1
|
Hsu LS, Lin CL, Pan MH, Chen WJ. Intervention of a Communication Between PI3K/Akt and β-Catenin by (-)-Epigallocatechin-3-Gallate Suppresses TGF-β1-Promoted Epithelial-Mesenchymal Transition and Invasive Phenotype of NSCLC Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:848-859. [PMID: 39865447 DOI: 10.1002/tox.24475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear. Here, we found that EGCG, similar to LY294002 (a specific inhibitor of phosphatidylinositol 3-kinase [PI3K]), downregulated Akt activation and restored the action of glycogen synthase kinase-3β (GSK-3β), accompanied by TGF-β1-caused changes in hallmarks of EMT such as N-cadherin, E-cadherin, vimentin, and Snail in A549 cells. EGCG inhibited β-catenin expression and its nuclear localization caused by TGF-β1, suggesting that EGCG blocks the crosstalk between the PI3K/Akt/GSK-3β route and β-catenin. Furthermore, it was shown that EGCG suppressed TGF-β1-elicited invasive phenotypes of A549 cells, including invading and migrating activities, matrix metalloproteinase-2 (MMP-2) secretion, cell adhesion, and wound healing. In summary, we suggest that EGCG inhibits the induction of EMT by TGF-β1 in NSCLC not only through a Smad-dependent pathway, but also through the regulation of the PI3K/Akt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Jen Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Ray SK, Mukherjee S. New insights into reductive stress responses and its clinical relation in cancer. Tissue Cell 2025; 93:102736. [PMID: 39826384 DOI: 10.1016/j.tice.2025.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Cells are susceptible to both oxidative and reductive stresses, with reductive stress being less studied and potentially therapeutic in cancer. Reductive stress, characterized by an excess of reducing equivalents exceeding the activity of endogenous oxidoreductases, can lead to an imbalance in homeostasis, causing an increase in reactive oxygen species induction, affecting cellular antioxidant load and flux. Unlike oxidative stress, reductive stress has been understudied and poorly understood, and there is still much to learn about its mechanisms in cancer, its therapeutic potential, and how cancer cells react to it. Changes in redox balance and interference with redox signaling are linked to cancer cell growth, metastasis, and resistance to chemotherapy and radiation. Overconsumption of reducing equivalents can reduce metabolism, alter protein disulfide bond formation, disrupt mitochondrial homeostasis, and disrupt cancer cell signaling pathways. Novel approaches to delivering or using cancer medicines and techniques to influence redox biology have been discovered. Under reductive stress, cancer cells may coordinate separate pools of redox pairs, potentially impacting biology.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
3
|
Wang M, Xia Z, Nie W, Wang C, Nie H, Zhang S, Qiu J, Yang Y, Yao C, Xu L, An B. Design, Synthesis and Evaluation of Novel Cyclopropanesulfonamide Derivatives for the Treatment of EGFR C797S Mutation in Non-Small Cell Lung Cancer. Drug Des Devel Ther 2025; 19:1403-1420. [PMID: 40034406 PMCID: PMC11874779 DOI: 10.2147/dddt.s490303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Background The 797S mutation in EGFR disrupts the covalent binding of third-generation inhibitors, causing drug resistance. Currently, no clinically drug fully overcomes this resistance. Methods We designed and synthesised a novel EGFR C797S-targeted inhibitor-5d by introducing structures such as cyclopropyl and sulfonamide with Brigatinib as the lead compound; we identified the target of action by ELISA and molecular docking, and tested its anti-tumor activity and safety in vivo and vitro, as well as its effects on cell cycle, apoptosis and DNA damage. Results It was found that there were 10 new small-molecule inhibitors and compound 5d was identified as highly selective with low toxicity. WB confirmed 5d's inhibition of EGFR and m-TOR pathways. Mechanistic studies revealed 5d induced cell cycle arrest in G2/M phase caused DNA damage and cell apoptosis, increasing apoptotic protein cleaved caspase-3 levels. It also inhibited growth in PC9 cells with an EGFRdel19 mutation. Importantly, 5d also demonstrated superior anti-tumor activity in vivo and was superior to the positive control Brigatinib. Conclusion We concluded that cyclopropylsulfonamide 5d derivatives induce cell cycle arrest, apoptosis, and DNA damage by regulating tumor-related genes, thereby inhibiting the proliferation of C797S mutated lung cancer cells.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/chemical synthesis
- Sulfonamides/chemistry
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- ErbB Receptors/genetics
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Cell Proliferation/drug effects
- Drug Design
- Drug Screening Assays, Antitumor
- Apoptosis/drug effects
- Mutation
- Structure-Activity Relationship
- Mice
- Molecular Structure
- Dose-Response Relationship, Drug
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemical synthesis
- Protein Kinase Inhibitors/chemistry
- Animals
- Molecular Docking Simulation
- Cell Line, Tumor
- Mice, Nude
- Tumor Cells, Cultured
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Cyclopropanes/pharmacology
- Cyclopropanes/chemistry
- Cyclopropanes/chemical synthesis
Collapse
Affiliation(s)
- Mengxuan Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Zhenhong Xia
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Wenyan Nie
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Chunlong Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Haoran Nie
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Shuai Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Jiaqi Qiu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Yang Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Cuifang Yao
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Ling Xu
- Department of Respiratory Critical Care Medicine, Binzhou Medical University Hospital, Yantai, Shandong, People’s Republic of China
| | - Baijiao An
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Caban M, Fronik P, Terenzi A, Federa A, Bormio Nunes JH, Pitek R, Kirchhofer D, Schueffl HH, Berger W, Keppler BK, Kowol CR, Heffeter P. A new fluorescent oxaliplatin(iv) complex with EGFR-inhibiting properties for the treatment of drug-resistant cancer cells. Inorg Chem Front 2025; 12:1538-1552. [PMID: 39801772 PMCID: PMC11715172 DOI: 10.1039/d4qi03025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment. To enhance the tolerability of this combination, we designed a novel multi-action oxaliplatin-based platinum(iv) complex with an EGFR-inhibiting moiety (KP2749). KP2749 releases two independent cytotoxic agents upon reduction: oxaliplatin and the EGFR inhibitor KP2187, which was selected for its strong intrinsic fluorescence that became quenched upon complexation to metal ions. In particular, KP2749 demonstrated high stability and specific KP2187 release, with quenched fluorescent properties in its intact form, facilitating the investigation of its intracellular reduction. Notably, by exploiting its fluorescence, we demonstrated that intact KP2749 itself exhibited EGFR-inhibitory properties. Furthermore, subsequent experiments indicated that our complex was able to overcome resistance to oxaliplatin and EGFR inhibitors in vitro and in xenograft models in vivo. These effects were not only based on EGFR inhibition and DNA damage, but also improved cellular drug uptake. Finally, in silico docking analysis confirmed that the intact KP2749 complex had EGFR-binding properties, which were different from free KP2187. Consequently, these data suggested that the coordination of EGFR inhibitors to metal cores (like platinum) allow the fine-tuning of their EGFR-targeting properties. In conclusion, this study not only presents a new potential anticancer drug but also offers a novel fluorescent tool to study the intracellular drug release kinetics of platinum(iv) complexes.
Collapse
Affiliation(s)
- Monika Caban
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze Ed. 17 90128 Palermo Italy
| | - Anja Federa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Vienna Doctoral School in Chemistry, University of Vienna Waehringer Strasse 42 1090 Vienna Austria
| | - Julia H Bormio Nunes
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Rastislav Pitek
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Hemma H Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| |
Collapse
|
5
|
Wu Z, Zhang Y, Zhong W, Wu K, Zhong T, Jiang T. Targeting ferroptosis: a promising approach for treating lung carcinoma. Cell Death Discov 2025; 11:33. [PMID: 39875356 PMCID: PMC11775225 DOI: 10.1038/s41420-025-02308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Lung carcinoma incidence and fatality rates remain among the highest on a global scale. The efficacy of targeted therapies and immunotherapies is commonly compromised by the emergence of drug resistance and other factors, resulting in a lack of durable therapeutic benefits. Ferroptosis, a distinct pattern of cell death marked by the buildup of iron-dependent lipid peroxides, has been shown to be a novel and potentially more effective treatment for lung carcinoma. However, the mechanism and regulatory network of ferroptosis are exceptionally complex, and many unanswered questions remain. In addition, research on ferroptosis in the diagnosis and treatment of lung cancer has been growing exponentially. Therefore, it is necessary to provide a thorough summary of the latest advancements in the field of ferroptosis. Here, we comprehensively analyze the mechanisms underlying the preconditions of ferroptosis, the defense system, and the associated molecular networks. The potential strategies of ferroptosis in the treatment of lung carcinoma are also highlighted. Targeting ferroptosis improves tumor cell drug resistance and enhances the effectiveness of targeted drugs and immunotherapies. These findings may shed fresh light on the diagnosis and management of lung carcinoma, as well as the development of drugs related to ferroptosis.
Collapse
Affiliation(s)
- Ziyang Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wendi Zhong
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Kunjian Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Tao Jiang
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China.
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao.
| |
Collapse
|
6
|
Jang JY, Kim D, Im E, Kim ND. Etoposide as a Key Therapeutic Agent in Lung Cancer: Mechanisms, Efficacy, and Emerging Strategies. Int J Mol Sci 2025; 26:796. [PMID: 39859509 PMCID: PMC11765581 DOI: 10.3390/ijms26020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Topoisomerase II inhibitors, particularly etoposide, have long been integral to the treatment of lung cancer, especially small cell lung cancer. This review comprehensively examines the mechanisms of action of etoposide, its clinical efficacy, and its role in current lung cancer treatment regimens. Etoposide exerts its anticancer effects by inducing DNA strand breaks through the inhibition of topoisomerase II, leading to cancer cell apoptosis. Despite their widespread use, challenges such as drug resistance, toxicity, and limited efficacy in non-small cell lung cancer have spurred ongoing research on combination therapies and novel drug formulations. Emerging therapeutic strategies include the integration of etoposide with immunotherapy, targeted therapies, and novel drug delivery systems aimed at enhancing the therapeutic window and overcoming drug resistance. This article aims to inform the development of more effective treatment strategies by providing a critical overview of the clinical applications of etoposide and exploring future directions for lung cancer therapy.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
7
|
Ito F, Iwata W, Adachi Y, Sesaki H, Iijima M. GRHL2-HER3 and E-cadherin mediate EGFR-bypass drug resistance in lung cancer cells. Front Cell Dev Biol 2025; 12:1511190. [PMID: 39897079 PMCID: PMC11782226 DOI: 10.3389/fcell.2024.1511190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) is a major oncogenic protein, and thus EGFR-targeting therapies are widely used in patients with various types of cancer, including lung cancer. However, resistance to EGFR inhibitors, such as erlotinib, presents a significant challenge in treating lung cancer. In this study, we established an EGFR-independent, erlotinib-resistant (ER) phenotype in lung cancer A549 cells by exposing them to erlotinib for an extended period. The resulting ER cells exhibited a dramatic increase in erlotinib resistance, a decreased EGFR protein level, and enhanced tumor growth, suggesting a robust mechanism bypassing EGFR inhibition. RNA sequencing identified the transcription factor GRHL2 as a critical player in this resistance. GRHL2 was upregulated in ER cells, and its knockdown and knockout significantly reduced erlotinib resistance. Further analysis revealed that GRHL2 upregulates the receptor tyrosine kinase HER3, and that HER3 knockdown similarly decreases the IC50 for erlotinib. Additionally, ER cells showed increased cell-cell adhesion, linked to upregulated E-cadherin. E-cadherin was found to be vital for erlotinib resistance, largely independent of GRHL2, highlighting multiple parallel pathways sustaining resistance. These findings provide a novel mechanism of drug resistance and suggest that combination therapies targeting both GRHL2-HER3 and E-cadherin-mediated pathways may be necessary to overcome erlotinib resistance in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
9
|
Koirala M, DiPaola M. Overcoming Cancer Resistance: Strategies and Modalities for Effective Treatment. Biomedicines 2024; 12:1801. [PMID: 39200265 PMCID: PMC11351918 DOI: 10.3390/biomedicines12081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Resistance to cancer drugs is a complex phenomenon that poses a significant challenge in the treatment of various malignancies. This review comprehensively explores cancer resistance mechanisms and discusses emerging strategies and modalities to overcome this obstacle. Many factors contribute to cancer resistance, including genetic mutations, activation of alternative signaling pathways, and alterations in the tumor microenvironment. Innovative approaches, such as targeted protein degradation, immunotherapy combinations, precision medicine, and novel drug delivery systems, hold promise for improving treatment outcomes. Understanding the intricacies of cancer resistance and leveraging innovative modalities are essential for advancing cancer therapy.
Collapse
|
10
|
Kumar M, Patil KT, Maity P, Chatterjee J, Singh T, Joshi G, Singh S, Kumar R. Design, synthesis, and anticancer assessment of structural analogues of ( E)-1-((3,4,5-trimethoxybenzylidene)amino)-4-(3,4,5-trimethoxyphenyl)imidazo[1,2- a]quinoxaline-2-carbonitrile (6b), an imidazo[1,2- a]quinoxaline-based non-covalent EGFR inhibitor. RSC Med Chem 2024; 15:2322-2339. [PMID: 39026650 PMCID: PMC11253857 DOI: 10.1039/d4md00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024] Open
Abstract
In our quest to find improved anticancer therapeutics, we expedite the lead optimization of (E)-1-((3,4,5-trimethoxybenzylidene)amino)-4-(3,4,5-trimethoxyphenyl)imidazo[1,2-a]quinoxaline-2-carbonitrile (6b), an EGFR inhibitor previously discovered in our laboratory through an in-house screening program. The lead optimization was rationally initiated considering the catalytic site of EGFR. We synthesized twenty-nine new analogues of 6b and assessed their anticancer activities. SAR studies highlighted the role of important groups in controlling anticancer activities. Among all, 5a and 5l were found to exhibit improved EGFR inhibition with anticancer asset potential. In silico studies corroborated with in vitro EGFR inhibitory results. The deeper analysis of 5a and 5l revealed that these synthetics could alter the MMP (ΔΨ m) and significantly reduce the ROS levels in lung cancer cells. This is a vital prerequisite for better plausible EGFR inhibitors devoid of cardiotoxicity. qPCR analysis further revealed that the investigational compounds 5a and 5l were able to downregulate the expression of key oncogenes, viz., KRAS, MAP2K, and EGFR. The downregulation of these genes suggests that the investigational compounds could interact and inhibit key players in the signalling cascade along with the EGFR, which may lead to the inhibition of the growth and prognosis of cancer cells via a holistic approach.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151401 India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151401 India
| | - Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151401 India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151401 India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda - 151401 Punjab India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151401 India
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University Dist. Garhwal Srinagar 246174 Uttarakhand India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda - 151401 Punjab India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151401 India
| |
Collapse
|
11
|
Patil D, Raut S, Joshi M, Bhatt P, Bhatt LK. PAQR4 oncogene: a novel target for cancer therapy. Med Oncol 2024; 41:161. [PMID: 38767705 DOI: 10.1007/s12032-024-02382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Despite decades of basic and clinical research and trials of promising new therapies, cancer remains a major cause of morbidity and mortality due to the emergence of drug resistance to anticancer drugs. These resistance events have a very well-understood underlying mechanism, and their therapeutic relevance has long been recognized. Thus, drug resistance continues to be a major obstacle to providing cancer patients with the intended "cure". PAQR4 (Progestin and AdipoQ Receptor Family Member 4) gene is a recently identified novel protein-coding gene associated with various human cancers and acts through different signaling pathways. PAQR4 has a significant influence on multiple proteins that may regulate various gene expressions and may develop chemoresistance. This review discusses the roles of PAQR4 in tumor immunity, carcinogenesis, and chemoresistance. This paper is the first review, discussing PAQR4 in the pathogenesis of cancer. The review further explores the PAQR4 as a potential target in various malignancies.
Collapse
Affiliation(s)
- Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Swapnil Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Mitesh Joshi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Purvi Bhatt
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
12
|
Chen NY, Lin CW, Lai TY, Wu CY, Liao PC, Hsu TL, Wong CH. Increased expression of SSEA-4 on TKI-resistant non-small cell lung cancer with EGFR-T790M mutation. Proc Natl Acad Sci U S A 2024; 121:e2313397121. [PMID: 38252815 PMCID: PMC10835044 DOI: 10.1073/pnas.2313397121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme β3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.
Collapse
Affiliation(s)
- Nai-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei11221, Taiwan
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung406040, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Pei-Chi Liao
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
13
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
14
|
Ghosh P, Patari N, Manisha C, Basavan D, Petchiappan V, Justin A. Reversal mechanism of multidrug-resistant cancer cells by lectin as chemo-adjuvant and targeted therapy- a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155205. [PMID: 37980807 DOI: 10.1016/j.phymed.2023.155205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cancer is characterized as the leading cause of death, and the susceptibility of cancer cells to develop resistance due to long-term exposure to complementary chemotherapeutic treatment is referred to as multidrug resistance cancer cells (MDRC), which is a significant obstacle in the treatment of malignancies. Since complementary medicine lost its effectiveness, the development of potential alternative and novel therapeutic approaches has been elevated to a top priority in recent years. In this context, a bioactive protein lectin from plant and animal sources exhibits an invaluable source of anticancer agents with vast therapeutic potential. PURPOSE This manuscript's primary purpose is to enlighten the evidence-based (from 1986 to 2022) possible molecular mechanism of alternative treatment approaches using lectins over the complementary medicines used for cancer treatment. METHODS The PRISMA rules have been followed properly and qualitative and quantitative data are synthesized systematically. Articles were identified based on Clinical and preclinical reports published on lectin that investigated the in-depth cellular mechanisms, of reverse drug integrative oncology, as a nano-carried targeted delivery. Articles were systematically screened from 1986 to 2022 and selected based on electronic database searches, Medline (PubMed), Google Scholar, Web of Science, Encyclopaedias, Scopus, and ClinicalTrials.gov database. RESULTS The search turned up 4,212 publications from 38 different nations, of which 170 reference articles were used in our analysis, in 16 combination therapy and their mode of action, and 27 clinical trial studies including dosage and mechanism of action were included. Reports from the 30 lectins belonging to 28 different families have been included. The reversal mechanism of lectin and alternative therapy against MDRC is critically screened and according to a few clinical and preclinical reports, lectin can suppress the overexpressing genes like P-53, EGFR, and P-gp, MRP, and ABC transporter proteins associated with intracellular transportation of drugs. Since, the drug efflux mechanism leads to MDRC, in this phenomenon, lectin plays a key role in reversing the efflux mechanism. Few preclinical reports have mentioned that lectin shows synergism in combination with complementary medicine and as a nano drug carrier helps to deliver to the targeted site. CONCLUSION We have discussed the alternative therapy using lectin and an in-depth insight into the reversal drug resistance mechanisms to combat MDRC cancer, enhance the efficacy, reduce toxicity and adverse events, and ensure targeted delivery, and their application in the field of cancer diagnosis and prognosis has been discussed. However, further investigation is necessary in drug development and clinical trials which could be helpful to elaborate the reversal mechanism and unlock newer treatment modalities in MDRC cancer.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Niloy Patari
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy, JSS College of Pharmacy, Najwal, Vijaypur, Jammu 184 120, India
| | - Velammal Petchiappan
- Department of General Medicine, PSG Institute of Medical Sciences & Research, Coimbatore, Tamil Nadu 641 004, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India.
| |
Collapse
|
15
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
16
|
Li A, Kibby D, Foo J. A comparison of mutation and amplification-driven resistance mechanisms and their impacts on tumor recurrence. J Math Biol 2023; 87:59. [PMID: 37707631 DOI: 10.1007/s00285-023-01992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/15/2023]
Abstract
Tumor recurrence, driven by the evolution of drug resistance is a major barrier to therapeutic success in cancer. Tumor drug resistance is often caused by genetic alterations such as point mutation, which refers to the modification of a single genomic base pair, or gene amplification, which refers to the duplication of a region of DNA that contains a gene. These mechanisms typically confer varying degrees of resistance, and they tend to occur at vastly different frequencies. Here we investigate the dependence of tumor recurrence dynamics on these mechanisms of resistance, using stochastic multi-type branching process models. We derive tumor extinction probabilities and deterministic estimates for the tumor recurrence time, defined as the time when an initially drug sensitive tumor surpasses its original size after developing resistance. For models of amplification-driven and mutation-driven resistance, we prove law of large numbers results regarding the convergence of the stochastic recurrence times to their mean. Additionally, we prove sufficient and necessary conditions for a tumor to escape extinction under the gene amplification model, discuss behavior under biologically relevant parameters, and compare the recurrence time and tumor composition in the mutation and amplification models both analytically and using simulations. In comparing these mechanisms, we find that the ratio between recurrence times driven by amplification versus mutation depends linearly on the number of amplification events required to acquire the same degree of resistance as a mutation event, and we find that the relative frequency of amplification and mutation events plays a key role in determining the mechanism under which recurrence is more rapid for any specific system. In the amplification-driven resistance model, we also observe that increasing drug concentration leads to a stronger initial reduction in tumor burden, but that the eventual recurrent tumor population is less heterogeneous, more aggressive and harbors higher levels of drug-resistance.
Collapse
Affiliation(s)
- Aaron Li
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | | | - Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Padakanti AP, Pawar SD, Kumar P, Chella N. Development and validation of HPLC method for simultaneous estimation of erlotinib and niclosamide from liposomes optimized by screening design. J Liposome Res 2023; 33:268-282. [PMID: 36594184 DOI: 10.1080/08982104.2022.2162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
The emerging drug resistance to the approved first-line drug therapy leads to clinical failure in cancer. Drug repurposing studies lead to the identification of many old drugs to be used for cancer treatment. Combining the repurposed drugs (niclosamide) with first-line therapy agents like erlotinib HCl showed improved efficacy by inhibiting erlotinib HCl acquired resistance. But there is a need to develop a sensitive, accurate, and excellent analytical method and drug delivery system for successfully delivering drug combinations. In the current study, an HPLC method was developed and validated for the simultaneous estimation of niclosamide and erlotinib HCl. The retention time of niclosamide and erlotinib hydrochloride was 6.48 and 7.65 min at 333 nm. The developed method was rapid and sensitive to separating the two drugs with reasonable accuracy, precision, robustness, and ruggedness. A Plackett-Burman (PBD) screening design was used to identify the critical parameters affecting liposomal formulation development using particle size, size distribution, zeta potential, and entrapment efficiency as the response. Lipid concentration, drug concentration, hydration temperature, and media volume were critical parameters affecting the particle size, polydispersity index (PDI), ZP, and %EE of the liposomes. The optimized NCM-ERL liposomes showed the particle size (126.05 ± 2.1), PDI (0.498 ± 0.1), ZP (-16.2 ± 0.3), and %EE of NCM and ERL (50.04 ± 2.8 and 05.42 ± 1.3). In vitro release studies indicated the controlled release of the drugs loaded liposomes (87.06 ± 9.93% and 42.33 ± 0.89% in 24 h).
Collapse
Affiliation(s)
- Amruta Prabhakar Padakanti
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| | - Sachin Dattaram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| |
Collapse
|
18
|
Kamashev D, Shaban N, Lebedev T, Prassolov V, Suntsova M, Raevskiy M, Gaifullin N, Sekacheva M, Garazha A, Poddubskaya E, Sorokin M, Buzdin A. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023; 12:2022. [PMID: 37626832 PMCID: PMC10453612 DOI: 10.3390/cells12162022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Dmitri Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Andrew Garazha
- Oncobox Ltd., Moscow 121205, Russia;
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Maksim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
19
|
Tito C, Genovese I, Giamogante F, Benedetti A, Miglietta S, Barazzuol L, Cristiano L, Iaiza A, Carolini S, De Angelis L, Masciarelli S, Nottola SA, Familiari G, Petrozza V, Lauriola M, Tamagnone L, Ilari A, Calì T, Valdivia HH, Valdivia CR, Colotti G, Fazi F. Sorcin promotes migration in cancer and regulates the EGF-dependent EGFR signaling pathways. Cell Mol Life Sci 2023; 80:202. [PMID: 37442828 PMCID: PMC10345051 DOI: 10.1007/s00018-023-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.
Collapse
Affiliation(s)
- Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Ilaria Genovese
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Anna Benedetti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessia Iaiza
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Sabatino Carolini
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Tamagnone
- Department of Life Science and Public Health, Histology and Embryology Unit - Catholic University of the Sacred Hearth, Fondazione Policlinico Gemelli - IRCCS, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Hector H. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Carmen R. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| |
Collapse
|
20
|
Hengphasatporn K, Aiebchun T, Mahalapbutr P, Auepattanapong A, Khaikate O, Choowongkomon K, Kuhakarn C, Meesin J, Shigeta Y, Rungrotmongkol T. Sulfonylated Indeno[1,2- c]quinoline Derivatives as Potent EGFR Tyrosine Kinase Inhibitors. ACS OMEGA 2023; 8:19645-19655. [PMID: 37305292 PMCID: PMC10249031 DOI: 10.1021/acsomega.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
The epidermal growth factor receptor (EGFR) has been considered a potential target for lung cancer therapy due to its essential role in regulating the survival and proliferation of cancer cells. Although erlotinib, a potent EGFR tyrosine kinase (EGFR-TK) inhibitor, has been used as the first-line drug for lung cancer treatment, acquired drug resistance caused by the T790M secondary mutation of EGFR-TK inevitably develops after a median response duration of 9-13 months. Thus, the search for promising compounds to effectively target EGFR-TK has become an imperative necessity. In this study, the kinase inhibitory activities of a series of sulfonylated indeno[1,2-c]quinolines (SIQs) against EGFR-TK were experimentally and theoretically investigated. Among the 23 SIQ derivatives studied, eight compounds showed enhanced EGFR-TK inhibitory activity (IC50 values of ca. 0.6-10.2 nM) compared to the known drug erlotinib (IC50 of ∼20 nM). In a cell-based assay in human cancer cell lines with EGFR overexpression (A549 and A431 cells), the eight selected SIQs all showed more significant cytotoxicity against A431 than A549 cells, consistent with the higher EGFR expression in A431 cells. Molecular docking and FMO-RIMP2/PCM calculations revealed that SIQ17 occupies the ATP-binding site of EGFR-TK, where its sulfonyl group is mainly stabilized by C797, L718, and E762 residues. Triplicate 500 ns molecular dynamics (MD) simulations also confirmed the binding strength of SIQ17 in complex with EGFR. Overall, the potent SIQ compounds obtained in this work could be further optimized for developing novel anticancer drug candidates targeting EGFR-TK.
Collapse
Affiliation(s)
- Kowit Hengphasatporn
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thitinan Aiebchun
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Atima Auepattanapong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10330, Thailand
| | - Onnicha Khaikate
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Chutima Kuhakarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10330, Thailand
| | - Jatuporn Meesin
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Rupp T, Debasly S, Genest L, Froget G, Castagné V. Therapeutic Potential of Fingolimod and Dimethyl Fumarate in Non-Small Cell Lung Cancer Preclinical Models. Int J Mol Sci 2022; 23:ijms23158192. [PMID: 35897763 PMCID: PMC9330228 DOI: 10.3390/ijms23158192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
New therapies are required for patients with non-small cell lung cancer (NSCLC) for which the current standards of care poorly affect the patient prognosis of this aggressive cancer subtype. In this preclinical study, we aim to investigate the efficacy of Fingolimod, a described inhibitor of sphingosine-1-phosphate (S1P)/S1P receptors axis, and Dimethyl Fumarate (DMF), a methyl ester of fumaric acid, both already approved as immunomodulators in auto-immune diseases with additional expected anti-cancer effects. The impact of both drugs was analyzed with in vitro cell survival analysis and in vivo graft models using mouse and human NSCLC cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated that Fingolimod and DMF repressed tumor progression without apparent adverse effects in vivo in three preclinical mouse NSCLC models. In vitro, Fingolimod did not affect either the tumor proliferation or the cytotoxicity, although DMF reduced tumor cell proliferation. These results suggest that Fingolimod and DMF affected tumor progression through different cellular mechanisms within the tumor microenvironment. Fingolimod and DMF might uncover potential therapeutic opportunities in NSCLC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- Correspondence: or ; Tel.: +33-(0)2-43-69-36-07
| | - Solène Debasly
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Université de Reims-Champagne-Ardenne, Campus Moulin de la Housse, 51687 Reims, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Guillaume Froget
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Vincent Castagné
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| |
Collapse
|
23
|
Khan MI, Alsayed RKME, Choudhry H, Ahmad A. Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. Int J Mol Sci 2022; 23:ijms23116222. [PMID: 35682901 PMCID: PMC9181065 DOI: 10.3390/ijms23116222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Exosomes, the extracellular vesicles produced in the endosomal compartments, facilitate the transportation of proteins as well as nucleic acids. Epigenetic modifications are now considered important for fine-tuning the response of cancer cells to various therapies, and the acquired resistance against targeted therapies often involves dysregulated epigenetic modifications. Depending on the constitution of their cargo, exosomes can affect several epigenetic events, thus impacting post-transcriptional regulations. Thus, a role of exosomes as facilitators of epigenetic modifications has come under increased scrutiny in recent years. Exosomes can deliver methyltransferases to recipient cells and, more importantly, non-coding RNAs, particularly microRNAs (miRNAs), represent an important exosome cargo that can affect the expression of several oncogenes and tumor suppressors, with a resulting impact on cancer therapy resistance. Exosomes often harbor other non-coding RNAs, such as long non-coding RNAs and circular RNAs that support resistance. The exosome-mediated transfer of all this cargo between cancer cells and their surrounding cells, especially tumor-associated macrophages and cancer-associated fibroblasts, has a profound effect on the sensitivity of cancer cells to several chemotherapeutics. This review focuses on the exosome-induced modulation of epigenetic events with resulting impact on sensitivity of cancer cells to various therapies, such as, tamoxifen, cisplatin, gemcitabine and tyrosine kinase inhibitors. A better understanding of the mechanisms by which exosomes can modulate response to therapy in cancer cells is critical for the development of novel therapeutic strategies to target cancer drug resistance.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem K. M. E. Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Correspondence: ; Tel.: +974-44390984
| |
Collapse
|
24
|
Mahalapbutr P, Leechaisit R, Thongnum A, Todsaporn D, Prachayasittikul V, Rungrotmongkol T, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Discovery of Anilino-1,4-naphthoquinones as Potent EGFR Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Comprehensive Molecular Modeling. ACS OMEGA 2022; 7:17881-17893. [PMID: 35664590 PMCID: PMC9161259 DOI: 10.1021/acsomega.2c01188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 μM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Department
of Biochemistry, and Center for Translational Medicine, Faculty of
Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Duangjai Todsaporn
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Thanyada Rungrotmongkol
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry and Program in Chemical Sciences, Chulabhorn Research Institute, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Commission
on Higher Education, Ministry of Education, Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| |
Collapse
|
25
|
Li J, Wei X, Gu L, Qiu L, Xiang M, Zhang H, Xia L, Pan W, Yang Z, Zhou X, Zeng D, Jiang J. Elevated air quality index and fine particulate matter levels contribute to the poor prognosis and progression of nonsmall-cell lung cancer: A cohort study combined with external validation. Cancer Med 2022; 11:3272-3281. [PMID: 35312179 PMCID: PMC9468439 DOI: 10.1002/cam4.4701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Background Poor air quality can result in a variety of respiratory disorders. However, the air quality index (AQI) and the level of fine particulate matter (PM2.5) on the progression and prognosis of nonsmall‐cell lung cancer (NSCLC) are unclear. Methods We launched a cohort study focused on the relationship between air quality and overall survival as well as progression, incorporating data from 590 patients with NSCLC in our medical center between November 1, 2013 and March 1, 2016. Forty‐nine patients from Sichuan Cancer Hospital were used for validation. Results Cases with poorer AQI 6 months before NSCLC diagnosis were more likely to progress to stage III to IV NSCLC than controls (OR = 2.61, 95% CI 1.35–5.24, p = 0.005). Similarly, if exposed to high levels of PM2.5 during these 6 months, overall survival was poor (HR [95% CI] = 1.53 [1.13, 2.07], p = 0.006). According to multivariate analysis, age, gender, KPS, PM2.5, hyperlipemia, and NSCLC stage were independent risk factors of overall survival. A predictive model developed by these factors above yielded a favorable agreement (C‐index = 0.758) on the calibration curve. External validation was conducted by 46 patients from Sichuan Cancer Hospital displaying an AUC of 0.724 (0.684–0.763). Conclusions PM2.5 and AQI levels affect disease progression and long‐term survival in NSCLC patients. An overall survival prediction model based on the PM2.5 level can help clinicians predict the risk of death in NSCLC.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Xiaoying Wei
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Ling Gu
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linya Qiu
- Gusu District Center for Disease Control and Prevention, Soochow, People's Republic of China
| | - Mengqi Xiang
- Department of Medical Oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xia
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Wenying Pan
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Zhenyu Yang
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Xiaoli Zhou
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Daxiong Zeng
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Junhong Jiang
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Ganthala PD, Alavala S, Chella N, Andugulapati SB, Bathini NB, Sistla R. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf B Biointerfaces 2022; 211:112305. [PMID: 34998178 DOI: 10.1016/j.colsurfb.2021.112305] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Erlotinib-based EGFR targeted therapy has proven significant clinical improvement against non-small cell lung cancer (NSCLC). However, the anticancer activity of Erlotinib (Ertb) is limited by the development of Ertb resistance and possess a challenge to clinicians and patients. To explore a better therapeutic strategy, we evaluated Ertb in combinations with different natural products. We identified that Ertb and Quercetin (Quer) combination is more synergistic against A549 and NCI H460 cells compared to Ertb with Fisetin/Carnosic acid/Luteolin. To further improve the efficacy and overcome the limitation of free therapeutics, Ertb and Quer loaded solid lipid nanoparticles (EQNPs) were prepared using Chitosan-MA-TPGS polymer by hot homogenization method. The drug-loaded nanoparticles (NPs) have shown high encapsulation efficiency (77% Ertb and 71.4% Quer) as well as small particle size of 87.3 ± 0.78 nm and positive zeta potential + 13.4 ± 1.12 mV. At pH 5.5, Ertb and Quer were released at their highest levels. We found that, EQNPs decreased the expression of P-glycoprotein (P-gp) and nuclear epidermal growth factor receptor (nEGFR). EQNPs increased the uptake of Ertb and Quer, and apoptosis induction in Ertb resistant A549/ER cells. Further, in vivo EQNPs formulation have shown increased uptake of nanoparticles in the lung tissue and significantly reduced the expression of nEGFR. Thus, EQNPs may be developed as a targeted medicine with minimum side effects for treatment of NSCLC to improve the quality of life and survival of NSCLC patients.
Collapse
Affiliation(s)
- Parimala Devi Ganthala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sateesh Alavala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Nagendra Babu Bathini
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
27
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
28
|
Cheng Y, Zhang T, Xu Q. Therapeutic advances in non-small cell lung cancer: Focus on clinical development of targeted therapy and immunotherapy. MedComm (Beijing) 2021; 2:692-729. [PMID: 34977873 PMCID: PMC8706764 DOI: 10.1002/mco2.105] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lung cancer still contributes to nearly one-quarter cancer-related deaths in the past decades, despite the rapid development of targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC). The development and availability of comprehensive genomic profiling make the classification of NSCLC more precise and personalized. Most treatment decisions of advanced-stage NSCLC have been made based on the genetic features and PD-L1 expression of patients. For the past 2 years, more than 10 therapeutic strategies have been approved as first-line treatment for certain subgroups of NSCLC. However, some major challenges remain, including drug resistance and low rate of overall survival. Therefore, we discuss and review the therapeutic strategies of NSCLC, and focus on the development of targeted therapy and immunotherapy in advanced-stage NSCLC. Based on the latest guidelines, we provide an updated summary on the standard treatment for NSCLC. At last, we discussed several potential therapies for NSCLC. The development of new drugs and combination therapies both provide promising therapeutic effects on NSCLC.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Qing Xu
- Department of OncologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
29
|
Kim TY, Lee B, Kim Y, Sugihara Y, Rezeli M, Szasz AM, Dome B, Marko-Varga G, Kwon HJ. Matrix-assisted laser desorption ionization - mass spectrometry imaging of erlotinib reveals a limited tumor tissue distribution in a non-small-cell lung cancer mouse xenograft model. Clin Transl Med 2021; 11:e481. [PMID: 34323418 PMCID: PMC8265169 DOI: 10.1002/ctm2.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tae Young Kim
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Boram Lee
- Division of Clinical Protein Science and Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Yonghyo Kim
- Division of Clinical Protein Science and Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Yutaka Sugihara
- Division of Clinical Protein Science and Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Melinda Rezeli
- Division of Clinical Protein Science and Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - A Marcell Szasz
- Division of Clinical Protein Science and Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Dome
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary.,Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gyorgy Marko-Varga
- Division of Clinical Protein Science and Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
30
|
Aiebchun T, Mahalapbutr P, Auepattanapong A, Khaikate O, Seetaha S, Tabtimmai L, Kuhakarn C, Choowongkomon K, Rungrotmongkol T. Identification of Vinyl Sulfone Derivatives as EGFR Tyrosine Kinase Inhibitor: In Vitro and In Silico Studies. Molecules 2021; 26:molecules26082211. [PMID: 33921332 PMCID: PMC8069501 DOI: 10.3390/molecules26082211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.
Collapse
Affiliation(s)
- Thitinan Aiebchun
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Atima Auepattanapong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (A.A.); (O.K.); (C.K.)
| | - Onnicha Khaikate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (A.A.); (O.K.); (C.K.)
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology of North Bangkok, Bangkok 10800, Thailand;
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (A.A.); (O.K.); (C.K.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Correspondence: (K.C.); (T.R.); Tel.: +66-2218-5426 (T.R.); Fax: +66-2218-5418 (T.R.)
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (K.C.); (T.R.); Tel.: +66-2218-5426 (T.R.); Fax: +66-2218-5418 (T.R.)
| |
Collapse
|
31
|
Varan G, Akkın S, Demirtürk N, Benito JM, Bilensoy E. Erlotinib entrapped in cholesterol-depleting cyclodextrin nanoparticles shows improved antitumoral efficacy in 3D spheroid tumors of the lung and the liver. J Drug Target 2020; 29:439-453. [PMID: 33210947 DOI: 10.1080/1061186x.2020.1853743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Erlotinib (ERL), a tyrosine kinase inhibitor approved for therapeutic use in non-small cell lung cancer is further researched for eventual liver cancer treatment. However, conventional ERL has important bioavailability problems resulting from oral administration, poor solubility and gastrointestinal degradation into inactive metabolites. Alternative administration routes and nanoparticulate drug delivery systems are studied to prevent or reduce these drawbacks. In this study, ERL-loaded CD nanosphere and nanocapsule formulations capable of cholesterol depletion in resistant cancer cells were evaluated for ERL delivery. Drug loading and release profile depended largely on the surface charge of nanoparticles. Antiproliferative activity data obtained from 2D and 3D cell culture models demonstrated that polycationic βCD nanocapsules were the most effective formulation for ERL delivery to lung and liver cancer cells. 3D tumour tumoral penetration studies further revealed that nanocapsule formulations penetrated deeper into the tumour through the multilayered cells. Furthermore, all formulations were able to extract membrane cholesterol from lung and liver cancer cell lines, indicating the induction of apoptosis and overcoming drug resistance. In conclusion, given their tumoral penetration and cell membrane cholesterol depletion abilities, amphiphilic CD nanocapsules emerge as promising alternatives to improve the safety and efficiency of ERL treatment of both liver and lung tumours.
Collapse
Affiliation(s)
- Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nurbanu Demirtürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Sevilla, Spain
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Li M, Chen H, Sun T, Ma Z, Chen X, Wu D, Huang W, Wang X. p70S6K Promotes Acquired Resistance of Erlotinib Through Induction of Epithelial-Mesenchymal Transition in Non-Small Cell Lung Carcinoma. Onco Targets Ther 2020; 13:5257-5270. [PMID: 32606745 PMCID: PMC7295111 DOI: 10.2147/ott.s249695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths. EGFR tyrosine kinase inhibitors, such as erlotinib, were approved for non-small cell lung carcinoma patients with EGFR mutations. However, the acquired resistance of these inhibitors has not been fully clarified. Therefore, clarifying the mechanism and developing new rationales to overcome the drug resistance are urgently needed. Methods A pair of erlotinib sensitive and resistant cells was used to identify the key molecules in mediating erlotinib resistance. Loss- or gain-of-function study was used to confirm the effects of the key molecules. Xenograft mouse model and human cancer tissue sample studies were conducted for further corroboration. Results HCC827 cells with acquired resistance to erlotinib underwent epithelial-mesenchymal transition and exhibited enhanced p70S6K signaling compared to parental sensitive cells. Moreover, in erlotinib resistant cells, downregulation of p70S6K expression using either siRNA or shRNA reversed EMT and partially overcame erlotinib resistance. Meanwhile, in erlotinib sensitive cells, overexpression of p70S6K promoted EMT and induced erlotinib resistance. Upregulation of p70S6K signaling in erlotinib resistant cells was caused by reduced GSK3β-mediated protein degradation of mTOR and raptor. Additionally, p70S6K silencing suppressed the growth of erlotinib resistant cells in a xenograft mouse model. Finally, we found a correlation between p70S6K and E-cadherin expression in human non-small-cell lung cancer (NSCLC) tissue samples. Conclusion Our findings suggest that p70S6K-induced EMT plays an important role in the acquired resistance of erlotinib and provides a novel therapeutic rationale of targeting p70S6K in NSCLC therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| | - Hongling Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| | - Zhuo Ma
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| | - Xi Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210006
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China, 210029
| |
Collapse
|
33
|
Pharmacophore modeling, 3D-QSAR, docking and ADME prediction of quinazoline based EGFR inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Abstract
Cancer is the second leading cause of death in the US. Current major treatments for cancer management include surgery, cytotoxic chemotherapy, targeted therapy, radiation therapy, endocrine therapy and immunotherapy. Despite the endeavors and achievements made in treating cancers during the past decades, resistance to classical chemotherapeutic agents and/or novel targeted drugs continues to be a major problem in cancer therapies. Drug resistance, either existing before treatment (intrinsic) or generated after therapy (acquired), is responsible for most relapses of cancer, one of the major causes of death of the disease. Heterogeneity among patients and tumors, and the versatility of cancer to circumvent therapies make drug resistance more challenging to deal with. Better understanding the mechanisms of drug resistance is required to provide guidance to future cancer treatment and achieve better outcomes. In this review, intrinsic and acquired resistance will be discussed. In addition, new discoveries in mechanisms of drug resistance will be reviewed. Particularly, we will highlight roles of ATP in drug resistance by discussing recent findings of exceptionally high levels of intratumoral extracellular ATP as well as intracellular ATP internalized from extracellular environment. The complexity of drug resistance development suggests that combinational and personalized therapies, which should take ATP into consideration, might provide better strategies and improved efficacy for fighting drug resistance in cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Haiyun Zhang
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,The Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
35
|
Yeh SJ, Chang CA, Li CW, Wang LHC, Chen BS. Comparing progression molecular mechanisms between lung adenocarcinoma and lung squamous cell carcinoma based on genetic and epigenetic networks: big data mining and genome-wide systems identification. Oncotarget 2019; 10:3760-3806. [PMID: 31217907 PMCID: PMC6557199 DOI: 10.18632/oncotarget.26940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant type of lung cancer in the world. Lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC) are subtypes of NSCLC. We usually regard them as different disease due to their unique molecular characteristics, distinct cells of origin and dissimilar clinical response. However, the differences of genetic and epigenetic progression mechanism between LADC and LSCC are complicated to analyze. Therefore, we applied systems biology approaches and big databases mining to construct genetic and epigenetic networks (GENs) with next-generation sequencing data of LADC and LSCC. In order to obtain the real GENs, system identification and system order detection are conducted on gene regulatory networks (GRNs) and protein-protein interaction networks (PPINs) for each stage of LADC and LSCC. The core GENs were extracted via principal network projection (PNP). Based on the ranking of projection values, we got the core pathways in respect of KEGG pathway. Compared with the core pathways, we found significant differences between microenvironments, dysregulations of miRNAs, epigenetic modifications on certain signaling transduction proteins and target genes in each stage of LADC and LSCC. Finally, we proposed six genetic and epigenetic multiple-molecule drugs to target essential biomarkers in each progression stage of LADC and LSCC, respectively.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-An Chang
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Wei Li
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan
| |
Collapse
|
36
|
Alam MM, Hassan AH, Lee KW, Cho MC, Yang JS, Song J, Min KH, Hong J, Kim DH, Lee YS. Design, synthesis and cytotoxicity of chimeric erlotinib-alkylphospholipid hybrids. Bioorg Chem 2019; 84:51-62. [DOI: 10.1016/j.bioorg.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/03/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
|
37
|
Farhan M, Malik A, Ullah MF, Afaq S, Faisal M, Farooqi AA, Biersack B, Schobert R, Ahmad A. Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs. Int J Mol Sci 2019; 20:ijms20040800. [PMID: 30781783 PMCID: PMC6413107 DOI: 10.3390/ijms20040800] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Garcinol, a dietary factor obtained from Garcinia indica, modulates several key cellular signaling pathways as well as the expression of miRNAs. Acquired resistance to standard therapies, such as erlotinib and cisplatin, is a hallmark of non-small cell lung cancer (NSCLC) cells that often involves miRNA-regulated epithelial-to-mesenchymal transition (EMT). We used A549 cells that were exposed to transforming growth factor beta 1 (TGF-β1), resulting in A549M cells with mesenchymal and drug resistant phenotype, and report that garcinol sensitized resistant cells with mesenchymal phenotype to erlotinib as well as cisplatin with significant decrease in their IC50 values. It also potentiated the apoptosis-inducing activity of erlotinib in A549M and the endogenously mesenchymal H1299 NSCLC cells. Further, garcinol significantly upregulated several key EMT-regulating miRNAs, such as miR-200b, miR-205, miR-218, and let-7c. Antagonizing miRNAs, through anti-miRNA transfections, attenuated the EMT-modulating activity of garcinol, as determined by mRNA expression of EMT markers, E-cadherin, vimentin, and Zinc Finger E-Box Binding Homeobox 1 (ZEB1). This further led to repression of erlotinib as well as cisplatin sensitization, thus establishing the mechanistic role of miRNAs, particularly miR-200c and let-7c, in garcinol-mediated reversal of EMT and the resulting sensitization of NSCLC cells to standard therapies.
Collapse
Affiliation(s)
- Mohd Farhan
- College of Basic Sciences, King Faisal University, Hofuf, 400, Al Ahsa 31982, Saudi Arabia.
| | - Arshi Malik
- Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Sarah Afaq
- Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Mohd Faisal
- Department of Psychiatry, University Hospital Limerick, Limerick V94 T9PX, Ireland.
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Bernhard Biersack
- Organic Chemistry Laboratory, Universitätsstr. 30, 95447 Bayreuth, Germany.
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universitätsstr. 30, 95447 Bayreuth, Germany.
| | - Aamir Ahmad
- Department of Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
38
|
Elkamhawy A, Hassan AHE, Paik S, Sup Lee Y, Lee HH, Shin JS, Lee KT, Roh EJ. EGFR inhibitors from cancer to inflammation: Discovery of 4-fluoro-N-(4-(3-(trifluoromethyl)phenoxy)pyrimidin-5-yl)benzamide as a novel anti-inflammatory EGFR inhibitor. Bioorg Chem 2019; 86:112-118. [PMID: 30685642 DOI: 10.1016/j.bioorg.2019.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1β, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sora Paik
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hwi-Ho Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
39
|
Deng L, Kleij AW, Yang W. Diversity‐Orientated Stereoselective Synthesis through Pd‐Catalyzed Switchable Decarboxylative C−N/C−S Bond Formation in Allylic Surrogates. Chemistry 2018; 24:19156-19161. [DOI: 10.1002/chem.201805295] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Deng
- Chinese Academy of SciencesKey Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou Jiangsu 215123 P. R. China
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution of Research and Advanced Studies (ICREA) Pg. Lluis Companys 23 08010 Barcelona Spain
| | - Weibo Yang
- Chinese Academy of SciencesKey Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
- University of Science and Technology Liaoning Anshan 114051 P. R. China
| |
Collapse
|
40
|
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis 2018; 9:117. [PMID: 29371589 PMCID: PMC5833343 DOI: 10.1038/s41419-017-0063-y] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
The most common type of lung cancer is adenocarcinoma (ADC), comprising around 40% of all lung cancer cases. In spite of achievements in understanding the pathogenesis of this disease and the development of new approaches in its treatment, unfortunately, lung ADC is still one of the most aggressive and rapidly fatal tumor types with overall survival less than 5 years. Lung ADC is often diagnosed at advanced stages involving disseminated metastatic tumors. This is particularly important for the successful development of new approaches in cancer therapy. The high resistance of lung ADC to conventional radiotherapies and chemotherapies represents a major challenge for treatment effectiveness. Here we discuss recent advances in understanding the molecular pathways driving tumor progression and related targeted therapies in lung ADCs. In addition, the cell death mechanisms induced by different treatment strategies and their contribution to therapy resistance are analyzed. The focus is on approaches to overcoming drug resistance in order to improve future treatment decisions.
Collapse
Affiliation(s)
- Tatiana V Denisenko
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Inna N Budkevich
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia. .,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden.
| |
Collapse
|
41
|
MALDI mass spectrometry imaging of erlotinib administered in combination with bevacizumab in xenograft mice bearing B901L, EGFR-mutated NSCLC cells. Sci Rep 2017; 7:16763. [PMID: 29196706 PMCID: PMC5711937 DOI: 10.1038/s41598-017-17211-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Combination therapy of erlotinib plus bevacizumab improves progression-free survival of patients with epidermal growth factor receptor–mutated (EGFR-mutated) advanced non–small-cell lung cancer (NSCLC) compared with erlotinib alone. Although improved delivery and distribution of erlotinib to tumours as a result of the normalization of microvessels by bevacizumab is thought to be one of the underlying mechanisms, there is insufficient supporting evidence. B901L cells derived from EGFR-mutated NSCLC were subcutaneously implanted into mice, and mice were treated with bevacizumab or human IgG followed by treatment with erlotinib. The distribution of erlotinib in their tumours at different times after erlotinib administration was analysed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). We also analysed the distribution of erlotinib metabolites and the distribution of erlotinib in tumours refractory to erlotinib, which were established by long-term treatment with erlotinib. We found that erlotinib was broadly diffused in the tumours from B901L-implanted xenograft mice, independently of bevacizumab treatment. We also found that erlotinib metabolites were co-localized with erlotinib and that erlotinib in erlotinib-refractory tumours was broadly distributed throughout the tumour tissue. Multivariate imaging approaches using MALDI MSI as applied in this study are of great value for pharmacokinetic studies in drug development.
Collapse
|
42
|
Rahman NIA, Abdul Murad NA, Mollah MM, Jamal R, Harun R. NFIX as a Master Regulator for Lung Cancer Progression. Front Pharmacol 2017; 8:540. [PMID: 28871224 PMCID: PMC5566971 DOI: 10.3389/fphar.2017.00540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/03/2017] [Indexed: 12/04/2022] Open
Abstract
About 40% of lung cancer cases globally are diagnosed at the advanced stage. Lung cancer has a high mortality and overall survival in stage I disease is only 70%. This study was aimed at finding a candidate of transcription regulator that initiates the mechanism for metastasis by integrating computational and functional studies. The genes involved in lung cancer were retrieved using in silico software. 10 kb promoter sequences upstream were scanned for the master regulator. Transient transfection of shRNA NFIXs were conducted against A549 and NCI-H1299 cell lines. qRT-PCR and functional assays for cell proliferation, migration and invasion were carried out to validate the involvement of NFIX in metastasis. Genome-wide gene expression microarray using a HumanHT-12v4.0 Expression BeadChip Kit was performed to identify differentially expressed genes and construct a new regulatory network. The in silico analysis identified NFIX as a master regulator and is strongly associated with 17 genes involved in the migration and invasion pathways including IL6ST, TIMP1 and ITGB1. Silencing of NFIX showed reduced expression of IL6ST, TIMP1 and ITGB1 as well as the cellular proliferation, migration and invasion processes. The data was integrated with the in silico analyses to find the differentially expressed genes. Microarray analysis showed that 18 genes were expressed differentially in both cell lines after statistical analyses integration between t-test, LIMMA and ANOVA with Benjamini-Hochberg adjustment at p-value < 0.05. A transcriptional regulatory network was created using all 18 genes, the existing regulated genes including the new genes PTCH1, NFAT5 and GGCX that were found highly associated with NFIX, the master regulator of metastasis. This study suggests that NFIX is a promising target for therapeutic intervention that is expected to inhibit metastatic recurrence and improve survival rate.
Collapse
Affiliation(s)
- Nor I A Rahman
- UKM Medical Molecular Biology Institute (UMBI), National University of MalaysiaKuala Lumpur, Malaysia
| | - Nor A Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), National University of MalaysiaKuala Lumpur, Malaysia
| | - Mohammad M Mollah
- UKM Medical Molecular Biology Institute (UMBI), National University of MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), National University of MalaysiaKuala Lumpur, Malaysia.,Department of Paediatrics, Faculty of Medicine, National University of MalaysiaKuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute (UMBI), National University of MalaysiaKuala Lumpur, Malaysia.,KPJ Ampang Puteri Specialist HospitalAmpang, Malaysia
| |
Collapse
|
43
|
Marsdenia tenacissima extract overcomes Axl- and Met-mediated erlotinib and gefitinib cross-resistance in non-small cell lung cancer cells. Oncotarget 2017; 8:56893-56905. [PMID: 28915640 PMCID: PMC5593611 DOI: 10.18632/oncotarget.18137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are an effective treatment strategy for non-small cell lung cancer (NSCLC) patients harboring mutations that result in constitutive activation of the epidermal growth factor receptor (EGFR). However, most patients eventually develop resistance to TKIs. This occurs due to additional EGFR mutations or the activation of bypass signaling pathways. In our previous work, we demonstrated that Marsdenia tenacissima extract (MTE) restored gefitinib sensitivity in resistant NSCLC cells with EGFR T790M or K-ras mutations. However, the potential efficacy of MTE in NSCLC cells with resistance mediated by Axl and c-Met, and the related molecular mechanisms need to be elucidated. In this study we evaluated the ability of MTE to restore erlotinib/gefitinib sensitivity in TKI resistant HCC827/ER cells and xenograft mice models. Our results demonstrate that MTE overcomes erlotinib and gefitinib resistance driven by Axl and c-Met in vitro and in vivo. Combination therapy significantly suppressed EGFR downstream molecules and the c-Met and Axl activated bypass signaling pathways. Moreover, we observed that MTE is more efficient at restoring resistance to erlotinib than gefitinib. As the Axl and c-Met mediated bypass pathways share the same downstream signaling cascade as EGFR, simultaneous targeting of these pathways is a promising strategy to overcome acquired resistance of TKIs. Our results demonstrate that MTE treatment attenuates Axl phosphorylation and the associated epithelial-mesenchymal transition, suggesting MTE treatment may be a potential therapeutic strategy for overcoming erlotinib and gefitinib cross-resistance in NSCLC, especially for erlotinib resistance.
Collapse
|
44
|
Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ, Yu K, Ruddy DA, Aguirre AJ, Kim JW, Redig AJ, Gainor JF, Williams JA, Asara JM, Doench JG, Janne PA, Shaw AT, McDonald Iii RE, Engelman JA, Stegmeier F, Schlabach MR, Hahn WC. KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. eLife 2017; 6. [PMID: 28145866 PMCID: PMC5305212 DOI: 10.7554/elife.18970] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Inhibitors that target the receptor tyrosine kinase (RTK)/Ras/mitogen-activated protein kinase (MAPK) pathway have led to clinical responses in lung and other cancers, but some patients fail to respond and in those that do resistance inevitably occurs (Balak et al., 2006; Kosaka et al., 2006; Rudin et al., 2013; Wagle et al., 2011). To understand intrinsic and acquired resistance to inhibition of MAPK signaling, we performed CRISPR-Cas9 gene deletion screens in the setting of BRAF, MEK, EGFR, and ALK inhibition. Loss of KEAP1, a negative regulator of NFE2L2/NRF2, modulated the response to BRAF, MEK, EGFR, and ALK inhibition in BRAF-, NRAS-, KRAS-, EGFR-, and ALK-mutant lung cancer cells. Treatment with inhibitors targeting the RTK/MAPK pathway increased reactive oxygen species (ROS) in cells with intact KEAP1, and loss of KEAP1 abrogated this increase. In addition, loss of KEAP1 altered cell metabolism to allow cells to proliferate in the absence of MAPK signaling. These observations suggest that alterations in the KEAP1/NRF2 pathway may promote survival in the presence of multiple inhibitors targeting the RTK/Ras/MAPK pathway. DOI:http://dx.doi.org/10.7554/eLife.18970.001
Collapse
Affiliation(s)
- Elsa B Krall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Belinda Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Diana M Munoz
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - Nina Ilic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Matthew J Niederst
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - Kristine Yu
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - David A Ruddy
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Amanda J Redig
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Juliet A Williams
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Pasi A Janne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Alice T Shaw
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Robert E McDonald Iii
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - Jeffrey A Engelman
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - Frank Stegmeier
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - Michael R Schlabach
- Oncology Disease Area, Novartis Institute for Biomedical Research, Cambridge, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
45
|
Schiffmann I, Greve G, Jung M, Lübbert M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016; 11:858-870. [PMID: 27846368 PMCID: PMC5193491 DOI: 10.1080/15592294.2016.1237345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.
Collapse
Affiliation(s)
- Insa Schiffmann
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Manfred Jung
- University of Freiburg, Institute of Pharmaceutical Sciences, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
46
|
Rhodomycin A, a novel Src-targeted compound, can suppress lung cancer cell progression via modulating Src-related pathways. Oncotarget 2016; 6:26252-65. [PMID: 26312766 PMCID: PMC4694899 DOI: 10.18632/oncotarget.4761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/25/2015] [Indexed: 02/06/2023] Open
Abstract
Src activation is involved in cancer progression and the interplay with EGFR. Inhibition of Src activity also represses the signalling pathways regulated by EGFR. Therefore, Src has been considered a target molecule for drug development. This study aimed to identify the compounds that target Src to suppress lung cancer tumourigenesis and metastasis and investigate their underlying molecular mechanisms. Using a molecular docking approach and the National Cancer Institute (NCI) compound dataset, eight candidate compounds were selected, and we evaluated their efficacy. Among them, rhodomycin A was the most efficient at reducing the activity and expression of Src in a dose-dependent manner, which was also the case for Src-associated proteins, including EGFR, STAT3, and FAK. Furthermore, rhodomycin A significantly suppressed cancer cell proliferation, migration, invasion, and clonogenicity in vitro and tumour growth in vivo. In addition, rhodomycin A rendered gefitinib-resistant lung adenocarcinoma cells more sensitive to gefitinib treatment, implying a synergistic effect of the combination therapy. Our data also reveal that the inhibitory effect of rhodomycin A on lung cancer progression may act through suppressing the Src-related multiple signalling pathways, including PI3K, JNK, Paxillin, and p130cas. These findings will assist the development of anti-tumour drugs to treat lung cancer.
Collapse
|
47
|
Keta O, Bulat T, Golić I, Incerti S, Korać A, Petrović I, Ristić-Fira A. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib. Cell Biol Toxicol 2016; 32:83-101. [PMID: 27026538 DOI: 10.1007/s10565-016-9319-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023]
Abstract
In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.
Collapse
Affiliation(s)
- Otilija Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Tanja Bulat
- Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Igor Golić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sebastien Incerti
- CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, CENBG, Université Bordeaux 1, 33175, Gradignan, France
| | | | - Ivan Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Aleksandra Ristić-Fira
- Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia.
| |
Collapse
|
48
|
Vergote I, Leamon CP. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther Adv Med Oncol 2015; 7:206-18. [PMID: 26136852 DOI: 10.1177/1758834015584763] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite advances in the development of molecularly targeted therapies, limited improvements in overall survival have been noted among many cancer patients with solid tumors, primarily due to development of drug resistance. Accordingly, there is an unmet need for new targeted therapies and treatment approaches for cancer, especially for overcoming resistance. Expression of the folate receptor is upregulated in many tumor types and thus represents an ideal target for cancer treatment. Several folate receptor targeted therapies are in development, including the small molecule drug conjugate vintafolide, the monoclonal antibody farletuzumab, and the antibody-drug conjugate IMGN853. The role of the folate receptor as a target in cancer progression and resistance as well as emerging preclinical and clinical data from studies on those folate receptor targeted agents that are in development with a focus on vintafolide are reviewed. The folate receptor has several unique properties, such as high expression in several tumor types, that make it a rational target for cancer treatment, and allow for selective delivery of folate receptor targeted agents. Early-stage clinical data in lung and ovarian cancer suggest that vintafolide has the potential for combination with other standard approved agents.
Collapse
|
49
|
Frederick JW, Sweeny L, Hartman Y, Zhou T, Rosenthal EL. Epidermal growth factor receptor inhibition by anti-CD147 therapy in cutaneous squamous cell carcinoma. Head Neck 2015; 38:247-52. [PMID: 25270595 DOI: 10.1002/hed.23885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. METHODS Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). RESULTS After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p < .005). In addition, treatment with anti-CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p < .001). Colo-16 SiCD147 expression demonstrated similar reduction in proliferation and wound closure. Anti-CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. CONCLUSION Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC.
Collapse
Affiliation(s)
- John W Frederick
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Larissa Sweeny
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yolanda Hartman
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tong Zhou
- Department of Medicine, Division of Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eben L Rosenthal
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
50
|
Pazarentzos E, Giannikopoulos P, Hrustanovic G, St John J, Olivas VR, Gubens MA, Balassanian R, Weissman J, Polkinghorn W, Bivona TG. Oncogenic activation of the PI3-kinase p110β isoform via the tumor-derived PIK3CβD1067V kinase domain mutation. Oncogene 2015; 35:1198-205. [DOI: 10.1038/onc.2015.173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 02/08/2023]
|