1
|
Liu Z, Gu Z, Peng L, Huang X, Yang L, Hu C, Guo K, Liu H, Guo L, Luo Y, Zeng J, Jiang M. Impact of pulmonary infection and antibiotic use on recurrent myocardial infarction in patients with myocardial infarction. Sci Rep 2025; 15:14954. [PMID: 40301488 PMCID: PMC12041519 DOI: 10.1038/s41598-025-99444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
This study aims to evaluate the impact of pulmonary infections and antibiotic use on the recurrence of myocardial infarction (MI) in patients. A total of 3807 MI patients were included in this study. The effects of pulmonary infections and different antibiotics on recurrent MI were investigated using multivariable logistic regression and propensity score matching (PSM) analysis. Kaplan-Meier survival curves were used to compare the risk of recurrent MI between patients with and without pulmonary infections. In the multivariable logistic regression analysis, pulmonary infections significantly increased the risk of recurrent MI in patients with non-ST-segment elevation myocardial infarction (NSTEMI) (odds ratio [OR] = 1.47, 95% confidence interval [CI]: 1.22-1.79, P < 0.0001) and ST-segment elevation myocardial infarction (STEMI) (OR = 1.43, 95% CI: 1.15-1.80, P = 0.0016). PSM analysis showed that, without adjusting for antibiotic use, pulmonary infections significantly increased the risk of recurrent MI (NSTEMI: OR = 1.41, 95% CI: 1.12-1.79, P = 0.004; STEMI: OR = 1.48, 95% CI: 1.13-1.95, P = 0.0051). However, after adjusting for antibiotic use, the impact of pulmonary infections on recurrent MI was no longer significant (NSTEMI: OR = 0.91, 95% CI: 0.57-1.45, P = 0.691; STEMI: OR = 1.06, 95% CI: 0.80-1.41, P = 0.6925). Different antibiotics had significant effects on the risk of recurrent MI: quinolone antibiotics were associated with an increased risk, while cephalosporin antibiotics and metronidazole were associated with a decreased risk. Pulmonary infections significantly increase the risk of recurrent MI in patients, and antibiotic use can modify this effect. Clinically, the use of antibiotics and management of pulmonary infections should be carefully considered to optimize treatment strategies for MI patients.
Collapse
Affiliation(s)
- Zhican Liu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Zi Gu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Li Peng
- Department of Oncology, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Xi Huang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Li Yang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Kai Guo
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Huan Liu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Ling Guo
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Yan Luo
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Jianping Zeng
- Department of Cardiology, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China.
- Graduate Collaborative Training Base of Xiangtan Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Khoshi MA, Keyvani-Ghamsari S, Khorsandi K. Gallic acid synergistically enhances the antibacterial activity of azithromycin in MRSA. Int Microbiol 2025; 28:829-836. [PMID: 39212836 DOI: 10.1007/s10123-024-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The rise of antibiotic resistance in existing pathogens has been identified as a major threat to global healthcare in the twenty-first century. This resistance has consequences such as increased cost and prolonged hospital stays, treatment failure, and ultimately increased risk of patient mortality. It is therefore imperative to develop strategies to combat drug resistance. Combined treatment of common antibiotics and natural compounds is one of the most effective methods against resistant bacterial infections. Gallic acid (GA) is a natural secondary metabolite abundantly found in plants and has significant medicinal effects in various aspects of health. In this research, the antibacterial effects of azithromycin (AZM) and GA alone and in combination with each other were investigated on planktonic and biofilm forms of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (P. aeruginosa). The results showed that the combination of AZM/GA had an additive effect against MSSA and P. aeruginosa and a synergistic effect against MRSA. In addition, combining these two agents significantly reduced the minimum biofilm inhibitory concentration (MBIC) of AZM and GA in the MRSA strain. Finally, the level of ROS generation in the effect of AZM plus GA was evaluated in the bacteria. Among the studied strains, ROS production was significantly increased in combination treatment compared to AZM alone in MRSA. The results show that the combination of AZM and GA has a significant effect against MRSA and can be considered as an effective treatment option.
Collapse
Affiliation(s)
| | | | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Abavisani M, Khoshrou A, Eshaghian S, Karav S, Sahebkar A. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. J Drug Target 2025; 33:341-367. [PMID: 39485073 DOI: 10.1080/1061186x.2024.2424895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Since its emergence shortly after the discovery of penicillin, antibiotic resistance has escalated dramatically, posing a significant health threat and economic burden. Drug repositioning, or drug repurposing, involves identifying new therapeutic applications for existing drugs, utilising their established safety profiles and pharmacological data to swiftly provide effective treatments against resistant pathogens. Several drugs, including otilonium bromide, penfluridol, eltrombopag, ibuprofen, and ceritinib, have demonstrated potent antibacterial activity against multidrug-resistant (MDR) bacteria. These drugs can disrupt biofilms, damage bacterial membranes, and inhibit bacterial growth. The combination of repurposed drugs with conventional antibiotics can reduce the required dosage of individual drugs, mitigate side effects, and delay the development of resistance, making it a promising strategy against MDR bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Despite its promise, drug repurposing faces challenges such as potential off-target effects, toxicity, and regulatory and intellectual property issues, necessitating rigorous evaluations and strategic solutions. This article aims to explore the potential of drug repurposing as a strategy to combat antibiotic resistance, examining its benefits, challenges, and future prospects. We address the legal, economic, and practical challenges associated with repurposing existing drugs, highlight successful examples, and propose solutions to enhance the efficacy and viability of this approach in combating MDR bacterial infections.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souzan Eshaghian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Kumar SD, Park J, Radhakrishnan NK, Aryal YP, Jeong G, Pyo I, Ganbaatar B, Lee CW, Yang S, Shin Y, Subramaniyam S, Lim Y, Kim S, Lee S, Shin SY, Cho S. Novel Leech Antimicrobial Peptides, Hirunipins: Real-Time 3D Monitoring of Antimicrobial and Antibiofilm Mechanisms Using Optical Diffraction Tomography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409803. [PMID: 39792785 PMCID: PMC11905058 DOI: 10.1002/advs.202409803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time. Here, a computational analysis of the leech transcriptome using an advanced AI-based peptide screening strategy with ODT to identify potential AMPs is employed. Among the 19 potential AMPs identified, hirunipin 2 demonstrates potent antibacterial activity, low mammalian cytotoxicity, and minimal hemolytic effects. It demonstrates efficacy comparable to melittin, resistance to physiological salts and human serum, and a low likelihood of inducing bacterial resistance. Microscopy and 3D-ODT confirm its disruption of bacterial membranes and intracellular aggregation, leading to cell death. Notably, hirunipin 2 effectively inhibits biofilm formation, eradicates preformed biofilms, and synergizes with antibiotics against multidrug-resistant Acinetobacter baumannii (MDRAB) by enhancing membrane permeability. Additionally, hirunipin 2 significantly suppresses pro-inflammatory cytokine expression in LPS-stimulated macrophages, highlighting its anti-inflammatory properties. These findings highlight hirunipin 2 as a strong candidate for developing novel antibacterial, anti-inflammatory, and antibiofilm therapies, particularly against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- S. Dinesh Kumar
- Department of Cellular & Molecular MedicineSchool of MedicineChosun UniversityGwangju61452Republic of Korea
| | - Jeongwon Park
- Gwangju CenterKorea Basic Science Institute (KBSI)Gwangju61751Republic of Korea
- Department of Animal ScienceChonnam National UniversityGwangju61186South Korea
| | | | - Yam Prasad Aryal
- Department of Biological Sciences and BiotechnologyCollege of Natural SciencesChungbuk National UniversityCheongjuChungbuk28644Republic of Korea
| | - Geon‐Hwi Jeong
- Department of Biological Sciences and BiotechnologyCollege of Natural SciencesChungbuk National UniversityCheongjuChungbuk28644Republic of Korea
| | - In‐Hyeok Pyo
- Department of Biological Sciences and BiotechnologyCollege of Natural SciencesChungbuk National UniversityCheongjuChungbuk28644Republic of Korea
| | | | - Chul Won Lee
- Department of ChemistryChonnam National UniversityGwangju61186Republic of Korea
| | - Sungtae Yang
- Institute of Well‐Aging Medicare & CSU G‐LAMP Project GroupChosun UniversityGwangju61452Republic of Korea
| | - Younhee Shin
- Research and Development CenterInsilicogen IncYongin‐siGyeonggi‐do16954Republic of Korea
| | | | - Yu‐jin Lim
- Research and Development CenterInsilicogen IncYongin‐siGyeonggi‐do16954Republic of Korea
| | - Sung‐Hak Kim
- Department of Animal ScienceChonnam National UniversityGwangju61186South Korea
| | - Seongsoo Lee
- Gwangju CenterKorea Basic Science Institute (KBSI)Gwangju61751Republic of Korea
- Department of Bio‐Analysis ScienceUniversity of Science & TechnologyDaejeon34113Republic of Korea
- Department of Systems BiotechnologyChung‐Ang UniversityAnseong17546Republic of Korea
- Department of Life ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular MedicineSchool of MedicineChosun UniversityGwangju61452Republic of Korea
| | - Sung‐Jin Cho
- Department of Biological Sciences and BiotechnologyCollege of Natural SciencesChungbuk National UniversityCheongjuChungbuk28644Republic of Korea
| |
Collapse
|
5
|
Bhunia S, Box SM, Bera S, Dolai A, Samanta S. Progress of Photoantibiotics in Overcoming Antibiotic Resistance. ChemMedChem 2025; 20:e202400613. [PMID: 39474944 DOI: 10.1002/cmdc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Indexed: 02/18/2025]
Abstract
Antibiotic resistance has emerged as a global public health crisis in the 21st century, leading to treatment failures. To address this issue, the medical and pharmaceutical sectors are confronted with two challenges: i) finding potent new antimicrobial agents that would work against resistant-pathogens, and ii) developing conceptually new or unconventional strategies by which a particular antibiotic would remain effective persistently. Photopharmacology with the aid of reversibly controllable light-active antibiotics that we call "photoantibiotics" shows great promise to meet the second challenge, which has inspired many research laboratories worldwide to align their research in inventing or developing such antibiotics. In this review, we have given an overview of the progress made over the last ten years or so towards developing such photoantibiotics. Although making such antibiotics that hold high antimicrobial potency like the native drugs and subsequently maintain a significant activity difference between light-irradiated and non-irradiated states is very challenging, the progress being reported here demonstrates the feasibility of various approaches to engineer photoantibiotics. This review provides a future perspective on the use of such antibiotics in clinical practice with the identification of potential problems and their solutions.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| |
Collapse
|
6
|
Beasley JM, Dorjsuren D, Jain S, Rath M, Tieghi RS, Tropsha A, Simeonov A, Zakharov AV, Muratov E. Breaking the Phalanx: Overcoming Bacterial Drug Resistance with Quorum Sensing Inhibitors that Enhance Therapeutic Activity of Antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633658. [PMID: 39896648 PMCID: PMC11785035 DOI: 10.1101/2025.01.17.633658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Antibiotic-resistant bacterial infections loom over humanity as an increasing deadly threat. There exists a dire need for new treatments, especially those that synergize with our existing arsenal of antibiotic drugs to help overcome the gap in antibiotic efficacy and attenuate the development of new antibiotic-resistance in the most dangerous pathogens. Quorum sensing systems in bacteria drive the formation of biofilms, increase surface motility, and enhance other virulence factors, making these systems attractive targets for the discovery of novel antibacterials. Quorum sensing inhibitors (QSIs) are hypothesized to synergize with existing antibiotics, making bacteria more sensitive to the effects of these drugs. In this study, we aimed to find the synergistic combinations between the QSIs and known antibiotics to combat the two deadliest hospital infections - Pseudomonas aeruginosa and Acinetobacter baumannii. We mined biochemical activity databases and literature to identify known, high efficacy QSIs against these bacteria. We used these data to develop and validate a Quantitative Structure-Activity Relationship (QSAR) model for predicting QSI activity and then employed this model to identify new potential QSIs from the Inxight database of approved and investigational drugs. We then tested binary mixtures of the identified QSIs with 11 existing antibiotics using a combinatorial matrix screening approach with ten (five of each) clinical isolates of P. aeruginosa and A. baumannii. Amongst explored drug combinations, 31 exhibited a synergistic effect, including mixtures involving naldemedine and telotristat, two drugs predicted by our model with previously undescribed QSI activity. Although no mixture inhibiting all the strains was found, piperacillin combined with curcumin, ketoprofen, indomethacin, and piroxicam demonstrated the broadest antimicrobial action. We anticipate that further preclinical investigation of these combinations of novel repurposed QSIs with a known antibiotic may lead to novel clinical candidates.
Collapse
Affiliation(s)
- Jon-Michael Beasley
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Dorjbal Dorjsuren
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, 20850
| | - Sankalp Jain
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, 20850
| | - Marielle Rath
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, 20850
| | - Alexey V. Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, 20850
| | - Eugene Muratov
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Luo Y, He B, Li ZP, Zhong Q, Liu YC, Zhang HY, Li Y, Yan HL, Hu YL, Zheng ZJ, Ren H, Liao XP, Sun J. Rutin Synergizes with Colistin to Eradicate Salmonellosis in Mice by Enhancing the Efficacy and Reducing the Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:438-449. [PMID: 39699161 DOI: 10.1021/acs.jafc.4c06751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The wide dissemination of multidrug-resistant (MDR) Gram-negative bacteria poses a significant global health and security concern. As developing new antibiotics is generally costly, fastidious, and time-consuming, there is an urgent need for alternative therapeutic strategies to address the gap in antibiotic discovery void. This study aimed to investigate the activity of colistin (CS) in combination with a natural product, rutin (RT), to combat against Salmonella Typhimurium (S. Tm) in vitro and in vivo. The results showed that a combination with RT enabled the potentiation of CS efficacy. Further mechanistic analysis indicated that RT disrupted iron homeostasis to inactivate the PmrA/PmrB system, thereafter reducing the bacterial membrane modifications for enhancing CS binding. Besides enhancing bactericidal activity of CS, RT was also observed to mitigate the CS-induced nephrotoxicity, by which the dosing limitation of CS was overcome for better pathogen clearance. The animal trial eventually confirmed the in vivo synergistic interaction of RT with CS to treat the bacterial infection. To sum up, the present study uncovered the potential of RT as a viable adjuvant of CS to eradicate the infection and protect the hosts, which might serve as a promising alternative to combat infections caused by MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Yang Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Bing He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhi-Peng Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Qin Zhong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu-Chen Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hai-Yi Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hui-Lin Yan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Lin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi-Jian Zheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
8
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2025; 39:138-161. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
9
|
Whangsuk W, Dulyayangkul P, Loprasert S, Dubbs JM, Vattanaviboon P, Mongkolsuk S. Re-sensitization of imipenem-resistant Pseudomonas aeruginosa and restoration of cephalosporins susceptibility in Enterobacteriaceae by recombinant Esterase B. Lett Appl Microbiol 2024; 77:ovae118. [PMID: 39577842 DOI: 10.1093/lambio/ovae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Sphingobium sp. SM42 Esterase B (EstB) is an enzyme with a dual function in degrading dibutyl phthalate and catalyzing the cleavage of the C-S bond in C3-sidechains of the dihydrothiazine ring of cephalosporins, generating more active β-lactam derivatives. Global prokaryotic genome analysis revealed the existence of a gene identical to estB in Pseudomonas aeruginosa strain PS1 suggesting a horizontal gene transfer event involving estB. To investigate the effect of ectopic expression of EstB in the periplasm of P. aeruginosa and several Enterobacteriaceae on antibiotic susceptibility levels, plasmid, pEstB, carrying a recombinant EstB fused with the signal peptide from Escherichia coli outer membrane protein A (OmpA) for periplasmic localization was constructed. The expression of EstB in the periplasm of P. aeruginosa and the Enterobacteriaceae: E. coli, Klebsiella pneumoniae, and Salmonella enterica serovar Typhi, increased susceptibility to carbapenems and cephalosporins. EstB reversed the imipenem resistance of P. aeruginosa ΔmexS and restored the changes in susceptibility to cephalosporins conferred by the downregulation of the outer membrane proteins, OmpK35 and OmpK36, in K. pneumoniae ΔramR-ompK36 to wild-type level. The introduction of EstB to the periplasmic space of Gram-negative bacteria can increase carbapenem and cephalosporin susceptibility.
Collapse
Affiliation(s)
- Wirongrong Whangsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Punyawee Dulyayangkul
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
- Program in Applied Biological Science, Environmental Health, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Hu Y, Ding M, Lv X, Jiang J, Zhang J, Yang D. Stimuli-Responsive NO Delivery Platforms for Bacterial Infection Treatment. Adv Healthc Mater 2024; 13:e2402240. [PMID: 39171769 DOI: 10.1002/adhm.202402240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The prevalence of drug-resistant bacterial infections has emerged as a grave threat to clinical treatment and global human health, presenting one of the foremost challenges in medical care. Thus, there is an urgent imperative to develop safe and efficacious novel antimicrobial strategies. Nitric oxide (NO) is a recognized endogenous signaling molecule, which plays a pivotal role in numerous pathological processes. Currently, NO has garnered significant interest as an antibacterial agent due to its capability to eradicate bacteria, disrupt biofilms, and facilitate wound healing, all while circumventing the emergence of drug resistance. However, the inherently unstable characteristic of NO therapeutic gas renders the controlled administration of NO gases exceedingly challenging. Hence, in this review, the current challenge of bacterial infection is discussed; then it is briefly elucidated the antibacterial mechanism of NO and comprehensively delineate the recent advancements in stimulus-responsive NO delivery platforms, along with their merits, obstacles, and prospective avenues for clinical application. This review offers guidance for future advancements in NO-medicated anti-infection therapy is hoped.
Collapse
Affiliation(s)
- Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
11
|
Salama AH. Combined action of two synthetic ultrashort antimicrobial peptides exhibiting synergistic effects against clinically significant resistant bacteria. Vet World 2024; 17:2725-2730. [PMID: 39897351 PMCID: PMC11784053 DOI: 10.14202/vetworld.2024.2725-2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim The emergence and proliferation of multidrug-resistant bacteria pose a global health crisis. This issue arises from the overuse and misuse of antibiotics, coupled with the pharmaceutical industry's limited development of new drugs, which is constrained by financial disincentives and regulatory hurdles. This study aimed to investigate the combined antibacterial efficacy and safety profile of the combined ultrashort antimicrobial peptides (AMPs) WW-185 and WOW against antibiotic-resistant bacterial strains. Materials and Methods The WW-185 and WOW peptides were synthesized through solid-phase methods and purified using reverse-phase high-performance liquid chromatography, and their purity was confirmed by mass spectrometry. Antibacterial activity was evaluated using broth dilution and checkerboard assays to assess both individual and combined effects of the peptides against Staphylococcus aureus (including methicillin-resistant Staphylococcus aureus [MRSA]) and Escherichia coli (including extended-spectrum beta-lactamases [ESBL]-producing strains). The synergy between the peptides was quantified using fractional inhibitory concentration indices. Hemolytic activity was also assessed to determine cytotoxicity toward red blood cells. Results The combination of WW-185 and WOW exerted synergistic effects against both MRSA and ESBL-producing E. coli, with reduced minimal inhibitory concentrations compared with the individual treatments. The peptides exhibited minimal hemolytic activity, indicating low toxicity. Conclusion The combination of the ultrashort AMPs WW-185 and WOW shows promising synergistic antibacterial effects against resistant bacteria, with potential for further therapeutic development due to their enhanced efficacy and low toxicity.
Collapse
Affiliation(s)
- Ali H. Salama
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| |
Collapse
|
12
|
Alsheikh R, Haimhoffer Á, Nemes D, Ujhelyi Z, Fehér P, Józsa L, Vasvári G, Pető Á, Kósa D, Nagy L, Horváth L, Balázs B, Bácskay I. Formulation of Thermo-Sensitive In Situ Gels Loaded with Dual Spectrum Antibiotics of Azithromycin and Ofloxacin. Polymers (Basel) 2024; 16:2954. [PMID: 39518163 PMCID: PMC11548455 DOI: 10.3390/polym16212954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
In situ gels have been developed as an innovative strategy to prolong corneal residence time and enhance drug absorption compared to traditional eye drops. Our study aimed to formulate an ophthalmic in situ gel with a combination of two thermosensitive poloxamers, P407 and P188, in an optimal ratio not only to increase the time of action but also to increase the solubility of selected antibiotics for the treatment of ophthalmic infections. Two BSC II class substances, Azithromycin and Ofloxacin, with different mechanisms of action, have been incorporated into the in situ gel system after determining their solubility. The antibiotics-loaded in situ gel formulation was evaluated for its clarity, pH, rheological properties, and gel characteristics of gelling time, temperature, and capacity. The formulation demonstrated satisfactory clarity, appropriate pH, effective gelation properties in simulated tear fluid, and suitable rheological characteristics. In addition, APIs release insight has been studied through a dissolution test, and the effectivity against sensitive and resistant bacterial strains has been proved through the antimicrobial study. Therefore, our in situ gel system based on thermosensitive poloxamers, with two hydrophobic antibiotics, AZM and OFX, can be considered a valuable approach for ophthalmic drug delivery with an enhancement of the antibiotics bioavailability through increasing the contact time with the ocular surface and enhancing patient compliance.
Collapse
Affiliation(s)
- Raghad Alsheikh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
- Doctorate School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
| | - Lajos Nagy
- Department of Applied Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Horváth
- Department of Pharmaceutical Surveillance and Economics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Bence Balázs
- Institute of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (R.A.); (Á.H.); (D.N.); (Z.U.); (P.F.); (L.J.); (G.V.)
- Doctorate School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
Punchihewage-Don AJ, Ranaweera PN, Parveen S. Defense mechanisms of Salmonella against antibiotics: a review. FRONTIERS IN ANTIBIOTICS 2024; 3:1448796. [PMID: 39816264 PMCID: PMC11731628 DOI: 10.3389/frabi.2024.1448796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 01/18/2025]
Abstract
Salmonella is a foodborne pathogenic bacterium that causes salmonellosis worldwide. Also, Salmonella is considered a serious problem for food safety and public health. Several antimicrobial classes including aminoglycosides, tetracyclines, phenols, and β-Lactams are used to treat Salmonella infections. Antibiotics have been prescribed for decades to treat infections caused by bacteria in human and animal healthcare. However, intensive use of antibiotics resulted in antibiotic resistance (AR) among several foodborne bacteria including Salmonella. Furthermore, multi-drug resistance (MDR) of Salmonella has increased dramatically. In addition to MDR Salmonella, extensively drug resistant (XDR) as well as pan drug resistant (PDR) Salmonella were reported globally. Therefore, increasing AR is becoming a serious universal public health crisis. Salmonella developed many mechanisms to ensure its survival against antimicrobials. The most prominent defense mechanisms against these antibiotics include enzymatic inactivation, expelling drugs from the cell through efflux pumps, altering the structure of drugs, and changing or protecting the targets of drugs. Additionally, the formation of biofilms and plasmid-mediated AR by Salmonella, enhancing its resistance to various antibiotics, making it a challenging pathogen in both healthcare and food industry settings. This review focuses exclusively on providing a detailed overview of the mechanisms of AR in Salmonella.
Collapse
Affiliation(s)
| | | | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
14
|
Aboshanab KM, Alshahrani MY, Alafeefy A. Combinatorial biosynthesis of novel aminoglycoside antibiotics via pathway engineering. AMB Express 2024; 14:103. [PMID: 39285100 PMCID: PMC11405602 DOI: 10.1186/s13568-024-01753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
With the current spread of clinically relevant multidrug-resistant (MDR) pathogens, insufficient unearthing of new anti-infectives, and the high cost required for approval of new antimicrobial agents, a strong need for getting these agents via more economic and other alternative routes has emerged. With the discovery of the biosynthetic pathways of various antibiotics pointing out the role of each gene/protein in their antibiotic-producing strains, it became apparent that the biosynthetic gene clusters can be manipulated to produce modified antibiotics. This new approach is known as the combinatorial biosynthesis of new antibiotics which can be employed for obtaining novel derivatives of these valuable antibiotics using genetically modified antibiotic-producing strains (pathway engineering). In this review and based on the available biosynthetic gene clusters of the major aminoglycoside antibiotics (AGAs), the possible alterations or modifications that could be done by co-expression of certain gene(s) previously known to be involved in unique biosynthetic steps have been discussed. In this review defined novel examples of modified AGA using this approach were described and the information provided will act as a platform of researchers to get and develop new antibiotics by the antibiotic-producing bacterial strains such as Streptomyces, Micromonospora,…etc. This way, novel antibiotics with new biological activities could be isolated and used in the treatment of infectious diseases conferring resistance to existing antibiotics.
Collapse
Affiliation(s)
- Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, 11566, Cairo, Egypt.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Ahmed Alafeefy
- Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Puncak Alam, 42300, Selangor, Malaysia
| |
Collapse
|
15
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
16
|
Saeli N, Jafari-Ramedani S, Ramazanzadeh R, Nazari M, Sahebkar A, Khademi F. Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect Dis 2024; 24:680. [PMID: 38982386 PMCID: PMC11232330 DOI: 10.1186/s12879-024-09585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Aminoglycosides have been a cornerstone of the treatment of nosocomial infections caused by Pseudomonas aeruginosa for over 80 years. However, escalating emergence of resistance poses a significant challenge. Therefore, this study aimed to investigate the prevailing patterns of aminoglycoside resistance among clinical isolates of P. aeruginosa in Iran; as well as the underlying resistance mechanisms observed in patients referred to Ardabil hospitals. METHODS A total of 200 isolates from five hospitals were evaluated. The resistance profiles of P. aeruginosa isolates to tobramycin, amikacin, and netilmicin were determined using the disk diffusion method. The capacity of aminoglycoside-resistant isolates to form biofilms was assessed through a phenotypic assay, and the results were confirmed using the gene amplification technique. The presence of genes associated with aminoglycoside resistance was detected using polymerase chain reaction (PCR). Quantitative reverse transcription PCR (qRT-PCR) was performed to measure the expression levels of genes encoding the MexXY-OprM efflux pump and PhoPQ two-component system (TCS). RESULTS The prevalence of aminoglycoside-resistant P. aeruginosa isolates was 48%, with 94.7% demonstrating multidrug resistance (MDR). All aminoglycoside-resistant P. aeruginosa strains exhibited biofilm-forming capabilities and harbored all the genes associated with biofilm production. Among the nine genes encoding 16S rRNA methylase and aminoglycoside-modifying enzymes, three genes were detected in these isolates: aac(6')-Ib (85.4%), ant(2'')-Ia (18.7%), and aph(3')-VI (3.1%). Additionally, all aminoglycoside-resistant P. aeruginosa isolates carried mexY and phoP genes, although the expression levels of mexY and phoP were 75% and 87.5%, respectively. CONCLUSION Given the considerably high prevalence of aminoglycoside-resistant P. aeruginosa strains, urgent measures are warranted to transition towards the use of novel aminoglycosides and to uphold vigilant surveillance of resistance patterns.
Collapse
Affiliation(s)
- Nilofar Saeli
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saghar Jafari-Ramedani
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rashid Ramazanzadeh
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Nazari
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Arthropod-Borne Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
17
|
Desmond A, Cotter L, Field D, O'Halloran F. Investigating the antimicrobial potential of bovine lactoferrin against the neonatal pathogen, Staphylococcus capitis. Lett Appl Microbiol 2024; 77:ovae068. [PMID: 39009015 DOI: 10.1093/lambio/ovae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/17/2024]
Abstract
Lactoferrin is an antimicrobial glycoprotein that demonstrates a broad-spectrum of activity against a wide variety of clinical pathogens. This study investigated the potential of bovine lactoferrin (bLf) against multidrug resistant Staphylococcus capitis (S. capitis) strains. Growth curve analysis and time-kill curves demonstrated that at 750 µg ml-1 lactoferrin significantly inhibited (50.6%, P < 0.05) the growth of most isolates tested (90%), and this effect was based on a bacteriostatic mechanism. At the same concentration, bLf also significantly inhibited (30%, P < 0.05) biofilm formation in 40% of strains tested. Combinations of bLf with selected antibiotics were assessed for enhanced antimicrobial activity using growth curves. BLf combined with β-lactam antibiotics reduced the growth of S. capitis strains, however, the effects were not significant. BLf displays antimicrobial effects against multidrug resistant S. capitis isolates, but with strain-specific effects.
Collapse
Affiliation(s)
- Anna Desmond
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Lesley Cotter
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Fiona O'Halloran
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| |
Collapse
|
18
|
S PR, Banerjee R, Drummond CJ, Conn CE. Permanently Charged Cationic Lipids-Evolution from Excipients to Therapeutic Lipids. SMALL SCIENCE 2024; 4:2300270. [PMID: 40212121 PMCID: PMC11935225 DOI: 10.1002/smsc.202300270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/28/2024] [Indexed: 04/13/2025] Open
Abstract
Cationic lipids are crucial in medical and biotechnological applications including cellular transfection and gene delivery. Ionizable cationic lipids are critical components of the mRNA-based COVID vaccines while permanently charged cationic lipids have shown promise in cancer treatment. Despite significant research progress over the past few decades in designing improved, biocompatible cationic lipids, their transfection efficiency remains lower than that of viral vectors. Cationic lipids with additional functionalities like fusogenicity, stimuli-responsiveness, targeting capabilities, and therapeutic activity have been engineered to improve their performance. This review highlights the importance of molecular hybridization toward the design of biocompatible cationic lipids having fusogenic, stimuli-responsive, targeting, or therapeutic properties. This review mainly focuses on cationic lipids, having a permanent positive charge in the headgroup region, as these are typically employed to both increase cellular interactions and for improved loading, particularly for anionic nucleic acid-based therapeutics and vaccines. Structure-activity relationships between the lipid chemical structure (headgroup, spacer, hydrocarbon chain) and, to a lesser extent, the self-assembled nanostructure and the intrinsic biological activity of the multi-functional cationic lipids are described. Finally, the challenges involved in developing smart lipids without affecting their inherent capacity to self-assemble into structured nano-carriers are discussed.
Collapse
Affiliation(s)
- Pushpa Ragini S
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Rajkumar Banerjee
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
| | - Calum J. Drummond
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Charlotte E. Conn
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| |
Collapse
|
19
|
Vadillo-Rodríguez V, Fernández-Babiano I, Pérez-Giraldo C, Fernández-Calderón MC. Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections. Biomolecules 2024; 14:779. [PMID: 39062493 PMCID: PMC11274400 DOI: 10.3390/biom14070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Staphylococcus epidermis has emerged as the main causative agent of medical device-related infections. Their major pathogenicity factor lies in its ability to adhere to surfaces and proliferate into biofilms, which increase their resistance to antibiotics. The main objective of this study was to evaluate the use and the mechanism of action of an ethanolic extract of Spanish propolis (EESP) as a potential alternative for preventing biofilm-related infections caused by S. epidermidis. The chemical composition of propolis is reported and its antibacterial activity against several strains of S. epidermidis with different biofilm-forming capacities evaluated. The influence of sub-inhibitory concentrations (sub-MICs) of EESP on their growth, physicochemical surface properties, adherence, and biofilm formation were studied. EESP interferes with planktonic cells, homogenizing their physicochemical surface properties and introducing a significant delay in their growth. The adherence and biofilms at the EESP concentrations investigated were decreased up to 90.5% among the strains. Microscopic analysis indicated that the planktonic cells that survived the treatment were the ones that adhere and proliferate on the surfaces. The results obtained suggest that the EESP has a high potential to be used as an inhibitor of both the adhesion and biofilm formation of S. epidermidis.
Collapse
Affiliation(s)
| | - Irene Fernández-Babiano
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain; (I.F.-B.); (C.P.-G.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
| | - Ciro Pérez-Giraldo
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain; (I.F.-B.); (C.P.-G.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - María Coronada Fernández-Calderón
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain; (I.F.-B.); (C.P.-G.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| |
Collapse
|
20
|
Recktenwald M, Kaur M, Benmassaoud MM, Copling A, Khanna T, Curry M, Cortes D, Fleischer G, Carabetta VJ, Vega SL. Antimicrobial Peptide Screening for Designing Custom Bactericidal Hydrogels. Pharmaceutics 2024; 16:860. [PMID: 39065557 PMCID: PMC11279943 DOI: 10.3390/pharmaceutics16070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that lives on surfaces and skin and can cause serious infections inside the body. Antimicrobial peptides (AMPs) are part of the innate immune system and can eliminate pathogens, including bacteria and viruses, and are a promising alternative to antibiotics. Although studies have reported that AMP-functionalized hydrogels can prevent bacterial adhesion and biofilm formation, AMP dosing and the combined effects of multiple AMPs are not well understood. Here, three AMPs with different antibacterial properties were synthesized and the soluble minimum inhibitory concentrations (MICs) of each AMP against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were determined. Hydrogels with immobilized AMPs at their MIC (DD13-RIP 27.5 µM; indolicidin 43.8 µM; P10 120 µM) were effective in preventing MRSA adhesion and biofilm formation. Checkerboard AMP screens identified synergy between indolicidin (3.1 µM) and P10 (12.5 µM) based on soluble fractional inhibitory concentration indices (FICIs) against MRSA, and hydrogels formed with these AMPs at half of their synergistic concentrations (total peptide concentration, 7.8 µM) were highly efficacious in killing MRSA. Mammalian cells cultured atop these hydrogels were highly viable, demonstrating that these AMP hydrogels are biocompatible and selectively eradicate bacteria, based on soluble checkerboard-screening data.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
| | - Muskanjot Kaur
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Mohammed M. Benmassaoud
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
| | - Aryanna Copling
- Department of Translational Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Tulika Khanna
- Department of Biological Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Michael Curry
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.K.); (M.C.); (D.C.); (G.F.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (M.R.); (M.M.B.)
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
21
|
Ruan YN, Nong C, Jintrawet A, Fan H, Fu L, Zheng SJ, Li S, Wang ZY. A smooth vetch ( Vicia villosa var.) strain endogenous to the broad-spectrum antagonist Bacillus siamensis JSZ06 alleviates banana wilt disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1410197. [PMID: 38978518 PMCID: PMC11229777 DOI: 10.3389/fpls.2024.1410197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.
Collapse
Affiliation(s)
- Yan-Nan Ruan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | - Caihong Nong
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | | | - Huacai Fan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Libo Fu
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Zhi-Yuan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
22
|
Darwish RM, Salama AH. Developing antibacterial peptides as a promising therapy for combating antibiotic-resistant Pseudomonas aeruginosa infections. Vet World 2024; 17:1259-1264. [PMID: 39077460 PMCID: PMC11283607 DOI: 10.14202/vetworld.2024.1259-1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Antibiotic-resistant Pseudomonas aeruginosa poses a serious health threat. This study aimed to investigate the antibacterial activity of peptide KW-23 against drug-resistant P. aeruginosa and its potential for enhancing the efficacy of conventional antibiotics. Materials and Methods KW-23 was synthesized from nine amino acids, specifically three tryptophans and three lysines. The purity of the substance was analyzed using reverse-phase high-performance liquid chromatography. The peptide was identified through mass spectrometry using electrospray ionization. The minimum inhibitory concentration (MIC) values of KW-23 in combination with conventional antibiotics against control and multidrug-resistant P. aeruginosa were determined utilizing broth microdilution. The erythrocyte hemolytic assay was used to measure toxicity. The KW-23 effect was analyzed using the time-kill curve. Results The peptide exhibited strong antibacterial activity against control and multidrug-resistant strains of P. aeruginosa, with MICs of 4.5 μg/mL and 20 μg/mL, respectively. At higher concentration of 100 μg/mL, KW-23 exhibited a low hemolytic impact, causing no more than 3% damage to red blood. The cytotoxicity assay demonstrates KW-23's safety, while the time-kill curve highlights its rapid and sustained antibacterial activity. The combination of KW-23 and gentamicin exhibited synergistic activity against both susceptible and resistant P. aeruginosa, with fractional inhibitory concentration index values of 0.07 and 0.27, respectively. Conclusion The KW-23 synthesized in the laboratory significantly combats antibiotic-resistant P. aeruginosa. Due to its strong antibacterial properties and low toxicity to cells, KW-23 is a promising alternative to traditional antibiotics in combating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, the University of Jordan, Amman, 11942, Jordan
| | - Ali H. Salama
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| |
Collapse
|
23
|
Zhang J, Liu M, Guo H, Gao S, Hu Y, Zeng G, Yang D. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1968. [PMID: 38772565 DOI: 10.1002/wnan.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Haiyang Guo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Shuwen Gao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, China
| | - Guisheng Zeng
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
24
|
Thadtapong N, Chaturongakul S, Napaswad C, Dubbs P, Soodvilai S. Enhancing effect of natural adjuvant, panduratin A, on antibacterial activity of colistin against multidrug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:9863. [PMID: 38684853 PMCID: PMC11059350 DOI: 10.1038/s41598-024-60627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Colistin- and carbapenem-resistant Acinetobacter baumannii is a serious multidrug resistant (MDR) bacterium in clinical settings. Discovery of new antibacterial drugs against MDR is facing multiple challenges in drug development. Combination of known antibiotics with a robust adjuvant might be an alternative effective strategy for MDR treatment. In the study herein, we report an antibiotic adjuvant activity of a natural compound panduratin A from fingerroot (Boesenbergia rotunda) as a potent adjuvant to colistin. The present study investigated the antibiotic adjuvant effect of panduratin A against 10 colistin- and carbapenem-resistant A. baumannii. Antibacterial activities were tested by broth microdilution method. Biofilm assay was used to determine the efficacy of panduratin A in biofilm formation inhibition on two representative strains Aci46 and Aci44. Genomic and transcriptomic analyses of colistin- and carbapenem-resistant A. baumannii strains were used to identify potential resistance and tolerance mechanism in the bacteria. Panduratin A-colistin combination showed an increased effect on antibacterial in the A. baumannii. However, panduratin A did not improve the antibacterial activity of imipenem. In addition, panduratin A improves anti-biofilm activity of colistin against Aci44 and Aci46, the colistin- and carbapenem-resistant A. baumannii. Panduratin A markedly enhances bactericidal and anti-biofilm activity of colistin against colistin- resistant A. baumannii. Based on genome comparisons, single nucleotide polymorphism (SNP) patterns in six genes encoding biofilm and lipid A biosynthesis were shared in Aci44 and Aci46. In Aci44, we identified a partial sequence of pmrB encoding a polymyxin resistant component PmrB, whereas a full length of pmrB was observed in Aci46. RNA-seq analyses of Aci44 revealed that panduratin A-colistin combination induced expression of ribosomal proteins and oxidative stress response proteins, whereas iron transporter and MFS-type transporter systems were suppressed. Panduratin A-colistin combination could promote intracellular reactive oxygen species (ROS) accumulation could lead to the cidal effect on colistin-resistant A. baumannii. Combination of panduratin A and colistin showed a significant increase in colistin efficacy against colistin- resistant A. baumannii in comparison of colistin alone. Genomic comparison between Aci44 and Aci46 showed mutations and SNPs that might affect different phenotypes. Additionally, based on RNA-Seq, panduratin A-colistin combination could lead to ROS production and accumulation. These findings confirmed the potency of panduratin as colistin adjuvant against multidrug resistant A. baumannii.
Collapse
Affiliation(s)
- Nalumon Thadtapong
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chanita Napaswad
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
25
|
Wei X, Gao J, Zhou D, Xu C, Chen P, Chen S, Zhang Y, Liu X, Li G, Zhu G, Liu H, Li J, Geng B, Gao L, Cheng Z, Lamont IL, Pletzer D, Jin Y, Jin S, Wu W. Murepavadin promotes the killing efficacies of aminoglycoside antibiotics against Pseudomonas aeruginosa by enhancing membrane potential. Antimicrob Agents Chemother 2024; 68:e0153923. [PMID: 38470195 PMCID: PMC10989017 DOI: 10.1128/aac.01539-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.
Collapse
Affiliation(s)
- Xiaoya Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dandan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ping Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of PLA General Hospital, Beijing, China
| | - Yanhong Zhang
- Nankai University Affiliated Hospital (Tianjin Forth Hospital), Tianjin, China
| | - Xuehua Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Guanxian Li
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jinjin Li
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Bin Geng
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Linlin Gao
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Bernacchia L, Paris A, Gupta A, Charman RJ, McGreig J, Wass MN, Kad NM. Identification of a novel DNA repair inhibitor using an in silico driven approach shows effective combinatorial activity with genotoxic agents against multidrug-resistant Escherichia coli. Protein Sci 2024; 33:e4948. [PMID: 38501485 PMCID: PMC10949335 DOI: 10.1002/pro.4948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Increasing antimicrobial drug resistance represents a global existential threat. Infection is a particular problem in immunocompromised individuals, such as patients undergoing cancer chemotherapy, due to the targeting of rapidly dividing cells by antineoplastic agents. We recently developed a strategy that targets bacterial nucleotide excision DNA repair (NER) to identify compounds that act as antimicrobial sensitizers specific for patients undergoing cancer chemotherapy. Building on this, we performed a virtual drug screening of a ~120,000 compound library against the key NER protein UvrA. From this, numerous target compounds were identified and of those a candidate compound, Bemcentinib (R428), showed a strong affinity toward UvrA. This NER protein possesses four ATPase sites in its dimeric state, and we found that Bemcentinib could inhibit UvrA's ATPase activity by ~90% and also impair its ability to bind DNA. As a result, Bemcentinib strongly diminishes NER's ability to repair DNA in vitro. To provide a measure of in vivo activity we discovered that the growth of Escherichia coli MG1655 was significantly inhibited when Bemcentinib was combined with the DNA damaging agent 4-NQO, which is analogous to UV. Using the clinically relevant DNA-damaging antineoplastic cisplatin in combination with Bemcentinib against the urological sepsis-causing E. coli strain EC958 caused complete growth inhibition. This study offers a novel approach for the potential development of new compounds for use as adjuvants in antineoplastic therapy.
Collapse
Affiliation(s)
| | - Antoine Paris
- School of Biological SciencesUniversity of KentCanterburyUK
| | - Arya Gupta
- School of Biological SciencesUniversity of KentCanterburyUK
| | | | - Jake McGreig
- School of Biological SciencesUniversity of KentCanterburyUK
| | - Mark N. Wass
- School of Biological SciencesUniversity of KentCanterburyUK
| | - Neil M. Kad
- School of Biological SciencesUniversity of KentCanterburyUK
| |
Collapse
|
27
|
Morales-Durán N, León-Buitimea A, Morones-Ramírez JR. Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Heliyon 2024; 10:e27984. [PMID: 38510041 PMCID: PMC10950705 DOI: 10.1016/j.heliyon.2024.e27984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies.
Collapse
Affiliation(s)
- Nami Morales-Durán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - José R. Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| |
Collapse
|
28
|
Naranjo MF, Kumar A, Ratrey P, Hudson SP. Pre-formulation of an additive combination of two antimicrobial agents, clofazimine and nisin A, to boost antimicrobial activity. J Mater Chem B 2024; 12:1558-1568. [PMID: 38252026 DOI: 10.1039/d3tb01800h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
According to the World Health Organization, antimicrobial resistance is one of the top ten issues that pose a major threat to humanity. The lack of investment by the pharmaceutical industry has meant fewer novel antimicrobial agents are in development, exacerbating the problem. Emerging drug design strategies are exploring the repurposing of existing drugs and the utilization of novel drug candidates, like antimicrobial peptides, to combat drug resistance. This proactive approach is crucial in fighting global health threats. In this study, an additive combination of a repurposed anti-leprosy drug, clofazimine, and an antimicrobial peptide, nisin A, are preformulated using liquid antisolvent precipitation to generate a stable amorphous, ionized nanoparticle system to boost antimicrobial activity. The nanotechnology aims to improve the physicochemical properties of the inherently poorly water-soluble clofazimine molecules while also harnessing the previously unreported additive effect of clofazimine and nisin A. The approach transformed clofazimine into a more water-soluble salt, yielding amorphous nanoparticles stabilized by the antimicrobial peptide; and combined the two drugs into a more soluble and more active formulation. Blending pre-formulation strategies like amorphization, salt formation, and nanosizing to improve the inherent low aqueous solubility of drugs can open many new possibilities for the design of new antimicrobial agents. This fusion of pre-formulation technologies in combination with the multi-hurdle approach of selecting drugs with different effects on microbes could be key in the design platform of new antibiotics in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mateo Flores Naranjo
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| | - Ajay Kumar
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| | - Poonam Ratrey
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
29
|
Maeda T, Furusawa C. Laboratory Evolution of Antimicrobial Resistance in Bacteria to Develop Rational Treatment Strategies. Antibiotics (Basel) 2024; 13:94. [PMID: 38247653 PMCID: PMC10812413 DOI: 10.3390/antibiotics13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Laboratory evolution studies, particularly with Escherichia coli, have yielded invaluable insights into the mechanisms of antimicrobial resistance (AMR). Recent investigations have illuminated that, with repetitive antibiotic exposures, bacterial populations will adapt and eventually become tolerant and resistant to the drugs. Through intensive analyses, these inquiries have unveiled instances of convergent evolution across diverse antibiotics, the pleiotropic effects of resistance mutations, and the role played by loss-of-function mutations in the evolutionary landscape. Moreover, a quantitative analysis of multidrug combinations has shed light on collateral sensitivity, revealing specific drug combinations capable of suppressing the acquisition of resistance. This review article introduces the methodologies employed in the laboratory evolution of AMR in bacteria and presents recent discoveries concerning AMR mechanisms derived from laboratory evolution. Additionally, the review outlines the application of laboratory evolution in endeavors to formulate rational treatment strategies.
Collapse
Affiliation(s)
- Tomoya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita 565-0874, Japan;
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita 565-0874, Japan;
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, Abdo M, Olga R, Fericean L, Atwa AM, El-Nablaway M, Abdeen A. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol 2024; 14:1305294. [PMID: 38283841 PMCID: PMC10820715 DOI: 10.3389/fphar.2023.1305294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance.
Collapse
Affiliation(s)
- Esraa M. Halawa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Fadel
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Laboratories-Diagnostic Immunology Division, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nehal A. Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
31
|
Ferrando N, Pino-Otín MR, Ballestero D, Lorca G, Terrado EM, Langa E. Enhancing Commercial Antibiotics with Trans-Cinnamaldehyde in Gram-Positive and Gram-Negative Bacteria: An In Vitro Approach. PLANTS (BASEL, SWITZERLAND) 2024; 13:192. [PMID: 38256746 PMCID: PMC10820649 DOI: 10.3390/plants13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum inhibitory concentration (MIC) of seven antibiotics against 14 different Gram-positive and Gram-negative pathogenic bacteria, most of them classified as ESKAPE. MIC values were measured for all compounds using the broth microdilution method. The effect of the combinations on these microorganisms was analyzed through the checkboard assay to determine the type of activity (synergy, antagonism, or addition). This analysis was complemented with a kinetic study of the synergistic combinations. Fifteen synergistic combinations were characterized for nine of the tested bacteria. CIN demonstrated effectiveness in reducing the MIC of chloramphenicol, streptomycin, amoxicillin, and erythromycin (94-98%) when tested on Serratia marcescens, Staphylococcus aureus, Pasteurella aerogenes, and Salmonella enterica, respectively. The kinetic study revealed that when the substances were tested alone at the MIC concentration observed in the synergistic combination, bacterial growth was not inhibited. However, when CIN and the ABX, for which synergy was observed, were tested simultaneously in combination at these same concentrations, the bacterial growth inhibition was complete. This demonstrates the highly potent in vitro synergistic activity of CIN when combined with commercial ABXs. This finding could be particularly beneficial in livestock farming, as this sector witnesses the highest quantities of antimicrobial usage, contributing significantly to antimicrobial resistance issues. Further research focused on this natural compound is thus warranted for this reason.
Collapse
Affiliation(s)
- Natalia Ferrando
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - María Rosa Pino-Otín
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - Diego Ballestero
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - Guillermo Lorca
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| | - Eva María Terrado
- Departamento de Didácticas Específicas, Facultad de Educación, Universisad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Elisa Langa
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain; (N.F.); (M.R.P.-O.); (D.B.); (G.L.)
| |
Collapse
|
32
|
Otun SO, Graca R, Achilonu I. Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT. Curr Protein Pept Sci 2024; 25:454-468. [PMID: 38314602 DOI: 10.2174/0113892037278814231226104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.
Collapse
Affiliation(s)
- Sarah Oluwatobi Otun
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Richard Graca
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Cai L, Zhang L, Yang J, Zhu X, Wei W, Ji M, Jiang H, Chen J. Encapsulating Antibiotic and Protein-Stabilized Nanosilver into Sandwich-Structured Electrospun Nanofibrous Scaffolds for MRSA-Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48978-48995. [PMID: 37877381 DOI: 10.1021/acsami.3c10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
With the increasing prevalence of microbial infections, which results in prolonged inflammation and delayed wound healing, the development of effective and safe antimicrobial wound dressings of multiple properties remains challenging for public health. Despite their various formats, the available developed dressings with limited functions may not fulfill the diverse demands involved in the complex wound healing process. In this study, multifunctional sandwich-structured electrospinning nanofiber membranes (ENMs) were fabricated. According to the structural composition, the obtained ENMs included a hydrophilic inner layer loaded with curcumin and gentamicin sulfate, an antibacterial middle layer consisting of bovine serum albumin stabilized silver oxide nanoparticles, and a hydrophobic outer layer. The prepared sandwich-structured ENMs (SNM) exhibited good biocompatibility and killing efficacy on Escherichia coli, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA). In particular, transcriptomic analysis revealed that SNM inactivated MRSA by inhibiting its carbohydrate and energy metabolism and reduced the bacterial resistance by downregulating mecA. In the animal experiment, SNM showed improved wound healing efficiency by reducing the bacterial load and inflammation. Moreover, 16S rDNA sequencing results indicated that SNM treatment may accelerate wound healing without observed influence on the normal skin flora. Therefore, the constructed sandwich-structured ENMs exhibited promising potential as dressings to deal with the infected wound management.
Collapse
Affiliation(s)
- Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
34
|
Jalihal A, Mortazi A, Forson M, Bashiru M, Le T, Oyebade A, Siraj N. Antibiotics Coupled with Photothermal Therapy for the Enhanced Killing of Bacteria. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2023; 14:50-58. [PMID: 38179150 PMCID: PMC10766427 DOI: 10.51847/nplvoycg9u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this study, the application of ionic materials as a combination antibiotic drug was investigated. The fluoroquinolone, Norfloxacin, was converted into the ionic form and combined with the cationic dye, IR780+, using an ion-exchange reaction. The resulting ionic combination drug possesses two killing mechanisms in one compound. The antibiotic chemical mechanism along with the photothermal mechanism that was acquired by adding IR780 to the compound led to the development of a combination antibiotic drug. This ionic combination drug consisting of Norfloxacin anion and IR780 cation is easily dispersed in water using sonication waves. The parent compounds and ionic combination drug, dissolved in organic solvent and dispersed in water, were characterized, and the photophysical properties were studied in detail. It was discovered that the aqueous ionic combination drugs exhibited significant changes in absorbance and photoluminescent properties. In aqueous media, the dispersed ionic combination drug exhibited a very broad absorbance with an additional peak around 1000 nm which is advantageous in photothermal. A significant decrease in the quantum yield along with enhanced non-radiative rate constant was observed for the combination drug in the aqueous. The photothermal mechanism is present in both the parent IR780 dye and the ionic combination drug. The ionic combination drug displayed a high light-to-heat conversion efficiency and temperature increase similar to the parent dye. The combination of both killing mechanisms in the ionic combination drug resulted in enhanced antibacterial activity against Escherichia coli as compared to the parent Norfloxacin and IR780-I individually.
Collapse
Affiliation(s)
- Amanda Jalihal
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | - Armin Mortazi
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | - Mavis Forson
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | - Mujeebat Bashiru
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | - Thuy Le
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | - Adeniyi Oyebade
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204, USA
| |
Collapse
|
35
|
Kim DY, Sharma SK, Rasool K, Koduru JR, Syed A, Ghodake G. Development of Novel Peptide-Modified Silver Nanoparticle-Based Rapid Biosensors for Detecting Aminoglycoside Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12883-12898. [PMID: 37603424 DOI: 10.1021/acs.jafc.3c03565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The detection and monitoring of aminoglycoside antibiotics (AGAs) have become of utmost importance due to their widespread use in human and animal therapy, as well as the associated risks of exposure, toxicity, and the emergence of antimicrobial resistance. In this study, we successfully synthesized casein hydrolysate peptides-functionalized silver nanoparticles (CHPs@AgNPs) and employed them as a novel colorimetric analytical platform to demonstrate remarkable specificity and sensitivity toward AGAs. The colorimetric and spectral response of the CHPs@AgNPs was observed at 405 and 520 nm, showing a linear correlation with the concentration of streptomycin, a representative AGA. The color changes from yellow to orange provided a visual indication of the analyte concentration, enabling quantitative determination for real-world samples. The AgNP assay exhibited excellent sensitivity with dynamic ranges of approximately 200-650 and 100-700 nM for streptomycin-spiked tap water and dairy whey with limits of detection found to be ∼98 and 56 nM, respectively. The mechanism behind the selective aggregation of CHPs@AgNPs in the presence of AGAs involves the amine groups of the target analytes acting as molecular bridges for electrostatic coupling with hydroxyl or carboxyl functionalities of adjacent NPs, driving the formation of stable NP aggregates. The developed assay offers several advantages, making it suitable for various practical applications. It is characterized by its simplicity, rapidity, specificity, sensitivity, and cost-effectiveness. These unique features make the method a promising tool for monitoring water quality, ensuring food safety, and dealing with emergent issues of antibiotic resistance.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sanjeev K Sharma
- Biomaterials and Sensors Laboratory, Department of Physics, CCS University, Meerut Campus, Meerut 250004, Uttar Pradesh, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
36
|
Guo J, Pan Z, Fan L, Zhong Y, Pang R, Su Y. Effect of Three Different Amino Acids Plus Gentamicin Against Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:4741-4754. [PMID: 37496695 PMCID: PMC10366528 DOI: 10.2147/idr.s411658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Background The issue of methicillin-resistant Staphylococcus aureus (MRSA) resistant to many antibiotics and causing serious infectious diseases is a growing healthcare concern. Purpose In recent years, exogenous administration of metabolites in combination with antibiotics can re-sensitize resistant bacteria to antibiotics; however, their effects vary, and their underlying mechanism of action remains elusive. Methods We assessed the bactericidal effects of the three amino acids in combination with gentamicin in vitro and in vivo. Subsequently, we explored the role of these amino acids on the metabolomics of MRSA using Liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, we performed the downstream analyses using MetaboAnalyst and Interactive Pathways Explorer. Results Exogenous threonine showed the best bactericidal efficacy with gentamicin, followed by glycine, wherein serine had no effect. Amino acid treatments mainly up-regulated the metabolites, increased the amino acid abundance, and significantly activated metabolisms; these effects were consistent with the bactericidal efficacy of the three amino acids. Most amino acids participated in the tricarboxylic acid cycle, and threonine supplementation increased the activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, whereas glycine increased activities of citrate synthase and α-ketoglutarate dehydrogenase, and serine did not affect the activities of any of the three key enzymes. We identified 24 biomarkers in the three groups, among which glutamic acid and cysteine showed a gradient decrease and increase, respectively. Subsequent analyses revealed that glutamic acid but not cysteine promoted the bactericidal effect of gentamicin synergistically. Conclusion Threonine has the best synergistic effect in reversing bacterial resistance compared to glycine and serine. We show that different amino acids combined with an antibiotic mainly affect amino acid metabolism and act via different metabolic regulatory mechanisms, which could help develop effective strategies for tackling MRSA infections.
Collapse
Affiliation(s)
- Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People’s Republic of China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
37
|
Lu J, Sha Y, Gao M, Shi W, Lin X, Li K, Bao Q, Feng C. Identification and characterization of a novel aminoglycoside O-nucleotidyltransferase ANT(6)-If from Paenibacillus thiaminolyticus PATH554. Front Microbiol 2023; 14:1184349. [PMID: 37455719 PMCID: PMC10343464 DOI: 10.3389/fmicb.2023.1184349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Background Paenibacillus thiaminolyticus, a species of genus Paenibacillus of the family Paenibacillaceae, exists widely in environments and habitats in various plants and worms, and occasionally causes human infections. This work aimed to characterize the function of a novel aminoglycoside O-nucleotidyltransferase resistance gene, designated ant(6)-If, from a P. thiaminolyticus strain PATH554. Methods Molecular cloning, antimicrobial susceptibility testing, enzyme expression and purification, and kinetic analysis were used to validate the function of the novel gene. Whole-genome sequencing and comparative genomic analysis were performed to investigate the phylogenetic relationship of ANT(6)-If and other aminoglycoside O-nucleotidyltransferases, and the synteny of ant(6)-If related sequences. Results The recombinant with the cloned ant(6)-If gene (pMD19-ant(6)-If/DH5α) demonstrated a 128-fold increase of minimum inhibitory concentration level against streptomycin, compared with the control strains (DH5α and pMD19/DH5α). The kinetic parameter kcat/Km of ANT(6)-If for streptomycin was 9.01 × 103 M-1·s-1. Among the function-characterized resistance genes, ANT(6)-If shared the highest amino acid sequence identity of 75.35% with AadK. The ant(6)-If gene was located within a relatively conserved genomic region in the chromosome. Conclusion ant(6)-If conferred resistance to streptomycin. The study of a novel resistance gene in an unusual environmental bacterium in this work contributed to elucidating the resistance mechanisms in the microorganisms.
Collapse
Affiliation(s)
- Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Yuning Sha
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Macyszyn J, Burmistrz M, Mieczkowski A, Wojciechowska M, Trylska J. Conjugates of Aminoglycosides with Stapled Peptides as a Way to Target Antibiotic-Resistant Bacteria. ACS OMEGA 2023; 8:19047-19056. [PMID: 37273645 PMCID: PMC10233823 DOI: 10.1021/acsomega.3c02071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
The misuse and overuse of antibiotics led to the development of bacterial resistance to existing aminoglycoside (AMG) antibiotics and limited their use. Consequently, there is a growing need to develop effective antimicrobials against multidrug-resistant bacteria. To target resistant strains, we propose to combine 2-deoxystreptamine AMGs, neomycin (NEO) and amikacin (AMK), with a membrane-active antimicrobial peptide anoplin and its hydrocarbon stapled derivative. The AMG-peptide hybrids were conjugated using the click chemistry reaction in solution to obtain a non-cleavable triazole linker and by disulfide bridge formation on the resin to obtain a linker cleavable in the bacterial cytoplasm. Homo-dimers connected via disulfide bridges between the N-terminus thiol analogues of anoplin and hydrocarbon stapled anoplin were also synthesized. These hybrid compounds show a notable increase in antibacterial and bactericidal activity, as compared to the unconjugated ones or their combinations, against Gram-positive and Gram-negative bacteria, especially for the strains resistant to AMK or NEO. The conjugates and disulfide peptide dimers exhibit low hemolytic activity on sheep red blood erythrocytes.
Collapse
Affiliation(s)
- Julia Macyszyn
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Adam Mieczkowski
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Wojciechowska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
39
|
Velema WA. Exploring antibiotic resistance with chemical tools. Chem Commun (Camb) 2023; 59:6148-6158. [PMID: 37039397 PMCID: PMC10194278 DOI: 10.1039/d3cc00759f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Antibiotic resistance is an enormous problem that is accountable for over a million deaths annually, with numbers expected to significantly increase over the coming decades. Although some of the underlying causes leading up to antibiotic resistance are well understood, many of the molecular processes involved remain elusive. To better appreciate at a molecular level how resistance emerges, customized chemical biology tools can offer a solution. This Feature Article attempts to provide an overview of the wide variety of tools that have been developed over the last decade, by highlighting some of the more illustrative examples. These include the use of fluorescent, photoaffinity and activatable antibiotics and bacterial components to start to unravel the molecular mechanisms involved in resistance. The antibiotic crisis is an eminent global threat and requires the continuous development of creative chemical tools to dissect and ultimately counteract resistance.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
40
|
Bremner JB. An Update Review of Approaches to Multiple Action-Based Antibacterials. Antibiotics (Basel) 2023; 12:antibiotics12050865. [PMID: 37237768 DOI: 10.3390/antibiotics12050865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Many approaches are being pursued to address the major global health challenge posed by the increasing resistance of pathogenic bacteria to antibacterial agents. One of the promising approaches being investigated includes the design and development of multiple action-based small-molecule antibacterials. Aspects of this broad area have been reviewed previously, and recent developments are addressed in this update review covering the literature mainly over the past three years. Considerations encompassing drug combinations, single-molecule hybrids and prodrugs are summarised in regard to the intentional design and development of multiple-action agents with a focus on potential triple or greater activities in bacteria. The hope for such single agents or combinations of single agents is that resistance development will be significantly hindered, and they may be useful in tackling bacterial disease caused by both resistant and non-resistant bacteria.
Collapse
Affiliation(s)
- John B Bremner
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
41
|
Tian C, Yuan M, Tao Q, Xu T, Liu J, Huang Z, Wu Q, Pan Y, Zhao Y, Zhang Z. Discovery of Novel Resistance Mechanisms of Vibrio parahaemolyticus Biofilm against Aminoglycoside Antibiotics. Antibiotics (Basel) 2023; 12:antibiotics12040638. [PMID: 37107000 PMCID: PMC10135303 DOI: 10.3390/antibiotics12040638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inappropriate use of antibiotics eventually leads to the emergence of antibiotic-resistant strains and invalidates the treatment of infectious diseases. Aminoglycoside antibiotics (AGAs) are a class of broad-spectrum cationic antibiotics widely used for the treatment of Gram-negative bacterial infections. Understanding the AGA resistance mechanism of bacteria would increase the efficacy of treating these infections. This study demonstrates a significant correlation between AGA resistance and the adaptation of biofilms by Vibrio parahaemolyticus (VP). These adaptations were the result of challenges against the aminoglycosides (amikacin and gentamicin). Confocal laser scanning microscope (CLSM) analysis revealed an enclosure type mechanism where the biological volume (BV) and average thickness (AT) of V. parahaemolyticus biofilm were significantly positively correlated with amikacin resistance (BIC) (p < 0.01). A neutralization type mechanism was mediated by anionic extracellular polymeric substances (EPSs). The biofilm minimum inhibitory concentrations of amikacin and gentamicin were reduced from 32 µg/mL to 16 µg/mL and from 16 µg/mL to 4 µg/mL, respectively, after anionic EPS treatment with DNase I and proteinase K. Here, anionic EPSs bind cationic AGAs to develop antibiotic resistance. Transcriptomic sequencing revealed a regulatory type mechanism, where antibiotic resistance associated genes were significantly upregulated in biofilm producing V. parahaemolyticus when compared with planktonic cells. The three mechanistic strategies of developing resistance demonstrate that selective and judicious use of new antibiotics are needed to win the battle against infectious disease.
Collapse
Affiliation(s)
- Cuifang Tian
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Tao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Tianming Xu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
42
|
Manyi-Loh CE, Okoh AI, Lues R. Occurrence and Multidrug Resistance in Strains of Listeria monocytogenes Recovered from the Anaerobic Co-Digestion Sludge Contained in a Single Stage Steel Biodigester: Implications for Antimicrobial Stewardship. Microorganisms 2023; 11:microorganisms11030725. [PMID: 36985298 PMCID: PMC10056191 DOI: 10.3390/microorganisms11030725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
L. monocytogenes is a zoonotic foodborne pathogen with inherent adaptability to tolerate environmental and physiological stresses, thereby causing severe disease outbreaks. Antibiotic resistant foodborne pathogens are a challenge to the food industry. A total of 18 samples were pooled from a bio-digester co-digesting swine manure/pinewood sawdust, and evaluated for the occurrence of bacterium plus total viable counts using the spread plate method. The recovered bacterial isolates were presumptively identified by growth on selective medium and confirmed by biochemical characterisation, leading to the isolation of 43 L. monocytogenes. The isolates were characterized based on their susceptibility to antibiotics via the Kirby-Bauer disc diffusion technique against a panel of 14 antibiotics. Equally, the multiple antibiotic resistance (MAR) index was calculated, and MAR phenotypes generated. The bacterial counts were between 102 and104 cfu/mL. Complete susceptibility (100%) was demonstrated to ampicillin, gentamicin and sulfamethoxazole, which are the drugs of choice in the treatment of listeriosis. In addition, intermediate sensitivity occurred at 25.58% to cefotaxime, and the highest resistance (51.16%) was exhibited against nalidixic acid. The MAR index ranged from 0 to 0.71. Overall, 41.86% of the Listeria isolates displayed multidrug resistance, with 18 different MAR phenotypes, demonstrating CIP, E, C, TET, AUG, S, CTX, NA, AML, NI as the greatest MAR phenotype. It can be concluded that the isolates yielding MAR > 0.2 originated from the farm, where antibiotics had been in routine use. Therefore, strict monitoring of antibiotics use in the farm is crucial to mitigate further increase in antibiotic resistance amongst these bacterial isolates.
Collapse
Affiliation(s)
- Christy Echakachi Manyi-Loh
- Centre of Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein 9301, South Africa
- Correspondence: ; Tel.: +27-738324268
| | - Anthony Ifeanyin Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ryk Lues
- Centre of Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein 9301, South Africa
| |
Collapse
|
43
|
Si Z, Pethe K, Chan-Park MB. Chemical Basis of Combination Therapy to Combat Antibiotic Resistance. JACS AU 2023; 3:276-292. [PMID: 36873689 PMCID: PMC9975838 DOI: 10.1021/jacsau.2c00532] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/10/2023]
Abstract
The antimicrobial resistance crisis is a global health issue requiring discovery and development of novel therapeutics. However, conventional screening of natural products or synthetic chemical libraries is uncertain. Combination therapy using approved antibiotics with inhibitors targeting innate resistance mechanisms provides an alternative strategy to develop potent therapeutics. This review discusses the chemical structures of effective β-lactamase inhibitors, outer membrane permeabilizers, and efflux pump inhibitors that act as adjuvant molecules of classical antibiotics. Rational design of the chemical structures of adjuvants will provide methods to impart or restore efficacy to classical antibiotics for inherently antibiotic-resistant bacteria. As many bacteria have multiple resistance pathways, adjuvant molecules simultaneously targeting multiple pathways are promising approaches to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhangyong Si
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
| | - Kevin Pethe
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Mary B. Chan-Park
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921
| |
Collapse
|
44
|
Batchelder JI, Hare PJ, Mok WWK. Resistance-resistant antibacterial treatment strategies. FRONTIERS IN ANTIBIOTICS 2023; 2:1093156. [PMID: 36845830 PMCID: PMC9954795 DOI: 10.3389/frabi.2023.1093156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Antibiotic resistance is a major danger to public health that threatens to claim the lives of millions of people per year within the next few decades. Years of necessary administration and excessive application of antibiotics have selected for strains that are resistant to many of our currently available treatments. Due to the high costs and difficulty of developing new antibiotics, the emergence of resistant bacteria is outpacing the introduction of new drugs to fight them. To overcome this problem, many researchers are focusing on developing antibacterial therapeutic strategies that are "resistance-resistant"-regimens that slow or stall resistance development in the targeted pathogens. In this mini review, we outline major examples of novel resistance-resistant therapeutic strategies. We discuss the use of compounds that reduce mutagenesis and thereby decrease the likelihood of resistance emergence. Then, we examine the effectiveness of antibiotic cycling and evolutionary steering, in which a bacterial population is forced by one antibiotic toward susceptibility to another antibiotic. We also consider combination therapies that aim to sabotage defensive mechanisms and eliminate potentially resistant pathogens by combining two antibiotics or combining an antibiotic with other therapeutics, such as antibodies or phages. Finally, we highlight promising future directions in this field, including the potential of applying machine learning and personalized medicine to fight antibiotic resistance emergence and out-maneuver adaptive pathogens.
Collapse
Affiliation(s)
- Jonathan I Batchelder
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Patricia J Hare
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- School of Dental Medicine, University of Connecticut, Farmington, CT, United States
| | - Wendy W K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| |
Collapse
|
45
|
Anti-Staphylococcal Activities of Rosmarinus officinalis and Myrtus communis Essential Oils through ROS-Mediated Oxidative Stress. Antibiotics (Basel) 2023; 12:antibiotics12020266. [PMID: 36830178 PMCID: PMC9952310 DOI: 10.3390/antibiotics12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Rosmarinus officinalis and Myrtus communis essential oils (EOs) are well-known for their ethno-pharmaceutical properties. In the present study, we have analyzed the chemical composition of both EOs by gas chromatography-mass spectrometry. Then we assessed their antibacterial, antibiofilm, and anti-virulence actions against the opportunistic pathogen Staphylococcus aureus. The cytotoxic effect of agents tested against this bacterium was investigated by monitoring reactive oxygen-species (ROS) generation and antioxidant-enzyme (catalase) production. Regarding the antistaphylococcal effects, our results showed antibacterial efficacy of both Eos and their combination, where the minimum inhibitory concentrations ranged between 0.7 and 11.25 mg/mL. A combination of tested agents showed the highest anti-hemolytic and anti-protease effects. Additionally, association between EOs displayed more potency against the development of biofilm performed by S. aureus, with percentage of removal reaching 74%. The inhibitory impacts of EOs on S. aureus virulence factors were discovered to be concentration-dependent. Furthermore, our results provide insight on the abilities of R. officinalis and M. communis EOs, as well as their potential in combination, to generate ROS and affect oxidative stress enzyme catalase in S. aureus, leading to their antagonistic effect against this pathogen.
Collapse
|
46
|
Fan L, Pan Z, Liao X, Zhong Y, Guo J, Pang R, Chen X, Ye G, Su Y. Uracil restores susceptibility of methicillin-resistant Staphylococcus aureus to aminoglycosides through metabolic reprogramming. Front Pharmacol 2023; 14:1133685. [PMID: 36762116 PMCID: PMC9902350 DOI: 10.3389/fphar.2023.1133685] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) has now become a major nosocomial pathogen bacteria and resistant to many antibiotics. Therefore, Development of novel approaches to combat the disease is especially important. The present study aimed to provide a novel approach involving the use of nucleotide-mediated metabolic reprogramming to tackle intractable methicillin-resistant S. aureus (MRSA) infections. Objective: This study aims to explore the bacterial effects and mechanism of uracil and gentamicin in S. aureus. Methods: Antibiotic bactericidal assays was used to determine the synergistic bactericidal effect of uracil and gentamicin. How did uracil regulate bacterial metabolism including the tricarboxylic acid (TCA) cycle by GC-MS-based metabolomics. Next, genes and activity of key enzymes in the TCA cycle, PMF, and intracellular aminoglycosides were measured. Finally, bacterial respiration, reactive oxygen species (ROS), and ATP levels were also assayed in this study. Results: In the present study, we found that uracil could synergize with aminoglycosides to kill MRSA (USA300) by 400-fold. Reprogramming metabolomics displayed uracil reprogrammed bacterial metabolism, especially enhanced the TCA cycle to elevate NADH production and proton motive force, thereby promoting the uptake of antibiotics. Furthermore, uracil increased cellular respiration and ATP production, resulting the generation of ROS. Thus, the combined activity of uracil and antibiotics induced bacterial death. Inhibition of the TCA cycle or ROS production could attenuate bactericidal efficiency. Moreover, uracil exhibited bactericidal activity in cooperation with aminoglycosides against other pathogenic bacteria. In a mouse mode of MRSA infection, the combination of gentamicin and uracil increased the survival rate of infected mice. Conclusion: Our results suggest that uracil enhances the activity of bactericidal antibiotics to kill Gram-positive bacteria by modulating bacterial metabolism.
Collapse
Affiliation(s)
- Lvyuan Fan
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyu Pan
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Liao
- Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yilin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Guo
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinhai Chen
- Institute of Infectious Diseases Shenzhen Bay Laboratory, Shenzhen, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China,*Correspondence: Yubin Su, ; Guozhu Ye,
| | - Yubin Su
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China,*Correspondence: Yubin Su, ; Guozhu Ye,
| |
Collapse
|
47
|
Lim S, Yoo YM, Kim KH. No more tears from surgical site infections in interventional pain management. Korean J Pain 2023; 36:11-50. [PMID: 36581597 PMCID: PMC9812697 DOI: 10.3344/kjp.22397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
As the field of interventional pain management (IPM) grows, the risk of surgical site infections (SSIs) is increasing. SSI is defined as an infection of the incision or organ/space that occurs within one month after operation or three months after implantation. It is also common to find patients with suspected infection in an outpatient clinic. The most frequent IPM procedures are performed in the spine. Even though primary pyogenic spondylodiscitis via hematogenous spread is the most common type among spinal infections, secondary spinal infections from direct inoculation should be monitored after IPM procedures. Various preventive guidelines for SSI have been published. Cefazolin, followed by vancomycin, is the most commonly used surgical antibiotic prophylaxis in IPM. Diagnosis of SSI is confirmed by purulent discharge, isolation of causative organisms, pain/tenderness, swelling, redness, or heat, or diagnosis by a surgeon or attending physician. Inflammatory markers include traditional (C-reactive protein, erythrocyte sedimentation rate, and white blood cell count) and novel (procalcitonin, serum amyloid A, and presepsin) markers. Empirical antibiotic therapy is defined as the initial administration of antibiotics within at least 24 hours prior to the results of blood culture and antibiotic susceptibility testing. Definitive antibiotic therapy is initiated based on the above culture and testing. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria infections appears to be superior to monotherapy in mortality with the risk of increasing antibiotic resistance rates. The never-ending war between bacterial resistance and new antibiotics is continuing. This article reviews prevention, diagnosis, and treatment of infection in pain medicine.
Collapse
Affiliation(s)
- Seungjin Lim
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yeong-Min Yoo
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung-Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea,Correspondence: Kyung-Hoon Kim Pain Clinic, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea, Tel: +82-55-360-1422, Fax: +82-55-360-2149, E-mail:
| |
Collapse
|
48
|
C S, G. R R, L. F L, M.C.G DR, N.B C, S.C D, O. L F. Advances and perspectives for antimicrobial peptide and combinatory therapies. Front Bioeng Biotechnol 2022; 10:1051456. [PMID: 36578509 PMCID: PMC9791095 DOI: 10.3389/fbioe.2022.1051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) have shown cell membrane-directed mechanisms of action. This specificity can be effective against infectious agents that have acquired resistance to conventional drugs. The AMPs' membrane-specificity and their great potential to combat resistant microbes has brought hope to the medical/therapeutic scene. The high death rate worldwide due to antimicrobial resistance (AMR) has pushed forward the search for new molecules and product developments, mainly antibiotics. In the current scenario, other strategies including the association of two or more drugs have contributed to the treatment of difficult-to-treat infectious diseases, above all, those caused by bacteria. In this context, the synergistic action of AMPs associated with current antibiotic therapy can bring important results for the production of new and effective drugs to overcome AMR. This review presents the advances obtained in the last 5 years in medical/antibiotic therapy, with the use of products based on AMPs, as well as perspectives on the potentialized effects of current drugs combined with AMPs for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Santos C
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil
| | - Rodrigues G. R
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - Lima L. F
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - dos Reis M.C.G
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - Cunha N.B
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Faculdade de Agronomia e Medicina Veterinária (FAV), Universidade de Brasília (UnB), Brasília, Brazil
| | - Dias S.C
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Programa de Pós-Graduação Em Biologia Animal, Universidade de Brasília (UnB), Brasília, Brazil
| | - Franco O. L
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília, Brazil
| |
Collapse
|
49
|
Mohammed EH, Lohan S, Ghaffari T, Gupta S, Tiwari RK, Parang K. Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. J Med Chem 2022; 65:15819-15839. [PMID: 36442155 PMCID: PMC9743092 DOI: 10.1021/acs.jmedchem.2c01469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/29/2022]
Abstract
We designed a library of 24 cyclic peptides containing arginine (R) and tryptophan (W) residues in a sequential manner [RnWn] (n = 2-7) to study the impact of the hydrophilic/hydrophobic ratio, charge, and ring size on the antibacterial activity against Gram-positive and Gram-negative strains. Among peptides, 5a and 6a demonstrated the highest antimicrobial activity. In combination with 11 commercially available antibiotics, 5a and 6a showed remarkable synergism against a large panel of resistant pathogens. Hemolysis (HC50 = 340 μg/mL) and cell viability against mammalian cells demonstrated the selective lethal action of 5a against bacteria over mammalian cells. Calcein dye leakage and scanning electron microscopy studies revealed the membranolytic effect of 5a. Moreover, the stability in human plasma (t1/2 = 3 h) and the negligible ability of pathogens to develop resistance further reflect the potential of 5a for further development as a peptide-based antibiotic.
Collapse
Affiliation(s)
- Eman H.
M. Mohammed
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
- Department
of Chemistry, Faculty of Science, Menoufia
University, Shebin
El-Koam51132, Egypt
- AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
- AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Tarra Ghaffari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Shilpi Gupta
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Rakesh K. Tiwari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Keykavous Parang
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| |
Collapse
|
50
|
Koh Jing Jie A, Hussein M, Rao GG, Li J, Velkov T. Drug Repurposing Approaches towards Defeating Multidrug-Resistant Gram-Negative Pathogens: Novel Polymyxin/Non-Antibiotic Combinations. Pathogens 2022; 11:pathogens11121420. [PMID: 36558754 PMCID: PMC9781023 DOI: 10.3390/pathogens11121420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative pathogens remain an unmet public health threat. In recent times, increased rates of resistance have been reported not only to commonly used antibiotics, but also to the last-resort antibiotics, such as polymyxins. More worryingly, despite the current trends in resistance, there is a lack of new antibiotics in the drug-discovery pipeline. Hence, it is imperative that new strategies are developed to preserve the clinical efficacy of the current antibiotics, particularly the last-line agents. Combining conventional antibiotics such as polymyxins with non-antibiotics (or adjuvants), has emerged as a novel and effective strategy against otherwise untreatable MDR pathogens. This review explores the available literature detailing the latest polymyxin/non-antibiotic combinations, their mechanisms of action, and potential avenues to advance their clinical application.
Collapse
Affiliation(s)
- Augustine Koh Jing Jie
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|