1
|
Song Y, Wang F, Luo H, Hu H, Pang Y, Xu K, Zhang X. Rapamycin protects glucocorticoid-induced glaucoma model mice against trabecular meshwork fibrosis by suppressing mTORC1/2 signaling. Eur J Pharmacol 2025; 990:177269. [PMID: 39805488 DOI: 10.1016/j.ejphar.2025.177269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells (RGC) and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM). This study aimed to investigate the protective effect and potential mechanism of Rapa in a glucocorticoid-induced glaucoma (GIG) model. Our findings indicate that Rapa significantly inhibited the IOP increase induced by dexamethasone acetate (Dex-Ac) and improved TM fibrosis and RGC damage. In cultured human trabecular meshwork cells (HTMCs) treated with dexamethasone (Dex) and Rapa under different conditions revealed that Rapa inhibits Dex-induced HTMC fibrosis and cytoskeletal changes. This effect may result from the specific suppression of the mechanistic target of rapamycin complex 1 (mTORC1) pathway by Rapa, which reduces abnormal extracellular matrix (ECM) deposition. Alternatively, the improvement in cytoskeleton entanglement might be due to the inhibition of the mechanistic target of rapamycin complex 2 (mTORC2) pathway. These two potential mechanisms may collectively contribute to the protective effects of Rapa in GIG. This study provides a new theoretical basis for using of Rapa in the treatment of GIG.
Collapse
Affiliation(s)
- Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China; Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
| |
Collapse
|
2
|
Binter M, Heider M, Glage S, Fuchs H, Langer F, Schigiel T, Framme C, Tode J. Understanding the Ocular Hypertension Model in Mice Induced by Dexamethasone-21-Acetate - Implications for Glaucoma Research. Curr Eye Res 2024; 49:1269-1277. [PMID: 39049665 DOI: 10.1080/02713683.2024.2380445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE This study aimed to assess the effectiveness of monocular and bilateral injections of Dexamethasone-21-acetate (Dex-21-Ac) into the murine fornix twice a week as a glucocorticoid-induced ocular hypertension model and investigated potential systemic side effects. METHODS Dex-21-Ac was administered twice weekly in three groups: bilateral injections, monocular injections, and a control group receiving the vehicle solution bilateral. After 21 days, enucleated eyes were examined using immunocytochemistry (ICC), and organ histology was performed. RESULTS All groups receiving Dex-21-Ac injections had a significant increase in intraocular pressure (IOP). Monocular injections also resulted in a significant increase in IOP in the fellow eye. The Dex-21-Ac-treated groups showed a bilateral increase in IOP of approximately 8 mmHg, accompanied by elevated expression of alpha smooth muscle actin and fibronectin in the anterior chamber angle. There were no significant changes in weight progression. Hepatic steatosis was observed in all Dex-21-Ac-treated animals, and some suffered from residual neuromuscular blockade under fentanyl anesthesia. CONCLUSION Bilateral injections of Dex-21-Ac twice a week lead to a significant increase in daytime IOP and fibrotic changes in the trabecular meshwork. Unilateral application has a significant impact on the fellow eye. Local dexamethasone leads to notable systemic effects independent of changes in animal weight. Considering liver damage and associated influence on metabolization, hepatically eliminated injection anesthetics may lead to overdosing and are not recommended. They should be replaced by inhalation anesthesia.
Collapse
Affiliation(s)
- Maximilian Binter
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Heiko Fuchs
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Fridolin Langer
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Thomas Schigiel
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Jan Tode
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Zhu M, Deng X, Zhang N, Zhang P, Lai C, Cai S, Huang J, Chen X, Liu Y, Zeng W, Ke M. Dexamethasone induces trabecular meshwork cell myofibroblast transdifferentiation through ARHGEF26. FASEB J 2024; 38:e23848. [PMID: 39092889 DOI: 10.1096/fj.202400400rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-β pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.
Collapse
Affiliation(s)
- Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Lai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuncheng Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zhang N, Zhang P, Deng X, Zhu M, Hu Y, Ji D, Li L, Liu Y, Zeng W, Ke M. Protective Effect of Nicotinamide Riboside on Glucocorticoid-Induced Glaucoma: Mitigating Mitochondrial Damage and Extracellular Matrix Deposition. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38949632 PMCID: PMC11221610 DOI: 10.1167/iovs.65.8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Glucocorticoid-induced glaucoma (GIG) is a prevalent complication associated with glucocorticoids (GCs), resulting in irreversible blindness. GIG is characterized by the abnormal deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), elevation of intraocular pressure (IOP), and loss of retinal ganglion cells (RGCs). The objective of this study is to investigate the effects of nicotinamide riboside (NR) on TM in GIG. Methods Primary human TM cells (pHTMs) and C57BL/6J mice responsive to GCs were utilized to establish in vitro and in vivo GIG models, respectively. The study assessed the expression of ECM-related proteins in TM and the functions of pHTMs to reflect the effects of NR. Mitochondrial morphology and function were also examined in the GIG cell model. GIG progression was monitored through IOP, RGCs, and mitochondrial morphology. Intracellular nicotinamide adenine dinucleotide (NAD+) levels of pHTMs were enzymatically assayed. Results NR significantly prevented the expression of ECM-related proteins and alleviated dysfunction in pHTMs after dexamethasone treatment. Importantly, NR protected damaged ATP synthesis, preventing overexpression of mitochondrial reactive oxygen species (ROS), and also protect against decreased mitochondrial membrane potential induced by GCs in vitro. In the GIG mouse model, NR partially prevented the elevation of IOP and the loss of RGCs. Furthermore, NR effectively suppressed the excessive expression of ECM-associated proteins and mitigated mitochondrial damage in vivo. Conclusions Based on the results, NR effectively enhances intracellular levels of NAD+, thereby mitigating abnormal ECM deposition and TM dysfunction in GIG by attenuating mitochondrial damage induced by GCs. Thus, NR has promising potential as a therapeutic candidate for GIG treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Hu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongxiao Ji
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Huaihai Hospital of Henan University, Kaifeng, Henan, China
| | - Lufan Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
6
|
Yan X, Wu S, Liu Q, Cheng Y, Teng Y, Ren T, Zhang J, Wang N. Serine to proline mutation at position 341 of MYOC impairs trabecular meshwork function by causing autophagy deregulation. Cell Death Discov 2024; 10:21. [PMID: 38212635 PMCID: PMC10784477 DOI: 10.1038/s41420-024-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Glaucoma is a highly heritable disease, and myocilin was the first identified causal and most common pathogenic gene in glaucoma. Serine-to-proline mutation at position 341 of myocilin (MYOCS341P) is associated with severe glaucoma phenotypes in a five-generation primary open-angle glaucoma family. However, the underlying mechanisms are underexplored. Herein, we established the MYOCS341P transgenic mouse model and characterized the glaucoma phenotypes. Further, we systematically explored the functional differences between wild-type and MYOCS341P through immunoprecipitation, mass spectrometry, and RNA-seq analyses. We found that MYOCS341P transgenic mice exhibit glaucoma phenotypes, characterized by reduced aqueous humor outflow, elevated intraocular pressure, decreased trabecular meshwork (TM) cell number, narrowed Schlemm's canal, retinal ganglion cell loss, and visual impairment. Mechanistically, the secretion of dysfunctional MYOCS341P accumulated in the endoplasmic reticulum (ER), inducing ER stress and dysregulation of autophagy, thereby promoting TM cell death. We describe an effective transgenic model for mechanistic studies and the screening of therapeutic targets. Our data generated from high-throughput analyses help elucidate the mechanism underlying mutant MYOC-related glaucoma.
Collapse
Affiliation(s)
- Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yufei Teng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Xu W, Sun Y, Zhao S, Zhao J, Zhang J. Identification and validation of autophagy-related genes in primary open-angle glaucoma. BMC Med Genomics 2023; 16:287. [PMID: 37968618 PMCID: PMC10648356 DOI: 10.1186/s12920-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND As the most common type of glaucoma, the etiology of primary open-angle glaucoma (POAG) has not been unified. Autophagy may affect the occurrence and development of POAG, while the specific mechanism and target need to be further explored. METHODS The GSE27276 dataset from the Gene Expression Omnibus (GEO) database and the autophagy gene set from the GeneCards database were selected to screen differentially expressed autophagy-related genes (DEARGs) of POAG. Hub DEARGs were selected by constructing protein-protein interaction (PPI) networks and utilizing GSE138125 dataset. Subsequently, immune cell infiltration analysis, genome-wide association study (GWAS) analysis, gene set enrichment analysis (GSEA) and other analyses were performed on the hub genes. Eventually, animal experiments were performed to verify the mRNA levels of the hub genes by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS A total of 67 DEARGs and 2 hub DEARGs, HSPA8 and RPL15, were selected. The hub genes were closely related to the level of immune cell infiltration. GWAS analysis confirmed that the causative regions of the 2 hub genes in glaucoma were on chromosome 11 and chromosome 3, respectively. GSEA illustrated that pathways enriched for highly expressed HSPA8 and RPL15 contained immunity, autophagy, gene expression and energy metabolism-related pathways. qRT-PCR confirmed that the expression of Hspa8 and Rpl15 in the rat POAG model was consistent with the results of bioinformatics analysis. CONCLUSIONS This study indicated that HSPA8 and RPL15 may affect the progression of POAG by regulating autophagy and provided new ideas for the pathogenesis and treatment of POAG.
Collapse
Affiliation(s)
- Wanjing Xu
- Ophthalmology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Yuhao Sun
- Otolaryngology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuang Zhao
- Graduate School of Shandong First Medical University, Jinan, China
| | - Jun Zhao
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| | - Juanmei Zhang
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| |
Collapse
|
8
|
Wang F, Song Y, Liu P, Ma F, Peng Z, Pang Y, Hu H, Zeng L, Luo H, Zhang X. Rapamycin suppresses neuroinflammation and protects retinal ganglion cell loss after optic nerve crush. Int Immunopharmacol 2023; 119:110171. [PMID: 37060809 DOI: 10.1016/j.intimp.2023.110171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Pyroptosis, an inflammasome-mediated mode of death, plays an important role in glaucoma. It has been shown that regulating the mTOR pathway can inhibit pyroptosis. Unfortunately, whether rapamycin (RAPA), a specific inhibitor of the mTOR pathway, can inhibit optic nerve crush (ONC)-induced pyroptosis to protect retinal ganglion cells (RGCs) has not been investigated. Our research aimed to confirm the effect of intravitreal injection of RAPA on RGCs. Furthermore, we used the ONC model to explore the underlying mechanisms. First, we observed that intravitreal injection of RAPA alleviated RGC damage induced by various types of injury. We then used the ONC model to further explore the potential mechanism of RAPA. Mechanistically, RAPA not only reduced the activation of glial cells in the retina but also inhibited retinal pyroptosis-induced expression of inflammatory factors such as nucleotide-binding oligomeric domain-like receptor 3 (NLRP3), apoptosis-associated speckle-like protein containing a CARD (ASC), N-terminal of gasdermin-D (GSDMD-N), IL-18 and IL-1β. Moreover, RAPA exerted protective effects on RGC axons, possibly by inhibiting glial activation and regulating the mTOR/ROCK pathway. Therefore, this study demonstrates a novel mechanism by which RAPA protects against glaucoma and provides further evidence for its application in preclinical studies.
Collapse
Affiliation(s)
- Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Peiyu Liu
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Fangli Ma
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Zhida Peng
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Nanchang University School of Ophthalmology & Optometry, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, PR China.
| |
Collapse
|
9
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Binter M, Lüdtke P, Langer F, Schigiel T, Framme C, Heider M, Tode J. Changes in Intraocular Pressure following Narcosis With Medetomidine, Midazolam, and Fentanyl in Association With Initial Intraocular Pressure in Mice. Curr Eye Res 2022; 47:1553-1558. [PMID: 35943353 DOI: 10.1080/02713683.2022.2101667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE This article describes the development of decreased intraocular pressure (IOP) under general anesthesia with medetomidine, midazolam, and fentanyl in mice with normal and elevated IOP. METHODS IOP was measured using the iCare Tonolab rebound tonometer. Twelve 3-4 months-old male and female C57BL/6J mice were randomized to a control group with physiological IOP and a high IOP group with experimentally induced ocular hypertension using tarsal injections of dexamethasone-21-acetate. For anesthesia, medetomidine and midazolam were used, subgroups additionally received fentanyl. IOP was measured every 2.5 min for 30 min. RESULTS Control group differed with 14.89 mmHg (SEM: 0.58) significantly (p = 0.0002) from the high IOP group with initial 20.44 mmHg (SEM: 0.75). All groups showed a significant (p < 0.05) decrease in IOP under general anesthesia. There was no significant difference in IOP development and decrease between the group additionally receiving fentanyl and the group without fentanyl. The decrease in IOP was highly dependent on the initial value, with the high IOP group showing a greater decrease. After 10 min, no significant difference in IOP could be detected between the high IOP and control group. CONCLUSIONS In mice, general anesthesia with medetomidine and midazolam leads to a declining IOP over time. Adding fentanyl to the anesthesia did not alter these effects. The decline is time-dependent and IOP-dependent.
Collapse
Affiliation(s)
- Maximilian Binter
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Philipp Lüdtke
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Fridolin Langer
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Thomas Schigiel
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Jan Tode
- Department of Ophthalmology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
12
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
13
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
14
|
The Intertwined Roles of Oxidative Stress and Endoplasmic Reticulum Stress in Glaucoma. Antioxidants (Basel) 2022; 11:antiox11050886. [PMID: 35624748 PMCID: PMC9137739 DOI: 10.3390/antiox11050886] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and the burden of the disease continues to grow as the global population ages. Currently, the only treatment option is to lower intraocular pressure. A better understanding of glaucoma pathogenesis will help us to develop novel therapeutic options. Oxidative stress has been implicated in the pathogenesis of many diseases. Oxidative stress occurs when there is an imbalance in redox homeostasis, with reactive oxygen species producing processes overcoming anti-oxidant defensive processes. Oxidative stress works in a synergistic fashion with endoplasmic reticulum stress, to drive glaucomatous damage to trabecular meshwork, retinal ganglion cells and the optic nerve head. We discuss the oxidative stress and endoplasmic reticulum stress pathways and their connections including their key intermediary, calcium. We highlight therapeutic options aimed at disrupting these pathways and discuss their potential role in glaucoma treatment.
Collapse
|
15
|
Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells. Proc Natl Acad Sci U S A 2021; 118:2021942118. [PMID: 33753495 DOI: 10.1073/pnas.2021942118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
Collapse
|
16
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
17
|
Sbardella D, Tundo GR, Coletta M, Manni G, Oddone F. Dexamethasone Downregulates Autophagy through Accelerated Turn-Over of the Ulk-1 Complex in a Trabecular Meshwork Cells Strain: Insights on Steroid-Induced Glaucoma Pathogenesis. Int J Mol Sci 2021; 22:ijms22115891. [PMID: 34072647 PMCID: PMC8198647 DOI: 10.3390/ijms22115891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Steroid-induced glaucoma is a severe pathological condition, sustained by a rapidly progressive increase in intraocular pressure (IOP), which is diagnosed in a subset of subjects who adhere to a glucocorticoid (GC)-based therapy. Molecular and clinical studies suggest that either natural or synthetic GCs induce a severe metabolic dysregulation of Trabecular Meshwork Cells (TMCs), an endothelial-derived histotype with phagocytic and secretive functions which lay at the iridocorneal angle in the anterior segment of the eye. Since TMCs physiologically regulate the composition and architecture of trabecular meshwork (TM), which is the main outflow pathway of aqueous humor, a fluid which shapes the eye globe and nourishes the lining cell types, GCs are supposed to trigger a pathological remodeling of the TM, inducing an IOP increase and retina mechanical compression. The metabolic dysregulation of TMCs induced by GCs exposure has never been characterized at the molecular detail. Herein, we report that, upon dexamethasone exposure, a TMCs strain develops a marked inhibition of the autophagosome biogenesis pathway through an enhanced turnover of two members of the Ulk-1 complex, the main platform for autophagy induction, through the Ubiquitin Proteasome System (UPS).
Collapse
Affiliation(s)
- Diego Sbardella
- IRCCS-Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: (D.S.); (F.O.)
| | | | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy; (M.C.); (G.M.)
| | - Gianluca Manni
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy; (M.C.); (G.M.)
| | - Francesco Oddone
- IRCCS-Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: (D.S.); (F.O.)
| |
Collapse
|