1
|
Wang J, Yan F, Xiong M, Dong J, Yang W, Xu X. Effects of Yeast β-Glucan Supplementation on Calf Intestinal and Respiratory Health. Animals (Basel) 2025; 15:997. [PMID: 40218391 PMCID: PMC11988033 DOI: 10.3390/ani15070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
The physiological functions of newborn calves are undeveloped, especially the immune system, making them susceptible to infections. In recent years, the theory of trained immunity has attracted attention and provided new strategies to prevent unknown infections in animals. This study investigated the effects of feeding yeast β-glucan on the intestinal and respiratory health of calves during the suckling period. Newborn Holstein calves (average birth weight: 36.18 ± 0.61 kg, mean ± SE) were randomly assigned to two groups: the PO (Per Os) group (n = 22) and the CON (Control) group (n = 22). Calves in the PO group were fed a yeast β-glucan solution (0.1 g/mL, 65 mg/kg body weight) at 3 and 6 days of age, respectively, while calves in the CON group received equal volumes of sterile saline orally at the same time. Blood and fecal samples were collected at 7 and 30 days of age, respectively. The results showed that (1) Compared to the CON group, being fed yeast β-glucan resulted in an inflammatory response after 24 h of the second administration, including increased gene expression of interleukin-6 (IL-6, p < 0.01), interleukin-1 beta (IL-1β, p < 0.01), and malonaldehyde (MDA, p < 0.001) content. Also, stimulation with β-glucan increased the concentrations of secreted immunoglobulin A (sIgA, p < 0.01) and defensins (p < 0.05) in the rectal feces. (2) Pre-stimulation with yeast β-glucan effectively reduced the incidence of diarrhea (p < 0.05) and bovine respiratory disease (BRD, p < 0.05) from day 31 to day 60. (3) At 30 days of age, the pre-stimulated calves had significantly lower serum DAO (p < 0.001) and MDA levels (p < 0.05), while they had higher levels of serum IL-6 (p < 0.01) and fecal slgA (p < 0.05) than calves in the CON group. (4) Pre-stimulation with yeast β-glucan altered the intestinal bacterial community; the Beta diversity results showed that the CON group and the PO group were clustered separately in the principal coordinate analysis (PCoA) graph. Obviously, the PO group sample points were more clustered. In conclusion, this study highlights the potential of yeast β-glucan-induced trained immunity to improve calf health during the suckling period. The findings offer new insights into the prevention of intestinal and respiratory infections in calves.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiurong Xu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.W.); (F.Y.); (M.X.); (J.D.); (W.Y.)
| |
Collapse
|
2
|
Chen Y, Zhang J, Hou X, Cai S, Zhang J, Gou Y, Zhang H, Zhai Y, Yuan H. Xingnao Jiutan tablets modulate gut microbiota and gut microbiota metabolism to alleviate cerebral ischemia/reperfusion injury. Front Cell Infect Microbiol 2025; 14:1497563. [PMID: 40051840 PMCID: PMC11882549 DOI: 10.3389/fcimb.2024.1497563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
Introduction Xingnao Jiutan tablets (XNJT), a compound Chinese medicine, have been applied to the treatment of the sequelae of cerebral thrombosis or cerebral hemorrhage, transient cerebral ischemia, and central retinal vein obstruction, etc., but the underlying mechanisms are not yet clear. This research focused on examining the impact of XNJT for cerebral ischemia/reperfusion (MCAO/R) injury, utilizing gut microbiota and metabolomic studies. Methods The primary components of XNJT were identified through the application of the HPLC technique. We established a MCAO/ R model in mice and conducted behavioral evaluations, cerebral blood flow measurements, and TTC staining. We used ELISA, high-throughput 16S rDNA gene sequencing, and metabolomics techniques to detect inflammatory factors, microbial populations, and metabolites, respectively. Finally, we performed Spearman correlation analysis to investigate the relationships among gut microbiota and metabolites, comprehensively exploring the mechanisms of XNJT to alleviate cerebral ischemia-reperfusion injury. Results We discovered that XNJT effectively enhanced neurological performance, alleviated cerebral infarction, diminished neuronal cell death, and increased cerebral blood flow. Moreover, XNJT downregulated the secretion of pro-inflammatory cytokines like TNF, IL-6, and IL-1b. Additionally, XNJT improved gut microbiota levels in MCAO/R mice, particularly Bacteroides, Firmicutes, Escherichia-Shigella, and Ligilactobacillus. Furthermore, XNJT primarily modulated differential metabolites in the gut through Glycerophospholipid, Linoleic acid, and Sphingolipid metabolism pathways. Spearman correlation analysis revealed significant associations among intestinal microbiota and various metabolites. Discussion In summary, our findings suggest that XNJT can improve cerebral ischemia/reperfusion injury outcomes, reduce inflammatory responses, and regulate gut microbiota and differential metabolites. It's possible that the potential mechanisms are connected to controlling gut microbiota and metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital,
Tianjin, China
| |
Collapse
|
3
|
Silamiķele L, Silamiķelis I, Kotoviča PP, Kloviņš J. Bacterial targets of fecal host miRNAs in high-fat diet-fed mice. PLoS One 2025; 20:e0315871. [PMID: 39932930 PMCID: PMC11813116 DOI: 10.1371/journal.pone.0315871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025] Open
Abstract
The gut microbiome composition is intricately linked to the host's health status, yet the mechanisms underlying its interaction with the host are not fully understood. MicroRNAs (miRNAs), facilitating intercellular communication, are found in bodily fluids, including the intestinal content, where they may affect the microbiome. However, their role in type 2 diabetes (T2D)-associated microbiome and treatment implications are not explored. Our study investigated how host miRNAs may influence gut microbiome changes related to metformin treatment in a T2D mouse model. Analyzing fecal and gut mucosal samples via small RNA sequencing, we correlated results with microbiome sequencing data, identifying miRNA-microbiome correlations, bacterial targets, and proteins targeted in these bacteria. Significant differences in miRNA expression based on diet and intestinal location were noted, with minor effects from metformin treatment in the proximal small intestine of non-diabetic male mice. Key fecal miRNAs targeting bacteria included mmu-miR-5119, mmu-miR-5126, mmu-miR-6538, and mmu-miR-2137, primarily affecting Oscillospiraceae_NOV, Lachnospiraceae_NOV, and Bacteroides. Our analysis of targeted proteins revealed diverse biological and molecular effects. Further research into miRNA-bacteria interactions could lead to new strategies for manipulating the gut microbiome in T2D and beyond.
Collapse
Affiliation(s)
| | | | | | - Jānis Kloviņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
4
|
Wang Y, Sheng Z, Li H, Tan X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. The effects of Fraxini cortex and Andrographis herba on Escherichia coli-induced diarrhea in chicken. Poult Sci 2025; 104:104824. [PMID: 39874706 PMCID: PMC11810841 DOI: 10.1016/j.psj.2025.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Escherichia coli (E. coli) is a type of pathogenic bacteria that often causes diarrhea in poultry. While antibiotics can control E. coli-induced diarrhea in chickens, it can lead the ongoing proliferation of antibiotic resistance. Traditional Chinese medicines (TCMs) that effectively protect against and treat chicken diarrhea caused by E. coli are an encouraging alternative. That enhance poultry immunity, curtail antibiotic resistance, and provide a secure, eco-friendly, and efficacious option for the livestock and poultry industry. In this study, the model of chicken diarrhea induced by E. coli was established, and different TCM formulas were used for treatment, and finally the formula with the best effect was screened out. The research also investigated the impact of these formulas on gut microbiota and serum metabolites in chickens, using 16S rRNA sequencing technology and metabolomics. Mass spectrometry technology and network pharmacology were used to analyze the optimal TCM formula corroborated by molecular docking and qPCR for further explore mechanism exploration. The findings indicated that Fraxini cortex and Andrographis herba dramatically lowered mortality rates and alleviated pathologic changes in cases of avian E. coli diarrhea (P < 0.05). Fraxini cortex and Andrographis herba significantly boosted the abundance of Bacteroidetes (P < 0.05) and mainly enhanced cysteine and methionine metabolic pathways. Moreover, 97 active ingredients in Fraxini cortex and Andrographis herba were identified, along with 1425 diarrhea-related targets, primarily enriched in the MAPK signaling pathway. Molecular docking and qPCR revealed that the crucial active ingredients in Fraxini cortex and Andrographis herba bonded effectively with disease targets and treated diarrhea by regulating the MAPK signaling pathway. This suggests that Fraxini cortex and Andrographis herba exerts an optimal effect on diarrhea by multi-target and multi-pathway regulation of metabolic pathways and gut microbiota.
Collapse
Affiliation(s)
- Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zhenwei Sheng
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
5
|
Wang Y, He X, Qian Z, Li S, Jing M, Li X, Shen W, Xue S, Li H, Chen L. Exploring Dietary Composition in an Invasive Apple Snail From Different Habitats Combining With Intestinal Microbiota and Metabolomics. Integr Zool 2025. [PMID: 39794878 DOI: 10.1111/1749-4877.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
Pomacea canaliculata is recognized as a globally invasive aquatic species. Analyses of intestinal microbiota, dietary composition, and metabolism of invasive species can enhance our understanding of their feeding strategies and physiological adaptation strategies to the environment. Intestinal content samples were collected from P. canaliculata inhabiting three distinct environments including a pond, a river, and a ditch. These samples were subjected to 16S rRNA gene sequencing analysis and multiple metabarcoding analyses, including eukaryotic 18S rRNA, mitochondrial cytochrome c oxidase I (COI), and chloroplast rbcL genes. In addition, metabolomics analysis was conducted on the intestinal content samples to investigate metabolic change. The highest dietary diversity in P. canaliculata was observed in the ditch, and females exhibited a higher dietary diversity than males in the pond. The 18S rRNA gene has a high potential for identifying the dietary components of omnivorous species. The intestinal microbiota of P. canaliculata from different habitats displayed significant variations, attributed to differences in food resources and other environmental factors. Bacteria in the aquatic environment had minimal impact on the intestinal microbiota of P. canaliculata. Overall, P. canaliculata exhibited adaptive changes in physiological characteristics across different habitats, including alterations in diet, which, in turn, influence microbiota and metabolic pathways such as amino acid biosynthesis in the intestine. The present study investigated the physiological mechanisms that enable P. canaliculata to adapt to diverse habitats, considering various factors including diet, which is important for comprehending its invasive potential and the subsequent threats it poses to aquatic ecosystems.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Xinni He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zijin Qian
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuxian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Muzi Jing
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Xuexia Li
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Wenjia Shen
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Shaoshuai Xue
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Hong Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lian Chen
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Chen W, Zhou Z, Qi R, Zhou J, Liang H, Huang P, Zou Z, Dong L, Li H, Du B, Li P. Ameliorative effects of Trichosanthes kirilowii Maxim. seed oil on hyperlipidemia rats associated with the regulation of gut microbiology and metabolomics. Food Res Int 2024; 197:115141. [PMID: 39593355 DOI: 10.1016/j.foodres.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T. kirilowii) seed oil rich in conjugated linolenic acid in HFD-induced hyperlipidemic rats, by the gut microbiome, cecum bile acids (BAs), and serum metabolomics. The results showed that T. kirilowii seed oil improved dyslipidemia, hepatic steatosis, oxidative stress, and inflammatory responses in HFD-induced rats. Meanwhile, T. kirilowii seed oil inhibited sterol regulatory element-binding protein 1c (SREBP-1c) mediated fatty acid synthesis and upregulated cholesterol 7-alpha hydroxylase (CYP7A1) mediated hepatic cholesterol metabolism to exert hypolipidemic effects. The administration of high dose T. kirilowii seed oil (THD) improved gut microbiota dysbiosis, increased the relative abundance of beneficial bacteria Romboutsia and unidentified_Oscillospiraceae, and decreased the relative abundance of Christensenellaceae_R-7 group, Phascolarctobacterium, and Bacteroides in HFD-induced rats. T. kirilowii seed oil reduced the accumulation of cecum primary BAs in HFD-induced rats. In addition, THD reversed the HFD-induced changes in 24 serum metabolites including leucine, isoleucine, acetylcarnitine, and glucose. Metabolic pathway enrichment analysis of the differential metabolites revealed that valine, leucine and isoleucine metabolism, butanoate metabolism, citrate cycle, and glycolysis were potential metabolic pathways involved in the anti-hyperlipidemic effects of T. kirilowii seed oil. In conclusion, this study found that dietary T. kirilowii seed oil alleviated gut microbiota dysbiosis and improved metabolic disorders in hyperlipidemic rats. This provides new insights into the anti-hyperlipidemic mechanism by which other families of PUFAs are derived from different plants.
Collapse
Affiliation(s)
- Weili Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhangbao Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruida Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiying Liang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hua Li
- Anhui Youyu Kuayue Food Development Co., Ltd, Anqing, Anhui 246300, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
7
|
Wu C, Ma H, Lu S, Shi X, Liu J, Yang C, Zhang R. Effects of bamboo leaf flavonoids on growth performance, antioxidants, immune function, intestinal morphology, and cecal microbiota in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7656-7667. [PMID: 38770921 DOI: 10.1002/jsfa.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Hui Ma
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Shuwan Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Xueyan Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Jinsong Liu
- Vegamax Green Animal Health products Key agricultural Enterprise Research Institute of Zhejiang Province, Zhejiang Vegamax Biotechnology Co., Ltd, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| |
Collapse
|
8
|
Zhou P, Hao Z, Chen Y, Zhang Z, Xu W, Yu J. Association between gut microbiota and diabetic microvascular complications: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1364280. [PMID: 39157683 PMCID: PMC11327146 DOI: 10.3389/fendo.2024.1364280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/20/2024] Open
Abstract
Background Gut microbiota (GM) homeostasis in the human body is closely associated with health, which can be used as a regulator for preventing the onset and progression of disease. Diabetic microvascular complications bring about not only a huge economic burden to society, but also miserable mental and physical pain. Thus, alteration of the GM may be a method to delay diabetic microvascular complications. Objective A two-sample Mendelian randomization (MR) analysis was conducted to reveal the causal inference between GM and three core diabetic microvascular complications, namely, diabetic kidney disease (DKD), diabetic retinopathy (DR), and diabetic neuropathy (DNP). Methods First, genome-wide association study (GWAS) summary statistics for GM from the MiBioGen consortium and three main diabetic microvascular complications acquired from the FinnGen research project were assessed. Second, a forward MR analysis was conducted to assess the causality of GM on the risk of DKD, DR, and DNP. Third, a series of sensitivity studies, such as heterogeneity tests, pleiotropy evaluations, and leave-one-out analyses, were further conducted to assess the accuracy of MR analysis. Finally, Steiger tests and reverse MR analyses were performed to appraise the possibility of reverse causation. Results A total of 2,092 single-nucleotide polymorphisms related to 196 bacterial traits were selected as instrumental variables. This two-sample MR analysis provided strongly reasonable evidence that 28 genetically predicted abundance of specific GM that played non-negligible roles in the occurrence of DKD, DR, and DNP complications were causally associated with 23 GM, the odds ratio of which generally ranged from 0.9 to 1.1. Further sensitivity analysis indicated low heterogeneity, low pleiotropy, and high reliability of the causal estimates. Conclusion The study raised the possibility that GM may be a potential target to prevent and delay the progression of diabetic microvascular complications. Further experiments of GM therapy on diabetic microvascular complications are warranted to clarify their effects and specific mechanisms.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenning Hao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqi Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
刘 佳, 缪 长, 徐 健, 余 伟, 陈 继, 唐 好, 刘 爱. [Causal relationship between gut microbiota and pigmented villonodular synovitis: a Mendelian randomization analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1397-1406. [PMID: 39051086 PMCID: PMC11270658 DOI: 10.12122/j.issn.1673-4254.2024.07.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the causal relationship between gut microbiota and pigmented villonodular synovitis using Mendelian randomization analysis. METHODS We conducted a two-sample Mendelian randomization analysis to investigate the causal relationship between 211 gut microbiome taxa and pigmented villonodular synovitis based on GWAS summary data, with inverse variance weighted (IVW) analysis as the primary result and the other methods as supplementary analyses. The reliability of the results was tested using Cochran's Q test, MR-Egger regression, MR-PRESSO method and conditional Mendelian randomization analysis (cML-MA). RESULTS The increased abundance of Barnesiella (OR=3.12, 95% CI: 1.15-8.41, P=0.025) and Rumatococcaceae UCG010 (OR=4.03, 95% CI: 1.19-13.68, P=0.025) may increase the risk of pigmented villous nodular synovitis, and elevated abundance of Lachnospiraceae (OR=0.33, 95% CI: 0.12-0.91, P=0.032), Alistipes (OR=0.16, 95% CI: 0.05-0.53, P=0.003), Blautia (OR=0.20, 95% CI: 0.06-0.61, P=0.005), and Lachnospiraceae FCS020 group (OR=0.38, 95% CI: 0.15-0.94, P=0.036) and Ruminococcaceae UCG014 (OR=0.36, 95% CI: 0.14-0.94, P=0.037) were all associated with a reduced risk of pigmented villonodular synovitis, which were supported by the results of sensitivity analyses. Reverse Mendelian randomization analysis did not reveal any inverse causal association. CONCLUSION Increased abundance of specific intestinal microorganisms is associated with increased or decreased risks of developing hyperpigmented villonodular synovitis, and gut microbiota plays an important role in the pathogenesis of this disease.
Collapse
|
10
|
Zhu S, Jia L, Wang X, Liu T, Qin W, Ma H, Lv Y, Hu J, Guo Q, Tan S, Yue X, Yan Y, Liu T, Liu Y, Xia Q, Zhang P, Zhang H, Li N. Anti-aging formula protects skin from oxidative stress-induced senescence through the inhibition of CXCR2 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116996. [PMID: 37598772 DOI: 10.1016/j.jep.2023.116996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The skin is affected by endogenous and exogenous factors, which are the intuitive consequence expression of aging. Aging not only affects the aesthetics of the skin but also causes the decline of skin functions, leading to many skin diseases and even skin cancer. Anti-aging formula (AAF) has various biological effects such as antioxidants, regulation of intestinal flora metabolism, anti-aging, and memory improvement. However, it is not clarified whether it could be anti-aging of the skin and the anti-aging mechanism. AIM OF THE STUDY This study aimed to investigate whether AAF could prevent skin from oxidative stress-induced senescence and explore the underlying molecular mechanisms. MATERIALS AND METHODS A mouse skin oxidative stress aging model was established based on ultraviolet (UV) irradiation, and parameters such as skin water content, melanogenesis, wrinkle production, pathological changes, and aging marker proteins were measured to elucidate whether AAF has an anti-aging effect on the skin. Subsequently, transcriptome sequencing (RNA-Seq) was used to identify target genes. An in vitro cellular senescence model was established to assess the role of AAF against cellular oxidative stress senescence by detecting senescence-related markers, while the specific mechanism of action of AAF in delaying skin senescence was elucidated by silencing or overexpression of targets. RESULTS In vivo experiments demonstrated that AAF significantly increased skin water content, reduced skin sensitivity and melanin content, slowed wrinkles, improved UV-induced epidermal thickening, increased collagen fiber content, improved elastic fiber morphology, and reduced the expression of senescence proteins P21 and P16 in skin tissues. The RNA-Seq results identified chemokine receptor 2 (CXCR2) as one of the potential targets for delaying skin senescence. In vitro experiments showed that AAF markedly improved the aging phenotype, and knockdown or overexpression experiments verified the essential role of CXCR2 in the skin senescence process. Mechanistic studies suggested that AAF inhibited the P38/P53 pathway by reducing CXCR2 expression, which improved the aging phenotype, reduced oxidative damage, and ultimately delayed cellular senescence. CONCLUSION The results reveal that AAF protects skin from oxidative stress-induced senescence by regulating the expression of critical target CXCR2, reducing P38 protein phosphorylation, and inhibiting P53 pathway activation. These discoveries implicate the potential of AAF in the protection of skin aging disease.
Collapse
Affiliation(s)
- Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Linlin Jia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiang Wang
- Shangluo City Hospital of Traditional Chinese Medicine, Shanxi, 726099, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenxiao Qin
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongfei Ma
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingshuang Lv
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Hu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qianyu Guo
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siyi Tan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaofeng Yue
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiqi Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Liu
- Tianjin University of Technology, Tianjin, 301617, China
| | - Qingmei Xia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Zhang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Xu H, Fang F, Wu K, Song J, Li Y, Lu X, Liu J, Zhou L, Yu W, Yu F, Gao J. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia. MICROBIOME 2023; 11:262. [PMID: 38001551 PMCID: PMC10675972 DOI: 10.1186/s40168-023-01709-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. RESULTS We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010, which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. CONCLUSIONS Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. Video Abstract.
Collapse
Affiliation(s)
- Hongtao Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kaizhang Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiangping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juncheng Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Liuyang Zhou
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Medical College, Guangxi University, Nanning, 530004, China
| | - Wenqing Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Medical College, Guangxi University, Nanning, 530004, China
| | - Fei Yu
- Medical College, Guangxi University, Nanning, 530004, China
- The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- The Fourth People's Hospital of Nanning, Nanning, 530023, China.
| |
Collapse
|
12
|
Song B, He J, Pan X, Kong L, Xiao C, Keerqin C, Song Z. Dietary Macleaya cordata extract supplementation improves the growth performance and gut health of broiler chickens with necrotic enteritis. J Anim Sci Biotechnol 2023; 14:113. [PMID: 37674220 PMCID: PMC10483844 DOI: 10.1186/s40104-023-00916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) caused by Clostridium perfringens. METHODS The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) on the immune function and gut microbiota of broilers with NE. A total of 288 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two concentrations of dietary MCE supplementation (0 or 350 mg/kg of diet) and two disease challenge statuses (control or NE). RESULTS The results revealed that NE significantly increased the feed conversion rate (FCR), mortality, intestinal lesion score, the levels of IL-1β, IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa, mRNA levels of TLR2, IFN-γ and pIgR in the jejunum, and Clostridium perfringens concentrations in the cecum. NE significantly decreased the body weight (BW), body weight gain (BWG), jejunal villus height, V/C, mRNA level of AMPK-α1 in jejunum, IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum. MCE significantly increased BW, BWG, jejunal villus height, V/C, mRNA levels of occludin, ZO-1 and AMPK-α1 in the jejunum, the levels of IgA and IgG in serum and IL-10 in the jejunal mucosa and mRNA levels of NF-κB, IL-10 and MHC-II in the jejunum. Additionally, MCE significantly decreased the FCR, mortality, intestinal lesion score, jejunal crypt depth, the levels of IFN-γ and IL-17 in serum and IL-17/IL-10 in the jejunal mucosa, Clostridium perfringens concentrations in the cecum, and mRNA levels of IL-17/IL-10 in the jejunum. Moreover, NE significantly increased the abundance of bacteria that are associated with inflammation, obesity and depression (Alistipes, Barnesiella, Intestinimonas, RF39 and UCG-005) and significantly decreased the abundance of short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Butyricicoccus and Bacteroides) in the cecum. MCE significantly increased the abundance of SCFA-producing bacteria (Streptococcus, Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group) and significantly reduced the abundance of bacteria that are associated with inflammation and obesity (Alistipes, Barnesiella and UCG-010) in the cecum. In the cecum of broilers with NE, the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower. Interestingly, these trends were reversed by the addition of MCE to the diet. Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance, whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects. CONCLUSIONS MCE ameliorated the loss of growth performance in broiler chickens with NE, probably by regulating the intestinal barrier, immune function, and gut microbiota.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jie He
- Center for Mitochondria and Healthy Ageing, College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
- Precision Livestock and Nutrition Unit, University of Liège, Gembloux Agro-Bio TechGembloux, Belgium
| | - Chake Keerqin
- Phytobiotics (Jiangsu) Biotech Co., Ltd., Jintan, 213200, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
13
|
Zheng XX, Li DX, Li YT, Chen YL, Zhao YL, Ji S, Guo MZ, Du Y, Tang DQ. Mulberry leaf water extract alleviates type 2 diabetes in mice via modulating gut microbiota-host co-metabolism of branched-chain amino acid. Phytother Res 2023; 37:3195-3210. [PMID: 37013717 DOI: 10.1002/ptr.7822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Elevations in circling branched-chain amino acids (BCAAs) levels associated with insulin resistance and type 2 diabetes mellitus (T2DM). Morus alba L. water extracts (MLE) show hypoglycemic function, but the precise mechanism remains obscure. This study is designed to investigate the association of the antidiabetes effect of MLE with the BCAAs co-metabolism modulated by host and gut microbiota. Tissue-specific expressions of BCAA-catabolizing enzymes were detected by RT-PCR and western blot, respectively. The components of the intestinal microflora were analyzed by high-throughput 16S rRNA gene sequencing. The results showed that MLE administration improved blood glucose and insulin level, decreased inflammatory cytokines expression, and lowered serum and feces BCAAs levels. Furthermore, MLE reversed the abundance changes of the bacterial genera correlated with serum and feces BCAAs, such as Anaerovorax, Bilophila, Blautia, Colidextribacter, Dubosiella, Intestinimonas, Lachnoclostridium, Lachnospiraceae_NK4A136, Oscillibacter, and Roseburia. Functionality prediction indicated that MLE potentially inhibited bacterial BCAAs biosynthesis, and promoted the tissue-specific expression of BCAAs catabolic enzyme. More importantly, MLE had obvious impacts on BCAA catabolism in germ-free-mimic T2DM mice. Those results indicated that MLE improving T2DM-related biochemical abnormalities is associated with not only gut microbiota modification but also the tissue-specific expression of BCAAs catabolic enzyme.
Collapse
Affiliation(s)
- Xiao-Xiao Zheng
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ya-Ting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Lang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Lin Zhao
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Dao-Quan Tang
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| |
Collapse
|
14
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
15
|
Zhang B, Luo X, Han C, Liu J, Zhang L, Qi J, Gu J, Tan R, Gong P. Terminalia bellirica ethanol extract ameliorates nonalcoholic fatty liver disease in mice by amending the intestinal microbiota and faecal metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116082. [PMID: 36581163 DOI: 10.1016/j.jep.2022.116082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional Tibetan medicine used to treat hepatobiliary diseases. However, modern pharmacological evidence of the activities and potential mechanisms of TB against nonalcoholic fatty liver disease (NAFLD) are still unknown. AIM OF THE STUDY This study aimed to evaluate the anti-NAFLD effect of ethanol extract of TB (ETB) and investigate whether its ameliorative effects are associated with the regulation of intestinal microecology. MATERIALS AND METHODS In this study, the curative effects of ETB on NAFLD were evaluated in mice fed a choline-deficient, L-amino acid defined, high fat diet (CDAHFD). Biochemical markers and hepatic histological alterations were detected. Gut microbiota and faecal metabolites were analyzed by 16S rRNA gene sequencing and liquid chromatograph mass spectrometer (LC‒MS) profiling. RESULTS The results showed that oral treatment with middle- and high-dose ETB significantly improved features of NAFLD, reducing the levels of TG, LDL-C, ALT and AST, and increasing the level of HDL-C. Liver histopathologic examination demonstrated that ETB attenuated lipid accumulation and hepatocellular necrosis. ETB treatment restored the structural disturbances of gut microbiota induced by CDAHFD, reduced the levels of Intestinimonas, Lachnoclostridium, and Lachnospirace-ae_FCS020_group, and increased Akkermansia and Bifidobacterium. Moreover, untargeted metabolomics analysis revealed that ETB could restore the disrupted taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, and glutathione metabolism of the intestinal bacterial community in NAFLD mice. CONCLUSIONS ETB was effective in ameliorating the NAFLD, possibly by remodelling the gut microbiota composition and modulating the faecal metabolism metabolites of the host, highlighting the potential of TB as a resource for the development of anti-NAFLD drugs.
Collapse
Affiliation(s)
- Boyu Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaomin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Cairong Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Jingxian Liu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Le Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Zhang Q, Bai Y, Wang W, Li J, Zhang L, Tang Y, Yue S. Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116127. [PMID: 36603782 DOI: 10.1016/j.jep.2022.116127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is a common metabolic dysfunction disease, which is highly correlated with the homeostasis of gut microbiota (GM). The dysregulation of GM on energy metabolism, immune response, insulin resistance and endogenous metabolites (e.g., short chain fatty acids and secondary bile acids) can affect the occurrence and development of obesity. Herbal medicine (HM) has particular advantages and definite therapeutic effects in the prevention and treatment of obesity, but its underlying mechanism is not fully clear. AIM OF THE STUDY In this review, the representative basic and clinical anti-obesity studies associated with the homeostasis of GM regulated by HM including active components, single herb and herbal formulae were summarized and discussed. We aim to provide a state of art reference for the mechanism research of HM in treating obesity and the further development of new anti-obesity drugs. MATERIALS AND METHODS The relevant information was collected by searching keywords (obesity, herbal medicine, prescriptions, mechanism, GM, short chain fatty acids, etc.) from scientific databases (CNKI, PubMed, SpringerLink, Web of Science, SciFinder, etc.). RESULTS GM dysbiosis did occur in obese patients and mice, whiles the intervention of GM could ameliorate the condition of obesity. HM (e.g., berberine, Ephedra sinica, Rehjnannia glutinosa, and Buzhong Yiqi prescription) has been proved to possess a certain regulation on GM and an explicit effect on obesity, but the exact mechanism of HM in improving obesity by regulating GM remains superficial. CONCLUSION GM is involved in HM against obesity, and GM can be a novel therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yaya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Jiajia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu Province, China.
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
17
|
Cui M, Tang G, Yan F, Wang S, Wang X, Yao J, Xu X. Oral administration of heat-inactivated Escherichia coli during suckling alleviated Salmonella typhimurium-derived intestinal injury after rat weaning. Front Immunol 2023; 14:1119747. [PMID: 37090706 PMCID: PMC10114613 DOI: 10.3389/fimmu.2023.1119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionNewly weaned animals are susceptible to a wide range of microbial infections taking a high risk of developing post-weaning diarrhea. Trained immunity is the capacity of the innate immune system to produce a stronger and non-specific response against a secondary infection after the inflammatory response caused by previous stimulus has returned to normal state. The objective of this study was to evaluate if the heat-inactivated Escherichia coli (IEC) as an immunostimulant on suckling pups elicits a protective effect on the intestine of post-weaning rats challenged with Salmonella Typhimurium (S.Typhimurium). We adapted a newborn rat model for this purpose.MethodsSixty newborn pups were randomly separated into two groups: IEC group (n =30) orally administrated IEC during suckling, while the CON group received orally the same dose of saline. Both of the two group challenged with various doses of S.Typhimurium after experiencing a 4-week resting period. Twelve of individuals were selected to detect the survival rate, and ten of the rest were necropsied 48 hours post-challenge.Results and DiscussionThe results showed that oral administration of IEC during suckling alleviated the injury in ileal morphology induced by post-weaning S.Typhimurium infection via increasing the levels of two tight junction proteins [zonula occluden-1 (ZO-1) and Occludin-1] and several secreted proteins (Lysozyme, Mucin-2, and SIgA) in the intestinal mucosa. Furthermore, the pre-stimulation with IEC significantly increased cytokines tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β) expressions in an enhanced secondary reaction way after experiencing a 4-week resting period. This implicated the possible involvement of trained immunity. The 16S rDNA sequence results showed that pre-stimulation with IEC decreased the abundance of Clostridia, Prevotella, Christensenellaceae_R-7_group and Parabacteroides after intestinal infection of S.Typhimurium. Our results confirmed that the previous oral administration of IEC had a protective effect on S.Typhimurium-induced intestinal injury in weaned rats by inducing a robust immune response. The present study suggested a new strategy for preventing intestinal infection of newborn animals.
Collapse
|
18
|
Zhou G, Li Q, Hou X, Wu H, Fu X, Wang G, Ma J, Cheng X, Yang Y, Chen R, Li Z, Yu F, Zhu J, Ba Y. Integrated 16S rDNA sequencing and metabolomics to explore the intestinal changes in children and rats with dental fluorosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114518. [PMID: 36640576 DOI: 10.1016/j.ecoenv.2023.114518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Dental fluorosis (DF) is a widely prevalent disease caused by excessive fluoride with limited awareness of its underlying pathogenesis. Here, a pilot population study was conducted to explore the pathogenesis of DF from the perspective of intestinal microbiome changes, and verified it in animal experiments combining intestinal microbiome and metabolomics. A total of 23 children were recruited in 2017 in China and divided into DF (n = 9) and control (n = 14) groups (DFG and CG, respectively). The SD rat model was established by drinking water containing sodium fluoride (NaF). Gut microbiome profiles of children and rats were analyzed by16S rDNA V3-V4 sequencing, and the intestinal metabolomics analysis of rats was performed by LC-MS methods. The 16 S rDNA sequencing revealed that the gut microbiome composition was significantly perturbed in children in DFG compared to that in CG. Acidobacteria and Thermi were specifically observed in DFG and CG, respectively. Besides, 15 fecal microbiotas were significantly altered at the genus level in DFG. Furthermore, only the expression of annotated genes for pentose and glucuronate interconversion pathway was significant lower in DFG than that in CG (P = 0.04). Notably, in NaF-treated rats, we also observed the changes of some key components of pentose and glucuronate interconversion pathway at the level of microorganisms and metabolites. Our findings suggested that the occurrence of DF is closely related to the alteration of intestinal microorganisms and metabolites annotated in the pentose and glucuronate interconversion pathway.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan, PR China
| | - Qingyuan Li
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiangbo Hou
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Huiying Wu
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaoli Fu
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Guoqing Wang
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jun Ma
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, PR China
| | - Xuemin Cheng
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yang Yang
- Department of Preventive Medicine, School of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Zhiyuan Li
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fangfang Yu
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingyuan Zhu
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Yue Ba
- Department of Environment Health, School of Public Health of Zhengzhou University, Zhengzhou, Henan, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
19
|
Pei Y, Chen S, Diao X, Wang X, Zhou H, Li Y, Li Z. Deciphering the disturbance mechanism of BaP on the symbiosis of Montipora digitata via 4D-Proteomics approach. CHEMOSPHERE 2023; 312:137223. [PMID: 36372339 DOI: 10.1016/j.chemosphere.2022.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The coral holobiont is mainly composed of coral polyps, zooxanthellae, and coral symbiotic microorganisms, which form the basis of coral reef ecosystems. In recent years, the severe degradation of coral reefs caused by climate warming and environmental pollution has aroused widespread concern. Benzo(a)pyrene (BaP) is a widely distributed pollutant in the environment. However, the underlying mechanisms of coral symbiosis destruction due to the stress of BaP are not well understood. In this study, diaPASEF proteomics and 16S rRNA amplicon pyrosequencing technology were used to reveal the effects of 50 μg/L BaP on Montipora digitate. Data analysis was performed from the perspective of the main symbionts of M. digitata (coral polyps, zooxanthellae, and coral symbiotic microorganisms). The results showed that BaP impaired cellular antioxidant capacity by disrupting the GSH/GSSG cycle, and sustained stress causes severe impairment of energy metabolism and protein degradation in coral polyps. In zooxanthellae, BaP downregulated the protein expression of SOD2 and mtHSP70, which then resulted in oxidative free radical accumulation and apoptosis. For coral symbiotic microorganisms, BaP altered the community structure of microorganisms and decreased immunity. Coral symbiotic microorganisms adapted to the stress of BaP by adjusting energy metabolism and enhancing extracellular electron transfer. BaP adversely affected the three main symbionts of M. digitata via different mechanisms. Decreased antioxidant capacity is a common cause of damages to coral polyps and zooxanthellae, whereas coral symbiotic microorganisms are able to appropriately adapt to oxidative stress. This study assessed the effects of BaP on corals from a symbiotic perspective, which is more comprehensive and reliable. At the same time, data from the study supports new directions for coral research and coral reef protection.
Collapse
Affiliation(s)
- Yuebin Pei
- School of Life Sciences, Hainan University, Haikou, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Shuai Chen
- School of Life Sciences, Hainan University, Haikou, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China
| | - Xiaobing Wang
- School of Life Sciences, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Hailong Zhou
- School of Life Sciences, Hainan University, Haikou, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China.
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Zhiyong Li
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Li D, Tang W, Wang Y, Gao Q, Zhang H, Zhang Y, Wang Y, Yang Y, Zhou Y, Zhang Y, Li H, Li S, Zhao H. An overview of traditional Chinese medicine affecting gut microbiota in obesity. Front Endocrinol (Lausanne) 2023; 14:1149751. [PMID: 36936157 PMCID: PMC10016694 DOI: 10.3389/fendo.2023.1149751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Obesity, a chronic metabolic disease with a complex pathophysiology, is caused by several variables. High-fat diets lead to the disruption of the gut microbiota and impaired gut barrier function in obese people. The dysbiosis and its metabolites through the intestinal barrier lead to an imbalance in energy metabolism and inflammatory response, which eventually contributes to the development of chronic diseases such as diabetes, hypertension, and cardiovascular disease. Current medicines are therapeutic to obesity in the short term; however, they may bring significant physical and emotional problems to patients as major side effects. Therefore, it is urgent to explore new therapeutic methods that have definite efficacy, can be taken for a long time, and have mild adverse effects. Numerous studies have demonstrated that traditional Chinese medicine (TCM) can control the gut microbiota in a multi-targeted and comprehensive manner, thereby restoring flora homeostasis, repairing damaged intestinal mucosal barriers, and eventually curbing the development of obesity. The active ingredients and compounds of TCM can restore the normal physiological function of the intestinal mucosal barrier by regulating gut microbiota to regulate energy metabolism, inhibit fat accumulation, affect food appetite, and reduce intestinal mucosal inflammatory response, thereby effectively promoting weight loss and providing new strategies for obesity prevention and treatment. Although there are some studies on the regulation of gut microbiota by TCM to prevent and treat obesity, all of them have the disadvantage of being systematic and comprehensive. Therefore, this work comprehensively describes the molecular mechanism of obesity mediated by gut microbiota based on the research state of obesity, gut microbiota, and TCM. A comprehensive and systematic summary of TCM targeting the regulation of gut microbiota for the treatment of obesity should be conducted in order to provide new strategies and ideas for the treatment of obesity.
Collapse
Affiliation(s)
- Donghui Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Weiwei Tang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yanyan Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Qi Gao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongwei Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yongyi Yang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yingming Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yike Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Haonan Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shuo Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
- *Correspondence: Hong Zhao,
| |
Collapse
|
21
|
Hua Z, Shen R, Lu B, Li M, Zhou P, Wu J, Dong W, Zhou Q, Zhang J. Weifuchun alters tongue flora and decreases serum trefoil factor I levels in gastric intestinal metaplasia: A CONSORT-compliant article. Medicine (Baltimore) 2022; 101:e31407. [PMID: 36397419 PMCID: PMC9666156 DOI: 10.1097/md.0000000000031407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To explore the molecular mechanisms of Weifuchun in the treatment of gastric intestinal metaplasia (GIM), we designed a preclinical pilot study to examine potential markers of disease progression based on alterations in the tongue flora. METHODS Total 27 patients with GIM were treated with Weifuchun for 4 weeks and 26 volunteers as controls. Tongue coating bacteria were profiled using 16S rDNA high-throughput sequencing. Serum pepsinogen I and II levels were detected using the latex immunoturbidimetric assay. The levels of serum trefoil factor I was detected by ELISA. Microplate-based quantification was used to detect serum total bile acid (TBA). RESULTS After treatment, the relative abundance of 4 dominant tongue coating genera (Granulicatella, Gemella, Lachnoanaerobaculum, and Neisseria) increased significantly wheras Alloprevotella, [Eubacterium] nodatum group, Prevotell, and Ruminococcaceae UCG-014 decreased (P < .05). The results showed that Alloprevotella and 3 rare tongue coating genera (Lautropia, Treponema 2, and Aliihoeflea) might be potential markers or target flora for the treatment of GIM. Kyoto encyclopedia of genes and genomes (KEGG) function prediction analysis showed that Weifuchun may regulate bile secretion and folate biosynthesis in patients with GIM. The level of serum trefoil factor I decreased significantly in response to Weifuchun treatment, which was consistent with the decrease in folate biosynthesis predicted by KEGG. CONCLUSION Weifuchun may restore the balance of tongue flora by decreasing the levels of serum trefoil factor I, thereby providing a new way to measuring the underlying effectiveness and potential mechanisms of action of this traditional Chinese medicinal compound in the treatment of GIM.
Collapse
Affiliation(s)
- Zhaolai Hua
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Rui Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Bin Lu
- Department of Oncology, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Meifeng Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Ping Zhou
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Wei Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Qihai Zhou
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| |
Collapse
|
22
|
Li Q, Zhou HB, Liu JQ, Bai WF, Wang J, Yang ZJ, Qiu M, Chang H, Shi SL. The intervention effect of Amygdalus mongolica oil on the metabolomics and intestinal flora in pulmonary fibrosis. Front Pharmacol 2022; 13:1037563. [PMID: 36386194 PMCID: PMC9663812 DOI: 10.3389/fphar.2022.1037563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Amygdalus mongolica oil is rich in unsaturated fatty acids such as inoleic acid (47.11%) and oleic acid (23.81%). Our research demonstrates that it exerts a protective effect on rat models of pulmonary fibrosis, however, little is known regarding the underlying mechanism of action. This study aimed to characterize the therapeutic mechanism of action of A. mongolica oil on bleomycin-induced pulmonary fibrosis in rats. A. mongolica oil appears to regulate the levels of potential key serum biomarkers which include tetrahydrobiopterin, L-serine, citrulline and estradiol to participate in folate biosynthesis, glycine, serine and threonine metabolism, arginine biosynthesis and steroid hormone biosynthesis. And it also enriched intestinal microbial abundance, homogeneity and modulated the abundance of Duncaniell, Desulfovibrio, Peptococcaceae_unclassified, Dubosiella, Tyzzerella, Lachnospiraceae_NK4A136_group, Lactobacillus, Clostridiales_unclassified to exert a protective effect against pulmonary fibrosis. A. mongolica oil appears to confer protective effects against pulmonary fibrosis by affecting the level of pulmonary fibrosis metabolites and the abundance of related intestinal flora through multiple targets, as evidenced by our untargeted LC-MS/MS metabonomics evaluation and 16S rDNA sequencing technology.
Collapse
Affiliation(s)
- Qian Li
- 1Department of Pharmacy, Baotou Medical College, Baotou, China,2Inner Mongolia Maternal and Child Health Care Hospital, Hohhot, China
| | - Hong-Bing Zhou
- 1Department of Pharmacy, Baotou Medical College, Baotou, China,3Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| | - Jia-Qi Liu
- 1Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Wan-Fu Bai
- 1Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Jia Wang
- 1Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Zhan-Jun Yang
- 3Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| | - Min Qiu
- 1Department of Pharmacy, Baotou Medical College, Baotou, China,3Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| | - Hong Chang
- 1Department of Pharmacy, Baotou Medical College, Baotou, China,*Correspondence: Hong Chang, ; Song-Li Shi,
| | - Song-Li Shi
- 1Department of Pharmacy, Baotou Medical College, Baotou, China,3Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China,*Correspondence: Hong Chang, ; Song-Li Shi,
| |
Collapse
|
23
|
Gao Q, Sun G, Duan J, Luo C, Yangji C, Zhong R, Chen L, Zhu Y, Wangdui B, Zhang H. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Front Microbiol 2022; 13:969524. [PMID: 36338094 PMCID: PMC9634421 DOI: 10.3389/fmicb.2022.969524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 07/30/2023] Open
Abstract
Tibetan pigs were thought to have good performances of rough feeding tolerance, which may be related to the gut microbiota. This study was conducted to investigate the changes of colonic microbiota contribute to fiber utilization in Tibetan pigs fed alfalfa supplementation diet compared with basal diet, and verified whether the microbial community in Tibetan pigs fed alfalfa diet was beneficial to utilize fiber using in vitro fermentation. A total of 40 Tibetan pigs were allocated into two groups and fed with a corn-soybean meal basal diet (CD) or a 50% alfalfa supplementation diet (AD) for 42d. Our results showed pigs fed CD diet improved carcass weight compared to pigs fed AD diet (p < 0.05), yet reduced the bacterial diversity (p < 0.05). Tibetan pigs fed CD diet increased certain pathogenic bacteria (Streptococcus) abundance (FDR < 0.05). Alfalfa consumption increased fiber-degrading bacteria abundance (UCG-005, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Alloprevotella, Marvinbryantia, and Anaerovibrio) in the colonic digesta (FDR < 0.05) and improved concentrations of acetate, propionate, butyrate, and total SCFA in colonic content (p < 0.05). Higher fermentation capacity of fecal microbiota from pig fed AD diet was verified by in vitro fermentation. Collectively, our results indicated that alfalfa supplementation in diets improved the abundance of fiber-degrading bacteria and SCFA production in the hindgut of Tibetan pig, as well as enhanced the fermentation capacity of fecal microbiota.
Collapse
Affiliation(s)
- Qingtao Gao
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Jiujun Duan
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzeng Luo
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Cidan Yangji
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Ruqing Zhong
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Basang Wangdui
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Zhang H, Hui X, Wang Y, Wang Y, Lu X. Angong Niuhuang Pill ameliorates cerebral ischemia/reperfusion injury in mice partly by restoring gut microbiota dysbiosis. Front Pharmacol 2022; 13:1001422. [PMID: 36188565 PMCID: PMC9520595 DOI: 10.3389/fphar.2022.1001422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Angong Niuhuang Pill (ANP) is a famous traditional Chinese patent medicine and is used for treating ischemic or hemorrhagic stroke for centuries. However, the mechanism of action of ANP in stroke treatment has rarely been reported. With increasing evidence for a mechanistic link between acute ischemic stroke and gut microbiota alterations, this study aimed to determine the mechanism of action of ANP in treating acute ischemic stroke from the perspective of the gut microbiota. A mouse model of acute ischemic stroke by middle cerebral artery occlusion (MCAO) was established, and 16S ribosomal RNA (rRNA) gene sequencing and metabolomic analysis were performed on the cecal content samples collected from the sham, model, and ANP-treated MCAO mice. The results showed that ANP significantly ameliorated cerebral infarct volume, improved neurological deficits, and reduced histopathological injuries in the ipsilateral ischemic cortex, hippocampus, and striatum. The latter effects included inhibition of neuronal death, increased Nissl bodies, and decreased cell apoptosis. Moreover, ANP reversed gut microbiota dysbiosis by modulating the abundance of bacteria whose effects may mitigate MCAO damage, such as the phyla Bacteroidetes and Firmicutes, the families Lachnospiraceae and Prevotellaceae, and the genera Alloprevotella and Roseburia. Microbial metabolites related to inflammation and neuroprotection, such as prostaglandin I2 and uridine, were also regulated by ANP treatment. Uridine, guanosine, and inosine might be potential neuromodulators produced by the gut microbiota in the ANP-treated group. Spearman correlation analysis revealed that these metabolites were intimately related to certain genera, including Alloprevotella, Lachnoclostridium, Enterorhabdus, Roseburia, Lachnospiraceae_UCG-006, and Colidextribacter. Our results demonstrated that alleviating gut microbiota dysbiosis is one of the mechanisms by which ANP protects against ischemic stroke and suggest that targeting Alloprevotella, Lachnoclostridium, Enterorhabdus, Roseburia, Lachnospiraceae_UCG-006, and Colidextribacter might be a potential anti-stroke therapy.
Collapse
Affiliation(s)
- Han Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xianrui Hui
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yule Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yi Wang, ; Xiaoyan Lu,
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- *Correspondence: Yi Wang, ; Xiaoyan Lu,
| |
Collapse
|
25
|
Zhang J, Yi C, Han J, Ming T, Zhou J, Lu C, Li Y, Wang Z, Su X. Dose effect of high-docosahexaenoic acid tuna oil on dysbiosis in high-fat diet mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5531-5543. [PMID: 35368101 DOI: 10.1002/jsfa.11908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health benefits of tuna oil, which is different from the fish oil commonly studied, and its higher docosahexaenoic acid (DHA) content, have attracted much scientific attention in recent years. In this study, prepared tuna oil with higher DHA (HDTO) content was employed. It was the first to integrate microbiome and metabolome from a dose-effect perspective to investigate the influence of HDTO on gut dysbiosis and metabolic disorders in diet-induced obese mice. RESULTS Higher DHA tuna oil was effective in reversing high-fat-diet-induced metabolic disorders and altering the composition and function of gut microbiota, but these effects were not uniformly dose dependent. The flora and metabolites that were targeted to be regulated by HDTO supplementation were Prevotella, Bifidobacterium, Olsenella, glycine, l-aspartate, l-serine, l-valine, l-isoleucine, l-threonine, l-tyrosine, glyceric acid, glycerol, butanedioic acid, and citrate, respectively. Functional pathway analysis revealed that alterations in these metabolic biomarkers were associated with six main metabolic pathways: glycine, serine, and threonine metabolism; glycerolipid metabolism; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis, and the citrate cycle (TCA cycle). CONCLUSION Various doses of HDTO could attenuate endogenous disorders to varying degrees by regulating multiple perturbed pathways to the normal state. This explicit dose research for novel fish oil with high-DHA will provide a valuable reference for those seeking to exploit its clinical therapeutic potential. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Congmin Yi
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Zhonghua Wang
- Shandong beiyou biotechnology Co., Ltd., Weifang, China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
26
|
Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9727889. [PMID: 35979004 PMCID: PMC9377893 DOI: 10.1155/2022/9727889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The current study employed the high-fat diet (HFD) induced murine model to assess the relationship between the effect of Jian Pi Tiao Gan Yin (JPTGY) and the alterations of gut microbiota and fecal metabolism. C57BL/6 mice were used to establish an animal model of obesity via HFD induce. Serum biochemical indicators of lipid metabolism were used to evaluate the pharmacodynamics of JPTGY in obese mice. Bacterial communities and metabolites in the feces specimens from the controls, the Group HFD, and the JPTGY-exposed corpulency group were studied by 16s rDNA genetic sequence in combination with liquid chromatography-mass spectrometry (LC-MS) based untargeted fecal metabolomics techniques. Results revealed that JPTGY significantly decreased the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and elevated high-density lipoprotein cholesterol (HDL-C). Moreover, JPTGY could up-regulate the abundance and diversity of fecal microbiota, which was characterized by the higher phylum of proteobacteria. Consistently, at the genus levels, JPTGY supplementation induced enrichments in Lachnospiraceae NK4A136 group, Oscillibacter, Turicibacter, Clostridium sensu stricto 1, and Intestinimonas, which were intimately related to 14 pivotal fecal metabolins in respond to JPTGY therapy were determined. What is more, metabolomics further analyses show that the therapeutic effect of JPTGY for obesity involves linoleic acid (LA) metabolism paths, alpha-linolenic acid (ALA) metabolism paths, glycerophospholipid metabolism paths, arachidonic acid (AA) metabolism paths, and pyrimidine metabolism paths, which implied the potential mechanism of JPTGY in treating obesity. It was concluded that the linking of corpulency phenotypes with intestinal flora and fecal metabolins unveils the latent causal link of JPTGY in the treatment of hyperlipidemia and obesity.
Collapse
|
27
|
Ding H, Wang Y, Li Z, Li Q, Liu H, Zhao J, Lu W, Wang J. Baogong decoction treats endometritis in mice by regulating uterine microbiota structure and metabolites. Microb Biotechnol 2022; 15:2786-2799. [PMID: 35932174 DOI: 10.1111/1751-7915.14127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022] Open
Abstract
Endometritis is persistent inflammation caused by bacteria, which can lead to infertility. Although traditional Chinese medicine (TCM) has been used to treat endometritis, the underlying mechanism is still unclear. Here, Baogong Decoction (BGD), a TCM compound, was used to treat mouse endometritis induced by Escherichia coli (E. coli), and then 16S rRNA sequencing and non-targeted metabolomics were used to investigate the change of uterine microbiota and metabolomes in serum and uterine after BGD treatment. Finally, the therapeutic effect of potential metabolites for treating mouse endometritis screened by combined omics analyses was verified using pathological model. The results showed that BGD treatment could effectively treat endometritis associated with the increasing relative abundance of Firmicutes, Bacteroides, Lactobacillus and Lactococcus, and the decreasing relative abundance of Cupriavidus and Proteobacteria. 133 and 130 metabolites were found to be potential biomarkers in serum and uterine tissue respectively. In serum and tissues, dehydroepiandrosterone (DHEA) and catechol were significantly increased in the BGD treatment versus the inflammation group. Results of combined omics analyses demonstrated that DHEA was positively correlated with changes in microbiota. Results of pathological model demonstrated that DHEA could cure endometritis effectively associated with the decreasing infiltration of inflammatory cells and expression of inflammatory factors in the uterus. In summary, our results demonstrated that BGD could cure endometritis in mice by modulating the structure of the uterine microbiota and its metabolites, in which DHEA may be one of the main components of the therapeutic effect of BGD.
Collapse
Affiliation(s)
- He Ding
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Youyuan Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qianqing Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
28
|
The Ameliorating Effect of Lizhong-Tang on Antibiotic-Associated Imbalance in the Gut Microbiota in Mouse. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Some herbal medicines have anti-inflammatory and anti-diarrheal effects. This study analyzed the modulating effect of gut microbiota of anti-inflammatory herbal medicines on antibiotic-associated diarrhea (AAD). The anti-inflammatory effects of 10 herbal medicines and Lizhong-tang active compounds were studied by measuring the nitric oxide production in an in vitro experiment. This was followed by an in vivo experiment in which the anti-diarrheal effects of Lizhong-tang and Magnolia officinalis in a lincomycin-induced AAD mouse model were measured. Changes in the intestinal microflora were observed using terminal restriction fragment length polymorphism analysis. Both Lizhong-tang and M. officinalis were effective against AAD, with Lizhong-tang’s anti-diarrheal effects being particularly effective. In addition, the active compounds of Lizhong-tang, liquiritin and 6-gingerol, inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2, thus showing an anti-inflammatory effect. Gut microbiota analysis showed that Lizhong-tang could alter the composition of the gut microbiota and ameliorated imbalance in the gut microbiota in a lincomycin-induced AAD mouse model.
Collapse
|
29
|
Yin H, Huang J, Hu M. Moderate-Intensity Exercise Improves Endothelial Function by Altering Gut Microbiome Composition in Rats Fed a High-Fat Diet. J NIPPON MED SCH 2022; 89:316-327. [PMID: 35768269 DOI: 10.1272/jnms.jnms.2022_89-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity changes gut microbial ecology and is related to endothelial dysfunction. Although the correlation between gut microbial ecology and endothelial dysfunction has been studied in obese persons, the underlying mechanisms by which exercise enhances endothelial function in this group remain unclear. This study investigated whether exercise improves endothelial function and alters gut microbiome composition in rats fed a high-fat diet (HFD). METHODS Obesity was induced by an HFD for 11 weeks. Whole-body composition and endothelium-dependent relaxation of mesenteric arteries were measured. Blood biochemical tests were performed, and gut microbiomes were characterized by 16S rRNA gene sequencing on an Illumina HiSeq platform. RESULTS Exercise training for 8 weeks improved body composition in HFD-fed rats. Furthermore, compared with the untrained/HFD group, aerobic exercise significantly increased acetylcholine-induced, endothelium-dependent relaxation in mesenteric arteries (P < 0.05) and circulating vascular endothelial growth factor levels (P < 0.01) and decreased circulating C-reactive protein levels (P < 0.05). In addition, exercise and HFD resulted in alterations in the composition of the gut microbiome; exercise reduced the relative abundance of Clostridiales and Romboutsia. Moreover, 12 species of bacteria, including Romboutsia, were significantly associated with parameters of endothelial function in the overall sample. CONCLUSIONS These results suggest that aerobic exercise enhances endothelial function in HFD-fed rats by altering the composition of the gut microbiota. These findings provide new insights on the application of physical exercise for improving endothelial function in obese persons.
Collapse
Affiliation(s)
- Honggang Yin
- School of Kinesiology, Shanghai University of Sport.,Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University
| | - Min Hu
- School of Kinesiology, Shanghai University of Sport.,Department of Sports and Health, Guangzhou Sport University
| |
Collapse
|
30
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Wang S, Cui K, Liu J, Hu J, Yan K, Xiao P, Lu Y, Yang X, Liang X. Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Front Nutr 2022; 9:870394. [PMID: 35769373 PMCID: PMC9234556 DOI: 10.3389/fnut.2022.870394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Siraitia grosvenorii is a kind of medicinal food plant. The mogroside-rich extract (MGE) of its fruits can effectively ameliorate obesity, but the underlying mechanisms remain underexplored. In this study, we aimed to determine whether MGE can ameliorate obesity by protecting against the divergences of gut microbiota. Mice were challenged with a high-fat diet (HFD) and treated with MGE by oral gavage. Then, the characteristics of the gut microbiota were determined by 16S rDNA analysis. Our findings showed that MGE could significantly reduce body weight gain and fat tissue weight of the mice fed with HFD. Moreover, MGE markedly attenuated fatty liver, and improved glucose tolerance and insulin sensitivity. We further found that the gut microbiota structures were disturbed by HFD feeding. In particular, the abundance of Firmicutes was increased and the abundance of Bacteroidetes was decreased, resulting in an increased proportion of Firmicutes to Bacteroidetes (F/B), which contributes to obesity. Interestingly, the abnormal proportion of F/B of HFD feeding mice was restored to the level of control mice by MGE treatment. Additionally, the abundances of obesogenic microbiota, such as Ruminiclostridium and Oscillibacter were also decreased after MGE treatment. In summary, our findings demonstrate that MGE can modulate gut microbiota in obese mice and shed new light on how it alleviates obesity.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Xiaogan Yang,
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Xingwei Liang,
| |
Collapse
|
32
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
33
|
Xiong W, Chen J, He J, Xiao M, He X, Liu B, Zeng F. Anti-Diabetic Potential of Chlorella Pyrenoidosa-Based Mixture and its Regulation of Gut Microbiota. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:292-298. [PMID: 35657501 DOI: 10.1007/s11130-022-00968-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to investigate the anti-diabetic effect of CGSGCG and its beneficial effects on gut microbiota in type 2 diabetes (T2D) mice induced by streptozotocin and high sucrose and high fat diet. The results showed that treatment with CGSGCG reduced fasting blood glucose, improved oral glucose tolerance test, protected the liver from injury, and reduced inflammation in T2D mice. The contents of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid and isovaleric acid in CGSGCG group were 2.49-, 1.74-, 3.31-, 1.93-, 1.36- and 1.30-fold than that of the model group. Moreover, administration of CGSGCG up-regulated the expression of INSR/IRS-1/PI3K/AKT/GLUT4 and mTOR but down-regulated the P38MAPK expression. Furthermore, the abundance of beneficial bacteria such as Verrucomicrobia, Proteobacteria, Osillibacter, Dubosiella and Lactococcus in intestinal tract increased, indicating that CGSCGG regulated and improved the bacterial community structure of T2D mice, which were closely related to glycometabolism.
Collapse
Affiliation(s)
- Wenyu Xiong
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Chen
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junqiang He
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Xiao
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyu He
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China
- Fuzhou Ocean Research Institute Marine Food Research and Development Center, Fuzhou, 350002, China
| | - Bin Liu
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fuzhou Ocean Research Institute Marine Food Research and Development Center, Fuzhou, 350002, China.
- Xiamen 139 Biotechnology Co., Ltd., Xiamen, 361000, China.
| | - Feng Zeng
- Engineering Research Center of Fujian and Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fuzhou Ocean Research Institute Marine Food Research and Development Center, Fuzhou, 350002, China.
| |
Collapse
|
34
|
Liu X, Pan Y, Shen Y, Liu H, Zhao X, Li J, Ma N. Protective Effects of Abrus cantoniensis Hance on the Fatty Liver Hemorrhagic Syndrome in Laying Hens Based on Liver Metabolomics and Gut Microbiota. Front Vet Sci 2022; 9:862006. [PMID: 35498747 PMCID: PMC9051509 DOI: 10.3389/fvets.2022.862006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has become a serious concern in laying hens worldwide. Abrus cantoniensis Hance (AC) is a commonly used plant in traditional medicine for liver disease treatment. Nevertheless, the effect and mechanism of the decoction of AC (ACD) on FLHS remain unclear. In this study, ultra-high performance liquid chromatography analysis was used to identify the main phytochemicals in ACD. FLHS model of laying hens was induced by a high-energy low-protein (HELP) diet, and ACD (0.5, 1, 2 g ACD/hen per day) was given to the hens in drinking water at the same time for 48 days. Biochemical blood indicators and histopathological analysis of the liver were detected and observed to evaluate the therapeutic effect of ACD. Moreover, the effects of ACD on liver metabolomics and gut microbiota in laying hens with FLHS were investigated. The results showed that four phytochemicals, including abrine, hypaphorine, vicenin-2, and schaftoside, were identified in ACD. ACD treatment ameliorated biochemical blood indicators in laying hens with FLHS by decreasing aspartate aminotransferase, alanine aminotransferase, triglycerides, low-density lipoprotein cholesterol, and total cholesterol, and increasing high-density lipoprotein cholesterol. In addition, lipid accumulation in the liver and pathological damages were relieved in ACD treatment groups. Moreover, distinct changes in liver metabolic profile after ACD treatment were observed, 17 endogenous liver metabolites mainly associated with the metabolism of arachidonic acid, histidine, tyrosine, and tryptophan were reversed by ACD. Gut microbiota analysis revealed that ACD treatment significantly increased bacterial richness (Chao 1, P < 0.05; Ace, P < 0.01), and upregulated the relative abundance of Bacteroidetes and downregulated Proteobacteria, improving the negative effects caused by HELP diet in laying hens. Taken together, ACD had a protective effect on FLHS by regulating blood lipids, reducing liver lipid accumulation, and improving the dysbiosis of liver metabolomics and gut microbiota.
Collapse
Affiliation(s)
- Xu Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Youming Shen
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Hailong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jianyong Li
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
- *Correspondence: Ning Ma
| |
Collapse
|
35
|
Wen Z, Tian H, Liang Y, Guo Y, Deng M, Liu G, Li Y, Liu D, Sun B. Moringa oleifera polysaccharide regulates colonic microbiota and immune repertoire in C57BL/6 mice. Int J Biol Macromol 2022; 198:135-146. [PMID: 34973268 DOI: 10.1016/j.ijbiomac.2021.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharide (MOP) on serum immune indices, immune organ indices, colonic microflora and immune repertoire of mice. Forty male SPF C57BL/6 mice were randomly divided into four groups and subjected to gavage of 0, 20, 40 and 60 mg/kg MOP for 28 days. Mice were sacrificed on the last day of the experiment and their thymus, spleen, blood and colon contents were collected for further detection. Our findings suggested that MOP could significantly increase the thymus index (P < 0.01) and spleen index (P < 0.05), and significantly decrease the levels of interleukin-6 and tumour necrosis factor-α in mice (P < 0.05). And MOP could regulate the proportion of colonic microflora of mice, significantly increase the abundance of Muribaculaceae and significantly decrease the abundance values of Proteobacteria, Helicobacter, Stenotrophomonas, etc (P < 0.05). In addition, MOP could regulate the usage frequencies of TRBV15 (P = 0.06) and TRBV9 (P = 0.10) on the TCRα chain and 9 V-J pairs were found to have remarkable usage frequency changes. These results implied that MOP exerted positive effects on the immune performance and intestinal health of mice.
Collapse
Affiliation(s)
- Zhiying Wen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanchen Tian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yao Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
36
|
Li Z, Nie L, Li Y, Yang L, Jin L, Du B, Yang J, Zhang X, Cui H, Luobu O. Traditional Tibetan Medicine Twenty-Five Wei'er Tea Pills Ameliorate Rheumatoid Arthritis Based on Chemical Crosstalk Between Gut Microbiota and the Host. Front Pharmacol 2022; 13:828920. [PMID: 35222043 PMCID: PMC8867225 DOI: 10.3389/fphar.2022.828920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Twenty-Five Wei'er Tea Pills (TFP), a traditional Tibetan medicine, has shown to have a promising therapeutic effect in patients with Rheumatoid arthritis (RA), as well as being safe. Nonetheless, there have been limited pharmacological studies that have explored this therapeutic option. As gut microbiota has been proven to have a critical role in the pathogenesis of RA, this study aims to explore and reveal relevant ways by which TFP interacts with the chemical crosstalk between the gut microbiome and its host. 16S rRNA sequencing, combined with un-targeted metabolomics, were conducted on collagen-induced arthritis (CIA) rats. CIA model rats treated with TFP showed significant improvement in weight gain, pathological phenomena in joints, as well as decreased serum levels of TNF-α, IL-6 and increased level of IL-4 and IL-10. Significant dysfunction in the gut microbiome and alteration in serum metabolites were observed in CIA model rats, which were restored by TFP treatment. Coherence analysis indicated that TFP modulated the pathways of histidine metabolism, phenylalanine metabolism, alanine, aspartate, glutamate metabolism, amino sugar and nucleotide sugar metabolism owing to the abundances of Lactobacillus, Bacteroides, Prevotellaceae_UCG-001 and Christensenellaceae_R-7_group in the gut microflora. The corresponding metabolites involved L-histidine, histamine, phenylethylamine, asparagine, L-aspartic acid, D-fructose 1-phosphate, D-Mannose 6-phosphate, D-Glucose 6-phosphate, and Glucose 1-phosphate. In conclusion, this study reveals the ameliorative effects of TFP on RA through the chemical crosstalk that exists between the gut microbiota and its host, and also further enriches our understandings of the pathogenesis of RA.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Lijuan Nie
- Department of Pharmacy, Medical College of Tibet University, Lhasa, China
| | - Yong Li
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
| | - Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baozhong Du
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Juan Yang
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Xulin Zhang
- Second Affiliated Hospital of University of South China, Hengyang, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ouzhu Luobu
- Medical College of Tibet University, Lhasa, China
- Affiliated Fukang Hospital of Tibet University, Lhasa, China
| |
Collapse
|
37
|
Zhu Z, Huang R, Liu W, Wang J, Wu S, Chen M, Huang A, Xie Y, Chen M, Jiao C, Zhang J, Wu Q, Ding Y. Whole Agrocybe cylindracea Prevented Obesity Linking with Modification of Gut Microbiota and Associated Fecal Metabolites in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2022; 66:e2100897. [PMID: 35092163 DOI: 10.1002/mnfr.202100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Indexed: 11/09/2022]
Abstract
SCOPE Whole-food-based strategies to prevent metabolic diseases are growing interests. Agrocybe cylindracea (AC) is a major edible mushroom with high values of nutrition, but little is known about its health benefits as a portion of whole food. METHODS AND RESULTS Diet-induced obese, C57BL/6J mice were fed an HFD with or without AC (3% or 5%, w/w in the diet) for 9 weeks. The results showed that dietary AC reduced body weight, adipose accumulation, impairment of glucose tolerance, lipid levels, and liver injury in HFD-fed mice. Moreover, AC not only prevented HFD-induced gut disorder, as indicated by the enriched probiotic Bifidobacterium and reduced endotoxin-bearing Proteobacteria, but also improved the endotoxin (LPS) level and gut tissue structure. Fecal metabolites such as harmine and harmanine were also remarkably altered by AC. Spearman's correlation analysis revealed that the AC-altered microbes and metabolites were strongly correlated with obesity-related indexes. CONCLUSION These findings suggest that dietary AC prevents HFD-induced obesity and its complications in association with modulating gut microbiota and associated fecal metabolites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Wei Liu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Aohuan Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China.,Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, 510070, China
| |
Collapse
|
38
|
Li R, Xue Z, Li S, Zhou J, Liu J, Zhang M, Panichayupakaranant P, Chen H. Mulberry leaf polysaccharides ameliorate obesity through activation of brown adipose tissue and modulation of the gut microbiota in high-fat diet fed mice. Food Funct 2022; 13:561-573. [PMID: 34951619 DOI: 10.1039/d1fo02324a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Improving energy homeostasis and the gut microbiota is a promising strategy to improve obesity and related metabolic disorders. Mulberry leaf is one of the traditional Chinese medicines and functional diets. In this work, a mouse model induced by high-fat diet (HFD) was used to reveal the role of mulberry leaf polysaccharides (MLP). It was found that MLP had a significant effect in limiting body weight gain (reduced by 19.95%, 35.47% and 52.46%, respectively), ameliorating hepatic steatosis and regulating lipid metabolism in HFD induced obese mice (P < 0.05). RT-PCR and western blot analysis suggested that these metabolic improvements were mediated by inducing the development of brown-like adipocytes in inguinal white adipose tissue and enhancing brown adipose tissue activity. Besides, 16S rRNA sequencing results led to the inference that MLP could mitigate the composition and function of the gut microbiota. Together, these findings indicated that MLP possess great potential as a diet supplement or medication for obesity.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, P.R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
39
|
Nostoc flagelliforme capsular polysaccharides from different culture conditions improve hyperlipidemia and regulate intestinal flora in C57BL/6J mice to varying degrees. Int J Biol Macromol 2022; 202:224-233. [PMID: 35038468 DOI: 10.1016/j.ijbiomac.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
Abstract
Two capsular polysaccharides (WL-CPS-1 and GLU-CPS-1) purified from Nostoc flagelliforme under normal and mixotrophic culture conditions were used to investigate the hypolipidemic activity and effect on intestinal flora in C57BL/6J mice respectively. Their molecular weight and monosaccharide composition have been determined in previous studies. They both improved the lipid level by affecting the expression of lipid metabolism genes. They down-regulated the TNF-α and IL-1β levels in serum and up-regulated the activity of antioxidant enzymes in liver thus decreased the atherosclerosis index and MDA content. They up-regulated the short chain fatty acids (SCFAs) synthesis. They decreased the abundance of pathogenic bacteria and increased the abundance of probiotics positively correlated with SCFAs. Compared with WL-CPS-1, GLU-CPS-1 exhibited higher in vivo activity and enriched Odoribacter and Alloprevotella correlating with the gene expression of lipid metabolism, suggesting that the bioactivity of polysaccharides could be regulated by culture conditions. These findings contributed to application of N. flagelliforme polysaccharides with higher activity in hypolipidemia by adjusting culture conditions.
Collapse
|
40
|
Ekeuku SO, Chin KY, Qian J, Qu H, Wang Y, Ramli ESM, Wong SK, Noor MMM, Ima-Nirwana S. Normalisation of High Bone Remodelling due to Oestrogen Deficiency by Traditional Chinese Formulation Kang Shuai Lao Pian in Ovariectomised Rats. Int J Med Sci 2022; 19:1648-1659. [PMID: 36237992 PMCID: PMC9553853 DOI: 10.7150/ijms.75915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Postmenopausal osteoporosis transpires due to excessive osteoclastic bone resorption and insufficient osteoblastic bone formation in the presence of oestrogen insufficiency. Kang Shuai Lao Pian (KSLP) is a red ginseng-based traditional Chinese medicine known for its anti-ageing properties. However, studies on its effect on bone loss are lacking. Thus, the current study examined the skeletal protective effects of KSLP in an ovariectomised rodent bone loss model. Three-month-old female Sprague Dawley rats (n=42) were randomised into baseline, sham and ovariectomised (OVX) groups. The OVX rats were supplemented with low- (KSLP-L; 0.15 g/kg), medium- (KSLP-M; 0.30 g/kg), high-dose KSLP (KSLP-H; 0.45 g/kg) or calcium carbonate (1% w/v). The daily supplementation of KSLP was performed via oral gavage for eight weeks. Gavage stress was stimulated in the ovariectomised control with distilled water. The rats were euthanised at the end of the study. Whole-body and femoral bone mineral content and density scans were performed at baseline and every four weeks. Blood samples were obtained for the determination of bone remodelling markers. Histomorphometry and biomechanical strength testing were performed on femurs and tibias. High bone remodelling typically due to oestrogen deficiency, indicated by the elevated bone formation and resorption markers, osteoclast surface, single-labelled surface and mineralising surface/bone surface ratio, was observed in the untreated OVX rats. Whole-body BMD adjusted to body weight and Young's modulus decreased significantly in the untreated OVX rats. High-dose KSLP supplementation counteracted these degenerative changes. In conclusion, KSLP improves bone health by normalising bone remodelling, thereby preventing bone loss and decreased bone strength caused by oestrogen deficiency. Its anti-osteoporosis effects should be validated in patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Mustazil Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Structural and Functional Modulation of Gut Microbiota by Jiangzhi Granules during the Amelioration of Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2234695. [PMID: 34966475 PMCID: PMC8712166 DOI: 10.1155/2021/2234695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Recently, accumulating evidence revealed that nonalcoholic fatty liver disease (NAFLD) is highly associated with the dysbiosis of gut microbiota. Jiang Zhi Granule (JZG), which is composed of five widely used Chinese herbs, has shown hypolipidemic effect, while whether such effect is mediated by gut microbiota is still unclear. Here, we found that both low and high doses of JZG (LJZ and HJZ) could improve hepatic steatosis and function, as well as insulin resistance in NAFLD mice. 16S rRNA gene sequencing revealed that JZG treatment could reverse the dysbiosis of intestinal flora in NAFLD mice, exhibiting a dose-dependent effect. Notably, HJZ could significantly reduce the relative abundance of Desulfovibrionaceae, while increasing the relative abundance of such as S24_7 and Lachnospiraceae. PICRUSt analysis showed that HJZ could significantly alter the functional profile of gut microbiota, including the reduction of the lipopolysaccharide biosynthesis and sulfur metabolism pathway, which is verified by the decreased levels of fecal hydrogen sulfide (H2S) and serum lipopolysaccharide binding protein (LBP). In addition, hepatic mRNA sequencing further indicated that the HJZ group can regulate the peroxisome proliferator-activated receptor (PPAR) pathway and inflammatory signaling pathway, as validated by RT-PCR and Western blot. We also found that different doses of JZG may regulate lipid metabolism through differentiated pathways, as LJZ mainly through the promotion of hepatic lipid hydrolysis, while HJZ mainly through the improvement of hepatic lipid oxidation. Taken together, JZG could modulate gut dysbiosis with dose-effect, alleviate inflammation level, and regulate hepatic lipid metabolism, which may subsequently contribute to the improvement of NAFLD. Our study revealed the underlying mechanisms in the improvement of NAFLD by a Chinese herbal compound, providing future guidance for clinical usage.
Collapse
|
42
|
Abolghasemi A, Manca C, Iannotti FA, Shen M, Leblanc N, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Assessment of the Effects of Dietary Vitamin D Levels on Olanzapine-Induced Metabolic Side Effects: Focus on the Endocannabinoidome-Gut Microbiome Axis. Int J Mol Sci 2021; 22:12361. [PMID: 34830242 PMCID: PMC8620071 DOI: 10.3390/ijms222212361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet.
Collapse
Affiliation(s)
- Armita Abolghasemi
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
| | - Claudia Manca
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
| | - Fabio A. Iannotti
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, National Council of Research (Consiglio Nazionale delle Ricerche), 80087 Pozzuoli, Italy;
| | - Melissa Shen
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nadine Leblanc
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Sébastien Lacroix
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Cyril Martin
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
| | - Nicolas Flamand
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, National Council of Research (Consiglio Nazionale delle Ricerche), 80087 Pozzuoli, Italy;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Centre de Recherche, l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (A.A.); (C.M.); (M.S.); (N.L.); (S.L.); (C.M.); (N.F.); (V.D.M.)
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
43
|
Wen C, Li S, Wang J, Zhu Y, Zong X, Wang Y, Jin M. Heat Stress Alters the Intestinal Microbiota and Metabolomic Profiles in Mice. Front Microbiol 2021; 12:706772. [PMID: 34512584 PMCID: PMC8430895 DOI: 10.3389/fmicb.2021.706772] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Heat stress has negative effects on the intestinal health of humans and animals. However, the impact of heat stress on intestinal microbial and metabolic changes remains elusive. Here, we investigated the cecal microbial and metabolic profiles in mice in response to heat stress. Methods The mouse heat stress model was constructed by simulating a high-temperature environment. Twenty mice were randomly assigned to two groups, the control group (CON, 25°C) and the heat treatment group (HS, 40°C from 13:00 to 15:00 every day for 7 days). Serum and cecal contents were collected from the mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and non-targeted metabolomics. Results Both core body temperature and water intake were significantly increased in the HS group. Serum biochemical indicators were also affected, including significantly increased triglyceride and decreased low-density lipoprotein in the heat stress group. The composition and structure of intestinal microbiota were remarkably altered in the HS group. At the species level, the relative abundance of Candidatus Arthromitus sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis of the cecal contents clearly distinguished metabolite changes between the groups. The significantly different metabolites identified were mainly involved in the fatty acid synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism, glyceride metabolism, and plasmalogen synthesis. Conclusion In summary, high temperature disrupted the homeostatic balance of the intestinal microbiota in mice and also induced significant alterations in intestinal metabolites. This study provides a basis for treating intestinal disorders caused by elevated temperature in humans and animals and can further formulate nutritional countermeasures to reduce heat stress-induced damage.
Collapse
Affiliation(s)
- Chaoyue Wen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiaojiao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimin Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
44
|
Deng L, Shi Y, Liu P, Wu S, Lv Y, Xu H, Chen X. GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora. Biomed Pharmacother 2021; 141:111896. [PMID: 34246956 DOI: 10.1016/j.biopha.2021.111896] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza in humans is often accompanied by gastroenteritis-like symptoms. GeGen QinLian decoction (GQD), a Chinese herb formula, has been widely used to treat infectious diarrhea for centuries and has the effect of restoring intestinal flora. Studies have also reported that GQD were used to treat patients with influenza. However, whether regulating the intestinal flora is one of the ways GQD treats influenza has not been confirmed. In present research, we conducted a systemic pharmacological study, and the results showed that GQD may acts through multiple targets and pathways. In influenza-infected mice, GQD treatment reduced mortality and lung inflammation. Most importantly, the mortality and lung inflammation were also reduced in influenza-infected mice that have undergone fecal microbiota transplantation (FMT) from GQD (FMT-GQD) treated mice. GQD treatment or FMT-GQD treatment restores the intestinal flora, resulting in an increase in Akkermansia_muciniphila, Desulfovibrio_C21_c20 and Lactobacillus_salivarius, and a decrease in Escherichia_coli. FMT-GQD treatment inhibited the NOD/RIP2/NF-κB signaling pathway in the intestine and affected the expression of downstream related inflammatory cytokines in mesenteric lymph nodes (mLNs) and serum. In addition, FMT-GQD treatment showed systemic protection by restraining the inflammatory differentiation of CD4+ T cells. In conclusion, our study shows that GQD can affect systemic immunity, at least in part, through the intestinal flora, thereby protect the mice against influenza virus infectious pneumonia.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Front Pharmacol 2021; 12:647529. [PMID: 34366839 PMCID: PMC8339961 DOI: 10.3389/fphar.2021.647529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Collapse
Affiliation(s)
- Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanxin Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jintong Luo
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
46
|
Van Buiten CB, Wu G, Lam YY, Zhao L, Raskin I. Elemental iron modifies the redox environment of the gastrointestinal tract: A novel therapeutic target and test for metabolic syndrome. Free Radic Biol Med 2021; 168:203-213. [PMID: 33831549 PMCID: PMC8544024 DOI: 10.1016/j.freeradbiomed.2021.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS, i.e., type 2 diabetes and obesity) is often associated with dysbiosis, inflammation, and leaky gut syndrome, which increase the content of oxygen and reactive oxygen species (ROS) in the gastrointestinal (GI) tract. Using near-infrared fluorescent, in situ imaging of ROS, we evaluated the effects of oral administration of elemental iron powder (Fe0) on luminal ROS in the GI tract and related these changes to glucose metabolism and the gut microbiome. C57Bl/6J mice fed low-fat or high-fat diets and gavaged with Fe0 (2.5 g per kg), in both single- and repeat-doses, demonstrated decreased levels of luminal ROS. Fourteen days of repeated Fe0 administration reduced hyperglycemia and improved glucose tolerance in the obese and hyperglycemic animals compared to the untreated obese controls and reduced the relative amount of iron oxides in the feces, which indicated an increased redox environment of the GI tract. We determined that Fe0 administration can also be used as a diagnostic assay to assess the GI microenvironment. Improved metabolic outcomes and decreased gastrointestinal ROS in Fe0-treated, high-fat diet-fed animals correlated with the increase in a co-abundance group of beneficial bacteria, including Lactobacillus, and the suppression of detrimental populations, including Oscillibacter, Peptococcus, and Intestinimonas. Daily Fe0 treatment also increased the relative abundance of amplicon sequence variants that lacked functional enzymatic antioxidant systems, which is consistent with the ability of Fe0 to scavenge ROS and oxygen in the GI, thus favoring the growth of oxygen-sensitive bacteria. These findings delineate a functional role for antioxidants in modification of the GI microenvironment and subsequent reversal of metabolic dysfunction.
Collapse
Affiliation(s)
- Charlene B Van Buiten
- Department of Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, 80525, USA; Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA; Center for Microbiome, Nutrition and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 80901, USA
| | - Yan Y Lam
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA; Center for Microbiome, Nutrition and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 80901, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA; Center for Microbiome, Nutrition and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 80901, USA
| | - Ilya Raskin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
47
|
Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne) 2021; 12:706978. [PMID: 34552557 PMCID: PMC8450866 DOI: 10.3389/fendo.2021.706978] [Citation(s) in RCA: 528] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is a complex multifactorial disease that accumulated excess body fat leads to negative effects on health. Obesity continues to accelerate resulting in an unprecedented epidemic that shows no significant signs of slowing down any time soon. Raised body mass index (BMI) is a risk factor for noncommunicable diseases such as diabetes, cardiovascular diseases, and musculoskeletal disorders, resulting in dramatic decrease of life quality and expectancy. The main cause of obesity is long-term energy imbalance between consumed calories and expended calories. Here, we explore the biological mechanisms of obesity with the aim of providing actionable treatment strategies to achieve a healthy body weight from nature to nurture. This review summarizes the global trends in obesity with a special focus on the pathogenesis of obesity from genetic factors to epigenetic factors, from social environmental factors to microenvironment factors. Against this background, we discuss several possible intervention strategies to minimize BMI.
Collapse
|
48
|
Cui H, Li Y, Wang Y, Jin L, Yang L, Wang L, Liao J, Wang H, Peng Y, Zhang Z, Wang H, Liu X. Da-Chai-Hu Decoction Ameliorates High Fat Diet-Induced Nonalcoholic Fatty Liver Disease Through Remodeling the Gut Microbiota and Modulating the Serum Metabolism. Front Pharmacol 2020; 11:584090. [PMID: 33328987 PMCID: PMC7732620 DOI: 10.3389/fphar.2020.584090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
The dysbiosis in gut microbiota could affect host metabolism and contribute to the development of nonalcoholic fatty liver disease (NAFLD). Da-Chai-Hu decoction (DCH) has demonstrated protective effects on NAFLD, however, the exact mechanisms remain unclear. In this study, we established a NAFLD rat model using a high fat diet (HFD) and provided treatment with DCH. The changes in gut microbiota post DCH treatment were then investigated using 16S rRNA sequencing. Additionally, serum untargeted metabolomics were performed to examine the metabolic regulations of DCH on NAFLD. Our results showed that DCH treatment improved the dyslipidemia, insulin resistance (IR) and ameliorated pathological changes in NAFLD model rats. 16S rRNA sequencing and untargeted metabolomics showed significant dysfunction in gut microbiota community and serum metabolites in NAFLD model rats. DCH treatment restored the dysbiosis of gut microbiota and improved the dysfunction in serum metabolism. Correlation analysis indicated that the modulatory effects of DCH on the arachidonic acid (AA), glycine/serine/threonine, and glycerophospholipid metabolic pathways were related to alterations in the abundance of Romboutsia, Bacteroides, Lactobacillus, Akkermansia, Lachnoclostridium and Enterobacteriaceae in the gut microflora. In conclusion, our study revealed the ameliorative effects of DCH on NAFLD and indicated that DCH's function on NAFLD may link to the improvement of the dysbiosis of gut microbiota and the modulation of the AA, glycerophospholipid, and glycine/serine/threonine metabolic pathways.
Collapse
Affiliation(s)
- Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuting Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Wang
- Tianjin Second People’s Hospital, Tianjin, China
| | - Jiabao Liao
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haoshuo Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanfei Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|