have been shown to alter macrophage phenotype and affect cancer-related outcomes. More research on how chemotherapy and patient-specific factors impact TAMs and cancer progression is needed to refine treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - George S. Karagiannis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
23
|
Wang D, Huang Y, Yuan J, Wang S, Sheng J, Zhao Y, Zhang H, Wang X, Yu Y, Shi X, He Z, Liu T, Sun B, Sun J. Exploring the optimal chain length of modification module in disulfide bond bridged paclitaxel prodrug nanoassemblies for breast tumor treatment. J Control Release 2024; 375:47-59. [PMID: 39222794 DOI: 10.1016/j.jconrel.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.
Collapse
Affiliation(s)
- Danping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yuan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzhe Sheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingjie Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanhao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
24
|
Druzhkova I, Bylinskaya K, Plekhanov A, Kostyuk A, Kirillin M, Perekatova V, Khilov A, Orlova A, Polozova A, Komarova A, Lisitsa U, Sirotkina M, Shirmanova M, Turchin I. Effects of FOLFOX Chemotherapy on Tumor Oxygenation and Perfused Vasculature: An In Vivo Study by Optical Techniques. JOURNAL OF BIOPHOTONICS 2024. [DOI: 10.1002/jbio.202400339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACTThe effects of cytotoxic chemotherapy on tumor vasculature and oxygenation are in the focus of modern investigations because vascular structure and distribution of oxygen influence tumor behavior and treatment response. The aim of our study was to monitor changes in the vascular component of colorectal tumor xenografts induced by a clinical combination of chemotherapy drugs FOLFOX in vivo using two complementary techniques: diffuse reflectance spectroscopy (DRS) and optical coherence tomography–based microangiography (OCT‐MA). These techniques revealed a slower decrease in tumor blood oxygenation in treated tumors as compared to untreated ones, faster suppression of tumor vasculature perfusion and increase in water content as a result of treatment, and decrease in total hemoglobin in untreated tumors. Immunohistochemical analysis of hypoxia‐inducible factor HIF‐2α detected tissue hypoxia as a consequence of inappropriate oxygen supply in the treated tumors. The obtained results show the prospects for monitoring of treatment efficacy using DRS and OCT‐MA.
Collapse
Affiliation(s)
- Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
| | - Kseniya Bylinskaya
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| | - Anton Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
| | - Alexey Kostyuk
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| | - Mikhail Kirillin
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| | - Valeriya Perekatova
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| | - Aleksandr Khilov
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| | - Anna Orlova
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| | - Anastasiya Polozova
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
- Institute of Biology and Biomedicine Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia
| | - Anastasiya Komarova
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
- Institute of Biology and Biomedicine Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia
| | - Uliyana Lisitsa
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
| | - Marina Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Nizhny Novgorod Russia
| | - Ilya Turchin
- Department for Radiophysical methods in medicine Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod Russia
| |
Collapse
|
25
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA damage response network mediates the lethality of 5-FU in colorectal cancer. Cell Rep Med 2024; 5:101778. [PMID: 39378883 PMCID: PMC11514606 DOI: 10.1016/j.xcrm.2024.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
5-fluorouracil (5-FU), a major anti-cancer therapeutic, is believed to function primarily by inhibiting thymidylate synthase, depleting deoxythymidine triphosphate (dTTP), and causing DNA damage. Here, we show that clinical combinations of 5-FU with oxaliplatin or irinotecan show no synergy in human colorectal cancer (CRC) trials and sub-additive killing in CRC cell lines. Using selective 5-FU metabolites, phospho- and ubiquitin proteomics, and primary human CRC organoids, we demonstrate that 5-FU-mediated CRC cell killing primarily involves an RNA damage response during ribosome biogenesis, causing lysosomal degradation of damaged rRNAs and proteasomal degradation of ubiquitinated ribosomal proteins. Tumor types clinically responsive to 5-FU treatment show upregulated rRNA biogenesis while 5-FU clinically non-responsive tumor types do not, instead showing greater sensitivity to 5-FU's DNA damage effects. Finally, we show that treatments upregulating ribosome biogenesis, including KDM2A inhibition, promote RNA-dependent cell killing by 5-FU, demonstrating the potential for combinatorial targeting of this ribosomal RNA damage response for improved cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A Merrick
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D Handly
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G Cannell
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M Hosios
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G Vander Heiden
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H Yilmaz
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
27
|
Li G, Chen J, Xie Y, Yang Y, Niu Y, Chen X, Zeng X, Zhou L, Liu Y. White light increases anticancer effectiveness of iridium(III) complexes toward lung cancer A549 cells. J Inorg Biochem 2024; 259:112652. [PMID: 38945112 DOI: 10.1016/j.jinorgbio.2024.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Anticancer activity has been extensively studies. In this article, three ligands 2-(6-bromobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BDIP), 2-(7-methoxybenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (MDIP), 2-(6-nitrobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NDIP) and their iridium(III) complexes: [Ir(ppy)2(BDIP)](PF6) (ppy = deprotonated 2-phenylpyridine, 3a), [Ir(ppy)2(MDIP)](PF6) (3b) and [Ir(ppy)2(NDIP)](PF6) (3c) were synthesized. The cytotoxicity of 3a, 3b, 3c against Huh7, A549, BEL-7402, HepG2, HeLa, and non-cancer NIH3T3 was tested using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results obtained from the MTT test stated clearly that these complexes demonstrated moderate or non-cytotoxicity toward Huh7, BEL-7402, HepG2 and HeLa except A549 cells. To improve the anticancer efficacy, we used white light to irradiate the mixture of cells and complexes for 30 min, the anticancer activity of the complexes was greatly enhanced. Particularly, 3a and 3b exhibited heightened capability to inhibit A549 cells proliferation with IC50 (half maximal inhibitory concentration) values of 0.7 ± 0.3 μM and 1.8 ± 0.1 μM, respectively. Cellular uptake has shown that 3a and 3b can be accumulated in the cytoplasm. Wound healing and colony forming showed that 3a and 3b significantly hinder the cell migration and growth in the S phase. The complexes open mitochondrial permeability transition pore (MPTP) channel and cause the decrease of membrane potential, release of cytochrome C, activation of caspase 3, and finally lead to apoptosis. In addition, 3a and 3b cause autophagy, increase the lipid peroxidation and lead to ferroptosis. Also, 3a and 3b increase the expression of calreticulin (CRT), high mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), thereby inducing immunogenic cell death.
Collapse
Affiliation(s)
- Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yufeng Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaolan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Principe N, Phung AL, Stevens KLP, Elaskalani O, Wylie B, Tilsed CM, Sheikh F, Orozco Morales ML, Kidman J, Marcq E, Fisher SA, Nowak AK, McDonnell AM, Lesterhuis WJ, Chee J. Anti-metabolite chemotherapy increases LAG-3 expressing tumor-infiltrating lymphocytes which can be targeted by combination immune checkpoint blockade. J Immunother Cancer 2024; 12:e008568. [PMID: 39343508 PMCID: PMC11440230 DOI: 10.1136/jitc-2023-008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein/ligand 1 (PD-1/PD-L1) are approved for treatment of multiple cancer types. Chemotherapy is often administered with immune checkpoint blockade (ICB) therapies that target CTLA-4 and/or PD-(L)1. ICB targeting other immune checkpoints such as lymphocyte activating gene-3 (LAG-3) has the potential to improve antitumor responses when combined with chemotherapy. Response to anti-PD-1 ICB is dependent on progenitor exhausted CD8+ T cells (TPEX) in the tumor, but it is unclear how chemotherapy alters TPEX proportions and phenotype. METHODS Here we investigated whether sequential chemotherapy altered TPEX frequency and immune checkpoint expression in multiple murine tumor models. RESULTS Two doses of two different anti-metabolite chemotherapies increased tumor infiltrating CD4+, and CD8+ TPEX expressing LAG-3 in multiple mouse models, which was not restricted to tumor antigen specific CD8+ T cells. To determine if LAG-3+tumor infiltrating lymphocytes (TILs) could be targeted to improve tumor control, we administered anti-LAG-3 and anti-PD-1 ICB after two doses of chemotherapy and found combination therapy generated robust antitumor responses compared with each agent alone. Both anti-LAG-3 and anti-PD-1 ICB with chemotherapy were required for the complete tumor regression observed. CONCLUSIONS Changes in immune checkpoint expression on TILs during chemotherapy administration informs selection of ICB therapies to combine with.
Collapse
Affiliation(s)
- Nicola Principe
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Amber-Lee Phung
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Kofi L P Stevens
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Omar Elaskalani
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Ben Wylie
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin M Tilsed
- Perelman School of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fezaan Sheikh
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - M Lizeth Orozco Morales
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Joel Kidman
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerpen, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Scott A Fisher
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Anna K Nowak
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | - Jonathan Chee
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
30
|
Li Y, Xiao Q, Chen H, Zhu E, Wang X, Dai J, Zhang X, Lu Q, Zhu Y, Yang G. Tailoring nonsurgical therapy for elderly patients with head and neck squamous cell carcinoma: A deep learning-based approach. Medicine (Baltimore) 2024; 103:e39659. [PMID: 39287264 PMCID: PMC11404971 DOI: 10.1097/md.0000000000039659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
To assess deep learning models for personalized chemotherapy selection and quantify the impact of baseline characteristics on treatment efficacy for elderly head and neck squamous cell carcinoma (HNSCC) patients who are not surgery candidates. A comparison was made between patients whose treatments aligned with model recommendations and those whose did not, using overall survival as the primary metric. Bias was addressed through inverse probability treatment weighting (IPTW), and the impact of patient characteristics on treatment choice was analyzed via mixed-effects regression. Four thousand two hundred seventy-six elderly HNSCC patients in total met the inclusion criteria. Self-Normalizing Balanced individual treatment effect for survival data model performed best in treatment recommendation (IPTW-adjusted hazard ratio: 0.74, 95% confidence interval [CI], 0.63-0.87; IPTW-adjusted risk difference: 9.92%, 95% CI, 4.96-14.90; IPTW-adjusted the difference in restricted mean survival time: 16.42 months, 95% CI, 10.83-21.22), which surpassed other models and National Comprehensive Cancer Network guidelines. No survival benefit for chemoradiotherapy was seen for patients not recommended to receive this treatment. Self-Normalizing Balanced individual treatment effect for survival data model effectively identifies elderly HNSCC patients who could benefit from chemoradiotherapy, offering personalized survival predictions and treatment recommendations. The practical application will become a reality with further validation in clinical settings.
Collapse
Affiliation(s)
- Yang Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinyu Xiao
- Zhejiang Chinese Medical University, Zhejiang, China
| | - Haiqi Chen
- Department of Oncology, Dongying District Hospital, Dongying, Shandong, China
| | - Enzhao Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Xin Wang
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Jianmeng Dai
- School of Medicine, Tongji University, Shanghai, China
| | - Xu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Qiuyi Lu
- School of Medicine, Tongji University, Shanghai, China
| | - Yanming Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Guangliang Yang
- Department of Oncology, Dongying District Hospital, Dongying, Shandong, China
| |
Collapse
|
31
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
32
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
33
|
Liu J, Li B, Li L, Ming X, Xu ZP. Advances in Nanomaterials for Immunotherapeutic Improvement of Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403024. [PMID: 38773882 DOI: 10.1002/smll.202403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.
Collapse
Affiliation(s)
- Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 000000, China
- GoodMedX Tech Limited Company, Hong Kong SAR, 000000, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
34
|
Arter ZL, Nagasaka M. Redefining Recovery: The Transformative Impact of the ALINA Trial on Adjuvant Therapy for ALK-Positive Non-Small Cell Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:129-133. [PMID: 39224878 PMCID: PMC11367166 DOI: 10.2147/lctt.s478054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
On April 18, 2024, the Food and Drug Administration approved alectinib as an adjuvant treatment for patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) after tumor resection. This approval was grounded in the outcomes of the ALINA trial, which demonstrated that alectinib significantly enhances disease-free survival compared to traditional platinum-based chemotherapy in the adjuvant setting. The ALINA trial is notable not just for advancing ALK tyrosine kinase inhibitors (TKIs) into the adjuvant setting but also for its innovative approach of comparing them to adjuvant chemotherapy, distinguishing it from other landmark trials.
Collapse
Affiliation(s)
- Zhaohui Liao Arter
- Division of Hematology/Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
35
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
36
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
37
|
Salloom RJ, Ahmad IM, Abdalla MY. Targeting heme degradation pathway augments prostate cancer cell sensitivity to docetaxel-induced apoptosis and attenuates migration. Front Oncol 2024; 14:1431362. [PMID: 39091910 PMCID: PMC11291216 DOI: 10.3389/fonc.2024.1431362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Chemotherapy, notably docetaxel (Doc), stands as the primary treatment for castration-resistant prostate cancer (CRPC). However, its efficacy is hindered by side effects and chemoresistance. Hypoxia in prostate cancer (PC) correlates with chemoresistance to Doc-induced apoptosis via Heme Oxygenase-1 (HO-1) modulation, a key enzyme in heme metabolism. This study investigated targeting heme degradation pathway via HO-1 inhibition to potentiate the therapeutic efficacy of Doc in PC. Methods Utilizing diverse PC cell lines, we evaluated HO-1 inhibition alone and with Doc on viability, apoptosis, migration, and epithelial- to- mesenchymal transition (EMT) markers and elucidated the underlying mechanisms. Results HO-1 inhibition significantly reduced PC cell viability under hypoxic and normoxic conditions, enhancing Doc-induced apoptosis through interconnected mechanisms, including elevated reactive oxygen species (ROS) levels, glutathione cycle disruption, and modulation of Signal Transducer and Activator of Transcription 1 (STAT1) pathway. The interplay between STAT1 and HO-1 suggests its reliance on HO-1 activation. Additionally, a decrease in cell migration and downregulation of EMT markers (vimentin and snail) were observed, indicating attenuation of mesenchymal phenotype. Discussion In conclusion, the combination of HO-1 inhibition with Doc holds promise for improving therapeutic outcomes and advancing clinical management in PC.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
38
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
39
|
Balasubramanian A, Veluswami K, Rao S, Aggarwal S, Mani S. Exploring Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated Protein 9 (CRISPR-Cas9) as a Therapeutic Modality for Cancer: A Scoping Review. Cureus 2024; 16:e64324. [PMID: 39130943 PMCID: PMC11316854 DOI: 10.7759/cureus.64324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The global burden of cancer and the limitations of conventional therapies highlight the potential of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) in reshaping cancer treatment paradigms. In this review, we have investigated the mechanism of CRISPR, an adaptive immune system in bacteria that enables highly precise gene editing at the molecular level. This versatile tool demonstrates its efficacy in human cancer therapy through gene knockout, metabolic disruption, base editing, screening, and immunotherapy enhancement without affecting normal bodily domains. Despite its superiority over other nucleases like zinc-finger nucleases and transcription activator-like effector nucleases, hurdles such as off-target effects, inefficient delivery of the system to target cells, the emergence of escapers, and the ethical debate surrounding genome editing are discussed. In this article, we have reviewed the promising approaches of CRISPR-Cas9 in cancer treatment while exploring the underlying mechanism, advantages, and associated challenges.
Collapse
Affiliation(s)
| | | | - Sudipta Rao
- Internal Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, Mysore, IND
| | - Shailesh Aggarwal
- Internal Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, Mysore, IND
| | - Sweatha Mani
- Internal Medicine, K.A.P. Viswanatham Government Medical College, Tiruchirappalli , IND
| |
Collapse
|
40
|
Kciuk M, Gielecińska A, Kałuzińska-Kołat Ż, Yahya EB, Kontek R. Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy - Significance for cancer treatment? Biochim Biophys Acta Rev Cancer 2024; 1879:189124. [PMID: 38801962 DOI: 10.1016/j.bbcan.2024.189124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Apoptosis has traditionally been regarded as the desired cell death pathway activated by chemotherapeutic drugs due to its controlled and non-inflammatory nature. However, recent discoveries of alternative cell death pathways have paved the way for immune-stimulatory treatment approaches in cancer. Ferroptosis (dependent on iron) and cuproptosis (dependent on copper) hold promise for selective cancer cell targeting and overcoming drug resistance. Copper ionophores and iron-bearing nano-drugs show potential for clinical therapy as single agents and as adjuvant treatments. Here we review up-to-date evidence for the involvement of metal ion-dependent cell death pathways in the cytotoxicity of classical chemotherapeutic agents (alkylating agents, topoisomerase inhibitors, antimetabolites, and mitotic spindle inhibitors) and their combinations with cuproptosis and ferroptosis inducers, indicating the prospects, advantages, and obstacles of their use.
Collapse
Affiliation(s)
- M Kciuk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland.
| | - A Gielecińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Ż Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - E B Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - R Kontek
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
41
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
42
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
43
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
44
|
Sun Z, Tan R, Wu H, Fang X. Commentary: Flow cytometry quantification of tumor-infiltrating lymphocytes to predict the survival of patients with diffuse large B-cell lymphoma. Front Immunol 2024; 15:1377221. [PMID: 38698842 PMCID: PMC11063292 DOI: 10.3389/fimmu.2024.1377221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Zhongling Sun
- Department of Neurology, Zhaoyuan People’s Hospital, Zhaoyuan, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huanling Wu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
45
|
Zabransky DJ, Yarchoan M, Ho WJ. Reply: The Hepa 1-6 may not be suitable for use in hepatocellular carcinoma models to explore responses to drug therapy. Hepatology 2024; 79:E125-E126. [PMID: 38147327 DOI: 10.1097/hep.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Daniel J Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Flow/Mass Cytometry Facility, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Sadeghi A, Rajabiyan A, Meygoli Nezhad N, Nabizade N, Alvani A, Zarei-Ahmady A. A review on Persian Gulf brown algae as potential source for anticancer drugs. ALGAL RES 2024; 79:103446. [DOI: 10.1016/j.algal.2024.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
47
|
Tilsed CM, Morales MLO, Zemek RM, Gordon BA, Piggott MJ, Nowak AK, Fisher SA, Lake RA, Lesterhuis WJ. Tretinoin improves the anti-cancer response to cyclophosphamide, in a model-selective manner. BMC Cancer 2024; 24:203. [PMID: 38350880 PMCID: PMC10865642 DOI: 10.1186/s12885-024-11915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | | | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia
| | - Brianna A Gordon
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Matthew J Piggott
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, 6009, Nedlands, WA, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia.
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia.
- Institute for Respiratory Health, 6101, Perth, WA, Australia.
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia.
| |
Collapse
|
48
|
Falcone N, Ermis M, Gangrade A, Choroomi A, Young P, Mathes TG, Monirizad M, Zehtabi F, Mecwan M, Rodriguez M, Zhu Y, Byun Y, Khademhosseini A, de Barros NR, Kim H. Drug‐Eluting Shear‐Thinning Hydrogel for the Delivery of Chemo‐ and Immunotherapeutic Agents for the Treatment of Hepatocellular Carcinoma. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202309069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 01/06/2025]
Abstract
AbstractHepatocellular carcinoma (HCC) is a malignant and deadly form of liver cancer with limited treatment options. Transcatheter arterial chemoembolization, a procedure that delivers embolic and chemotherapeutic agents through blood vessels, is a promising cancer treatment strategy. However, it still faces limitations, such as inefficient agent delivery and the inability to address tumor‐induced immunosuppression. Here, a drug‐eluting shear‐thinning hydrogel (DESTH) loaded with chemotherapeutic and immunotherapeutic agents in nanocomposite hydrogels composed of gelatin and nanoclays is presented as a therapeutic strategy for a catheter‐based endovascular anticancer approach. DESTH is manually deliverable using a conventional needle and catheter. In addition, drug release studies show a sustained and pH‐dependent co‐delivery of the chemotherapy doxorubicin (acidic pH) and the immune‐checkpoint inhibitor aPD‐1 (neutral pH). In a mouse liver tumor model, the DESTH‐based chemo/immunotherapy combination has the highest survival rate and smallest residual tumor size. Finally, immunofluorescence analysis confirms that DESTH application enhances cell death and increases intratumoral infiltration of cytotoxic T‐cells. In conclusion, the results show that DESTH, which enables efficient ischemic tumor cell death and effective co‐delivery of chemo‐ and immunotherapeutic agents, may have the potential to be an effective therapeutic modality in the treatment of HCC.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Tess G. Mathes
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Marco Rodriguez
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Youngjoo Byun
- Department of Pathophysiology and Preclinical Science College of Pharmacy Korea University 30019 Sejong Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
- Department of Pathophysiology and Preclinical Science College of Pharmacy Korea University 30019 Sejong Republic of Korea
- Vellore Institute of Technology (VIT) Vellore 632014 India
| |
Collapse
|
49
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
50
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|