1
|
Fernandes Q, Therachiyil L, Younis SM, Dermime S, Al Moustafa AE. Oncoproteins E6/E7 of the human papillomavirus types 16 & 18 synergize in modulating oncogenes and tumor suppressor proteins in colorectal cancer. Expert Rev Proteomics 2025; 22:71-84. [PMID: 39815804 DOI: 10.1080/14789450.2025.2455104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/04/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE Our study presents a novel analysis of the oncogenes and tumor suppressor proteins directly modulated by E6/E7 of high-risk HPV types 16 and 18, in colorectal cancer (CRC). METHODS HCT 116 (KRAS mutant) & HT-29 (TP53 mutant) cell models of CRC were transduced with E6/E7 of HPV16 and HPV18, individually and in combination. Further, we utilized a liquid chromatography mass spectrometry (LC-MS/MS) approach to analyze and compare the proteomes of both CRC cell models. RESULTS We generated six stably transduced cell lines. Our data revealed a significantly higher, HPV-induced modulation of oncogenes and tumor suppressor proteins in the TP53 mutant model, as compared to the KRAS mutant model (p ≤ 0.01). Less than 1% of the genes were commonly modulated by HPV, between both models. We also report that HT-29 cells, expressing E6/E7 of both HPV types, significantly reduced the suppression of oncogenes as compared to cells expressing E6/E7 of either HPV types individually (p-value ≤0.00001). CONCLUSION Our data imply that HPV coinfections leads to the sustenance of a pro-oncogenic environment in CRC. HPV modulates different oncogenes/tumor suppressor proteins in CRC of varying mutational backgrounds, thus highlighting the importance of personalized therapies for such diseases with mutational heterogeneity.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shahd M Younis
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Oncology Department, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Yamaguchi M. Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment. Cancers (Basel) 2025; 17:240. [PMID: 39858022 PMCID: PMC11763602 DOI: 10.3390/cancers17020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The regucalcin gene is located on the X chromosome, comprising seven exons and six introns. This gene and protein are expressed in various tissues and cells and is predominantly expressed in human liver, kidney, and adrenal tissues. Regucalcin gene expression is enhanced via a mechanism mediated by several signaling molecules and transcription factors. Regucalcin plays a multifunctional role in cellular regulation in maintaining cell homeostasis. In addition, regucalcin has been implicated in several metabolic disorders and diseases. In particular, regucalcin plays a role as a novel suppressor in several types of cancer patients. Increased expression of regucalcin suppresses the growth of human cancer cells, suggesting its pivotal role in suppressing tumor development. The survival time of cancer patients is prolonged with increased expression of regucalcin in the tumor tissues. The adhesion, migration, invasion, and bone metastatic activity of cancer cells are blocked by the overexpression of regucalcin, promoting dormancy in cancer patients. Interestingly, regucalcin is also found in human serum, suggesting its character as a novel biomarker in various diseases. This extracellular regucalcin has been shown to suppress human cancer cells' growth and bone metastatic activity. Thus, extracellular regucalcin may play a vital role as a suppressor of human cancer activity. Alteration of the serum regucalcin levels in physiological and pathophysiological conditions may influence the activity of cancer cells in the microenvironment. This review will discuss the potential role of extracellular regucalcin in cancer cell activity as a critical suppressor in the cancer microenvironment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
3
|
Sabt A, Tawfik HO, Khaleel EF, Badi RM, Ibrahim HAA, Elkaeed EB, Eldehna WM. An overview of recent advancements in small molecules suppression of oncogenic signaling of K-RAS: an updated review. Mol Divers 2024; 28:4581-4608. [PMID: 38289431 DOI: 10.1007/s11030-023-10777-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 13713, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
4
|
Yamaguchi M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers (Basel) 2023; 15:5489. [PMID: 38001749 PMCID: PMC10670417 DOI: 10.3390/cancers15225489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Regucalcin, a calcium-binding protein lacking the EF-hand motif, was initially discovered in 1978. Its name is indicative of its function in calcium signaling regulation. The rgn gene encodes for regucalcin and is situated on the X chromosome in both humans and vertebrates. Regucalcin regulates pivotal enzymes involved in signal transduction and has an inhibitory function, which includes protein kinases, protein phosphatases, cysteinyl protease, nitric oxide dynthetase, aminoacyl-transfer ribonucleic acid (tRNA) synthetase, and protein synthesis. This cytoplasmic protein is transported to the nucleus where it regulates deoxyribonucleic acid and RNA synthesis as well as gene expression. Overexpression of regucalcin inhibits proliferation in both normal and cancer cells in vitro, independent of apoptosis. During liver regeneration in vivo, endogenous regucalcin suppresses cell growth when overexpressed. Regucalcin mRNA and protein expressions are significantly downregulated in tumor tissues of patients with various types of cancers. Patients exhibiting upregulated regucalcin in tumor tissue have shown prolonged survival. The decrease of regucalcin expression is linked to the advancement of cancer. Overexpression of regucalcin carries the potential for preventing and treating carcinogenesis. Additionally, extracellular regucalcin has displayed control over various types of human cancer cells. Regucalcin may hold a prominent role as a regulatory factor in cancer development. Supplying the regucalcin gene could prove to be a valuable asset in cancer treatment. The therapeutic value of regucalcin suggests its potential significance in treating cancer patients. This review delves into the most recent research on the regulatory role of regucalcin in human cancer development, providing a novel approach for treatment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
5
|
In Silico Study of the Acquired Resistance Caused by the Secondary Mutations of KRAS G12C Protein Using Long Time Molecular Dynamics Simulation and Markov State Model Analysis. Int J Mol Sci 2022; 23:ijms232213845. [PMID: 36430323 PMCID: PMC9694466 DOI: 10.3390/ijms232213845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is a small GTPase protein which plays an important role in the treatment of KRAS mutant cancers. The FDA-approved AMG510 and MRTX849 (phase III clinical trials) are two potent KRASG12C-selective inhibitors that target KRAS G12C. However, the drug resistance caused by the second-site mutation in KRAS has emerged, and the mechanisms of drug resistance at atom level are still unclear. To clarify the mechanisms of drug resistance, we conducted long time molecular dynamics simulations (75 μs in total) to study the structural and energetic features of KRAS G12C and its four drug resistant variants to inhibitors. The combined binding free energy calculation and protein-ligand interaction fingerprint revealed that these second-site mutations indeed caused KRAS to produce different degrees of resistance to AMG510 and MRTX849. Furthermore, Markov State Models and 2D-free energy landscapes analysis revealed the difference in conformational changes of mutated KRAS bound with and without inhibitors. Furthermore, the comparative analysis of these systems showed that there were differences in their allosteric signal pathways. These findings provide the molecular mechanism of drug resistance, which helps to guide novel KRAS G12C inhibitor design to overcome drug resistance.
Collapse
|
6
|
Varga D, Hajdinák P, Makk-Merczel K, Szarka A. The Possible Connection of Two Dual Function Processes: The Relationship of Ferroptosis and the JNK Pathway. Int J Mol Sci 2022; 23:ijms231911004. [PMID: 36232313 PMCID: PMC9570426 DOI: 10.3390/ijms231911004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroptosis represents a typical process that has dual functions in cell fate decisions since the reduction and/or inhibition of ferroptosis is desirable for the therapies of diseases such as neurological disorders, localized ischemia-reperfusion, kidney injury, and hematological diseases, while the enhanced ferroptosis of cancer cells may benefit patients with cancer. The JNK pathway also has a real dual function in the fate of cells. Multiple factors suggest a potential link between the ferroptotic and JNK pathways; (i) both processes are ROS mediated; (ii) both can be inhibited by lipid peroxide scavengers; (iii) RAS mutations may play a role in the initiation of both pathways. We aimed to investigate the possible link between ferroptosis and the JNK pathway. Interestingly, JNK inhibitor co-treatment could enhance the cancer cytotoxic effect of the ferroptosis inducers in NRAS and KRAS mutation-harboring cells (HT-1080 and MIA PaCa-2). Since cancer’s cytotoxic effect from the JNK inhibitors could only be suspended by the ferroptosis inhibitors, and that sole JNK-inhibitor treatment did not affect cell viability, it seems that the JNK inhibitors “just” amplify the effect of the ferroptosis inducers. This cancer cell death amplifying effect of the JNK inhibitors could not be observed in other oxidative stress-driven cell deaths. Hence, it seems it is specific to ferroptosis. Finally, our results suggest that GSH content/depletion could be an important candidate for switching the anti-cancer effect of JNK inhibitors.
Collapse
Affiliation(s)
- Dóra Varga
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Kinga Makk-Merczel
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence:
| |
Collapse
|
7
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
8
|
DNA Polymerase Theta Plays a Critical Role in Pancreatic Cancer Development and Metastasis. Cancers (Basel) 2022; 14:cancers14174077. [PMID: 36077614 PMCID: PMC9454495 DOI: 10.3390/cancers14174077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), due to its genomic heterogeneity and lack of effective treatment, despite decades of intensive research, will become the second leading cause of cancer-related deaths by 2030. Step-wise acquisition of mutations, due to genomic instability, is considered to drive the development of PDAC; the KRAS mutation occurs in 95 to 100% of human PDAC, and is already detectable in early premalignant lesions designated as pancreatic intraepithelial neoplasia (PanIN). This mutation is possibly the key event leading to genomic instability and PDAC development. Our study aimed to investigate the role of the error-prone DNA double-strand breaks (DSBs) repair pathway, alt-EJ, in the presence of the KRAS G12D mutation in pancreatic cancer development. Our findings show that oncogenic KRAS contributes to increasing the expression of Polθ, Lig3, and Mre11, key components of alt-EJ in both mouse and human PDAC models. We further confirm increased catalytic activity of alt-EJ in a mouse and human model of PDAC bearing the KRAS G12D mutation. Subsequently, we focused on estimating the impact of alt-EJ inactivation by polymerase theta (Polθ) deletion on pancreatic cancer development, and survival in genetically engineered mouse models (GEMMs) and cancer patients. Here, we show that even though Polθ deficiency does not fully prevent the development of pancreatic cancer, it significantly delays the onset of PanIN formation, prolongs the overall survival of experimental mice, and correlates with the overall survival of pancreatic cancer patients in the TCGA database. Our study clearly demonstrates the role of alt-EJ in the development of PDAC, and alt-EJ may be an attractive therapeutic target for pancreatic cancer patients.
Collapse
|
9
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
10
|
Protease-controlled secretion and display of intercellular signals. Nat Commun 2022; 13:912. [PMID: 35177637 PMCID: PMC8854555 DOI: 10.1038/s41467-022-28623-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
To program intercellular communication for biomedicine, it is crucial to regulate the secretion and surface display of signaling proteins. If such regulations are at the protein level, there are additional advantages, including compact delivery and direct interactions with endogenous signaling pathways. Here we create a modular, generalizable design called Retained Endoplasmic Cleavable Secretion (RELEASE), with engineered proteins retained in the endoplasmic reticulum and displayed/secreted in response to specific proteases. The design allows functional regulation of multiple synthetic and natural proteins by synthetic protease circuits to realize diverse signal processing capabilities, including logic operation and threshold tuning. By linking RELEASE to additional sensing and processing circuits, we can achieve elevated protein secretion in response to "undruggable" oncogene KRAS mutants. RELEASE should enable the local, programmable delivery of intercellular cues for a broad variety of fields such as neurobiology, cancer immunotherapy and cell transplantation.
Collapse
|
11
|
Nakkina SP, Gitto SB, Beardsley JM, Pandey V, Rohr MW, Parikh JG, Phanstiel O, Altomare DA. DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment. Int J Mol Sci 2021; 22:13175. [PMID: 34947972 PMCID: PMC8706739 DOI: 10.3390/ijms222413175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor five-year survival rate of less than 10%. Immune suppression along with chemoresistance are obstacles for PDAC therapeutic treatment. Innate immune cells, such as tumor-associated macrophages, are recruited to the inflammatory environment of PDAC and adversely suppress cytotoxic T lymphocytes. KRAS and MYC are important oncogenes associated with immune suppression and pose a challenge to successful therapies. Here, we targeted KRAS, through inhibition of downstream c-RAF with GW5074, and MYC expression via difluoromethylornithine (DFMO). DFMO alone and with GW5074 reduced in vitro PDAC cell viability. Both DFMO and GW5074 showed efficacy in reducing in vivo PDAC growth in an immunocompromised model. Results in immunocompetent syngeneic tumor-bearing mice showed that DFMO and combination treatment markedly decreased tumor size, but only DFMO increased survival in mice. To further investigate, immunohistochemical staining showed DFMO diminished MYC expression and increased tumor infiltration of macrophages, CD86+ cells, CD4+ and CD8+ T lymphocytes. GW5074 was not as effective in modulating the tumor infiltration of total CD3+ lymphocytes or tumor progression and maintained MYC expression. Collectively, this study highlights that in contrast to GW5074, the inhibition of MYC through DFMO may be an effective treatment modality to modulate PDAC immunosuppression.
Collapse
Affiliation(s)
- Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Sarah B. Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan M. Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Veethika Pandey
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael W. Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Jignesh G. Parikh
- Department of Pathology, Orlando VA Medical Center, 13800 Veterans Way, Orlando, FL 32827, USA;
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA;
| | - Deborah A. Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| |
Collapse
|
12
|
Tien YW, Chien HJ, Chiang TC, Chung MH, Lee CY, Peng SJ, Chen CC, Chou YH, Hsiao FT, Jeng YM, Tang SC. Local islet remodelling associated with duct lesion-islet complex in adult human pancreas. Diabetologia 2021; 64:2266-2278. [PMID: 34272581 DOI: 10.1007/s00125-021-05504-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Islets are thought to be stably present in the adult human pancreas to maintain glucose homeostasis. However, identification of the pancreatic intraepithelial neoplasia (PanIN)-islet complex in mice and the presence of PanIN lesions in adult humans suggest that similar remodelling of islet structure and environment may occur in the human pancreas. To identify islet remodelling in a clinically related setting, we examine human donor pancreases with 3D histology to detect and characterise the human PanIN-islet complex. METHODS Cadaveric donor pancreases (26-65 years old, n = 10) were fixed and sectioned (350 μm) for tissue labelling, clearing and microscopy to detect local islet remodelling for 3D analysis of the microenvironment. The remodelled microenvironment was subsequently examined via microtome-based histology for clinical assessment. RESULTS In nine pancreases, we identified the unique peri-lobular islet aggregation associated with the PanIN lesion (16 lesion-islet complexes detected; size: 3.18 ± 1.34 mm). Important features of the lesion-islet microenvironment include: (1) formation of intra-islet ducts, (2) acinar atrophy, (3) adipocyte association, (4) inflammation (CD45+), (5) stromal accumulation (α-SMA+), (6) increase in Ki-67 proliferation index but absence of Ki-67+ alpha/beta cells and (7) in-depth and continuous duct-islet cell contacts, forming a cluster. The duct-islet cell cluster and intra-islet ducts suggest likely islet cell neogenesis but not replication. CONCLUSIONS/INTERPRETATION We identify local islet remodelling associated with PanIN-islet complex in the adult human pancreas. The tissue remodelling and the evidence of inflammation and stromal accumulation suggest that the PanIN-islet complex is derived from tissue repair after a local injury.
Collapse
Affiliation(s)
- Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsai-Chen Chiang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital - Hsinchu Branch, Hsinchu, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
13
|
Leal AS, Liu P, Krieger-Burke T, Ruggeri B, Liby KT. The Bromodomain Inhibitor, INCB057643, Targets Both Cancer Cells and the Tumor Microenvironment in Two Preclinical Models of Pancreatic Cancer. Cancers (Basel) 2020; 13:cancers13010096. [PMID: 33396954 PMCID: PMC7794921 DOI: 10.3390/cancers13010096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer remains a highly lethal disease, with only ~10% of patients still alive five years after diagnosis, as most patients already have advanced, metastatic disease at the time of diagnosis. Therefore, new treatments are needed for these patients. We tested INCB057643, a novel bromodomain inhibitor, in a relevant mouse model of pancreatic cancer, and this compound improves survival and reduces metastasis. Pancreatic cancers are very dense, as the stroma within the tumor can account for up to 90% of the tumor mass and is responsible for the failure of many drugs. INCB057643 modulates the immune cells within the tumor so they can attack and kill tumor cells. INCB057643 also alters immune cells within the pancreas in a mouse model of pancreatitis, which is inflammation of the pancreas that can promote the development of pancreatic cancer. Abstract In pancreatic cancer the tumor microenvironment (TME) can account for up to 90% of the tumor mass. The TME drives essential functions in disease progression, invasion and metastasis. Tumor cells can use epigenetic modulation to evade immune recognition and shape the TME toward an immunosuppressive phenotype. Bromodomain inhibitors are a class of drugs that target BET (bromodomain and extra-terminal) proteins, impairing their ability to bind to acetylated lysines and therefore interfering with transcriptional initiation and elongation. INCB057643 is a new generation, orally bioavailable BET inhibitor that was developed for treating patients with advanced malignancies. KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) mice mimic human disease, with similar progression and incidence of metastasis. Treatment of established tumors in KPC mice with INCB057643 increased survival by an average of 55 days, compared to the control group. Moreover, INCB057643 reduced metastatic burden in these mice. KPC mice treated with INCB057643, starting at 4 weeks of age, showed beneficial changes in immune cell populations in the pancreas and liver. Similarly, INCB057643 modified immune cell populations in the pancreas of KrasG12D/+; Pdx-1-Cre (KC) mice with pancreatitis, an inflammatory process known to promote pancreatic cancer progression. The data presented here suggest that the bromodomain inhibitor INCB057643 modulates the TME, reducing disease burden in two mouse models of pancreatic cancer. Furthermore, this work suggests that BRD4 may play a role in establishing the TME in the liver, a primary metastatic site for pancreatic cancer.
Collapse
Affiliation(s)
- Ana S. Leal
- Department of Pharmacology & Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA; (A.S.L.); (T.K.-B.)
| | - Phillip Liu
- Incyte Corporation, Wilmington, DE 19803, USA; (P.L.); (B.R.)
| | - Teresa Krieger-Burke
- Department of Pharmacology & Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA; (A.S.L.); (T.K.-B.)
| | - Bruce Ruggeri
- Incyte Corporation, Wilmington, DE 19803, USA; (P.L.); (B.R.)
| | - Karen T. Liby
- Department of Pharmacology & Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA; (A.S.L.); (T.K.-B.)
- Correspondence: ; Tel.: +1-517-884-8955; Fax: +1-517-353-8915
| |
Collapse
|
14
|
Sun H, Zhang B, Li H. The Roles of Frequently Mutated Genes of Pancreatic Cancer in Regulation of Tumor Microenvironment. Technol Cancer Res Treat 2020; 19:1533033820920969. [PMID: 32372692 PMCID: PMC7225789 DOI: 10.1177/1533033820920969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma has extremely high malignancy and patients with pancreatic ductal adenocarcinoma have dismal prognosis. The failure of pancreatic ductal adenocarcinoma treatment is largely due to the tumor microenvironment, which is featured by ample stromal cells and complicated extracellular matrix. Recent genomic analysis revealed that pancreatic ductal adenocarcinoma harbors frequently mutated genes including KRAS, TP53, CDKN2A, and SMAD4, which can widely alter cellular processes and behaviors. As shown by accumulating studies, these mutant genes may also change tumor microenvironment, which in turn affects pancreatic ductal adenocarcinoma progression. In this review, we summarize the role of such genetic mutations in tumor microenvironment regulation and potential mechanisms.
Collapse
Affiliation(s)
- Hongzhi Sun
- Department of General Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Bo Zhang
- Department of General Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haijun Li
- Department of General Surgery, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
In silico and saturation transfer difference NMR approaches to unravel the binding mode of an andrographolide derivative to K-Ras oncoprotein. Future Med Chem 2020; 12:1611-1631. [PMID: 32892640 DOI: 10.4155/fmc-2020-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Andrographolide and its benzylidene derivatives, SRJ09 and SRJ23, potentially bind oncogenic K-Ras to exert anticancer activity. Their molecular interactions with K-Ras oncoproteins that lead to effective biological activity are of major interest. Methods & results: In silico docking and molecular dynamics simulation were performed using Glide and Desmond, respectively; while saturation transfer difference NMR was performed using GDP-bound K-RasG12V. SRJ23 was found to bind strongly and selectively to K-RasG12V, by anchoring to a binding pocket (namely p2) principally via hydrogen bond and hydrophobic interactions. The saturation transfer difference NMR analysis revealed the proximity of protons of functional moieties in SRJ23 to K-RasG12V, suggesting positive binding. Conclusion: SRJ23 binds strongly and interacts stably with K-RasG12V to exhibit its inhibitory activity.
Collapse
|
16
|
Sodir NM, Kortlever RM, Barthet VJA, Campos T, Pellegrinet L, Kupczak S, Anastasiou P, Swigart LB, Soucek L, Arends MJ, Littlewood TD, Evan GI. MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. Cancer Discov 2020; 10:588-607. [PMID: 31941709 DOI: 10.1158/2159-8290.cd-19-0435] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.
Collapse
Affiliation(s)
- Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Roderik M Kortlever
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven Kupczak
- Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat Commun 2020; 11:336. [PMID: 31953402 PMCID: PMC6969036 DOI: 10.1038/s41467-019-13654-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/08/2019] [Indexed: 11/16/2022] Open
Abstract
Targeting cytoplasmic protein–protein interactions with antibodies remains technically challenging, since antibodies expressed in the cytosol frequently form insoluble aggregates. Existing engineering methods are based on the notion that the estimated net charge at pH 7.4 affects stability; as such, they are unable to overcome this problem. Herein, we report a versatile method for engineering an ultra-stable cytoplasmic antibody (STAND), with a strong estimated net negative charge at pH 6.6, by fusing peptide tags with a highly negative charge and a low isoelectric point. Without the need for complicated amino acid substitutions, we convert aggregation-prone antibodies to STANDs that are useful for inhibiting in vivo transmitter release, modulating animal behaviour, and inhibiting in vivo cancer proliferation driven by mutated Kras—long recognised as an “undruggable” oncogenic protein. The STAND method shows promise for targeting endogenous cytoplasmic proteins in basic biology and for developing future disease treatments. Antibodies expressed in the cytosol often form insoluble aggregates, which makes it hard to target intracellular proteins. Here the authors engineer an ultra-stable cytoplasmic antibody (STAND) with a low isoelectric point that can be used in vivo.
Collapse
|
18
|
Dey S, Kwon JJ, Liu S, Hodge GA, Taleb S, Zimmers TA, Wan J, Kota J. miR-29a Is Repressed by MYC in Pancreatic Cancer and Its Restoration Drives Tumor-Suppressive Effects via Downregulation of LOXL2. Mol Cancer Res 2019; 18:311-323. [PMID: 31662451 DOI: 10.1158/1541-7786.mcr-19-0594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer with a dismal prognosis. miR-29a is commonly downregulated in PDAC; however, mechanisms for its loss and role still remain unclear. Here, we show that in PDAC, repression of miR-29a is directly mediated by MYC via promoter activity. RNA sequencing analysis, integrated with miRNA target prediction, identified global miR-29a downstream targets in PDAC. Target enrichment coupled with gene ontology and survival correlation analyses identified the top five miR-29a-downregulated target genes (LOXL2, MYBL2, CLDN1, HGK, and NRAS) that are known to promote tumorigenic mechanisms. Functional validation confirmed that upregulation of miR-29a is sufficient to ablate translational expression of these five genes in PDAC. We show that the most promising target among the identified genes, LOXL2, is repressed by miR-29a via 3'-untranslated region binding. Pancreatic tissues from a PDAC murine model and patient biopsies showed overall high LOXL2 expression with inverse correlations with miR-29a levels. Collectively, our data delineate an antitumorigenic, regulatory role of miR-29a and a novel MYC-miR-29a-LOXL2 regulatory axis in PDAC pathogenesis, indicating the potential of the molecule in therapeutic opportunities. IMPLICATIONS: This study unravels a novel functional role of miR-29a in PDAC pathogenesis and identifies an MYC-miR-29a-LOXL2 axis in regulation of the disease progression, implicating miR-29a as a potential therapeutic target for PDAC. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/2/311/F1.large.jpg.
Collapse
Affiliation(s)
- Shatovisha Dey
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriel A Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Solaema Taleb
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Teresa A Zimmers
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana. .,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana
| |
Collapse
|
19
|
Barklis E, Stephen AG, Staubus AO, Barklis RL, Alfadhli A. Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes. J Mol Biol 2019; 431:3706-3717. [PMID: 31330153 PMCID: PMC6733658 DOI: 10.1016/j.jmb.2019.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21072, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| |
Collapse
|
20
|
Takakura K, Kawamura A, Torisu Y, Koido S, Yahagi N, Saruta M. The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20133331. [PMID: 31284594 PMCID: PMC6651255 DOI: 10.3390/ijms20133331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic cancer, because they can identify a specific mRNA fragment of a given sequence or protein, and interfere with gene expression as molecular-targeted agents. Within the past 25 years, the diversity and feasibility of these drugs as diagnostic or therapeutic tools have dramatically increased. Several clinical and preclinical studies of oligonucleotides have been conducted for patients with pancreatic cancer. To support the discovery of effective diagnostic or therapeutic options using oligonucleotide-based strategies, in the absence of satisfactory therapies for long-term survival and the increasing trend of diseases, we summarize the current clinical trials of oligonucleotide therapeutics for pancreatic cancer patients, with underlying preclinical and scientific data, and focus on the possibility of oligonucleotides for targeting pancreatic cancer in clinical implications.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Atsushi Kawamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
21
|
Leal AS, Misek SA, Lisabeth EM, Neubig RR, Liby KT. The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in Kras G12D; Pdx1-Cre (KC) mice. Sci Rep 2019; 9:7072. [PMID: 31068602 PMCID: PMC6506531 DOI: 10.1038/s41598-019-43430-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
The stromal reaction in pancreatic cancer creates a physical barrier that blocks therapeutic intervention and creates an immunosuppressive tumor microenvironment. The Rho/myocardin-related transcription factor (MRTF) pathway is implicated in the hyper-activation of fibroblasts in fibrotic diseases and the activation of pancreatic stellate cells. In this study we use CCG-222740, a small molecule, designed as a Rho/MRTF pathway inhibitor. This compound decreases the activation of stellate cells in vitro and in vivo, by reducing the levels of alpha smooth muscle actin (α-SMA) expression. CCG-222740 also modulates inflammatory components of the pancreas in KC mice (LSL-KrasG12D/+; Pdx-1-Cre) stimulated with caerulein. It decreases the infiltration of macrophages and increases CD4 T cells and B cells. Analysis of the pancreatic adenocarcinoma (PDA) TCGA dataset revealed a correlation between elevated RhoA, RhoC and MRTF expression and decreased survival in PDA patients. Moreover, a MRTF signature is correlated with a Th2 cell signature in human PDA tumors.
Collapse
Affiliation(s)
- Ana S Leal
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, MI, USA
| | | | - Erika M Lisabeth
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, MI, USA
| | - Richard R Neubig
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, MI, USA
| | - Karen T Liby
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, MI, USA.
| |
Collapse
|
22
|
Shen Q, Yang H, Peng C, Zhu H, Mei J, Huang S, Chen B, Liu J, Wu W, Cao S. Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. Int J Nanomedicine 2018; 14:205-214. [PMID: 30636873 PMCID: PMC6307685 DOI: 10.2147/ijn.s187892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Efficient and precise circulating tumor cells' (CTCs) capture and release with minimal effect on cell viability for CTCs' analysis are general requirements of CTCs' detection device in clinical application. However, these two essential factors are difficult to be achieved simultaneously. Methods In order to reach the aforementioned goal, we integrated multiple strategies and technologies of staggered herringbone structure, nanowires' substrate, peptides, enzymatic release, specific cell staining, and gene sequencing into microfluidic device and the sandwich structure peptide-silicon nanowires' substrate was termed as Pe-SiNWS. Results The Pe-SiNWS demonstrated excellent capture efficiency (95.6%) and high release efficiency (92.6%). The good purity (28.5%) and cell viability (93.5%) of CTCs could be obtained through specific capture and biological release by using Pe-SiNWS. The good purity of CTCs facilitated precise and quick biological analysis, and five types of KRAS mutation were detected in 16 pancreatic cancer patients but not in healthy donors. Conclusion The results proved that the effective capture, minor damage release, and precise analysis of CTCs could be realized simultaneously by our novel strategy. The successful clinical application indicated that our work was anticipated to open up new opportunities for the design of CTC microfluidic device.
Collapse
Affiliation(s)
- Qinglin Shen
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, .,Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China,
| | - Haitao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhanper, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jia Mei
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Shan Huang
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Bin Chen
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| |
Collapse
|
23
|
Kang YW, Lee JE, Jung KH, Son MK, Shin SM, Kim SJ, Fang Z, Yan HH, Park JH, Han B, Cheon MJ, Woo MG, Lim JH, Kim YS, Hong SS. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett 2018; 438:174-186. [DOI: 10.1016/j.canlet.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
|
24
|
Wu X, Chen W, Cai H, Hu J, Wu B, Jiang Y, Chen X, Sun D, An Y. MiR-216b inhibits pancreatic cancer cell progression and promotes apoptosis by down-regulating KRAS. Arch Med Sci 2018; 14:1321-1332. [PMID: 30393486 PMCID: PMC6209705 DOI: 10.5114/aoms.2018.72564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Pancreatic cancer is a highly lethal malignancy with high invasion metastasis, which is difficult to diagnose and treat. MicroRNA-216b (miR-216b) plays an important role in many types of tumors. In this study, we explore how miR-216b affected human pancreatic cancer cell development by targeting KRAS. MATERIAL AND METHODS Expression level of miR-216b and KRAS in tissue samples and cells were detected by RT-PCR and western blot. Immunohistochemical assay analysed the expressions of KRAS protein in tumor and adjacent tissues. The target relationship between miR-216b and KRAS was validated by dual-luciferase reporter assay. Pancreatic cancer cell proliferation, migration, invasion and apoptosis abilities of cells transfected with miR-216b mimics and KRAS-siRNA, Panc-1 were detected by MTT assay, transwell assay and flow cytometry assay respectively. Prognosis of patients with different expression levels of miR-216b and KRAS were analyzed by Kaplan-Meier survival analysis and Cox proportional hazards regression model. RESULTS The expression of miR-216b in pancreatic cancer tissue and cell line was down-regulated (p < 0.01), while KRAS expression was up-regulated (p < 0.01) compared with adjacent normal tissues. Both the expressions of miR-216b and KRAS have a strong influence on prognosis of the pancreatic cancer patients (p = 0.024 and p = 0.017). The dual-luciferase reporter assay verified that miR-216b directly targeted KRAS in pancreatic cancer cells. Overexpression of miR-216b reduced the expression of mRNA and protein of KRAS (p = 0.013 and p = 0.003), but silencing KRAS had no effect on miR-216b expression (p = 0.706). By silencing KRAS or up-regulation of miR-216b could suppress cell proliferation, migration and invasion of pancreatic cancer cells and promote apoptosis. CONCLUSIONS MiR-216b might inhibit pancreatic cancer cell progression and stimulate apoptosis by silencing KRAS.
Collapse
Affiliation(s)
- Xinquan Wu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Huihua Cai
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Hu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Baoqiang Wu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yong Jiang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yong An
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
25
|
Nattress CB, Halldén G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett 2018; 434:56-69. [PMID: 29981812 DOI: 10.1016/j.canlet.2018.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
Survival rates for pancreatic cancer patients have remained unchanged for the last four decades. The most aggressive, and most common, type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which has the lowest 5-year survival rate of all cancers globally. The poor prognosis is typically due to late presentation of often non-specific symptoms and rapid development of resistance to all current therapeutics, including the standard-of-care cytotoxic drug gemcitabine. While early surgical intervention can significantly prolong patient survival, there are few treatment options for late-stage non-resectable metastatic disease, resulting in mostly palliative care. In addition, a defining feature of pancreatic cancer is the immunosuppressive and impenetrable desmoplastic stroma that blocks access to tumour cells by therapeutic drugs. The limited effectiveness of conventional chemotherapeutics reveals an urgent need to develop novel therapies with different mechanisms of action for this malignancy. An emerging alternative to current therapeutics is oncolytic adenoviruses; these engineered biological agents have proven efficacy and tumour-selectivity in preclinical pancreatic cancer models, including models of drug-resistant cancer. Safety of oncolytic adenoviral mutants has been extensively assessed in clinical trials with only limited toxicity to normal healthy tissue being reported. Promising efficacy in combination with gemcitabine was demonstrated in preclinical and clinical studies. A recent surge in novel adenoviral mutants entering clinical trials for pancreatic cancer indicates improved efficacy through activation of the host anti-tumour responses. The potential for adenoviruses to synergise with chemotherapeutics, activate anti-tumour immune responses, and contribute to stromal dissemination render these mutants highly attractive candidates for improved patient outcomes. Currently, momentum is gathering towards the development of systemically-deliverable mutants that are able to overcome anti-viral host immune responses, erythrocyte binding and hepatic uptake, to promote elimination of primary and metastatic lesions. This review will cover the key components of pancreatic cancer oncogenesis; novel oncolytic adenoviruses; clinical trials; and the current progress in overcoming the challenges of systemic delivery.
Collapse
Affiliation(s)
- Callum Baird Nattress
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom.
| |
Collapse
|
26
|
Reina-Campos M, Shelton PM, Diaz-Meco MT, Moscat J. Metabolic reprogramming of the tumor microenvironment by p62 and its partners. Biochim Biophys Acta Rev Cancer 2018; 1870:88-95. [PMID: 29702207 DOI: 10.1016/j.bbcan.2018.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022]
Abstract
The concerted metabolic reprogramming across cancer and normal cellular compartments of the tumor microenvironment can favor tumorigenesis by increasing the survival and proliferating capacities of transformed cells. p62 has emerged as a critical signaling adaptor, beyond its role in autophagy, by playing an intricate context-dependent role in metabolic reprogramming of the cell types of the tumor and stroma, which shapes the tumor microenvironment to control tumor progression. Focusing on metabolic adaptations, we review the cellular processes upstream and downstream of p62 that regulate how distinct cell types adapt to the challenging and evolving environmental conditions during tumor initiation and progression. In addition, we describe partners of p62 that, in a collaborative or independent manner, can also rewire cell metabolism. Finally, we discuss the potential therapeutic implications of targeting p62 in cancer, considering its multifaceted roles in diverse cell types of the tumor microenvironment.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phillip M Shelton
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Ritchie C, Mack A, Harper L, Alfadhli A, Stork PJS, Nan X, Barklis E. Analysis of K-Ras Interactions by Biotin Ligase Tagging. Cancer Genomics Proteomics 2018. [PMID: 28647697 DOI: 10.21873/cgp.20034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mutations of the human K-Ras 4B (K-Ras) G protein are associated with a significant proportion of all human cancers. Despite this fact, a comprehensive analysis of K-Ras interactions is lacking. Our investigations focus on characterization of the K-Ras interaction network. MATERIALS AND METHODS We employed a biotin ligase-tagging approach, in which tagged K-Ras proteins biotinylate neighbor proteins in a proximity-dependent fashion, and proteins are identified via mass spectrometry (MS) sequencing. RESULTS In transfected cells, a total of 748 biotinylated proteins were identified from cells expressing biotin ligase-tagged K-Ras variants. Significant differences were observed between membrane-associated variants and a farnesylation-defective mutant. In pancreatic cancer cells, 56 K-Ras interaction partners were identified. Most of these were cytoskeletal or plasma membrane proteins, and many have been identified previously as potential cancer biomarkers. CONCLUSION Biotin ligase tagging offers a rapid and convenient approach to the characterization of K-Ras interaction networks.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Andrew Mack
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Logan Harper
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Philip J S Stork
- Department of Vollum Institute, Oregon Health & Science University, Portland, OR, U.S.A
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, U.S.A
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A.
| |
Collapse
|
28
|
Grassi E, Durante S, Astolfi A, Tarantino G, Indio V, Freier E, Vecchiarelli S, Ricci C, Casadei R, Formica F, Filippini D, Comito F, Serra C, Santini D, D' Errico A, Minni F, Biasco G, Di Marco M. Mutational burden of resectable pancreatic cancer, as determined by whole transcriptome and whole exome sequencing, predicts a poor prognosis. Int J Oncol 2018; 52:1972-1980. [PMID: 29620163 DOI: 10.3892/ijo.2018.4344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 11/05/2022] Open
Abstract
Despite the genomic characterization of pancreatic cancer (PC), marked advances in the development of prognosis classification and novel therapeutic strategies have yet to come. The present study aimed to better understand the genomic alterations associated with the invasive phenotype of PC, in order to improve patient selection for treatment options. A total of 30 PC samples were analysed by either whole transcriptome (9 samples) or exome sequencing (21 samples) on an Illumina platform (75X2 or 100X2 bp), and the results were matched with normal DNA to identify somatic events. Single nucleotide variants and insertions and deletions were annotated using public databases, and the pathogenicity of the identified variants was defined according to prior knowledge and mutation-prediction tools. A total of 43 recurrently altered genes were identified, which were involved in numerous pathways, including chromatin remodelling and DNA damage repair. In addition, an analysis limited to a subgroup of early stage patients (50% of samples) demonstrated that poor prognosis was significantly associated with a higher number of known PC mutations (P=0.047). Samples from patients with a better overall survival (>25 months) harboured an average of 24 events, whereas samples from patients with an overall survival of <25 months presented an average of 40 mutations. These findings indicated that a complex genetic profile in the early stage of disease may be associated with increased aggressiveness, thus suggesting an urgent requirement for an innovative approach to classify this disease.
Collapse
Affiliation(s)
- Elisa Grassi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Sandra Durante
- Interdepartmental Center of Cancer Research University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Annalisa Astolfi
- Interdepartmental Center of Cancer Research University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Giuseppe Tarantino
- Interdepartmental Center of Cancer Research University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Valentina Indio
- Interdepartmental Center of Cancer Research University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Eva Freier
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Silvia Vecchiarelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Claudio Ricci
- Department of Medical and Surgical Sciences, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Riccardo Casadei
- Department of Medical and Surgical Sciences, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Francesca Formica
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Daria Filippini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Francesca Comito
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Carla Serra
- Department of Internal Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Donatella Santini
- Department of Pathology, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Antonietta D' Errico
- Department of Pathology, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Francesco Minni
- Department of Medical and Surgical Sciences, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Mariacristina Di Marco
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant' Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| |
Collapse
|
29
|
Rouhi A, Miller C, Grasedieck S, Reinhart S, Stolze B, Döhner H, Kuchenbauer F, Bullinger L, Fröhling S, Scholl C. Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells. Oncotarget 2018; 8:7678-7690. [PMID: 28032595 PMCID: PMC5352352 DOI: 10.18632/oncotarget.13841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Inhibition of the HSP90 chaperone results in depletion of many signaling proteins that drive tumorigenesis, such as downstream effectors of KRAS, the most commonly mutated human oncogene. As a consequence, several small-molecule HSP90 inhibitors are being evaluated in clinical trials as anticancer agents. To prospectively identify mechanisms through which HSP90-dependent cancer cells evade pharmacologic HSP90 blockade, we generated multiple mutant KRAS-driven cancer cell lines with acquired resistance to the purine-scaffold HSP90 inhibitor PU-H71. All cell lines retained dependence on HSP90 function, as evidenced by sensitivity to short hairpin RNA-mediated suppression of HSP90AA1 or HSP90AB1 (also called HSP90α and HSP90β, respectively), and exhibited two types of genomic alterations that interfere with the effects of PU-H71 on cell viability and proliferation: (i) a Y142N missense mutation in the ATP-binding domain of HSP90α that co-occurred with amplification of the HSP90AA1 locus, (ii) genomic amplification and overexpression of the ABCB1 gene encoding the MDR1 drug efflux pump. In support of a functional role for these alterations, exogenous expression of HSP90α Y142N conferred PU-H71 resistance to HSP90-dependent cells, and pharmacologic MDR1 inhibition with tariquidar or lowering ABCB1 expression restored sensitivity to PU-H71 in ABCB1-amplified cells. Finally, comparison with structurally distinct HSP90 inhibitors currently in clinical development revealed that PU-H71 resistance could be overcome, in part, by ganetespib (also known as STA9090) but not tanespimycin (also known as 17-AAG). Together, these data identify potential mechanisms of acquired resistance to small molecules targeting HSP90 that may warrant proactive screening for additional HSP90 inhibitors or rational combination therapies.
Collapse
Affiliation(s)
- Arefeh Rouhi
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Christina Miller
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sarah Grasedieck
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stefanie Reinhart
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Stolze
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | | - Lars Bullinger
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Claudia Scholl
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
30
|
Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I. Soluble factors from stellate cells induce pancreatic cancer cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification. Oncotarget 2017; 7:36719-36732. [PMID: 27167341 PMCID: PMC5095034 DOI: 10.18632/oncotarget.9165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic stellate cells (PSC), a prominent stromal cell, contribute to the progression of pancreatic ductal adenocarcinoma (PDAC). We aim to investigate the mechanisms by which PSC promote cell proliferation in PDAC cell lines, BxPC-3 and AsPC-1. PSC-conditioned media (PSC-CM) induced proliferation of these cells in a dose- and time-dependent manner. Nrf2 protein was upregulated and subsequently, its transcriptional activity was increased with greater DNA binding activity and transcription of target genes. Downregulation of Nrf2 led to suppression of PSC-CM activity in BxPC-3, but not in AsPC-1 cells. However, overexpression of Nrf2 alone resulted in increased cell proliferation in both cell lines, and treatment with PSC-CM further enhanced this effect. Activation of Nrf2 pathway resulted in upregulation of metabolic genes involved in pentose phosphate pathway, glutaminolysis and glutathione biosynthesis. Downregulation and inhibition of glucose-6-phosphate-dehydrogenase with siRNA and chemical approaches reduced PSC-mediated cell proliferation. Among the cytokines present in PSC-CM, stromal-derived factor-1 alpha (SDF-1α) and interleukin-6 (IL-6) activated Nrf2 pathway to induce cell proliferation in both cells, as shown with neutralization antibodies, recombinant proteins and signaling inhibitors. Taken together, SDF-1α and IL-6 secreted from PSC induced PDAC cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification.
Collapse
Affiliation(s)
- Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia.,University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Kavita S Subramaniam
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia.,University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, 980-5877 Japan
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia.,University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, 50603 Malaysia
| |
Collapse
|
31
|
Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S, Fagman JB, Browne CD, Umemura A, Valasek MA, Kessler H, Tarin D, Goggins M, Reya T, Diaz-Meco M, Moscat J, Karin M. Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell 2017; 32:824-839.e8. [PMID: 29153842 PMCID: PMC5730340 DOI: 10.1016/j.ccell.2017.10.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/21/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Despite expression of oncogenic KRAS, premalignant pancreatic intraepithelial neoplasia 1 (PanIN1) lesions rarely become fully malignant pancreatic ductal adenocarcinoma (PDAC). The molecular mechanisms through which established risk factors, such as chronic pancreatitis, acinar cell damage, and/or defective autophagy increase the likelihood of PDAC development are poorly understood. We show that accumulation of the autophagy substrate p62/SQSTM1 in stressed KrasG12D acinar cells is associated with PDAC development and maintenance of malignancy in human cells and mice. p62 accumulation promotes neoplastic progression by controlling the NRF2-mediated induction of MDM2, which acts through p53-dependent and -independent mechanisms to abrogate checkpoints that prevent conversion of differentiated acinar cells to proliferative ductal progenitors. MDM2 targeting may be useful for preventing PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Giuseppe Di Caro
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ning Li
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuefeng Wu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nikki K Lytle
- Departments of Pharmacology and Medicine, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sourav Banerjee
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Johan B Fagman
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Cecille D Browne
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Atsushi Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Mark A Valasek
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannes Kessler
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - David Tarin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Goggins
- Departments of Medicine (Gastroenterology) and Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Maria Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Moharram SA, Shah K, Kazi JU. T-cell Acute Lymphoblastic Leukemia Cells Display Activation of Different Survival Pathways. J Cancer 2017; 8:4124. [PMID: 29187889 PMCID: PMC5706016 DOI: 10.7150/jca.21725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/09/2017] [Indexed: 01/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a disease of the blood affecting T-lymphocytes. Although notable improvements have been achieved in T-ALL treatment, half of the adult T-ALL patients still experience treatment failure. In order to develop a targeted therapy, we need a better understanding of T-ALL pathogenesis. In this study, we used patient-derived cell lines which display resistance to glucocorticoids. We observed that different cell lines are dependent on different survival signaling pathways. Aberrant activation of AKT, p38, S6K or ERK signaling was not found to the same degree in all cell lines studied. To understand the molecular differences in T-ALL cells, we compared gene expression and somatic mutations. Gene set enrichment analysis showed enrichment of the mTORC1, MAPK or TGF-beta signaling pathways. Loss-of-function mutations in the TP53 and FBXW7 genes were identified in all cell lines investigated. Thus, we suggest that T-ALL cells from different patients are addicted to different mutations and thereby to different signaling pathways. Therefore, understanding the enrichment of molecular pathways for each individual patient will provide us with a more precise and specific treatment plan.
Collapse
Affiliation(s)
- Sausan A Moharram
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Maertin S, Elperin JM, Lotshaw E, Sendler M, Speakman SD, Takakura K, Reicher BM, Mareninova OA, Grippo PJ, Mayerle J, Lerch MM, Gukovskaya AS. Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges. Am J Physiol Gastrointest Liver Physiol 2017; 313:G524-G536. [PMID: 28705806 PMCID: PMC5792215 DOI: 10.1152/ajpgi.00138.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) displays extensive and poorly vascularized desmoplastic stromal reaction, and therefore, pancreatic cancer (PaCa) cells are confronted with nutrient deprivation and hypoxia. Here, we investigate the roles of autophagy and metabolism in PaCa cell adaptation to environmental stresses, amino acid (AA) depletion, and hypoxia. It is known that in healthy cells, basal autophagy is at a low level, but it is greatly activated by environmental stresses. By contrast, we find that in PaCa cells, basal autophagic activity is relatively high, but AA depletion and hypoxia activate autophagy only weakly or not at all, due to their failure to inhibit mechanistic target of rapamycin. Basal, but not stress-induced, autophagy is necessary for PaCa cell proliferation, and AA supply is even more critical to maintain PaCa cell growth. To gain insight into the underlying mechanisms, we analyzed the effects of autophagy inhibition and AA depletion on PaCa cell metabolism. PaCa cells display mixed oxidative/glycolytic metabolism, with oxidative phosphorylation (OXPHOS) predominant. Both autophagy inhibition and AA depletion dramatically decreased OXPHOS; furthermore, pharmacologic inhibitors of OXPHOS suppressed PaCa cell proliferation. The data indicate that the maintenance of OXPHOS is a key mechanism through which autophagy and AA supply support PaCa cell growth. We find that the expression of oncogenic activation mutation in GTPase Kras markedly promotes basal autophagy and stimulates OXPHOS through an autophagy-dependent mechanism. The results suggest that approaches aimed to suppress OXPHOS, particularly through limiting AA supply, could be beneficial in treating PDAC.NEW & NOTEWORTHY Cancer cells in the highly desmoplastic pancreatic ductal adenocarcinoma confront nutrient [i.e., amino acids (AA)] deprivation and hypoxia, but how pancreatic cancer (PaCa) cells adapt to these conditions is poorly understood. This study provides evidence that the maintenance of mitochondrial function, in particular, oxidative phosphorylation (OXPHOS), is a key mechanism that supports PaCa cell growth, both in normal conditions and under the environmental stresses. OXPHOS in PaCa cells critically depends on autophagy and AA supply. Furthermore, the oncogenic activation mutation in GTPase Kras upregulates OXPHOS through an autophagy-dependent mechanism.
Collapse
Affiliation(s)
- Sandrina Maertin
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; ,3Department of Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany;
| | - Jason M. Elperin
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Ethan Lotshaw
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Matthias Sendler
- 3Department of Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany;
| | - Steven D. Speakman
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Kazuki Takakura
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Benjamin M. Reicher
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Olga A. Mareninova
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Paul J. Grippo
- 4Department of Medicine, University of Illinois-Chicago, Chicago, Illinois; and
| | - Julia Mayerle
- 3Department of Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany; ,5Department of Medicine II, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - Markus M. Lerch
- 3Department of Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany;
| | - Anna S. Gukovskaya
- 1Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; ,2Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California;
| |
Collapse
|
34
|
Liu P, Yang H, Zhang J, Peng X, Lu Z, Tong W, Chen J. The lncRNA MALAT1 acts as a competing endogenous RNA to regulate KRAS expression by sponging miR-217 in pancreatic ductal adenocarcinoma. Sci Rep 2017; 7:5186. [PMID: 28701723 PMCID: PMC5507931 DOI: 10.1038/s41598-017-05274-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
The long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) has been shown to play an important role in tumourigenesis. The aim of this study was to investigate the role of MALAT1 in pancreatic ductal adenocarcinoma. MALAT1 is expressed at higher levels in pancreatic ductal adenocarcinoma (PDAC) tissues than in nontumour tissues and in metastatic PDAC than in localized tumours. Patients with PDAC and high MALAT1 expression levels have shorter overall survival than patients with PDAC and low MALAT1 expression levels. Knocking down MALAT1 reduces pancreatic tumour cell growth and proliferation both in vitro and in vivo. Moreover, MALAT1 knockdown inhibits cell cycle progression and impairs tumour cell migration and invasion. We found that miR-217 can bind MALAT1 and regulate its expression in PDAC cell lines. We also found MALAT1 knockdown attenuates the protein expression of KRAS, a known target of miR-217. After MALAT1 knockdown, KRAS protein expression levels can be rescued through inhibition of miR-217 expression. More importantly, MALAT1 knockdown does not directly affect cellular miR-217 expression but decreases the miR-217 nucleus/cytoplasm ratio, suggesting that MALAT1 inhibits the translocation of miR-217 from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Pingping Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haiyan Yang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jing Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiaozhong Peng
- Department of Pathology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Weimin Tong
- Department of Pathology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
35
|
Li X, Liu Y, Zhang C, Niu Q, Wang H, Che C, Xie M, Zhou B, Xu Y, Zhang Q, Wu J, Tian Z. Stiehopus japonieus acidic mucopolysaccharide inhibits the proliferation of pancreatic cancer SW1990 cells through Hippo-YAP pathway. Oncotarget 2017; 8:16356-16366. [PMID: 28099921 PMCID: PMC5369968 DOI: 10.18632/oncotarget.14633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have indicated that stiehopus japonieus acidic mucopolysaccharide (SJAMP) could inhibit the proliferation of pancreatic cancer cell SW1990. However, the mechanism remains unclear. In our study, YAP expression was identified by immunohistochemistry and quantitative Real-time PCR from 45 pairs of human pancreatic ductal adenocarcinoma (PDAC) tissues and their adjacent non-tumor samples. We found that the YAP expression was associated with the histological differentiation degree, and negatively correlated with pancreatic cancer patients’ survival. More YAP localization in nuclear and enhanced expression of YAP mRNA in pancreatic cancer tissue was found in comparison with in the normal tissue. These results identify YAP acts as an amazing regulator in the pathogenesis of pancreatic cancer. After affected by SJAMP, YAP and TEAD1 were down regulated, while MST1 and pYAP were upregulated gradually with the prolong of effect time. SJAMP also improved YAP phosphorylation, nuclear-to-cytoplasmic translocation and inactivation. After successfully knocked-down by YAP siRNA, the inhibition of proliferation of SJAMP to cancer cells was attenuated. Interestingly, we indicated a down-regulation of that TEAD with SJAMP 4 mg/ml, 8 mg/ml for 24 h and with 8 mg/ml SJAMP for 24 h, 48 h even after YAP silencing. That might mean that the SJAMP has other targets, not only YAP, to downregulate TEAD. We proposed a hypothesis that Hippo-YAP pathway involved in carcinogenesis of pancreatic cancer and in the inhibition effect of SJAMP to the proliferation of pancreatic cancer cell, although maybe not the sole signaling pathway.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yi Liu
- Department of Gastroenterology, Shanxian Central Hospital, Heze 274000, China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qinghui Niu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hui Wang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cong Che
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Man Xie
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yonghong Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jun Wu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
36
|
Genomic Variations in Pancreatic Cancer and Potential Opportunities for Development of New Approaches for Diagnosis and Treatment. Int J Mol Sci 2017; 18:ijms18061201. [PMID: 28587243 PMCID: PMC5486024 DOI: 10.3390/ijms18061201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/30/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic cancer has a very poor prognosis with an overall five-year survival rate of less than 5% and an average median survival time of six months. This is largely due to metastatic disease, which is already present in the majority of patients when diagnosed. Although our understanding of the molecular events underlying multi-step carcinogenesis in pancreatic cancer has steadily increased, translation into more effective therapeutic approaches has been inefficient in recent decades. Therefore, it is imperative that novel and targeted approaches are designed to facilitate the early detection and treatment of pancreatic cancer. Presently, there are numerous ongoing studies investigating the types of genomic variations in pancreatic cancer and their impact on tumor initiation and growth, as well as prognosis. This has led to the development of therapeutics to target these genetic variations for clinical benefit. Thus far, there have been minimal clinical successes directly targeting these genomic alterations; however research is ongoing to ultimately discover an innovative approach to tackle this devastating disease. This review will discuss the genomic variations in pancreatic cancer, and the resulting potential diagnostic and therapeutic implications.
Collapse
|
37
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
38
|
Panaccione A, Zhang Y, Mi Y, Mitani Y, Yan G, Prasad ML, McDonald WH, El-Naggar AK, Yarbrough WG, Ivanov SV. Chromosomal abnormalities and molecular landscape of metastasizing mucinous salivary adenocarcinoma. Oral Oncol 2017; 66:38-45. [PMID: 28249646 DOI: 10.1016/j.oraloncology.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mucinous adenocarcinoma of the salivary gland (MAC) is a lethal cancer with unknown molecular etiology and a high propensity to lymph node metastasis. Mostly due to its orphan status, MAC remains one of the least explored cancers that lacks cell lines and mouse models that could help translational and pre-clinical studies. Surgery with or without radiation remains the only treatment modality but poor overall survival (10-year, 44%) underscores the urgent need for mechanism-based therapies. METHODS We developed the first patient-derived xenograft (PDX) model for pre-clinical MAC studies and a cell line that produces aggressively growing tumors after subcutaneous injection into nude mice. We performed cytogenetic, exome, and proteomic profiling of MAC to identify driving mutations, therapeutic targets, and pathways involved in aggressive cancers based on TCGA database mining and GEO analysis. RESULTS We identified in MAC KRAS (G13D) and TP53 (R213X) mutations that have been previously reported as drivers in a variety of highly aggressive cancers. Somatic mutations were also found in KDM6A, KMT2D, and other genes frequently mutated in colorectal and other cancers: FAT1, NBEA, RELN, RLP1B, and ZFHX3. Proteomic analysis of MAC implied epigenetic up-regulation of a genetic program involved in proliferation and cancer stem cell maintenance. CONCLUSION Genomic and proteomic analyses provided the first insight into potential molecular drivers of MAC metastases pointing at common mechanisms of CSC propagation in aggressive cancers. The in vitro/in vivo models that we created should aid in the development and validation of new treatment strategies against MAC.
Collapse
Affiliation(s)
- Alex Panaccione
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yi Zhang
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yanfang Mi
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Guo Yan
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Manju L Prasad
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wendell G Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA; H&N Disease Center, Smilow Cancer Hospital, New Haven, CT, USA; Molecular Virology Program, Yale Cancer Center, New Haven, CT, USA
| | - Sergey V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA.
| |
Collapse
|
39
|
Massihnia D, Avan A, Funel N, Maftouh M, van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F, Russo A, Leon LG, Peters GJ, Giovannetti E. Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. J Hematol Oncol 2017; 10:9. [PMID: 28061880 PMCID: PMC5219723 DOI: 10.1186/s13045-016-0371-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is increasing evidence of a constitutive activation of Akt in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and chemoresistance. Therefore, we evaluated the expression of phospho-Akt in PDAC tissues and cells, and investigated molecular mechanisms influencing the therapeutic potential of Akt inhibition in combination with gemcitabine. METHODS Phospho-Akt expression was evaluated by immunohistochemistry in tissue microarrays (TMAs) with specimens tissue from radically-resected patients (n = 100). Data were analyzed by Fisher and log-rank test. In vitro studies were performed in 14 PDAC cells, including seven primary cultures, characterized for their Akt1 mRNA and phospho-Akt/Akt levels by quantitative-RT-PCR and immunocytochemistry. Growth inhibitory effects of Akt inhibitors and gemcitabine were evaluated by SRB assay, whereas modulation of Akt and phospho-Akt was investigated by Western blotting and ELISA. Cell cycle perturbation, apoptosis-induction, and anti-migratory behaviors were studied by flow cytometry, AnnexinV, membrane potential, and migration assay, while pharmacological interaction with gemcitabine was determined with combination index (CI) method. RESULTS Immunohistochemistry of TMAs revealed a correlation between phospho-Akt expression and worse outcome, particularly in patients with the highest phospho-Akt levels, who had significantly shorter overall and progression-free-survival. Similar expression levels were detected in LPC028 primary cells, while LPC006 were characterized by low phospho-Akt. Remarkably, Akt inhibitors reduced cancer cell growth in monolayers and spheroids and synergistically enhanced the antiproliferative activity of gemcitabine in LPC028, while this combination was antagonistic in LPC006 cells. The synergistic effect was paralleled by a reduced expression of ribonucleotide reductase, potentially facilitating gemcitabine cytotoxicity. Inhibition of Akt decreased cell migration and invasion, which was additionally reduced by the combination with gemcitabine. This combination significantly increased apoptosis, associated with induction of caspase-3/6/8/9, PARP and BAD, and inhibition of Bcl-2 and NF-kB in LPC028, but not in LPC006 cells. However, targeting the key glucose transporter Glut1 resulted in similar apoptosis induction in LPC006 cells. CONCLUSIONS These data support the analysis of phospho-Akt expression as both a prognostic and a predictive biomarker, for the rational development of new combination therapies targeting the Akt pathway in PDAC. Finally, inhibition of Glut1 might overcome resistance to these therapies and warrants further studies.
Collapse
Affiliation(s)
- Daniela Massihnia
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Amir Avan
- Metabolic syndrome Research center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mina Maftouh
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anne van Krieken
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Rajiv Raktoe
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ugo Boggi
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Babette Aicher
- Æterna Zentaris GmbH, Frankfurt am Main, Frankfurt, Germany
| | | | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
40
|
Werner K, Lademann F, Thepkaysone ML, Jahnke B, Aust DE, Kahlert C, Weber G, Weitz J, Grützmann R, Pilarsky C. Simultaneous gene silencing of KRAS and anti-apoptotic genes as a multitarget therapy. Oncotarget 2016; 7:3984-92. [PMID: 26716649 PMCID: PMC4826184 DOI: 10.18632/oncotarget.6766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/29/2015] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer is one of the most lethal tumor types worldwide and an effective therapy is still elusive. Targeted therapy focused against a specific alteration is by definition unable to attack broad pathway signaling modification. Tumor heterogeneity will render targeted therapies ineffective based on the regrowth of cancer cell sub-clones. Therefore multimodal therapy strategies, targeting signaling pathways simultaneously should improve treatment. SiRNAs against KRAS and the apoptosis associated genes BCLXL, FLIP, MCL1L, SURVIVIN and XIAP were transfected into human and murine pancreatic cancer cell lines. Induction of apoptosis was measured by Caspase 3/7 activation, subG1 FACS analysis and PARP cleavage. The therapeutic approach was tested in a subcutaneous allograft model with a murine cancer cell line. By using siRNAs as a systematic approach to remodel signal transduction in pancreatic cancer the results showed increasing inhibition of proliferation and apoptosis induction in vitro and in vivo. Thus, siRNAs are suitable to model multimodal therapy against signaling pathways in pancreatic cancer. Improvements in in vivo delivery of siRNAs against a multitude of targets might therefore be a potential therapeutic approach.
Collapse
Affiliation(s)
- Kristin Werner
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Franziska Lademann
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Beatrix Jahnke
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Daniela E Aust
- Institute of Pathology, TU Dresden, 01307 Dresden, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Georg Weber
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christian Pilarsky
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
41
|
Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. Oncotarget 2016; 6:36019-31. [PMID: 26440309 PMCID: PMC4742158 DOI: 10.18632/oncotarget.5935] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer.
Collapse
|
42
|
Deletion of cyclooxygenase-2 inhibits K-ras-induced lung carcinogenesis. Oncotarget 2016; 6:38816-26. [PMID: 26452035 PMCID: PMC4770739 DOI: 10.18632/oncotarget.5558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to identify the role COX-2 plays in K-ras–induced lung carcinogenesis. We crossed COX-2–homozygous knockout mice with K-rasLA1 (G12D) expressing mice to obtain COX-2–deficient mice with K-ras expression (K-ras/COX-2−/− mice) and COX-2 wild type mice with K-ras expression (K-ras mice). At 3.5 months of age, the K-ras/COX-2−/− mice had significantly fewer lung adenocarcinomas and substantially smaller tumors than K-ras mice. K-ras/COX-2−/− mice also had significantly fewer bronchioalveolar hyperplasias than K-ras mice. Compared with lung tumors from K-Ras mice, the levels of prostaglandin E2 (PGE2) were significantly lower, whereas levels of the PGE2 metabolite 13,14-dihydro-15-keto-PGE2 were significantly higher, in lung tumors from K-ras/COX-2−/− mice. In addition, K-ras/COX-2−/− mice had strikingly lower rates of tumor cell proliferation and expressed less MEK and p-Erk1/2 protein than K-ras mice did. In line with this, knocking down COX-2 in mutant K-ras non-small cell lung cancer A549 cells reduced colony formation, PGE2 synthesis and ERK phosphorylation compared to that of vector control cells. Taken together, these findings suggest that COX-2 deletion contributes to the repression of K-ras–induced lung tumorigenesis by reducing tumor cell proliferation, decreasing the production of PGE2, and increasing the production of 13,14-dihydro-15-keto-PGE2, possibly via the MAPK pathway. Thus, COX-2 is likely important in lung tumorigenesis, and COX-2 and its product, PGE2, are potential targets for lung cancer prevention.
Collapse
|
43
|
Zhang N, Lu C, Chen L. miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol Lett 2016; 12:4589-4597. [PMID: 28105166 PMCID: PMC5228443 DOI: 10.3892/ol.2016.5249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/28/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miR)-217 has been reported to participate in carcinogenesis and tumor progression in several cancers; however, its expression and biological functions in colorectal cancer (CRC) are still unclear. The present study demonstrated that miR-217 expression was significantly higher in matched adjacent noncancerous tissues than in CRC tissues (P<0.001). In addition, it was observed that low-grade CRC exhibited greater expression of miR-217 compared with high-grade CRC (P<0.05). Kaplan-Meier survival and Cox regression analyses revealed that overall survival rates were significantly poorer in the low-expression group relative to the high-expression group (P<0.005). Next, a potential miR-217 target, mitogen-activated protein kinase (MAPK) 1, was identified. Upregulation of miR-217 could significantly downregulate MAPK1 expression. CRC cells overexpressing miR-217 exhibited cell growth inhibition by significant enhancement of apoptosis in vitro. The present study further investigated the MAPK signaling pathway to verify the mechanisms, and revealed that KRAS and Raf-1 expression was downregulated in miR-217-overexpressing RKO cells. Taken together, our results revealed that miR-217 inhibits tumor growth and enhances apoptosis in CRC, and that this is associated with the downregulation of MAPK signaling. These results indicate that miR-217 is a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Nan Zhang
- General Surgery Center Department of Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Canrong Lu
- General Surgery Center Department of Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Chen
- General Surgery Center Department of Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
44
|
Catabolic pathways regulated by mTORC1 are pivotal for survival and growth of cancer cells expressing mutant Ras. Oncotarget 2016; 6:40405-17. [PMID: 26575954 PMCID: PMC4747341 DOI: 10.18632/oncotarget.6334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Oncogenic Ras stimulates macropinocytosis, a clathrin-independent endocytosis that increases the uptake of extracellular fluid. However, the functional significance of and regulatory mechanisms driving macropinocytosis in cancer cells remain largely unknown. Here, we show that extracellular macromolecules, such as albumin, internalized by Ras-expressing cells can support growth and survival under the nutrient-deprived conditions like those found in tumors. Moreover, we demonstrate that autophagy, a lysosome-mediated catabolic pathway, is required for the uptake and degradation of macropinocytic vesicles. Intracellular metabolites derived from macropinocytosis and autophagy directly influence the activity and localization of mTOR, which is ultimately responsible for the restoration of cell growth. Surprisingly, suppression of mTORC1, which typically triggers anabolic processes, facilitates macropinocytosis and thus supports cell growth and survival under the nutrient-deprived conditions. In a mouse xenograft model of pancreatic ductal adenocarcinoma, concomitant inhibition of macropinocytosis/autophagy and mTOR activity resulted in antitumor effects. These data suggest that novel anti-cancer strategies interrupting these metabolic processes and related signaling molecules may represent promising therapeutic avenues.
Collapse
|
45
|
The PRKD1 promoter is a target of the KRas-NF-κB pathway in pancreatic cancer. Sci Rep 2016; 6:33758. [PMID: 27649783 PMCID: PMC5030668 DOI: 10.1038/srep33758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
Increased expression of PRKD1 and its gene product protein kinase D1 (PKD1) are linked to oncogenic signaling in pancreatic ductal adenocarcinoma, but a direct functional relationship to oncogenic KRas has not been established so far. We here describe the PRKD1 gene promoter as a target for oncogenic KRas signaling. We demonstrate that KRas-induced activation of the canonical NF-κB pathway is one mechanism of how PRKD1 expression is increased and identify the binding sites for NF-κB in the PRKD1 promoter. Altogether, these results describe a novel mechanism governing PRKD1 gene expression in PDA and provide a functional link between oncogenic KRas, NF-κB and expression of PRKD1.
Collapse
|
46
|
Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 2016; 13:750-765. [PMID: 27531700 DOI: 10.1038/nrclinonc.2016.119] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer- related deaths. PDAC remains one of the most difficult-to-treat cancers, owing to its unique pathobiological features: a nearly impenetrable desmoplastic stroma, and hypovascular and hypoperfused tumour vessels render most treatment options largely ineffective. Progress in understanding the pathobiology and signalling pathways involved in disease progression is helping researchers to develop novel ways to fight PDAC, including improved nanotechnology-based drug-delivery platforms that have the potential to overcome the biological barriers of the disease that underlie persistent drug resistance. So-called 'nanomedicine' strategies have the potential to enable targeting of the Hedgehog-signalling pathway, the autophagy pathway, and specific RAS-mutant phenotypes, among other pathological processes of the disease. These novel therapies, alone or in combination with agents designed to disrupt the pathobiological barriers of the disease, could result in superior treatments, with increased efficacy and reduced off-target toxicities compared with the current standard-of-care regimens. By overcoming drug-delivery challenges, advances can be made in the treatment of PDAC, a disease for which limited improvement in overall survival has been achieved over the past several decades. We discuss the approaches to nanomedicine that have been pursued to date and those that are the focus of ongoing research, and outline their potential, as well as the key challenges that must be overcome.
Collapse
|
47
|
Crawley AS, O'Kennedy RJ. The need for effective pancreatic cancer detection and management: a biomarker-based strategy. Expert Rev Mol Diagn 2016; 15:1339-53. [PMID: 26394703 DOI: 10.1586/14737159.2015.1083862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (Pa) is generally a very aggressive disease, with few effective approaches available for early diagnosis or therapy. These factors, combined with the aggressiveness and chemoresistance of Pa, results in a bleak outcome post-diagnosis. Cancer-related biomarkers have established capabilities for diagnosis, prognosis and screening and can be exploited to aid in earlier less-invasive diagnosis and optimization of targeted therapies. Pa has only one US FDA-approved biomarker, CA19-9, which has significant limitations. Hence, it is vital that novel biomarkers are identified and validated to diagnose, treat, control and monitor Pa. This review focuses on existing and potential Pa-associated markers and discusses how they may be applied in cohort for improved management of Pa.
Collapse
Affiliation(s)
- Aoife S Crawley
- a 1 School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Richard J O'Kennedy
- a 1 School of Biotechnology, Dublin City University, Dublin 9, Ireland.,b 2 Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
48
|
Guo N, Liu Z, Zhao W, Wang E, Wang J. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling. PLoS One 2016; 11:e0155874. [PMID: 27223122 PMCID: PMC4880342 DOI: 10.1371/journal.pone.0155874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer.
Collapse
Affiliation(s)
- Na Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Wenjing Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Chemistry and Physics, State University of New York, Stony Brook, New York, United States of America
| |
Collapse
|
49
|
Vanova K, Boukalova S, Gbelcova H, Muchova L, Neuzil J, Gurlich R, Ruml T, Vitek L. Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells. BMC Cancer 2016; 16:309. [PMID: 27175805 PMCID: PMC4866069 DOI: 10.1186/s12885-016-2343-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 05/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background Pancreatic cancer is recognized as one of the most fatal tumors due to its aggressiveness and resistance to therapy. Statins were previously shown to inhibit the proliferation of cancer cells via various signaling pathways. In healthy tissues, statins activate the heme oxygenase pathway, nevertheless the role of heme oxygenase in pancreatic cancer is still controversial. The aim of this study was to evaluate, whether anti-proliferative effects of statins in pancreatic cancer cells are mediated via the heme oxygenase pathway. Methods In vitro effects of various statins and hemin, a heme oxygenase inducer, on cell proliferation were evaluated in PA-TU-8902, MiaPaCa-2 and BxPC-3 human pancreatic cancer cell lines. The effect of statins on heme oxygenase activity was assessed and heme oxygenase-silenced cells were used for pancreatic cancer cell proliferation studies. Cell death rate and reactive oxygen species production were measured in PA-TU-8902 cells, followed by evaluation of the effect of cerivastatin on GFP-K-Ras trafficking and expression of markers of invasiveness, osteopontin (SPP1) and SOX2. Results While simvastatin and cerivastatin displayed major anti-proliferative properties in all cell lines tested, pravastatin did not affect the cell growth at all. Strong anti-proliferative effect was observed also for hemin. Co-treatment of cerivastatin and hemin increased anti-proliferative potential of these agents, via increased production of reactive oxygen species and cell death compared to individual treatment. Heme oxygenase silencing did not prevent pancreatic cancer cells from the tumor-suppressive effect of cerivastatin or hemin. Cerivastatin, but not pravastatin, protected Ras protein from trafficking to the cell membrane and significantly reduced expressions of SPP1 (p < 0.05) and SOX2 (p < 0.01). Conclusions Anti-proliferative effects of statins and hemin on human pancreatic cancer cell lines do not seem to be related to the heme oxygenase pathway. While hemin triggers reactive oxygen species-induced cell death, cerivastatin targets Ras protein trafficking and affects markers of invasiveness.
Collapse
Affiliation(s)
- K Vanova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Katerinska 32, Prague 2, 120 00, Czech Republic
| | - S Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - H Gbelcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 1905/5, Prague 6, 160 00, Czech Republic
| | - L Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Katerinska 32, Prague 2, 120 00, Czech Republic
| | - J Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Videnska 1083, Prague 4, 142 20, Czech Republic.,School of Medical Science, Griffith University, Parklands Avenue, 4222, Southport, QLD, Australia
| | - R Gurlich
- Department of Surgery, University Hospital Kralovske Vinohrady and Charles University in Prague, Srobarova 50, Prague 10, 100 34, Czech Republic
| | - T Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 1905/5, Prague 6, 160 00, Czech Republic
| | - L Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Katerinska 32, Prague 2, 120 00, Czech Republic. .,4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Katerinska 32, Prague 2, 120 00, Czech Republic.
| |
Collapse
|
50
|
Bhasin MK, Ndebele K, Bucur O, Yee EU, Otu HH, Plati J, Bullock A, Gu X, Castan E, Zhang P, Najarian R, Muraru MS, Miksad R, Khosravi-Far R, Libermann TA. Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier. Oncotarget 2016; 7:23263-81. [PMID: 26993610 PMCID: PMC5029625 DOI: 10.18632/oncotarget.8139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. EXPERIMENTAL DESIGN Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. RESULTS A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. CONCLUSIONS This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets.
Collapse
Affiliation(s)
- Manoj K. Bhasin
- Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kenneth Ndebele
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Eric U. Yee
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jessica Plati
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andrea Bullock
- Division of Hematology and Oncology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xuesong Gu
- Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eduardo Castan
- Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peng Zhang
- Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert Najarian
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria S. Muraru
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rebecca Miksad
- Division of Hematology and Oncology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Towia A. Libermann
- Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|