1
|
Lei Y, Zhou R, Mao Q, Qiu X, Mu D. The roles of pleiotrophin in brain injuries: a narrative review of the literature. Ann Med 2025; 57:2452353. [PMID: 39829367 PMCID: PMC11749013 DOI: 10.1080/07853890.2025.2452353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pleiotrophin (PTN), a secreted multifunctional growth factor, is highly expressed in the developing brain. Recently, many studies have indicated that PTN participates in the development of brain and plays a neuroprotection after brain injury, especially promoting neuronal survival and neurite outgrowth, stimulating oligodendrocyte maturation and myelination, modulating neuroinflammation, and so on. OBJECTIVE However, no reviews comprehensively summarize the roles of PTN in brain injuries. Considering this, this review focuses on the roles and related regulatory pathways of PTN in brain injuries, what is known to date. METHODS PubMed and Embase databases have been searched, and related studies are compiled and summarized. RESULTS Our review has found PTN participates in the repairment of brain injuries, including hypoxic-ischemic brain injury, preterm white matter injury, traumatic brain injury, and neurodegenerative diseases, mainly based on animal data and small sample size studies. Besides, PTN interacts with receptors, such as, Z-type protein tyrosine phosphatase receptor and syndecan-3, regulating related pathways in these events. CONCLUSION It suggests PTN as a promising candidate for the treatment of brain injuries clinically. However, the evidence is early in its development. Further multi-center and large-sample studies are warranted to support our findings and determine the clinical value of PTN for treating brain injuries.
Collapse
Affiliation(s)
- Yupeng Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qian Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Constantinescu AM, Karzi VE, Docea AO, Tsitsimpikou C, Nosyrev AE, Tsatsakis A, Hernández AF, Bogdan C. Neurobehavioral effects of low dose exposure to chemical mixtures: a review. Arch Toxicol 2025; 99:1315-1331. [PMID: 40116907 DOI: 10.1007/s00204-025-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/27/2025] [Indexed: 03/23/2025]
Abstract
Neurological disorders have become the leading cause of disease and disability worldwide, with 80% of these conditions being recorded in low- and middle-income countries. Scientific evidence has increasingly associated these disorders with exposure to xenobiotics, such as pesticides, heavy metals and endocrine-disrupting chemicals (EDCs). Recent studies have focused on the consequences of exposure to chemical mixtures and their potential neurotoxic effects. As reported, such exposures can adversely affect cognitive and motor skills, particularly when they occur prenatally or during the early stages of development. Long-term exposure to mixtures of these substances has been strongly related to oxidative stress, inflammation and neurodegeneration. This review aims to explore the neurobehavioral effects of low-dose xenobiotic combinations, stressing the potential long-term neurological damage from such exposure. The in vivo and epidemiological studies reviewed indicate that early-life exposure to chemical mixtures is linked to motor and cognitive disorders, increased anxiety prevalence and behavioral dysregulation. Mechanistic evidence suggests that these exposures may exacerbate oxidative stress, immune activation, and neuronal dysfunction, ultimately leading to neuroinflammation. Chemical interactions greatly affect neurotoxicity, often deviating from simple dose addition. Synergistic effects can arise at both low and high doses, while some studies also report antagonistic outcomes. The specific impacts depend on the chemicals involved, their ratios, and the biological endpoints assessed. Since pollutants like heavy metals can persist in the environment due to their resistance to natural degradation processes, innovative strategies are necessary to mitigate the detrimental effects of exposure to chemical mixtures on human health and the environment.
Collapse
Affiliation(s)
| | - Vasiliki E Karzi
- Department of Toxicology, Medical School, University of Crete, 71003, Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Christina Tsitsimpikou
- Department of Hazard Evaluation, Risk Assessment & Sustainability of Chemicals, General Chemical State Laboratory of Greece, 11521, Athens, Greece
| | - Alexander E Nosyrev
- Molecular Theranostics Lab, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Aristidis Tsatsakis
- Department of Toxicology, Medical School, University of Crete, 71003, Heraklion, Greece
- Molecular Theranostics Lab, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
- Health Research Institute of Granada (Ibs. GRANADA), Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Catalin Bogdan
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
3
|
Catena X, Contreras-Alcalde M, Juan-Larrea N, Cerezo-Wallis D, Calvo TG, Mucientes C, Olmeda D, Suárez J, Oterino-Sogo S, Martínez L, Megías D, Sancho D, Tejedo C, Frago S, Dudziak D, Seretis A, Stoitzner P, Soengas MS. Systemic rewiring of dendritic cells by melanoma-secreted midkine impairs immune surveillance and response to immune checkpoint blockade. NATURE CANCER 2025:10.1038/s43018-025-00929-y. [PMID: 40155713 DOI: 10.1038/s43018-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/11/2025] [Indexed: 04/01/2025]
Abstract
Cutaneous melanomas express a high number of potential neoepitopes, yet a substantial fraction of melanomas shift into immunologically cold phenotypes. Using cellular systems, mouse models and large datasets, we identify the tumor-secreted growth factor midkine (MDK) as a multilayered inhibitor of antigen-presenting cells. Mechanistically, MDK acts systemically in primary tumors, lymph nodes and the bone marrow, promoting a STAT3-mediated impairment of differentiation, activation and function of dendritic cells (DCs), particularly, conventional type 1 DCs (cDC1s). Furthermore, MDK rewires DCs toward a tolerogenic state, impairing CD8+ T cell activation. Downregulating MDK improves DC-targeted vaccination, CD40 agonist treatment and immune checkpoint blockade in mouse models. Moreover, we present an MDK-associated signature in DCs that defines poor prognosis and immune checkpoint blockade resistance in individuals with cancer. An inverse correlation between MDK- and cDC1-associated signatures was observed in a variety of tumor types, broadening the therapeutic implications of MDK in immune-refractory malignancies.
Collapse
Affiliation(s)
- Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Naiara Juan-Larrea
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Yale University School of Medicine, New Haven, CT, USA
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale, Madrid, Spain
| | - Javier Suárez
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Oterino-Sogo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - David Sancho
- Immunobiology Lab, Centro Nacional de Investigación Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Susana Frago
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Comprehensive Cancer Center Central Germany Jena/Leipzig, Jena, Germany
| | - Athanasios Seretis
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Zhao ZH, Gu LJ, Zhang XG, Wang ZB, Ou XH, Sun QY. Single-cell and spatial transcriptomes reveal the impact of maternal low protein diet on follicular cell composition and ovarian micro-environment in the offspring. J Nutr Biochem 2025; 136:109789. [PMID: 39490908 DOI: 10.1016/j.jnutbio.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Maternal low protein diet around pregnancy reduces the primordial follicles in offspring ovary. Resolving cellular and molecular mechanisms associated with low protein diet is therefore urgently needed for the guidance of dietary interventions. Here, we utilized single-cell and spatial RNA-seq to create transcriptomic atlases of offspring ovaries from maternal low protein diet mice. Analysis of cell type specific low protein diet associated transcriptional changes revealed increased unfolded protein and decreased oxidative phosphorylation defense as a hallmark of low protein diet effects. Altered pathways included hedgehog signaling in granulosa cells, BMP signaling in theca cells and PTN signaling in early theca cells. Notably, the disordered follicular cell function and ovarian microenvironment may closely corelated with decreased follicular number and quality. Collectively, our findings depict the transcriptomic atlases of the offspring ovary derived from maternal low protein diet group and provide candidate molecular mechanisms underlying the complex ovarian cell changes conferred by low protein diet.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Guohui Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
5
|
Cañeque-Rufo H, Fontán-Baselga T, Galán-Llario M, Zuccaro A, Sánchez-Alonso MG, Gramage E, Ramos-Álvarez MDP, Herradón G. Pleiotrophin deletion prevents high-fat diet-induced cognitive impairment, glial responses, and alterations of the perineuronal nets in the hippocampus. Neurobiol Dis 2025; 205:106776. [PMID: 39722335 DOI: 10.1016/j.nbd.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Obesity and metabolic disorders, such as metabolic syndrome (MetS) facilitate the development of neurodegenerative diseases and cognitive decline. Persistent neuroinflammation plays an important role in this process. Pleiotrophin (PTN) is a cytokine that regulates energy metabolism and high-fat diet (HFD)-induced neuroinflammation, suggesting that PTN could play an important role in the connection between obesity and brain alterations, including cognitive decline. To test this hypothesis, we used an HFD-induced obesity model in Ptn genetically deficient mice (Ptn-/-). First, we confirmed that Ptn deletion prevents HFD-induced obesity. Our findings demonstrate that feeding wild-type (Ptn+/+) mice with HFD for 6 months results in short- and long-term memory loss in the novel object recognition task. Surprisingly, we did not observe any sign of cognitive impairment in Ptn-/- mice fed with HFD. In addition, we observed that HFD induced microglial responses, astrocyte depletion, and perineuronal nets (PNNs) alterations in Ptn+/+ mice, while these effects of HFD were mostly prevented in Ptn-/- mice. These results show a crucial role of PTN in metabolic responses and brain alterations induced by HFD and suggest the PTN signalling pathway as a promising therapeutic target for brain disorders associated with MetS.
Collapse
Affiliation(s)
- Héctor Cañeque-Rufo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Teresa Fontán-Baselga
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Milagros Galán-Llario
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Agata Zuccaro
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - María Gracia Sánchez-Alonso
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Esther Gramage
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - María Del Pilar Ramos-Álvarez
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Gonzalo Herradón
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain.
| |
Collapse
|
6
|
Deng H, Zhou P, Wang J, Zeng J, Yu C. CircRNA expression profiling of the rat thalamus in temporomandibular joint chronic inflammatory pain. Gene 2025; 934:149024. [PMID: 39433265 DOI: 10.1016/j.gene.2024.149024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Orofacial pain (OFP) induced by temporomandibular disorders (TMDs) is prevalent, affecting approximately 4.6 % of the population. One specific type of TMD is temporomandibular osteoarthritis (TMJOA), a common degenerative disease that significantly impacts patients' quality of life. Differentially expressed circular RNAs (DEcircRNAs) in the thalamus, which serves as a relay station in the orofacial pain transmission pathway, may play a crucial role and serve as potential target markers for inflammation and the progression of inflammatory pain in TMJOA. The aim of this study was to investigate the expression profile of circRNAs in the thalamus of TMJOA. We obtained the circRNA expression profile from the thalamus of a rat model of TMJOA through high-throughput sequencing (HT-seq) and further validated their expression using reverse transcription real-time polymerase chain reaction (RT-qPCR), followed by bioinformatics analysis of the expression data. A total of 425 circRNAs (DESeq2 p- value < 0.05, |log2FoldChange| > 0.0) were identified as significantly differentially expressed by RNA-Seq, comprising 188 up-regulated and 237 down-regulated circRNAs. After validation via RT-qPCR, we employed miRanda software to predict the binding sites of miRNAs for the identified circRNAs to further explore the functions of DEcircRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that DEcircRNAs were primarily enriched in pathways and functions related to synapse development, protein signaling and modification, 'Circadian entertainment', the 'MAPK signaling pathway', and 'Glutamatergic synapse'. These findings suggest that DEcircRNAs in the thalamus play a significant role in the progression of TMJOA and may serve as promising candidate molecular targets for gene therapy.
Collapse
Affiliation(s)
- Haixia Deng
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pan Zhou
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jing Wang
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatology Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
7
|
Fontán-Baselga T, Cañeque-Rufo H, Rivera-Illades E, Gramage E, Zapico JM, de Pascual-Teresa B, Ramos-Álvarez MDP, Herradón G, Vicente-Rodríguez M. Pharmacological inhibition of receptor protein tyrosine phosphatase β/ζ decreases Aβ plaques and neuroinflammation in the hippocampus of APP/PS1 mice. Front Pharmacol 2024; 15:1506049. [PMID: 39712494 PMCID: PMC11658987 DOI: 10.3389/fphar.2024.1506049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder that courses with chronic neuroinflammation. Pleiotrophin (PTN) is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ which is upregulated in different neuroinflammatory disorders of diverse origin, including AD. To investigate the role of RPTPβ/ζ in neuroinflammation and neurodegeneration, we used eight-to ten-month-old APP/PS1 AD mouse model. They were administered intragastrically with MY10, an inhibitor of RPTPβ/ζ, at different doses (60 and 90 mg/kg) every day for 14 days. Treatment with 90 mg/kg MY10 significantly reduced the number and size of amyloid beta (Aβ) plaques in the dorsal subiculum of the hippocampus of APP/PS1 mice. In addition, we observed a significant decrease in the number and size of astrocytes in both sexes and in the number of microglial cells in a sex-dependent manner. This suggests that RPTPβ/ζ plays an important role in modulating Aβ plaque formation and influences glial responses, which may contribute to improved Aβ clearance. In addition, MY10 treatment decreased the interaction of glial cells with Aβ plaques in the hippocampus of APP/PS1 mice. Furthermore, the analysis of proinflammatory markers in the hippocampus revealed that MY10 treatment decreased the mRNA levels of Tnfa and Hmgb1. Notably, treatment with MY10 increased Bace1 mRNA expression, which could be involved in enhancing Aβ degradation, and it decreased Mmp9 levels, which might reflect changes in the neuroinflammatory environment and impact Aβ plaque dynamics. These results support the therapeutic potential of inhibition of RPTPβ/ζ in modulating Aβ pathology and neuroinflammation in AD.
Collapse
Affiliation(s)
- Teresa Fontán-Baselga
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Héctor Cañeque-Rufo
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Elisa Rivera-Illades
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Esther Gramage
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - José María Zapico
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - María Del Pilar Ramos-Álvarez
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Gonzalo Herradón
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Marta Vicente-Rodríguez
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| |
Collapse
|
8
|
Rodríguez-Zapata M, López-Rodríguez R, Ramos-Álvarez MDP, Herradón G, Pérez-García C, Gramage E. Pleiotrophin modulates acute and long-term LPS-induced neuroinflammatory responses and hippocampal neurogenesis. Toxicology 2024; 509:153947. [PMID: 39255863 DOI: 10.1016/j.tox.2024.153947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The hippocampus is one of the most vulnerable regions affected in disorders characterized by overt neuroinflammation such as neurodegenerative diseases. Pleiotrophin (PTN) is a neurotrophic factor that modulates acute neuroinflammation in different contexts. PTN is found highly upregulated in the brain in different chronic disorders characterized by neuroinflammation, suggesting an important role in the modulation of sustained neuroinflammation. To test this hypothesis, we studied the acute and long-term effects of a single lipopolysaccharide (LPS; 5 mg/kg) administration in Ptn+/+ and Ptn-/- mice, and in mice with Ptn-overexpression (Ptn-Tg). Endogenous PTN levels proportionally modulate LPS-induced increase in TNF-α plasma levels one hour after treatment. In the dentate gyrus (DG) of the hippocampus, a lower percentage of DCX+ cells were detected in saline-treated Ptn-/- mice compared to Ptn+/+ mice, suggesting a crucial role of PTN in the maintenance of hippocampal neuronal progenitors. The data show that PTN overexpression tends to potentiate acute microglial responses in the DG 16 hours after LPS treatment. Remarkably, a significant increase in the number of neuronal progenitors together with astrogliosis was detected 10 months after a single injection of LPS treatment in wild type mice. However, these LPS-induced long-term effects were prevented in Ptn-/- and Ptn-Tg mice, suggesting that PTN modulates LPS-induced long-term neurogenesis changes and astrocytic response in the hippocampus. The data presented here suggest that endogenous PTN levels are crucial in the regulation of acute LPS-induced systemic and hippocampal microglial responses in young mice. Furthermore, our findings provide evidence of the key role of PTN in the regulation of long-term LPS effects on astrocytic response and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- María Rodríguez-Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Rosario López-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - María Del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain; Instituto Universitario de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain; Instituto Universitario de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain; Instituto Universitario de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain.
| |
Collapse
|
9
|
Galán‐Llario M, Rodríguez‐Zapata M, Fontán‐Baselga T, Cañeque‐Rufo H, García‐Guerra A, Fernández B, Gramage E, Herradón G. Pleiotrophin Overexpression Reduces Adolescent Ethanol Consumption and Modulates Ethanol-Induced Glial Responses and Changes in the Perineuronal Nets in the Mouse Hippocampus. CNS Neurosci Ther 2024; 30:e70159. [PMID: 39654349 PMCID: PMC11628725 DOI: 10.1111/cns.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
AIMS To investigate whether pleiotrophin (PTN) overexpression influences ethanol consumption during adolescence and its effects on glial responses, neurogenesis, and perineuronal nets (PNNs) in the mouse hippocampus. METHODS Male and female adolescent transgenic mice with elevated PTN levels (Ptn-Tg) and controls underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Ethanol consumption, PTN levels, neurogenesis, and glial responses were measured in the hippocampus. Immunohistochemistry was used to assess changes in new neurons, microglial and astrocyte populations, and PNNs. RESULTS Ptn-Tg mice consumed significantly less ethanol compared to controls, irrespective of sex. Chronic alcohol exposure reduced PTN levels in the hippocampus. PTN overexpression decreased the number of new neurons in the dentate gyrus (DG) and prevented ethanol-induced microglial activation. Ptn-Tg mice had significantly more astrocytes and fewer PNNs, with a higher percentage of parvalbumin (PV) positive cells surrounded by PNNs under basal conditions. However, ethanol drastically reduced the number of PV+ cells in the DG of Ptn-Tg mice, despite the presence of PNNs. CONCLUSION PTN overexpression reduces adolescent ethanol consumption and influences ethanol-induced effects on hippocampal neurogenesis, glial responses, and PNN remodeling. These findings underscore the importance of PTN in modulating alcohol-induced neurotoxicity.
Collapse
Affiliation(s)
- Milagros Galán‐Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
| | - María Rodríguez‐Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
| | - Teresa Fontán‐Baselga
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
| | - Héctor Cañeque‐Rufo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
| | - Alba García‐Guerra
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
| | - Beatriz Fernández
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
- Instituto Universitario de Estudios de Las AdiccionesUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeMadridSpain
- Red de Investigación en Atención Primaria de AdiccionesInstituto de Salud Carlos III, MICINN and FEDERMadridSpain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeBoadilla del MonteSpain
- Instituto Universitario de Estudios de Las AdiccionesUniversidad san Pablo‐CEU, CEU Universities, Urbanización MontepríncipeMadridSpain
- Red de Investigación en Atención Primaria de AdiccionesInstituto de Salud Carlos III, MICINN and FEDERMadridSpain
| |
Collapse
|
10
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
11
|
Ballesteros-Pla C, Sevillano J, Sánchez-Alonso MG, Limones M, Pita J, Zapatería B, Sanz-Cuadrado MI, Pizarro-Delgado J, Izquierdo-Lahuerta A, Medina-Gómez G, Herradón G, Ramos-Álvarez MDP. Constitutive Pleiotrophin Deletion Results in a Phenotype with an Altered Pancreatic Morphology and Function in Old Mice. Int J Mol Sci 2024; 25:10960. [PMID: 39456743 PMCID: PMC11507919 DOI: 10.3390/ijms252010960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact of pleiotrophin deletion on pancreatic morphology and function in later life. We analyzed glucose tolerance and circulating parameters on female wild-type (Ptn+/+) and knock-out (Ptn-/-) mice. At 9 and 15 months, we conducted morphometric analyses of pancreatic islets and evaluated the levels of insulin, glucagon, somatostatin, glucose transporter 2 (GLUT2), vesicle-associated membrane protein 2 (VAMP2), and synaptosome-associated protein 25 (SNAP25) via immunofluorescence. The effect of PTN on glucose-stimulated insulin secretion (GSIS) was evaluated in INS1E cells and isolated islets. Ptn-/- mice showed hyperinsulinemia, impaired glucose tolerance, and increased homeostatic model assessment for insulin resistance (HOMA-IR) with age. While Ptn+/+ islets enlarge with age, in Ptn-/- mice, the median size decreased, and insulin content increased. Vesicle transport and exocytosis proteins were significantly increased in 9-month-old Ptn-/- islets. Islets from Ptn-/- mice showed impaired GSIS and decreased cell membrane localization of GLUT2 whereas, PTN increased GSIS in INS1E cells. Ptn deletion accelerated age-related changes in the endocrine pancreas, affecting islet number and size, and altering VAMP2 and SNAP25 levels and GLUT2 localization leading to impaired GSIS and insulin accumulation in islets.
Collapse
Affiliation(s)
- Cristina Ballesteros-Pla
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Julio Sevillano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - María Gracia Sánchez-Alonso
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - María Limones
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Jimena Pita
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Begoña Zapatería
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marta Inmaculada Sanz-Cuadrado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Javier Pizarro-Delgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain; (A.I.-L.); (G.M.-G.)
| | - Gema Medina-Gómez
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain; (A.I.-L.); (G.M.-G.)
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte Urbanización Montepríncipe, 28660 Madrid, Spain;
| | - María del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| |
Collapse
|
12
|
Soraci L, Corsonello A, Paparazzo E, Montesanto A, Piacenza F, Olivieri F, Gambuzza ME, Savedra EV, Marino S, Lattanzio F, Biscetti L. Neuroinflammaging: A Tight Line Between Normal Aging and Age-Related Neurodegenerative Disorders. Aging Dis 2024; 15:1726-1747. [PMID: 38300639 PMCID: PMC11272206 DOI: 10.14336/ad.2023.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Italian National Research Center of Aging (IRCCS INRCA), IRCCS INRCA, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, Italian National Research Center of Aging (IRCCS INRCA), Ancona, Italy.
| | | | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo”, Messina, Italy.
| | | | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
13
|
Bodai L, Borosta R, Ferencz Á, Kovács M, Zsindely N. The Role of miR-137 in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:7229. [PMID: 39000336 PMCID: PMC11241563 DOI: 10.3390/ijms25137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.
Collapse
Affiliation(s)
- László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Roberta Borosta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Mercédesz Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
14
|
Liu Q, Liu Z, Xie W, Li Y, Wang H, Zhang S, Wang W, Hao J, Geng D, Yang J, Wang L. Single-cell sequencing of the substantia nigra reveals microglial activation in a model of MPTP. Front Aging Neurosci 2024; 16:1390310. [PMID: 38952478 PMCID: PMC11215054 DOI: 10.3389/fnagi.2024.1390310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Background N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. Methods Single-nucleus RNA sequencing was performed in the Substantia Nigra (SN) of MPTP mice. UMAP analysis was used for the dimensionality reduction visualization of the SN in the MPTP mice. Known marker genes highly expressed genes in each cluster were used to annotate most clusters. Specific Differentially Expressed Genes (DEGs) and PD risk genes analysis were used to find MPTP-associated cells. GO, KEGG, PPI network, GSEA and CellChat analysis were used to reveal cell type-specific functional alterations and disruption of cell-cell communication networks. Subset reconstruction and pseudotime analysis were used to reveal the activation status of the cells, and to find the transcription factors with trajectory characterized. Results Initially, we observed specific DEGs and PD risk genes enrichment in microglia. Next, We obtained the functional phenotype changes in microglia and found that IGF, AGRN and PTN pathways were reduced in MPTP mice. Finally, we analyzed the activation state of microglia and revealed a pro-inflammatory trajectory characterized by transcription factors Nfe2l2 and Runx1. Conclusion Our work revealed alterations in microglia function, signaling pathways and key genes in the SN of MPTP mice.
Collapse
Affiliation(s)
- Qing Liu
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziyu Liu
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenmeng Xie
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yibo Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongfang Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sanbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Wenyu Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxin Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dandan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| | - Jing Yang
- Zhejiang Provincial Key Laboratory of Aging and Cancer Biology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Huang GH, Liu GL, Huang DZ, Diao XW, Lv SQ. Single-cell analysis of a progressive Rosai-Dorfman disease affecting the cerebral parenchyma: a case report. Acta Neuropathol Commun 2024; 12:78. [PMID: 38769536 PMCID: PMC11103976 DOI: 10.1186/s40478-024-01794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Neurologic Rosai-Dorfman disease (RDD) is a rare type of non-Langerhans cell histiocytosis that affects the central nervous system. Most neurologic RDDs grow like meningiomas, have clear boundaries, and can be completely resected. However, a few RDDs are invasive and aggressive, and no effective treatment options are available because the molecular mechanisms involved remain unknown. Here, we report a case of deadly and glucocorticoid-resistant neurologic RDD and explore its possible pathogenic mechanisms via single-cell RNA sequencing. First, we identified two distinct but evolutionarily related histiocyte subpopulations (the C1Q+ and SPP1+ histiocytes) that accumulated in the biopsy sample. The expression of genes in the KRAS signaling pathway was upregulated, indicating gain-of-function of KRAS mutations. The C1Q+ and SPP1+ histiocytes were highly differentiated and arrested in the G1 phase, excluding the idea that RDD is a lympho-histio-proliferative disorder. Second, although C1Q+ histiocytes were the primary RDD cell type, SPP1+ histiocytes highly expressed several severe inflammation-related and invasive factors, such as WNT5A, IL-6, and MMP12, suggesting that SPP1+ histiocytes plays a central role in driving the progression of this disease. Third, oligodendrocytes were found to be the prominent cell type that initiates RDD via MIF and may resist glucocorticoid treatment via the MDK and PTN signaling pathways. In summary, in this case, we report a rare presentation of neurologic RDD and provided new insight into the pathogenic mechanisms of progressive neurologic RDD. This study will also offer evidence for developing precision therapies targeting this complex disease.
Collapse
Affiliation(s)
- Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Guo-Long Liu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - De-Zhi Huang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xin-Wei Diao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
16
|
Galán-Llario M, Gramage E, García-Guerra A, Torregrosa AB, Gasparyan A, Navarro D, Navarrete F, García-Gutiérrez MS, Manzanares J, Herradón G. Adolescent intermittent ethanol exposure decreases perineuronal nets in the hippocampus in a sex dependent manner: Modulation through pharmacological inhibition of RPTPβ/ζ. Neuropharmacology 2024; 247:109850. [PMID: 38295947 DOI: 10.1016/j.neuropharm.2024.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPβ/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPβ/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.
Collapse
Affiliation(s)
- Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Alba García-Guerra
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Abraham B Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
17
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: an integrative study of single-nucleus transcriptomes and genetic association. Alzheimers Res Ther 2024; 16:3. [PMID: 38167548 PMCID: PMC10762817 DOI: 10.1186/s13195-023-01372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. METHODS We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. RESULTS We identified 190 dysregulated LR interactions across six major cell types in AD PFC, of which 107 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in the astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 44 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport,' among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. CONCLUSIONS Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
Affiliation(s)
- Andi Liu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Brisa S Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Citu Citu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| |
Collapse
|
18
|
Li M, Chen J, Yu H, Zhang B, Hou X, Jiang H, Xie D, Chen L. Cerebrospinal fluid immunological cytokines predict intracranial tumor response to immunotherapy in non-small cell lung cancer patients with brain metastases. Oncoimmunology 2023; 13:2290790. [PMID: 38169917 PMCID: PMC10761018 DOI: 10.1080/2162402x.2023.2290790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Background Immunotherapy has shown intracranial efficacy in non-small cell lung cancer (NSCLC) patients with brain metastases. However, predictive biomarkers for intracranial response to immunotherapy are lacking. This post-hoc analysis aimed to explore the potential of immunological cytokines in cerebrospinal fluid (CSF) to predict intracranial tumor response to immunotherapy in patients with brain metastases. Methods Treatment-naive NSCLC patients with brain metastases who received camrelizumab plus chemotherapy were enrolled. Paired plasma and CSF samples were prospectively collected at baseline and the first treatment assessment. All samples were analyzed for 92 immuno-oncology cytokines using Olink's panels. Results A total of 28 patients were included in this analysis. At baseline, most immunological cytokines were significantly lower in CSF than in plasma, whereas a subset comprising CD83, PTN, TNFRSF21, TWEAK, ICOSLG, DCN, IL-8, and MCP-1, was increased in CSF. Baseline CSF levels of LAMP3 were significantly higher in patients with intracranial tumor response, while the levels of CXCL10, IL-12, CXCL11, IL-18, TIE2, HGF, and PDCD1 were significantly lower. Furthermore, the CXCL10, CXCL11, TIE2, PDCD1, IL-18, HGF, and LAMP3 in CSF were also significantly associated with intracranial progression-free survival for immunotherapy. The identified cytokines in CSF were decreased at the first treatment evaluation in patients with intracranial tumor response. The logistic CSF immuno-cytokine model yielded an AUC of 0.91, as compared to PD-L1 expression (AUC of 0.72). Conclusions Immunological cytokines in CSF could predict intracranial tumor response to immunotherapy in NSCLC patients with brain metastases, and the findings warrant validation in a larger prospective cohort study. Trial registration ClinicalTrials.gov identifier: NCT04211090.
Collapse
Affiliation(s)
- Meichen Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hui Yu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Baishen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Honghua Jiang
- Department of Oncology, Southern Theater Air Force Hospital, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
19
|
Qiu X, Guo Y, Liu M, Zhang B, Li J, Wei J, Li M. Single-cell RNA-sequencing analysis reveals enhanced non-canonical neurotrophic factor signaling in the subacute phase of traumatic brain injury. CNS Neurosci Ther 2023; 29:3446-3459. [PMID: 37269057 PMCID: PMC10580338 DOI: 10.1111/cns.14278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of long-term disability in young adults and induces complex neuropathological processes. Cellular autonomous and intercellular changes during the subacute phase contribute substantially to the neuropathology of TBI. However, the underlying mechanisms remain elusive. In this study, we explored the dysregulated cellular signaling during the subacute phase of TBI. METHODS Single-cell RNA-sequencing data (GSE160763) of TBI were analyzed to explore the cell-cell communication in the subacute phase of TBI. Upregulated neurotrophic factor signaling was validated in a mouse model of TBI. Primary cell cultures and cell lines were used as in vitro models to examine the potential mechanisms affecting signaling. RESULTS Single-cell RNA-sequencing analysis revealed that microglia and astrocytes were the most affected cells during the subacute phase of TBI. Cell-cell communication analysis demonstrated that signaling mediated by the non-canonical neurotrophic factors midkine (MDK), pleiotrophin (PTN), and prosaposin (PSAP) in the microglia/astrocytes was upregulated in the subacute phase of TBI. Time-course profiling showed that MDK, PTN, and PSAP expression was primarily upregulated in the subacute phase of TBI, and astrocytes were the major source of MDK and PTN after TBI. In vitro studies revealed that the expression of MDK, PTN, and PSAP in astrocytes was enhanced by activated microglia. Moreover, MDK and PTN promoted the proliferation of neural progenitors derived from human-induced pluripotent stem cells (iPSCs) and neurite growth in iPSC-derived neurons, whereas PSAP exclusively stimulated neurite growth. CONCLUSION The non-canonical neurotrophic factors MDK, PTN, and PSAP were upregulated in the subacute phase of TBI and played a crucial role in neuroregeneration.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yaling Guo
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ming‐Feng Liu
- Department of NeurosurgeryXuzhou Hospital of Traditional Chinese MedicineXuzhouJiangsuChina
| | - Bingge Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jingzhen Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian‐Feng Wei
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Histology and EmbryologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Meng Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
20
|
Li Z, Liu Y, Huang Y, Tan Q, Mei H, Zhu G, Liu K, Yang G. Circ_0000888 regulates osteogenic differentiation of periosteal mesenchymal stem cells in congenital pseudarthrosis of the tibia. iScience 2023; 26:107923. [PMID: 37810257 PMCID: PMC10551655 DOI: 10.1016/j.isci.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a refractory condition characterized by the decreased osteogenic ability in tibial pseudarthrosis repair. Periosteal mesenchymal stem cells (PMSCs) are multipotent cells involved in bone formation regulation. However, the mechanisms underlying its role in CPT remain unclear. In this study, we observed downregulation of circ_0000888 and pleiotrophin (PTN), as well as upregulation of miR-338-3p in CPT derived PMSCs (CPT-dPMSCs). Our results demonstrated that circ_0000888 and PTN likely enhanced the viability, proliferation, and osteogenic ability of PMSCs, while miR-338-3p had the opposite effect. Further analysis confirmed the regulatory relationship circ_0000888 suppressed the activity of miR-338-3p and upregulated the expression of its downstream target PTN by binding to miR-338-3p, consequently promoting the viability and osteogenic differentiation ability of CPT-dPMSCs. Our findings unveil an unexpected link between circ_0000888/miR-338-3p/PTN in promoting osteogenic ability and indicate the potential pathogenic mechanisms of CPT.
Collapse
Affiliation(s)
- Zhuoyang Li
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
- Department of Orthopedics, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaoxi Liu
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Yiyong Huang
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Qian Tan
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Haibo Mei
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Guanghui Zhu
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Kun Liu
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Ge Yang
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| |
Collapse
|
21
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: An integrative study of single-nucleus transcriptomes and genetic association. RESEARCH SQUARE 2023:rs.3.rs-3335643. [PMID: 37790454 PMCID: PMC10543294 DOI: 10.21203/rs.3.rs-3335643/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. Methods We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. Results We identified 316 dysregulated LR interactions across six major cell types in AD PFC, of which 210 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 60 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport', among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. Conclusions Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
Affiliation(s)
- Andi Liu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
| | - Brisa S Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Citu Citu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
22
|
Ballesteros-Pla C, Sánchez-Alonso MG, Pizarro-Delgado J, Zuccaro A, Sevillano J, Ramos-Álvarez MP. Pleiotrophin and metabolic disorders: insights into its role in metabolism. Front Endocrinol (Lausanne) 2023; 14:1225150. [PMID: 37484951 PMCID: PMC10360176 DOI: 10.3389/fendo.2023.1225150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pleiotrophin (PTN) is a cytokine which has been for long studied at the level of the central nervous system, however few studies focus on its role in the peripheral organs. The main aim of this review is to summarize the state of the art of what is known up to date about pleiotrophin and its implications in the main metabolic organs. In summary, pleiotrophin promotes the proliferation of preadipocytes, pancreatic β cells, as well as cells during the mammary gland development. Moreover, this cytokine is important for the structural integrity of the liver and the neuromuscular junction in the skeletal muscle. From a metabolic point of view, pleiotrophin plays a key role in the maintenance of glucose and lipid as well as whole-body insulin homeostasis and favors oxidative metabolism in the skeletal muscle. All in all, this review proposes pleiotrophin as a druggable target to prevent from the development of insulin-resistance-related pathologies.
Collapse
|
23
|
Rodríguez-Zapata M, Galán-Llario M, Cañeque-Rufo H, Sevillano J, Sánchez-Alonso MG, Zapico JM, Ferrer-Alcón M, Uribarri M, Pascual-Teresa BD, Ramos-Álvarez MDP, Herradón G, Pérez-García C, Gramage E. Implication of the PTN/RPTPβ/ζ Signaling Pathway in Acute Ethanol Neuroinflammation in Both Sexes: A Comparative Study with LPS. Biomedicines 2023; 11:biomedicines11051318. [PMID: 37238989 DOI: 10.3390/biomedicines11051318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Binge drinking during adolescence increases the risk of alcohol use disorder, possibly by involving alterations of neuroimmune responses. Pleiotrophin (PTN) is a cytokine that inhibits Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. PTN and MY10, an RPTPβ/ζ pharmacological inhibitor, modulate ethanol behavioral and microglial responses in adult mice. Now, to study the contribution of endogenous PTN and the implication of its receptor RPTPβ/ζ in the neuroinflammatory response in the prefrontal cortex (PFC) after acute ethanol exposure in adolescence, we used MY10 (60 mg/kg) treatment and mice with transgenic PTN overexpression in the brain. Cytokine levels by X-MAP technology and gene expression of neuroinflammatory markers were determined 18 h after ethanol administration (6 g/kg) and compared with determinations performed 18 h after LPS administration (5 g/kg). Our data indicate that Ccl2, Il6, and Tnfa play important roles as mediators of PTN modulatory actions on the effects of ethanol in the adolescent PFC. The data suggest PTN and RPTPβ/ζ as targets to differentially modulate neuroinflammation in different contexts. In this regard, we identified for the first time important sex differences that affect the ability of the PTN/RPTPβ/ζ signaling pathway to modulate ethanol and LPS actions in the adolescent mouse brain.
Collapse
Affiliation(s)
- María Rodríguez-Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Héctor Cañeque-Rufo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Julio Sevillano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - María Gracia Sánchez-Alonso
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - José M Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Marcel Ferrer-Alcón
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Zamudio, 48170 Vizcaya, Spain
| | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Zamudio, 48170 Vizcaya, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - María Del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| |
Collapse
|
24
|
Galán-Llario M, Rodríguez-Zapata M, Fontán-Baselga T, Gramage E, Vicente-Rodríguez M, Zapico JM, de Pascual-Teresa B, Lasek AW, Herradón G. Inhibition of RPTPβ/ζ reduces chronic ethanol intake in adolescent mice and modulates ethanol effects on hippocampal neurogenesis and glial responses in a sex-dependent manner. Neuropharmacology 2023; 227:109438. [PMID: 36706907 PMCID: PMC10327582 DOI: 10.1016/j.neuropharm.2023.109438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Pleiotrophin (PTN) is a cytokine that modulates ethanol drinking and reward and regulates glial responses in different contexts. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. Inhibition of RPTPβ/ζ reduces binge-like drinking in adult male mice. Whether inhibition of RPTPβ/ζ is effective in reducing ethanol consumption during adolescence and in both sexes remained to be studied. In this work, male and female adolescent mice underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Treatment with MY10 (60 mg/kg, i.g.), a small-molecule RPTPβ/ζ inhibitor, reduced chronic 3-week ethanol consumption only in male mice. We detected an ethanol-induced overall decrease in hippocampal GFAPir and Iba1ir, independently of the treatment received, suggesting that RPTPβ/ζ is not key in the regulation of IAE-induced glial responses. However, we found a significant negative correlation between the size of microglial cells and the number of hippocampal neuronal progenitors only in male mice after IAE. This correlation was disrupted by treatment with MY10 before each drinking session, which may be related to the ability of MY10 to regulate the intensity of the perineuronal nets (PNNs) in the hippocampus in a sex-dependent manner. The data show for the first time that inhibition of RPTPβ/ζ reduces chronic voluntary ethanol consumption in adolescent mice in a sex-dependent manner. In addition, we show evidence for sex-specific differences in the effects of IAE on glial responses and hippocampal neurogenesis, which may be related to different actions of the RPTPβ/ζ signalling pathway in the brains of male and female mice.
Collapse
Affiliation(s)
- Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Spain
| | - María Rodríguez-Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Spain
| | - Teresa Fontán-Baselga
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - José María Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL, 60612, USA
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
25
|
Pleiotrophin-Loaded Mesoporous Silica Nanoparticles as a Possible Treatment for Osteoporosis. Pharmaceutics 2023; 15:pharmaceutics15020658. [PMID: 36839981 PMCID: PMC9966378 DOI: 10.3390/pharmaceutics15020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoporosis is the most common type of bone disease. Conventional treatments are based on the use of antiresorptive drugs and/or anabolic agents. However, these treatments have certain limitations, such as a lack of bioavailability or toxicity in non-specific tissues. In this regard, pleiotrophin (PTN) is a protein with potent mitogenic, angiogenic, and chemotactic activity, with implications in tissue repair. On the other hand, mesoporous silica nanoparticles (MSNs) have proven to be an effective inorganic drug-delivery system for biomedical applications. In addition, the surface anchoring of cationic polymers, such as polyethylenimine (PEI), allows for greater cell internalization, increasing treatment efficacy. In order to load and release the PTN to improve its effectiveness, MSNs were successfully internalized in MC3T3-E1 mouse pre-osteoblastic cells and human mesenchymal stem cells. PTN-loaded MSNs significantly increased the viability, mineralization, and gene expression of alkaline phosphatase and Runx2 in comparison with the PTN alone in both cell lines, evidencing its positive effect on osteogenesis and osteoblast differentiation. This proof of concept demonstrates that MSN can take up and release PTN, developing a potent osteogenic and differentiating action in vitro in the absence of an osteogenic differentiation-promoting medium, presenting itself as a possible treatment to improve bone-regeneration and osteoporosis scenarios.
Collapse
|
26
|
Pleiotrophin deficiency protects against high-fat diet-induced neuroinflammation: Implications for brain mitochondrial dysfunction and aberrant protein aggregation. Food Chem Toxicol 2023; 172:113578. [PMID: 36566969 DOI: 10.1016/j.fct.2022.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Metabolic Syndrome (MetS) is a risk factor for the development of neurodegenerative diseases. Neuroinflammation associated with MetS may contribute significantly to neurodegeneration. Pleiotrophin (PTN) is a neurotrophic factor that modulates neuroinflammation and is a key player in regulating energy metabolism and thermogenesis, suggesting that PTN could be important in the connection between MetS and neuroinflammation. We have now used a high-fat diet (HFD)-induced obesity model in Ptn-/- mice. HFD and Ptn deletion caused alterations in circulating hormones including GIP, leptin and resistin. HFD produced in Ptn+/+ mice a neuroinflammatory state as observed in cerebral quantifications of proinflammatory markers, including Il1β, Tnfα and Ccl2. The upregulation of neuroinflammatory markers was prevented in Ptn-/- mice. Changes induced by HFD in genes related to mitochondrial biogenesis and dynamics were less pronounced in the brain of Ptn-/- mice and were accompanied by significant increases in the protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I and IV. HFD-induced changes in genes related to the elimination of protein aggregates were also less pronounced in the brain of Ptn-/- mice. This study provides substantial evidence that Ptn deletion protects against HFD-induced neuroinflammation, mitochondrial dysfunction, and aberrant protein aggregation, prominent features in neurodegenerative diseases.
Collapse
|
27
|
Galán-Llario M, Rodríguez-Zapata M, Gramage E, Vicente-Rodríguez M, Fontán-Baselga T, Ovejero-Benito MC, Pérez-García C, Carrasco J, Moreno-Herradón M, Sevillano J, Ramos-Álvarez MP, Zapico JM, de Pascual-Teresa B, Ramos A, Herradón G. Receptor protein tyrosine phosphatase β/ζ regulates loss of neurogenesis in the mouse hippocampus following adolescent acute ethanol exposure. Neurotoxicology 2023; 94:98-107. [PMID: 36402194 DOI: 10.1016/j.neuro.2022.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Adolescence is a critical period for brain maturation in which this organ is more vulnerable to the damaging effects of ethanol. Administration of ethanol in mice induces a rapid cerebral upregulation of pleiotrophin (PTN), a cytokine that regulates the neuroinflammatory processes induced by different insults and the behavioral effects of ethanol. PTN binds Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ and inhibits its phosphatase activity, suggesting that RPTPβ/ζ may be involved in the regulation of ethanol effects. To test this hypothesis, we have treated adolescent mice with the RPTPβ/ζ inhibitor MY10 (60 mg/kg) before an acute ethanol (6 g/kg) administration. Treatment with MY10 completely prevented the ethanol-induced neurogenic loss in the hippocampus of both male and female mice. In flow cytometry studies, ethanol tended to increase the number of NeuN+/activated Caspase-3+ cells particularly in female mice, but no significant effects were found. Ethanol increased Iba1+ cell area and the total marked area in the hippocampus of female mice, suggesting sex differences in ethanol-induced microgliosis. In addition, ethanol reduced the circulating levels of IL-6 and IL-10 in both sexes, although this reduction was only found significant in males and not affected by MY10 treatment. Interestingly, MY10 alone increased the total marked area and the number of Iba1+ cells only in the female hippocampus, but tended to reduce the circulating levels of TNF-α only in male mice. In summary, the data identify a novel modulatory role of RPTPβ/ζ on ethanol-induced loss of hippocampal neurogenesis, which seems unrelated to glial and inflammatory responses. The data also suggest sex differences in RPTPβ/ζ function that may be relevant to immune responses and ethanol-induced microglial responses.
Collapse
Affiliation(s)
- Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - María Rodríguez-Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Alcorcón, 28925 Madrid, Spain
| | - Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Alcorcón, 28925 Madrid, Spain
| | - Teresa Fontán-Baselga
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - María Carmen Ovejero-Benito
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Alcorcón, 28925 Madrid, Spain
| | - Javier Carrasco
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Marco Moreno-Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Julio Sevillano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - María Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - José María Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Alcorcón, 28925 Madrid, Spain.
| |
Collapse
|
28
|
Tang C, Jin Y, Wang H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front Synaptic Neurosci 2022; 14:1054605. [PMID: 36530954 PMCID: PMC9755596 DOI: 10.3389/fnsyn.2022.1054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication caused by sepsis, and is responsible for increased mortality and poor outcomes in septic patients. Neurological dysfunction is one of the main manifestations of SAE patients. Patients may still have long-term cognitive impairment after hospital discharge, and the underlying mechanism is still unclear. Here, we first outline the pathophysiological changes of SAE, including neuroinflammation, glial activation, and blood-brain barrier (BBB) breakdown. Synapse dysfunction is one of the main contributors leading to neurological impairment. Therefore, we summarized SAE-induced synaptic dysfunction, such as synaptic plasticity inhibition, neurotransmitter imbalance, and synapses loss. Finally, we discuss the alterations in the synapse, synapse formation, and mediators associated with synapse formation during SAE. In this review, we focus on the changes in synapse/synapse formation caused by SAE, which can further understand the synaptic dysfunction associated with neurological impairment in SAE and provide important insights for exploring appropriate therapeutic targets of SAE.
Collapse
Affiliation(s)
| | | | - Huan Wang
- College of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
29
|
Wang X, Liang B, Li J, Pi X, Zhang P, Zhou X, Chen X, Zhou S, Yang R. Identification and characterization of four immune-related signatures in keloid. Front Immunol 2022; 13:942446. [PMID: 35967426 PMCID: PMC9365668 DOI: 10.3389/fimmu.2022.942446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
A keloid is a fibroproliferative disorder of unknown etiopathogenesis that requires ill-defined treatment. Existing evidence indicates that the immune system plays an important role in the occurrence and development of keloid. However, there is still a lack of research on the immune-related signatures of keloid. Here we identified immune-related signatures in keloid and explored their pathological mechanisms. Transcriptomic datasets (GSE7890, GSE92566, and GSE44270) of keloid and normal skin tissues were obtained from the Gene Expression Omnibus database. The overlap of differentially expressed genes and immune-related genes was considered as differentially expressed immune-related genes (DEIGs). Functional analysis, expression, and distribution were applied to explore the function and characteristics of DEIGs, and the expression of these DEIGs in keloid and normal skin tissues was verified by immunohistochemistry. Finally, we conducted interactive network analysis and immune infiltration analysis to determine the therapeutic potential and immune correlation. We identified four DEIGs (LGR5, PTN, JAG1, and DKK1). In these datasets, only GSE7890 met the screening criteria. In the GSE7890 dataset, DKK1 and PTN were downregulated in keloid, whereas JAG1 and LGR5 were upregulated in keloid. In addition, we obtained the same conclusion through immunohistochemistry. Functional analysis indicated that these four DEIGs were mainly involved in stem cell, cell cycle, UV response, and therapy resistance. Through interactive network analysis, we found that these DEIGs were associated with drugs currently used to treat keloid, such as hydrocortisone, androstanolone, irinotecan, oxaliplatin, BHQ-880, and lecoleucovorin. Finally, many immune cells, including CD8+ T cells, resting memory CD4+ T cells, and M1 macrophages, were obtained by immune infiltration analysis. In conclusion, we identified four immune signaling molecules associated with keloid (LGR5, PTN, JAG1, and DKK1). These immune-related signaling molecules may be important modules in the pathogenesis of keloid. Additionally, we developed novel therapeutic targets for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bo Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiehua Li
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Peng Zhang
- Neijiang Health Vocational College, Neijiang, China
| | - Xinzhu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| |
Collapse
|
30
|
Ding Q, Yang W, Luo M, Xu C, Xu Z, Pang F, Cai Y, Anashkina AA, Su X, Chen N, Jiang Q. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data. Brief Bioinform 2022; 23:6649282. [DOI: 10.1093/bib/bbac300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 07/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The rapid development of single-cel+l RNA sequencing (scRNA-seq) technology provides unprecedented opportunities for exploring biological phenomena at the single-cell level. The discovery of cell types is one of the major applications for researchers to explore the heterogeneity of cells. Some computational methods have been proposed to solve the problem of scRNA-seq data clustering. However, the unavoidable technical noise and notorious dropouts also reduce the accuracy of clustering methods. Here, we propose the cauchy-based bounded constraint low-rank representation (CBLRR), which is a low-rank representation-based method by introducing cauchy loss function (CLF) and bounded nuclear norm regulation, aiming to alleviate the above issue. Specifically, as an effective loss function, the CLF is proven to enhance the robustness of the identification of cell types. Then, we adopt the bounded constraint to ensure the entry values of single-cell data within the restricted interval. Finally, the performance of CBLRR is evaluated on 15 scRNA-seq datasets, and compared with other state-of-the-art methods. The experimental results demonstrate that CBLRR performs accurately and robustly on clustering scRNA-seq data. Furthermore, CBLRR is an effective tool to cluster cells, and provides great potential for downstream analysis of single-cell data. The source code of CBLRR is available online at https://github.com/Ginnay/CBLRR.
Collapse
Affiliation(s)
- Qian Ding
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow, Russia
| | - Xi Su
- Foshan Maternity & Child Healthcare Hospital, Southern Medical University , Foshan, Guangdong, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, Shandong, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Hamilton A, Rizzo R, Brod S, Ono M, Perretti M, Cooper D, D'Acquisto F. The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain Behav Immun 2022; 102:179-194. [PMID: 35217174 DOI: 10.1016/j.bbi.2022.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.
Collapse
Affiliation(s)
- Alice Hamilton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Rizzo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London SW7 2AZ, England
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London SW15, 4JD, UK.
| |
Collapse
|
32
|
Xia T, Chen D, Liu X, Qi H, Wang W, Chen H, Ling T, Otkur W, Zhang CS, Kim J, Lin SC, Piao HL. Midkine noncanonically suppresses AMPK activation through disrupting the LKB1-STRAD-Mo25 complex. Cell Death Dis 2022; 13:414. [PMID: 35487917 PMCID: PMC9054788 DOI: 10.1038/s41419-022-04801-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Midkine (MDK), a secreted growth factor, regulates signal transduction and cancer progression by interacting with receptors, and it can be internalized into the cytoplasm by endocytosis. However, its intracellular function and signaling regulation remain unclear. Here, we show that intracellular MDK interacts with LKB1 and STRAD to disrupt the LKB1-STRAD-Mo25 complex. Consequently, MDK decreases the activity of LKB1 to dampen both the basal and stress-induced activation of AMPK by glucose starvation or treatment of 2-DG. We also found that MDK accelerates cancer cell proliferation by inhibiting the activation of the LKB1-AMPK axis. In human cancers, compared to other well-known growth factors, MDK expression is most significantly upregulated in cancers, especially in liver, kidney and breast cancers, correlating with clinical outcomes and inversely correlating with phosphorylated AMPK levels. Our study elucidates an inhibitory mechanism for AMPK activation, which is mediated by the intracellular MDK through disrupting the LKB1-STRAD-Mo25 complex.
Collapse
|
33
|
Gramage E, Sáiz J, Fernández-Calle R, Martín YB, Uribarri M, Ferrer-Alcón M, Barbas C, Herradón G. Metabolomics and biochemical alterations caused by pleiotrophin in the 6-hydroxydopamine mouse model of Parkinson's disease. Sci Rep 2022; 12:3577. [PMID: 35246557 PMCID: PMC8897456 DOI: 10.1038/s41598-022-07419-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Pleiotrophin (PTN) is a cytokine involved in nerve tissue repair processes, neuroinflammation and neuronal survival. PTN expression levels are upregulated in the nigrostriatal pathway of Parkinson's Disease (PD) patients. We aimed to characterize the dopaminergic injury and glial responses in the nigrostriatal pathway of mice with transgenic Ptn overexpression in the brain (Ptn-Tg) after intrastriatal injection of the catecholaminergic toxic 6-hydroxydopamine (6-OHDA) at a low dose (5 µg). Ten days after surgery, the injection of 6-OHDA induced a significant decrease of the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and of the striatal TH contents in Wild type (Wt) mice. In contrast, these effects of 6-OHDA were absent in Ptn-Tg mice. When the striatal Iba1 and GFAP immunoreactivity was studied, no statistical differences were found between vehicle-injected Wt and Ptn-Tg mice. Furthermore, 6-OHDA did not cause robust glial responses neither on Wt or Ptn-Tg mice 10 days after injections. In metabolomics studies, we detected interesting metabolites that significantly discriminate the more injured 6-OHDA-injected Wt striatum and the more protected 6-OHDA-injected Ptn-Tg striatum. Particularly, we detected groups of metabolites, mostly corresponding to phospholipids, whose trends were opposite in both groups. In summary, the data confirm lower 6-OHDA-induced decreases of TH contents in the nigrostriatal pathway of Ptn-Tg mice, suggesting a neuroprotective effect of brain PTN overexpression in this mouse model of PD. New lipid-related PD drug candidates emerge from this study and the data presented here support the increasingly recognized "lipid cascade" in PD.
Collapse
Affiliation(s)
- Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Yasmina B Martín
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.,Departamento de Anatomía, Facultad de Medicina, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda KM 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Zamudio, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
34
|
Ryan EO, Jiang Z, Nguyen H, Wang X. Interactions of Pleiotrophin with a Structurally Defined Heparin Hexasaccharide. Biomolecules 2021; 12:biom12010050. [PMID: 35053198 PMCID: PMC8773689 DOI: 10.3390/biom12010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Pleiotrophin (PTN) is a potent cytokine that plays an important role in neural generation, angiogenesis, inflammation, and cancers. Its interactions with the polysaccharide glycosaminoglycan (GAG) are crucial to PTN’s biological activities. In this study, we investigated the interaction of selectively protonated PTN with the heparin hexasaccharide ΔUA2S-(GlcNS6S-IdoA2S)2-GlcNS6S using solution NMR. The use of a structurally defined oligosaccharide and selectively protonated PTN enabled us to obtain intermolecular contacts using unfiltered NOESY experiments, significantly increasing the amount of high-resolution structural information obtainable. Our data showed that PTN’s arginines, lysines, and tryptophans in the two structured domains have strong interactions with the 2-O-sulfated uronate protons in the heparin hexasaccharide. Consistent with the NMR data is the observation that 2-O-desulfation and N-desulfation/N-acetylation significantly decreased heparin hexasaccharides’ affinity for PTN, while 6-O-desulfation only modestly affected the interactions with PTN. These results allowed us to hypothesize that PTN has a preference for sulfate clusters centered on the GlcNS6S-IdoA2S disaccharide. Using these data and the fact that PTN domains mostly bind heparin hexasaccharides independently, models of the PTN-heparin complex were constructed.
Collapse
Affiliation(s)
| | | | | | - Xu Wang
- Correspondence: ; Tel.: +1-480-7278256
| |
Collapse
|
35
|
Olmeda D, Cerezo‐Wallis D, Mucientes C, Calvo TG, Cañón E, Alonso‐Curbelo D, Ibarz N, Muñoz J, Rodriguez‐Peralto JL, Ortiz‐Romero P, Ortega S, Soengas MS. Live imaging of neolymphangiogenesis identifies acute antimetastatic roles of dsRNA mimics. EMBO Mol Med 2021; 13:e12924. [PMID: 34762341 PMCID: PMC8649872 DOI: 10.15252/emmm.202012924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Long-range communication between tumor cells and the lymphatic vasculature defines competency for metastasis in different cancer types, particularly in melanoma. Nevertheless, the discovery of selective blockers of lymphovascular niches has been compromised by the paucity of experimental systems for whole-body analyses of tumor progression. Here, we exploit immunocompetent and immunodeficient mouse models for live imaging of Vegfr3-driven neolymphangiogenesis, as a versatile platform for drug screening in vivo. Spatiotemporal analyses of autochthonous melanomas and patient-derived xenografts identified double-stranded RNA mimics (dsRNA nanoplexes) as potent inhibitors of neolymphangiogenesis, metastasis, and post-surgical disease relapse. Mechanistically, dsRNA nanoplexes were found to exert a rapid dual action in tumor cells and in their associated lymphatic vasculature, involving the transcriptional repression of the lymphatic drivers Midkine and Vegfr3, respectively. This suppressive function was mediated by a cell-autonomous type I interferon signaling and was not shared by FDA-approved antimelanoma treatments. These results reveal an alternative strategy for targeting the tumor cell-lymphatic crosstalk and underscore the power of Vegfr3-lymphoreporters for pharmacological testing in otherwise aggressive cancers.
Collapse
Affiliation(s)
- David Olmeda
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Daniela Cerezo‐Wallis
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
Spanish National Center for Cardiovascular Research (CNIC)MadridSpain
| | - Cynthia Mucientes
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Tonantzin G Calvo
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Estela Cañón
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Direna Alonso‐Curbelo
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
Memorial Sloan Kettering Cancer CentreNew YorkNYUSA
| | - Nuria Ibarz
- Proteomics UnitBiotechnology Programme, ProteoRed‐ISCIIISpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Javier Muñoz
- Proteomics UnitBiotechnology Programme, ProteoRed‐ISCIIISpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José L Rodriguez‐Peralto
- Instituto de Investigación i+12Hospital 12 de OctubreUniversidad Complutense Madrid Medical SchoolMadridSpain
| | - Pablo Ortiz‐Romero
- Department of DermatologyHospital 12 de OctubreUniversidad Complutense Madrid Medical SchoolMadridSpain
| | - Sagrario Ortega
- Mouse Genome Editing Core UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - María S Soengas
- Melanoma LaboratoryMolecular Oncology ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
36
|
Su YA, Bousman CA, Liu Q, Lv XZ, Li JT, Lin JY, Yu X, Tian L, Si TM. Anxiety symptom remission is associated with genetic variation of PTPRZ1 among patients with major depressive disorder treated with escitalopram. Pharmacogenet Genomics 2021; 31:172-176. [PMID: 34081644 DOI: 10.1097/fpc.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Genome-wide analyses of antidepressant response have suggested that genes initially associated with risk for schizophrenia may also serve as promising candidates for selective serotonin reuptake inhibitor (SSRI) efficacy. Protein tyrosine phosphatase, receptor-type, zeta-1 (PTPRZ1) has previously been shown to be associated with schizophrenia, but it has not been investigated as a predictor of antidepressant efficacy. The main objective of the study was to assess whether SSRI-mediated depressive and anxiety symptom remission in Chinese patients with major depressive disorder (MDD) are associated with specific PTPRZ1 variants. METHODS Two independent cohorts were investigated, the first sample (N = 344) received an SSRI (i.e. fluoxetine, sertraline, citalopram, escitalopram, fluvoxamine, or paroxetine) for 8 weeks. The second sample (N = 160) only received escitalopram for 8 weeks. Hamilton Depression and Hamilton Anxiety Rating Scale scores at 8-weeks post-baseline in both cohorts were used to determine remission status. Five PTPRZ1 variants (rs12154537, rs6466810, rs6466808, rs6955395, and rs1918031) were genotyped in both cohorts. RESULTS Anxiety symptom remission was robustly associated with PTPRZ1 rs12154537 (P = 0.004) and the G-G-G-G haplotype (rs12154537-rs6466810-rs6466808-rs6955395; P = 0.005) in cohort 2 but not cohort 1 (mixed SSRI use). Associations with depressive symptom remission did not survive correction for multiple testing. CONCLUSIONS These findings suggest that PTPRZ1 variants may serve as a marker of escitalopram-mediated anxiety symptom remission in MDD.
Collapse
Affiliation(s)
- Yun-Ai Su
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - Qi Liu
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao-Zhen Lv
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ji-Tao Li
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-Yu Lin
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xin Yu
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tian-Mei Si
- Clinical Psychopharmacology Division, Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
37
|
Slow Off-Rate Modified Aptamer (SOMAmer) Proteomic Analysis of Patient-Derived Malignant Glioma Identifies Distinct Cellular Proteomes. Int J Mol Sci 2021; 22:ijms22179566. [PMID: 34502484 PMCID: PMC8431317 DOI: 10.3390/ijms22179566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Malignant gliomas derive from brain glial cells and represent >75% of primary brain tumors. This includes anaplastic astrocytoma (grade III; AS), the most common and fatal glioblastoma multiforme (grade IV; GBM), and oligodendroglioma (ODG). We have generated patient-derived AS, GBM, and ODG cell models to study disease mechanisms and test patient-centered therapeutic strategies. We have used an aptamer-based high-throughput SOMAscan® 1.3K assay to determine the proteomic profiles of 1307 different analytes. SOMAscan® proteomes of AS and GBM self-organized into closely adjacent proteomes which were clearly distinct from ODG proteomes. GBM self-organized into four proteomic clusters of which SOMAscan® cluster 4 proteome predicted a highly inter-connected proteomic network. Several up- and down-regulated proteins relevant to glioma were successfully validated in GBM cell isolates across different SOMAscan® clusters and in corresponding GBM tissues. Slow off-rate modified aptamer proteomics is an attractive analytical tool for rapid proteomic stratification of different malignant gliomas and identified cluster-specific SOMAscan® signatures and functionalities in patient GBM cells.
Collapse
|
38
|
Vicente-Rodríguez M, Pérez-García C, Gramage E, Herradón G. Genetic inactivation of midkine, not pleiotrophin, facilitates extinction of alcohol-induced conditioned place preference. Neurosci Lett 2021; 762:136156. [PMID: 34358624 DOI: 10.1016/j.neulet.2021.136156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Pleiotrophin (PTN) and midkine (MK) are growth factors that modulate alcohol consumption and reward. Since both PTN and MK limit the rewarding effects of alcohol, pharmacological potentiation of the PTN and MK signaling pathways has been proposed for the treatment of alcohol use disorders (AUD). Although the use of this therapy in the prevention of alcohol relapse is important, the potential role of these cytokines in extinguishing alcohol-induced seeking behavior is a key question that remains unanswered. To fill this gap, we have now studied the extinction of the conditioned place preference (CPP) induced by different doses of alcohol in Ptn knockout (Ptn-/-) and Mk knockout (Mk-/-) mice. The data confirm a higher sensitivity of Ptn-/- mice to the conditioning effects of a low dose (1 g/kg) and a rewarding dose (2 g/kg) of alcohol, while Mk-/- mice are only more susceptible to the conditioning effects of the low dose of this drug. More importantly, the percentage of Mk-/- mice, not Ptn-/- mice, that efficiently extinguished alcohol-induced CPP was significantly higher than that of Wt mice. Taken together, the data presented here confirm that Ptn and Mk are genetic factors that determine the conditioning effects of alcohol in mice and that Mk is a novel factor that plays an important role in the extinction of alcohol-induced CPP.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| |
Collapse
|
39
|
Reyes-Mata PM, Rojas-Mayorquín AE, Carrera-Quintanar L, González-Castillo C, Mireles-Ramírez MA, Guerrero-García JDJ, Ortuño-Sahagún D. Pleiotrophin serum level is increased in Relapsing-Remitting Multiple Sclerosis and correlates with sex, BMI and treatment. Arch Med Res 2021; 53:59-68. [PMID: 34247888 DOI: 10.1016/j.arcmed.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is an immune-mediated demyelinating disease mainly affecting the Central Nervous System (CNS). 80% of MS patients present the Relapsing-Remitting form (RRMS). Pleiotrophin (PTN), a cytokine previously associated with other autoimmune and neurological diseases, could play a role in the pathophysiology of RRMS due to its neuro and immunomodulatory effect. However, PTN has never been explored in RRMS patients. AIM OF THE STUDY To determine PTN serum levels in patients with RRMS, treated with Glatiramer acetate (GA) or Interferon-beta (IFN-β), as well as in non-treated patients and healthy controls as a first attempt to explore PTN in RRMS. METHODS PTN serum levels were quantified by ELISA in 57 patients and 18 controls. RESULTS We demonstrated that PTN serum levels are significantly higher in RRMS patients. In IFN-β treated patients alone, PTN correlated positively with time of disease evolution and time of IFN-β use and correlated negatively with the MS severity score (MSSS). When comparing groups according to weight status, we observed that PTN is statistically increased in overweight female patients and that weight does not affect male patients. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve analysis was higher for males compared to females. CONCLUSION PTN serum level is higher in RRMS patients and that is associated with sex, BMI and IFN-β treatment. Therefore, we propose that PTN could be playing a role in MS. Further studies must be performed to identify the exact role of PTN in this pathology.
Collapse
Affiliation(s)
- Paulina María Reyes-Mata
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Argelia Esperanza Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, México
| | - Lucrecia Carrera-Quintanar
- Laboratorio de Ciencias de los Alimentos, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Mario Alberto Mireles-Ramírez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano de Seguro Social, Guadalajara, Jalisco, México
| | - José de Jesús Guerrero-García
- Banco de Sangre Central, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano de Seguro Social, Guadalajara, Jalisco, México
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México.
| |
Collapse
|
40
|
del Campo M, Fernández-Calle R, Vicente-Rodríguez M, Martín Martínez S, Gramage E, Zapico JM, Haro M, Herradon G. Role of Receptor Protein Tyrosine Phosphatase β/ζ in Neuron-Microglia Communication in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22136646. [PMID: 34206170 PMCID: PMC8269034 DOI: 10.3390/ijms22136646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pleiotrophin (PTN) is a neurotrophic factor that regulates glial responses in animal models of different types of central nervous system (CNS) injuries. PTN is upregulated in the brain in different pathologies characterized by exacerbated neuroinflammation, including Parkinson’s disease. PTN is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, which is abundantly expressed in the CNS. Using a specific inhibitor of RPTPβ/ζ (MY10), we aimed to assess whether the PTN/RPTPβ/ζ axis is involved in neuronal and glial injury induced by the toxin MPP+. Treatment with the RPTPβ/ζ inhibitor MY10 alone decreased the viability of both SH-SY5Y neuroblastoma cells and BV2 microglial cultures, suggesting that normal RPTPβ/ζ function is involved in neuronal and microglial viability. We observed that PTN partially decreased the cytotoxicity induced by MPP+ in SH-SY5Y cells underpinning the neuroprotective function of PTN. However, MY10 did not seem to modulate the SH-SY5Y cell loss induced by MPP+. Interestingly, we observed that media from SH-SY5Y cells treated with MPP+ and MY10 decreases microglial viability but may elicit a neuroprotective response of microglia by upregulating Ptn expression. The data suggest a neurotrophic role of microglia in response to neuronal injury through upregulation of Ptn levels.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (M.d.C.); (R.F.-C.); (M.V.-R.); (S.M.M.); (E.G.)
| | - Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (M.d.C.); (R.F.-C.); (M.V.-R.); (S.M.M.); (E.G.)
| | - Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (M.d.C.); (R.F.-C.); (M.V.-R.); (S.M.M.); (E.G.)
| | - Sara Martín Martínez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (M.d.C.); (R.F.-C.); (M.V.-R.); (S.M.M.); (E.G.)
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (M.d.C.); (R.F.-C.); (M.V.-R.); (S.M.M.); (E.G.)
| | - José María Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (J.M.Z.); (M.H.)
| | - María Haro
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (J.M.Z.); (M.H.)
| | - Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain; (M.d.C.); (R.F.-C.); (M.V.-R.); (S.M.M.); (E.G.)
- Correspondence: ; Tel.: +34-91-3724700 (ext. 14840)
| |
Collapse
|
41
|
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021; 22:ijms22115812. [PMID: 34071721 PMCID: PMC8198922 DOI: 10.3390/ijms22115812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.
Collapse
|
42
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
43
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
44
|
Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J. Structural Brain Changes Associated with Overweight and Obesity. J Obes 2021; 2021:6613385. [PMID: 34327017 PMCID: PMC8302366 DOI: 10.1155/2021/6613385] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global health problem with a broad set of comorbidities, such as malnutrition, metabolic syndrome, diabetes, systemic hypertension, heart failure, and kidney failure. This review describes recent findings of neuroimaging and two studies of cell density regarding the roles of overnutrition-induced hypothalamic inflammation in neurodegeneration. These studies provided consistent evidence of smaller cortical thickness or reduction in the gray matter volume in people with overweight and obesity; however, the investigated brain regions varied across the studies. In general, bilateral frontal and temporal areas, basal nuclei, and cerebellum are more commonly involved. Mechanisms of volume reduction are unknown, and neuroinflammation caused by obesity is likely to induce neuronal loss. Adipocytes, macrophages of the adipose tissue, and gut dysbiosis in overweight and obese individuals result in the secretion of the cytokines and chemokines that cross the blood-brain barrier and may stimulate microglia, which in turn also release proinflammatory cytokines. This leads to chronic low-grade neuroinflammation and may be an important factor for apoptotic signaling and neuronal death. Additionally, significant microangiopathy observed in rat models may be another important mechanism of induction of apoptosis. Neuroinflammation in neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) may be similar to that in metabolic diseases induced by malnutrition. Poor cognitive performance, mainly in executive functions, in individuals with obesity is also discussed. This review highlights the neuroinflammatory and neurodegenerative mechanisms linked to obesity and emphasizes the importance of developing effective prevention and treatment intervention strategies for overweight and obese individuals.
Collapse
Affiliation(s)
- Erick Gómez-Apo
- Servicio de Anatomía Patológica, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, Mexico
| | - Alejandra Mondragón-Maya
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Martina Ferrari-Díaz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
45
|
Fernández-Calle R, Galán-Llario M, Gramage E, Zapatería B, Vicente-Rodríguez M, Zapico JM, de Pascual-Teresa B, Ramos A, Ramos-Álvarez MP, Uribarri M, Ferrer-Alcón M, Herradón G. Role of RPTPβ/ζ in neuroinflammation and microglia-neuron communication. Sci Rep 2020; 10:20259. [PMID: 33219280 PMCID: PMC7679445 DOI: 10.1038/s41598-020-76415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pleiotrophin (PTN) is a cytokine that is upregulated in different neuroinflammatory disorders. Using mice with transgenic PTN overexpression in the brain (Ptn-Tg), we have found a positive correlation between iNos and Tnfα mRNA and Ptn mRNA levels in the prefrontal cortex (PFC) of LPS-treated mice. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, which is mainly expressed in the central nervous system. We aimed to test if RPTPβ/ζ is involved in the modulation of neuroinflammatory responses using specific inhibitors of RPTPβ/ζ (MY10 and MY33-3). Treatment with MY10 potentiated LPS-induced microglial responses in the mouse PFC. Surprisingly, MY10 caused a decrease in LPS-induced NF-κB p65 expression, suggesting that RPTPβ/ζ may be involved in a novel mechanism of potentiation of microglial activation independent of the NF-κB p65 pathway. MY33-3 and MY10 limited LPS-induced nitrites production and iNos increases in BV2 microglial cells. SH-SY5Y neuronal cells were treated with the conditioned media from MY10/LPS-treated BV2 cells. Conditioned media from non-stimulated and from LPS-stimulated BV2 cells increased the viability of SH-SY5Y cultures. RPTPβ/ζ inhibition in microglial cells disrupted this neurotrophic effect of microglia, suggesting that RPTPβ/ζ plays a role in the neurotrophic phenotype of microglia and in microglia-neuron communication.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Begoña Zapatería
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - José M Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - M Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Derio, Spain
| | | | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| |
Collapse
|
46
|
Yang L, Kang K, Lin Y, Wu Y. Up-regulation of miR-137 can inhibit PTN in target manner to regulate PTN/PTPRZ pathway to prevent cognitive dysfunction caused by propofol. Am J Transl Res 2020; 12:7490-7500. [PMID: 33312384 PMCID: PMC7724353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the effects of miR-137 on cognitive dysfunction in rats induced by propofol (PRO). METHODS Male SD rats and SK-N-SH cells were purchased, and control and PRO groups were set up in the rats, and the same groups were set up in the cells. On the basis of the PRO group, miR-137 and PTN were up-regulated or down-regulated, and cognitive dysfunction and cell biological functions in each group were detected. RESULTS The cognitive function of rats induced by PRO might be affected. We observed that the escape latency of PRO group was significantly prolonged, with significantly lower percentage of time for target platform exploration and times of crossing the platform, while over-expression of miR-137 or knock down of PTN could change the above results. Under PRO intervention, the expression of miR-137 in SK-N-SH cells decreased in a dose-dependent manner, while the expression and protein level of PTN in SK-N-SH cells increased in a dose-dependent manner. Cytotoxicity test yielded a 30 μM concentration of PRO as the optimal experimental concentration. When miR-137 and PTN were up-regulated or down-regulated, PRO-induced cell apoptosis, proliferation and PTN/PTPRZ pathway protein phosphorylation level were effectively reversed. Dual luciferase reporter confirmed that miR-137 and PTN have targeted relationship. CONCLUSION Up-regulation of miR-137 can at least partially regulate PTN/PTPRZ pathway through the inhibition of PTN in a targeted manner, effectively inhibit cell apoptosis, and protect cognitive dysfunction caused by PRO.
Collapse
Affiliation(s)
- Liu Yang
- Anesthesiology Department, The First Affiliated Hospital of Dalian Medical UniversityDalian City, Liaoning Province, China
| | - Kai Kang
- Anesthesiology Department, Dalian Medical UniversityDalian City, Liaoning Province, China
| | - Yun Lin
- Anesthesiology Department, The First Affiliated Hospital of Dalian Medical UniversityDalian City, Liaoning Province, China
| | - Yue Wu
- Anesthesiology Department, The First Affiliated Hospital of Dalian Medical UniversityDalian City, Liaoning Province, China
| |
Collapse
|
47
|
McGlennon TW, Buchwald JN, Pories WJ, Yu F, Roberts A, Ahnfeldt EP, Menon R, Buchwald H. Bypassing TBI: Metabolic Surgery and the Link between Obesity and Traumatic Brain Injury-a Review. Obes Surg 2020; 30:4704-4714. [PMID: 33125676 DOI: 10.1007/s11695-020-05065-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Obesity is a common outcome of traumatic brain injury (TBI) that exacerbates principal TBI symptom domains identified as common areas of post-TBI long-term dysfunction. Obesity is also associated with increased risk of later-life dementia and Alzheimer's disease. Patients with obesity and chronic TBI may be more vulnerable to long-term mental abnormalities. This review explores the question of whether weight loss induced by bariatric surgery could delay or perhaps even reverse the progression of mental deterioration. Bariatric surgery, with its induction of weight loss, remission of type 2 diabetes, and other expressions of the metabolic syndrome, improves metabolic efficiency, leads to reversal of brain lesions seen on imaging studies, and improves function. These observations suggest that metabolic/bariatric surgery may be a most effective therapy for TBI.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, McGlennon MotiMetrics, Maiden Rock, WI, USA
| | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | | | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | - Rukmini Menon
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Henry Buchwald
- Surgery and Biomedical Engineering, Owen H. & Sarah Davidson Wangensteen Chair in Experimental Surgery, Emeritus, University of Minnesota Medical School, 420 Delaware Street SE, MMC 195, Minneapolis, MN, 55455, USA.
| |
Collapse
|
48
|
Cerezo-Wallis D, Contreras-Alcalde M, Troulé K, Catena X, Mucientes C, Calvo TG, Cañón E, Tejedo C, Pennacchi PC, Hogan S, Kölblinger P, Tejero H, Chen AX, Ibarz N, Graña-Castro O, Martinez L, Muñoz J, Ortiz-Romero P, Rodriguez-Peralto JL, Gómez-López G, Al-Shahrour F, Rabadán R, Levesque MP, Olmeda D, Soengas MS. Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nat Med 2020; 26:1865-1877. [PMID: 33077955 DOI: 10.1038/s41591-020-1073-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
An open question in aggressive cancers such as melanoma is how malignant cells can shift the immune system to pro-tumorigenic functions. Here we identify midkine (MDK) as a melanoma-secreted driver of an inflamed, but immune evasive, microenvironment that defines poor patient prognosis and resistance to immune checkpoint blockade. Mechanistically, MDK was found to control the transcriptome of melanoma cells, allowing for coordinated activation of nuclear factor-κB and downregulation of interferon-associated pathways. The resulting MDK-modulated secretome educated macrophages towards tolerant phenotypes that promoted CD8+ T cell dysfunction. In contrast, genetic targeting of MDK sensitized melanoma cells to anti-PD-1/anti-PD-L1 treatment. Emphasizing the translational relevance of these findings, the expression profile of MDK-depleted tumors was enriched in key indicators of a good response to immune checkpoint blockers in independent patient cohorts. Together, these data reveal that MDK acts as an internal modulator of autocrine and paracrine signals that maintain immune suppression in aggressive melanomas.
Collapse
Affiliation(s)
- Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Kevin Troulé
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Estela Cañón
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paula C Pennacchi
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sabrina Hogan
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Peter Kölblinger
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Héctor Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrew X Chen
- Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nuria Ibarz
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martinez
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO) and ProteoRed-ISCIII, Madrid, Madrid, Spain
| | - Javier Muñoz
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Madrid, Spain
| | - Pablo Ortiz-Romero
- Dermatology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain
| | - José L Rodriguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain.,Pathology Service, Hospital 12 de Octubre, Universidad Complutense Madrid Medical School, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raúl Rabadán
- Program for Mathematical Genomics, Departament of Systems Biology, Departament of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
49
|
Saeedi-Boroujeni A, Mahmoudian-Sani MR. COVID-19 Pandemic along with Pandemic of Lifestyle-Associated Diseases Victimizes Patients in an Inflammation Context! DUBAI MEDICAL JOURNAL 2020. [PMCID: PMC7270060 DOI: 10.1159/000508552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- *Mohammad-Reza Mahmoudian-Sani, Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, AJUMS, Golestan Avenue, Ahvaz 61357-15794 (Iran),
| |
Collapse
|
50
|
Calleja-Conde J, Fernández-Calle R, Zapico JM, Ramos A, de Pascual-Teresa B, Bühler KM, Echeverry-Alzate V, Giné E, Rodríguez de Fonseca F, López-Moreno JA, Herradón G. Inhibition of Receptor Protein Tyrosine Phosphatase β/ζ Reduces Alcohol Intake in Rats. Alcohol Clin Exp Res 2020; 44:1037-1045. [PMID: 32154588 DOI: 10.1111/acer.14321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pleiotrophin (PTN) and midkine (MK) are cytokines that are up-regulated in the prefrontal cortex (PFC) after alcohol administration and have been shown to reduce alcohol intake and reward. Both cytokines are endogenous inhibitors of receptor protein tyrosine phosphatase (RPTP) β/ζ (a.k.a. PTPRZ1). Recently, a new compound named MY10 was designed with the aim of mimicking the activity of PTN and MK. MY10 has already shown promising results regulating alcohol-related behaviors in mice. METHODS We have now tested the effects of MY10 on alcohol operant self-administration and Drinking In the Dark-Multiple Scheduled Access (DID-MSA) paradigms in rats. Gene expression of relevant genes in the PTN/MK signaling pathway in the PFC was analyzed by real-time PCR. RESULTS MY10, at the highest dose tested (100 mg/kg), reduced alcohol consumption in the alcohol operant self-administration paradigm (p = 0.040). In the DID-MSA paradigm, rats drank significantly less alcohol (p = 0.019) and showed a significant decrease in alcohol preference (p = 0.002). We observed that the longer the exposure to alcohol, the greater the suppressing effects of MY10 on alcohol consumption. It was demonstrated that the effects of MY10 were specific to alcohol since saccharin intake was not affected by MY10 (p = 0.804). MY10 prevented the alcohol-induced down-regulation of Ptprz1 (p = 0.004) and anaplastic lymphoma kinase (Alk; p = 0.013) expression. CONCLUSIONS Our results support and provide further evidence regarding the efficacy of MY10 on alcohol-related behaviors and suggest the consideration of the blockade of RPTPβ/ζ as a target for reducing excessive alcohol consumption.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, (RF-C, GH), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - José M Zapico
- Departamento de Química y Bioquímica, (JMZ, AR, BP-T), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, (JMZ, AR, BP-T), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, (JMZ, AR, BP-T), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - Kora-Mareen Bühler
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Victor Echeverry-Alzate
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratorio de Medicina Regenerativa, (VE-A, FRF), Hospital Regional Universitario Carlos Haya, Fundación IMABIS, Málaga, Spain
| | - Elena Giné
- Department of Cellular Biology, (EG), School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, (VE-A, FRF), Hospital Regional Universitario Carlos Haya, Fundación IMABIS, Málaga, Spain
| | - Jose Antonio López-Moreno
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, (RF-C, GH), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| |
Collapse
|