1
|
Xie Y, Ran L, Yue C, Wang C, Chen F, Su Y, Qin Y, Zhang Q, Liu J, Du N, Zhang L, Jiang Y, Liu G. Delivery of miR-26a-5p by Subcutaneous Adipose Tissue-Derived Extracellular Vesicles Alleviates Acute Lung Injury in Mice Through CHUK/NF-κB Pathway. Int J Nanomedicine 2025; 20:6001-6021. [PMID: 40370804 PMCID: PMC12077418 DOI: 10.2147/ijn.s514623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung injury and high mortality rates due to severe inflammation. Adipose tissue, functioning as both an endocrine and immune organ, plays a crucial role in immune regulation by secreting a variety of adipokines. Among these, adipose tissue-derived extracellular vesicles (EVs) have emerged as novel mediators of intercellular communication, capable of delivering bioactive molecules such as microRNAs to target cells. This study aimed to elucidate the immunomodulatory roles and underlying mechanisms of adipose tissue-derived EVs in the pathogenesis of ARDS. Methods Subcutaneous adipose tissue extracellular vesicles (SAT-EVs) were collected from the mice via ultracentrifugation. C57BL/6 mice were administered SAT-EVs (1×10^9 particles per mouse) via tail vein injection, followed by an intraperitoneal Lipopolysaccharide (LPS) injection three hours later to induce acute respiratory distress syndrome (ARDS). The mice were euthanized after 18 h to evaluate the permeability of the microvessels and level of inflammation in the lungs. For in vitro experiments, RAW 264.7 macrophages were stimulated with LPS, with or without SAT-EVs, as a control, to evaluate the inflammatory response of the macrophages. Results SAT-EVs treatment enhanced the survival rate of ARDS mice and reduced pulmonary vascular permeability. SAT-EVs were internalized by alveolar macrophages, leading to an attenuation of inflammation, as indicated by decreased levels of TNF-α, IL-1β, iNOS, PTGS2, and CCL2. Notably, SAT-EVs transferred miR-26a-5p to alveolar macrophages, which directly targeted conserved helix-loop-helix ubiquitous kinase (CHUK), a key regulator of the NF-κB pathway. This inhibition resulted in reduced transcription of inflammatory mediators (iNOS, PTGS2, and IL-1β). In vitro, SAT-EVs were internalized by RAW 264.7 macrophages, leading to the suppression of LPS-induced inflammation, as shown by decreased expression of TNF-α, IL-1β, iNOS, PTGS2, and CCL2. These findings suggest that miR-26a-5p plays a crucial role in the anti-inflammatory effects of SAT-EVs by suppressing CHUK and modulating the NF-κB pathway. Conclusion SAT-EVs significantly attenuated LPS-induced ARDS, potentially through the CHUK/NF-κB pathway mediated by miR-26a-5p, thereby exerting protective effects against inflammatory lung injury. These findings provide mechanistic insights into the role of SAT-EVs in immune modulation and suggest their potential as a therapeutic strategy for ARDS.
Collapse
Affiliation(s)
- Yu Xie
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Liuyi Ran
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Ciquan Yue
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Chenxing Wang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Fengming Chen
- Hubei University of Traditional Chinese Medicine Affiliated Shiyan Hospital, Shiyan, 442000, People’s Republic of China
| | - Yadong Su
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Yin Qin
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Qiuhong Zhang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Jie Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Ning Du
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Li Zhang
- Basic Research Laboratory of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400011, People’s Republic of China
| | - Yu Jiang
- Department of Respiratory and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Gang Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| |
Collapse
|
2
|
Bobo TA, Robinson M, Tofade C, Sokolski‐Papkov M, Nichols P, Vorobiov S, Fu H. AAV gene replacement therapy for treating MPS IIIC: Facilitating bystander effects via EV-mRNA cargo. J Extracell Vesicles 2024; 13:e12464. [PMID: 38961538 PMCID: PMC11222166 DOI: 10.1002/jev2.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.
Collapse
Affiliation(s)
- Tierra A. Bobo
- Gene Therapy CenterChapel HillUSA
- Division of Genetics and Metabolism, Department of PediatricsSchool of MedicineChapel HillUSA
| | | | | | - Marina Sokolski‐Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUSA
| | | | | | - Haiyan Fu
- Gene Therapy CenterChapel HillUSA
- Division of Genetics and Metabolism, Department of PediatricsSchool of MedicineChapel HillUSA
| |
Collapse
|
3
|
Moro J, Grinpelc A, Farré PL, Duca RB, Lacunza E, Graña KD, Scalise GD, Dalton GN, Massillo C, Piccioni F, Dimase F, Batagelj E, De Siervi A, De Luca P. miR-877-5p as a Potential Link between Triple-Negative Breast Cancer Development and Metabolic Syndrome. Int J Mol Sci 2023; 24:16758. [PMID: 38069080 PMCID: PMC10706566 DOI: 10.3390/ijms242316758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Metabolic syndrome (MS) is a risk factor for breast cancer (BC) that increases its aggressiveness and metastasis. The prevalence of MS is higher in triple-negative breast cancer (TNBC), which is the molecular subtype with the worst prognosis. The molecular mechanisms underlying this association have not been fully elucidated. MiRNAs are small, non-coding RNAs that regulate gene expression. Aberrant expression of miRNAs in both tissues and fluids are linked to several pathologies. The aim of this work was to identify circulating miRNAs in patients with alterations associated with MS (AAMS) that also impact on BC. Using microarray technology, we detected 23 miRNAs altered in the plasma of women with AAMS that modulate processes linked to cancer. We found that let-7b-5p and miR-28-3p were decreased in plasma from patients with AAMS and also in BC tumors, while miR-877-5p was increased. Interestingly, miR-877-5p expression was associated with lower patient survival, and its expression was higher in PAM50 basal-like BC tumors compared to the other molecular subtypes. Analyses from public databases revealed that miR-877-5p was also increased in plasma from BC patients compared to plasma from healthy donors. We identified IGF2 and TIMP3 as validated target genes of miR-877-5p whose expression was decreased in BC tissue and moreover, was negatively correlated with the levels of this miRNA in the tumors. Finally, a miRNA inhibitor against miR-877-5p diminished viability and tumor growth of the TNBC model 4T1. These results reveal that miR-877-5p inhibition could be a therapeutic option for the treatment of TNBC. Further studies are needed to investigate the role of this miRNA in TNBC progression.
Collapse
Affiliation(s)
- Juana Moro
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Agustina Grinpelc
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires 1900, Argentina
| | - Karen Daniela Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Georgina Daniela Scalise
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Guillermo Nicolás Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Flavia Piccioni
- Laboratorio de Inmunobiología del Cáncer, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Buenos Aires 1629, Argentina
| | - Federico Dimase
- Hospital Militar Central, CABA, Buenos Aires 1426, Argentina
| | - Emilio Batagelj
- Hospital Militar Central, CABA, Buenos Aires 1426, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| | - Paola De Luca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
Wang L, Wang D, Ye Z, Xu J. Engineering Extracellular Vesicles as Delivery Systems in Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300552. [PMID: 37080941 PMCID: PMC10265081 DOI: 10.1002/advs.202300552] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs) are transport vesicles secreted by living cells and released into the extracellular environment. Recent studies have shown that EVs serve as "messengers" in intercellular and inter-organismal communication, in both normal and pathological processes. EVs, as natural nanocarriers, can deliver bioactivators in therapy with their endogenous transport properties. This review article describes the engineering EVs of sources, isolation method, cargo loading, boosting approach, and adjustable targeting of EVs. Furthermore, the review summarizes the recent progress made in EV-based delivery systems applications, including cancer, cardiovascular diseases, liver, kidney, nervous system diseases, and COVID-19 and emphasizes the obstacles and challenges of EV-based therapies and possible strategies.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Di Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| |
Collapse
|
5
|
Wallen M, Aqil F, Spencer W, Gupta RC. Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Lett 2023; 561:216141. [PMID: 36963459 PMCID: PMC10155642 DOI: 10.1016/j.canlet.2023.216141] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Chemotherapeutics continue to play a central role in the treatment of a wide variety of cancers. Conventional chemotherapy involving bolus intravenous doses results in severe side effects - in some cases life threatening - delayed toxicity and compromised quality-of-life. Attempts to deliver small drug molecules using liposomes, polymeric nanoparticles, micelles, lipid nanoparticles, etc. have produced limited nanoformulations for clinical use, presumably due to a lack of biocompatibility of the material, costs, toxicity, scalability, and/or lack of effective administration. Naturally occurring small extracellular vesicles, or exosomes, may offer a solution and a viable system for delivering cancer therapeutics. Combined with their inherent trafficking ability and versatility of cargo capacity, exosomes can be engineered to specifically target cancerous cells, thereby minimizing off-target effects, and increasing the efficacy of cancer therapeutics. Exosomal formulations have mitigated the toxic effects of several drugs in murine cancer models. In this article, we review studies related to exosomal delivery of both small molecules and biologics, including siRNA to inhibit specific gene expression, in the pursuit of effective cancer therapeutics. We focus primarily on bovine milk and colostrum exosomes as the cancer therapeutic delivery vehicles based on their high abundance, cost effectiveness, scalability, high drug loading, functionalization of exosomes for targeted delivery, and lack of toxicity. While bovine milk exosomes may provide a new platform for drug delivery, extensive comparison to other nanoformulations and evaluation of long-term toxicity will be required to fully realize its potential.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Wendy Spencer
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Nawaz M, Heydarkhan‐Hagvall S, Tangruksa B, González‐King Garibotti H, Jing Y, Maugeri M, Kohl F, Hultin L, Reyahi A, Camponeschi A, Kull B, Christoffersson J, Grimsholm O, Jennbacken K, Sundqvist M, Wiseman J, Bidar AW, Lindfors L, Synnergren J, Valadi H. Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206187. [PMID: 36806740 PMCID: PMC10131815 DOI: 10.1002/advs.202206187] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Indexed: 05/19/2023]
Abstract
Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID-19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF-A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF-A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP-mRNAs between cells is functionally extended by cells' own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF-A mRNA delivery to cells via LNPs, a fraction of internalized VEGF-A mRNA is secreted via EVs. The overexpressed VEGF-A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA-Seq analysis reveals that as cells' response to LNP-VEGF-A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF-A mRNA in vitro and in vivo. Upon equal amount of VEGF-A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF-A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF-A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF-A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
| | - Sepideh Heydarkhan‐Hagvall
- BioPharmaceuticals R&DEarly CardiovascularRenal and Metabolism (CVRM)Bioscience CardiovascularAstraZenecaGothenburgMölndal43183Sweden
- Systems Biology Research CenterSchool of BioscienceUniversity of SkövdeSkövdeSE‐54128Sweden
| | - Benyapa Tangruksa
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
- Systems Biology Research CenterSchool of BioscienceUniversity of SkövdeSkövdeSE‐54128Sweden
| | - Hernán González‐King Garibotti
- BioPharmaceuticals R&DEarly CardiovascularRenal and Metabolism (CVRM)Bioscience CardiovascularAstraZenecaGothenburgMölndal43183Sweden
| | - Yujia Jing
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgMölndal43183Sweden
| | - Marco Maugeri
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
- Safety InnovationsClinical Pharmacology and Safety SciencesR&D AstraZenecaGothenburgMölndal43183Sweden
| | - Franziska Kohl
- BioPharmaceuticals R&DDiscovery SciencesTranslational GenomicsAstraZenecaGothenburgMölndal43183Sweden
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteSolnaStockholm17177Sweden
| | - Leif Hultin
- BioPharmaceuticals R&DClinical Pharmacology and Safety ScienceImaging and Data AnalyticsAstraZenecaGothenburgMölndal43183Sweden
| | - Azadeh Reyahi
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
| | - Bengt Kull
- BioPharmaceuticals R&DEarly CardiovascularRenal and Metabolism (CVRM)Bioscience CardiovascularAstraZenecaGothenburgMölndal43183Sweden
| | - Jonas Christoffersson
- BioPharmaceuticals R&DEarly CardiovascularRenal and Metabolism (CVRM)Bioscience CardiovascularAstraZenecaGothenburgMölndal43183Sweden
- Systems Biology Research CenterSchool of BioscienceUniversity of SkövdeSkövdeSE‐54128Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaVienna1090Austria
| | - Karin Jennbacken
- BioPharmaceuticals R&DEarly CardiovascularRenal and Metabolism (CVRM)Bioscience CardiovascularAstraZenecaGothenburgMölndal43183Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
| | - John Wiseman
- BioPharmaceuticals R&DDiscovery SciencesTranslational GenomicsAstraZenecaGothenburgMölndal43183Sweden
| | - Abdel Wahad Bidar
- BioPharmaceuticals R&DDiscovery SciencesTranslational GenomicsAstraZenecaGothenburgMölndal43183Sweden
| | - Lennart Lindfors
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgMölndal43183Sweden
| | - Jane Synnergren
- Systems Biology Research CenterSchool of BioscienceUniversity of SkövdeSkövdeSE‐54128Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburg41345Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburg41346Sweden
| |
Collapse
|
7
|
Zhang C, Yang X, Jiang T, Yan C, Xu X, Chen Z. Tissue-derived extracellular vesicles: Isolation, purification, and multiple roles in normal and tumor tissues. Life Sci 2023; 321:121624. [PMID: 37001806 DOI: 10.1016/j.lfs.2023.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Extracellular vesicles (EVs) are particles released from cells, and their lipid bilayer membrane encloses large amounts of bioactive molecules that endow EVs with intercellular or inter-tissue communicational abilities. Tissue-derived extracellular vesicles (Ti-EVs) are EVs directly separated from the interstitial space of tissue. They could better reflect the actual physiological or pathological state of the tissue microenvironment compared with cell line-derived EVs and biofluid EVs, indicating their potential roles in elucidating the underlying mechanism of pathogenesis and guiding the diagnosis, therapeutic targeting, and cell-free treatment of diseases. However, there have been a relatively limited number of investigations of Ti-EVs. In this review, we have summarized general procedures for Ti-EVs isolation, as well as some caveats with respect to operations after the isolation step, such as purification and storage. In addition, we have also briefly concluded the current research trends on EVs from various normal and tumor tissues, aiming to cast new light on the future research direction of Ti-EVs.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Venkatesan G, Wan Ab Rahman WS, Shahidan WNS, Iberahim S, Muhd Besari@Hashim AB. Plasma-derived exosomal miRNA as potential biomarker for diagnosis and prognosis of vector-borne diseases: A review. Front Microbiol 2023; 14:1097173. [PMID: 37125151 PMCID: PMC10133507 DOI: 10.3389/fmicb.2023.1097173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Early disease diagnosis is critical for better management and treatment outcome of patients. Therefore, diagnostic methods should ideally be accurate, consistent, easy to perform at low cost and preferably non-invasive. In recent years, various biomarkers have been studied for the detection of cardiovascular diseases, cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies. Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence gene expression after transcription. Previous studies have shown that these types of miRNAs can potentially be used as biomarkers for cancers of the breast and colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate viral and bacterial infections, such as the human immunodeficiency virus (HIV), tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne diseases is rather limited. Therefore, this review aims to introduce several miRNAs derived from exosomal plasma that may potentially serve as a disease biomarker due to the body's immune response, with special focus on the early detection of vector-borne diseases.
Collapse
Affiliation(s)
| | - Wan Suriana Wan Ab Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Wan Suriana Wan Ab Rahman,
| | | | - Salfarina Iberahim
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alwi bin Muhd Besari@Hashim
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
9
|
Adipose-Derived Circulating Exosomes Promote Protection of the Pulmonary Endothelial Barrier by Inhibiting EndMT and Oxidative Stress through Down-Regulation of the TGF-β Pathway: A Potential Explanation for the Obesity Paradox in ARDS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5475832. [PMID: 35571250 PMCID: PMC9098334 DOI: 10.1155/2022/5475832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
The “obesity paradox in acute respiratory distress syndrome” (ARDS) refers to the phenomenon in which obesity is associated with higher morbidity but lower mortality in patients with ARDS. Endothelial-to-mesenchymal transition (EndMT) represents a key link in the interaction between endothelial disruption and mesenchymal fibrosis under inflammatory and oxidative conditions, which represent the intersectional pathophysiology of ARDS. Adipose tissue is considered to constitute the major source of circulating exosomal microRNAs (miRNAs), which act as genetic forms of adipokines for cell–cell crosstalk. We aimed to demonstrate the regulation and mechanism of adipose-derived exosomes in the obesity paradox in ARDS. High-fat-induced obese mice and lean control mice were subjected to ARDS insult to investigate the effects of obesity on ARDS and microarray analysis was performed to screen for differences in circulating miRNAs. In addition, mice and pulmonary endothelial cells were administered with adipose-derived exosomal miR-122-5p to investigate the underlying molecular mechanisms. We found high-fat diet-induced obesity protected against ARDS in mice by reinforcing endothelial barrier and attenuating fibroproliferation. Circulating exosomes produced in the obese state mediated these protective effects by inhibiting EndMT and oxidative stress. Mechanistically, adipose-derived exosomal miR-122-5p promoted the integrity and function of pulmonary endothelial barrier and alleviated fibrogenesis by suppressing EndMT and oxidative stress through down-regulation of the transforming growth factor β1 (TGF-β1)/TGF-β receptor 1 (TGF-βR1)/Smad2 pathway in vivo and in vitro. In conclusion, adipose-derived circulating exosomal miR-122-5p protects against ARDS by reinforcing pulmonary endothelial barrier through inhibition of EndMT and oxidative stress via down-regulation of the TGF-β pathway, which propose a potential explanation for the obesity paradox in ARDS and indicate promising prospects for adipose-derived exosomes in cell-free therapies for ARDS.
Collapse
|
10
|
Zhang Y, Yu M, Dong J, Wu Y, Tian W. Nucleophosmin3 carried by small extracellular vesicles contribute to white adipose tissue browning. J Nanobiotechnology 2022; 20:165. [PMID: 35346213 PMCID: PMC8961928 DOI: 10.1186/s12951-022-01381-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Browning of white adipose tissue (WAT) is a particularly appealing target for therapeutics in the treatment of obesity and related metabolic diseases. Although small extracellular vesicles (sEVs) released from adipose tissue (sEVs-AT) have emerged as novel player that regulate systemic metabolism by connecting different organs, the role of specific contents in sEVs-AT played in WAT browning has not been clarified. Results We revealed Nucleophosmin3 (NPM3), which was mainly transferred by sEVs derived from brown adipose tissue (sEVs-BAT), was served as a batokine that could induce WAT browning by regulating the stability of PRDM16 mRNA. sEVs-BAT enhanced the expressions of browning related genes in 3T3-L1 preadipocytes and WAT while knocking down of NPM3 in BAT impaired sEVs-BAT mediated WAT browning and weight loss in obesity. Conclusion These data provided new insight into the role of NPM3 in regulating the browning of WAT. Our study indicated that a supplement of sEVs-BAT might represent a promising therapeutic strategy to promote thermogenesis and energy expenditure in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01381-1.
Collapse
|
11
|
Comparison of MicroRNA Profiles in Extracellular Vesicles from Small and Large Goat Follicular Fluid. Animals (Basel) 2021; 11:ani11113190. [PMID: 34827922 PMCID: PMC8614480 DOI: 10.3390/ani11113190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ovarian follicular development is associated with ovulation and is further related to litter size in goats. Extracellular vesicles (EVs) derived from miRNAs within follicular fluid undergo dynamic changes, and, together with follicle growth, may be considered as potential regulators of follicular development. However, the function and changes in EVs remain ambiguous. Here, we identified miRNA changes in EVs from small to large goat follicular fluid. Using bioinformatics tools, we demonstrated the existence of differentially expressed miRNAs in EVs from follicles of different sizes that are responsible for an altered biological effect. This study contributes to a better understanding of follicular development in goats. Abstract Extracellular vesicles (EVs), which exist in the follicular fluid of ruminant ovaries, are considered as cargo carriers for the transfer of biomolecules to recipient cells. However, the functions and changes in EVs in antral follicles remain ambiguous. In the present study, we isolated and characterized EVs from goat follicular fluid by means of differential ultracentrifugation and Western blotting of marker proteins. Bioinformatics tools were used to detect miRNA expression levels in EVs. Different miRNA expression patterns of EVs exist in small to large follicles. Thirteen differentially expressed miRNAs (seven upregulated and six downregulated) were identified and used for analysis. A total of 1948 predicted target genes of 13 miRNAs were mapped to signaling pathways, and three significantly enriched pathways (FoxO, MAPK, and PI3K-AKT signaling pathways) were involved in follicular development, as revealed by KEGG enrichment analysis. Our findings suggest that EVs in follicular fluid play biofunctional roles during follicular development in goats.
Collapse
|
12
|
McKay TB, Yeung V, Hutcheon AEK, Guo X, Zieske JD, Ciolino JB. Extracellular Vesicles in the Cornea: Insights from Other Tissues. Anal Cell Pathol (Amst) 2021; 2021:9983900. [PMID: 34336556 PMCID: PMC8324376 DOI: 10.1155/2021/9983900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer-bound particles secreted by cells that have been found to be important in mediating cell-cell communication, signal transduction, and extracellular matrix remodeling. Their role in both physiological and pathological processes has been established in different tissues throughout the human body. The human cornea functions as a transparent and refractive barrier that protects the intraocular elements from the external environment. Injury, infection, or disease may cause the loss of corneal clarity by altering extracellular matrix organization within the stroma that may lead to detrimental effects on visual acuity. Over the years, numerous studies have identified many of the growth factors (e.g., transforming growth factor-β1, thrombospondin-1, and platelet-derived growth factor) important in corneal wound healing and scarring. However, the functional role of bound factors encapsulated in EVs in the context of corneal biology is less defined. In this review, we describe the discovery and characterization of EVs in the cornea. We focus on EV-matrix interactions, potential functions during corneal wound healing, and the bioactivity of mesenchymal stem cell-derived EVs. We also discuss the development of EVs as stable, drug-loaded therapeutics for ocular applications.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - James D. Zieske
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
13
|
Qiu Y, Li P, Zhang Z, Wu M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front Oncol 2021; 11:664904. [PMID: 33987099 PMCID: PMC8111219 DOI: 10.3389/fonc.2021.664904] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural nanoscale bilayer phospholipid vesicles that can be secreted by almost all types of cells and are detected in almost all types of body fluids. Exosomes are effective mediators of cell–cell signaling communication because of their ability to carry and transfer a variety of bioactive molecules, including non-coding RNAs. Non-coding RNAs have also been found to exert strong effects on a variety of biological processes, including tumorigenesis. Many researchers have established that exosomes encapsulate bioactive non-coding RNAs that alter the biological phenotype of specific target cells in an autocrine or a paracrine manner. However, the mechanism by which the producer cells package non-coding RNAs into exosomes is not well understood. This review focuses on the current research on exosomal non-coding RNAs, including the biogenesis of exosomes, the possible mechanism of sorting non-coding RNAs, their biological functions, and their potential for clinical application in the future.
Collapse
Affiliation(s)
- Yi Qiu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China National Health Commission Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Zuping Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
14
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
15
|
High-density lipoprotein's vascular protective functions in metabolic and cardiovascular disease - could extracellular vesicles be at play? Clin Sci (Lond) 2021; 134:2977-2986. [PMID: 33210708 DOI: 10.1042/cs20200892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
High-density lipoprotein (HDL) is a circulating complex of lipids and proteins known primarily for its role in reverse cholesterol transport and consequent protection from atheroma. In spite of this, therapies aimed at increasing HDL concentration do not reduce the risk of cardiovascular disease (CVD), and as such focus has shifted towards other HDL functions protective of vascular health - including vasodilatory, anti-inflammatory, antioxidant and anti-thrombotic actions. It has been demonstrated that in disease states such as CVD and conditions of insulin resistance such as Type 2 diabetes mellitus (T2DM), HDL function is impaired owing to changes in the abundance and function of HDL-associated lipids and proteins, resulting in reduced vascular protection. However, the gold standard density ultracentrifugation technique used in the isolation of HDL also co-isolates extracellular vesicles (EVs). EVs are ubiquitous cell-derived particles with lipid bilayers that carry a number of lipids, proteins and DNA/RNA/miRNAs involved in cell-to-cell communication. EVs transfer their bioactive load through interaction with cell surface receptors, membrane fusion and endocytic pathways, and have been implicated in both cardiovascular and metabolic diseases - both as protective and pathogenic mediators. Given that studies using density ultracentrifugation to isolate HDL also co-isolate EVs, biological effects attributed to HDL may be confounded by EVs. We hypothesise that some of HDL's vascular protective functions in cardiovascular and metabolic disease may be mediated by EVs. Elucidating the contribution of EVs to HDL functions will provide better understanding of vascular protection and function in conditions of insulin resistance and potentially provide novel therapeutic targets for such diseases.
Collapse
|
16
|
Gu H, Yang K, Shen Z, Jia K, Liu P, Pan M, Sun C. ER stress-induced adipocytes secrete-aldo-keto reductase 1B7-containing exosomes that cause nonalcoholic steatohepatitis in mice. Free Radic Biol Med 2021; 163:220-233. [PMID: 33359683 DOI: 10.1016/j.freeradbiomed.2020.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is an increasingly prevalent liver disease linked to obesity and associated complications. Endoplasmic reticulum (ER) stress provokes dysfunction in lipid metabolism, which often leads to a progression of obesity-induced hepatic steatosis to NASH. However, the underlying mechanisms in which ER stress in adipose tissue induces hepatic pathology remain elusive. Here, we used male C57BL/6J mice to develop an animal model of NASH induced by a high fat (HFD) diet and methionine- and choline-deficient (MCD) diets. Using a gene-silencing approach with a recombinant lentiviral vector and extensive LC-MS/MS-based proteomics and lipidomics, we demonstrate that the ER stress-induced adipocyte-secreted exosome (ATEx) orchestrates lipid dynamics in the liver. We also noted that ATEx causes hepatic steatosis, inflammation, and fibrosis that lead to NASH through initial accumulation of glycerol and triglycerides in hepatocytes. We also determined that aldo-keto-reductase 1B7 (Akr1b7), a key mediator in liver lipid metabolism, is involved in ATEx-mediated NASH induction. Of note, Akr1b7 deficiency in ER stress-induced ATEx strongly protected the murine liver against HFD and MCD-induced NASH. Our results indicated that ER stress-induced, adipocyte-secreted ATEx triggers NASH by delivering exosomal AKR1B7 to, and elevating glycerol level, in hepatocytes. These findings suggest potential therapeutic strategie that target ATEx to prevent or manage obesity-induced NASH.
Collapse
Affiliation(s)
- Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhentong Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kai Jia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Miao Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Royo F, Azkargorta M, Lavin JL, Clos-Garcia M, Cortazar AR, Gonzalez-Lopez M, Barcena L, Del Portillo HA, Yáñez-Mó M, Marcilla A, Borras FE, Peinado H, Guerrero I, Váles-Gómez M, Cereijo U, Sardon T, Aransay AM, Elortza F, Falcon-Perez JM. Extracellular Vesicles From Liver Progenitor Cells Downregulates Fibroblast Metabolic Activity and Increase the Expression of Immune-Response Related Molecules. Front Cell Dev Biol 2021; 8:613583. [PMID: 33511119 PMCID: PMC7835421 DOI: 10.3389/fcell.2020.613583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles (EVs) mediate cell-to-cell crosstalk whose content can induce changes in acceptor cells and their microenvironment. MLP29 cells are mouse liver progenitor cells that release EVs loaded with signaling cues that could affect cell fate. In the current work, we incubated 3T3-L1 mouse fibroblasts with MLP29-derived EVs, and then analyzed changes by proteomics and transcriptomics. Results showed a general downregulation of protein and transcript expression related to proliferative and metabolic routes dependent on TGF-beta. We also observed an increase in the ERBB2 interacting protein (ERBIN) and Cxcl2, together with an induction of ribosome biogenesis and interferon-related response molecules, suggesting the activation of immune system signaling.
Collapse
Affiliation(s)
- Felix Royo
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Jose L Lavin
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Marc Clos-Garcia
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Ana R Cortazar
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Laura Barcena
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Yáñez-Mó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Instituto de Investigaciones Sanitarias la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Valencia, Spain
| | - Francesc E Borras
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain.,REMAR-IVECAT Group-"Germans Trias i Pujol" Health Science Research Institute (IGTP), Badalona, Spain.,Nephrology Department-"Germans Trias i Pujol" University Hospital, Can Ruti Campus, Badalona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Váles-Gómez
- Spanish National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | | | | | - Ana M Aransay
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Juan M Falcon-Perez
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Liu J, Wu J, Li L, Li T, Wang J. The Role of Exosomal Non-Coding RNAs in Coronary Artery Disease. Front Pharmacol 2020; 11:603104. [PMID: 33363474 PMCID: PMC7753098 DOI: 10.3389/fphar.2020.603104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Atherosclerosis (AS) is a major cause of CVD. Oxidative stress, endothelial dysfunction, and inflammation are key factors involved in the development and progression of AS. Exosomes are nano-sized vesicles secreted into the extracellular space by most types of cells, and are ideal substances for the transmission and integration of signals between cells. Cells can selectively encapsulate biologically active substances, such as lipids, proteins and RNA in exosomes and act through paracrine mechanisms. Non-coding RNAs (ncRNAs) are important for communication between cells. They can reach the recipient cells through exosomes, causing phenotypic changes and playing a molecular regulatory role in cell function. Elucidating their molecular mechanisms can help identify therapeutic targets or strategies for CVD. Coronary artery disease (CAD) is the most important disease in CVD. Here, we review the role and the regulatory mechanism of exosomal ncRNAs in the pathophysiology of CAD, as well as the potential contribution of exosomal ncRNA to diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Longbo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Yue S, Ye X, Zhou T, Gan D, Qian H, Fang W, Yao M, Zhang D, Shi H, Chen T. PGRN -/- TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci 2020; 264:118687. [PMID: 33181174 DOI: 10.1016/j.lfs.2020.118687] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most malignant diseases world-wide and ranks the first among female cancers. Progranulin (PGRN) plays a carcinogenic role in breast cancer, but its mechanisms are not clear. In addition, there are few reports on the relationship between PGRN and tumor-associated macrophages (TAMs). AIMS To investigate the effects of exosomes derived from PGRN-/- TAMs on invasion and migration of breast cancer cells. MAIN METHODS Mouse breast cancer xenograft model was constructed to explore the effect of PGRN-/- tumor environment (TME) on breast cancer. Flow cytometry was used to compare TAMs of wild type (WT) and PGRN-/- tumor tissue. Transwell assay, wound healing assay and western blot were used to explore the effect of WT and PGRN-/- TAMs and their exosomes on invasion, migration and epithelial-mesenchymal transition (EMT) of breast cancer cells. MicroRNA (miRNA) assay was used to find out the differentially expressed miRNA of negative control (NC) and siPGRN-TAMs exosomes. Quantitative PCR and luciferase report assay were used to explore the target gene. KEY FINDINGS The lung metastasis of breast cancer of PGRN-/- mice was inhibited. PGRN-/- TAMs inhibited invasion, migration and EMT of breast cancer cells through their exosomes. MiR-5100 of PGRN-/- TAMs-derived exosomes was up-regulated, which might regulate expression of CXCL12, thereby inhibiting the CXCL12/CXCR4 axis, and ultimately inhibiting the invasion, migration and EMT of breast cancer cells. SIGNIFICANCE Our study elucidates a new molecular mechanism of lung metastasis of breast cancer, so it may contribute to efficient prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Shujun Yue
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangsen Ye
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Delu Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
20
|
Long-term exercise-secreted extracellular vesicles promote browning of white adipocytes by suppressing miR-191a-5p. Life Sci 2020; 263:118464. [PMID: 32956666 DOI: 10.1016/j.lfs.2020.118464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Abstract
AIMS The purpose of the study is to explore the mechanism of transdifferentiation from white adipose tissue (WAT) to Brown adipose tissue (BAT). MATERIALS AND METHOD In this study, we established a model of mouse obesity induced by a high-fat diet (HFD) before 30 days of forced exercise or sedentary mice. Then, we isolated extracellular vesicles (EVs) from plasma and identified them by transmission electron microscope, dynamic light scattering and western blot analysis. Body temperature and body weight were utilized for assessment of thermogenesis in vivo. Oil red O staining was used to measure triglyceride in vitro. Luciferase reporter assay was applied for the relationship between miR-191a-5p and Prdm16. KEY FINDINGS As a result, mice that exercised for a long period time exhibited higher caloric expenditure, better weight maintenance and more WAT browning, as well as better resistance to obesity associated with a high-fat diet, compared to mice that lacked exercise. MircoRNA-191-5p (miR-191-5p) was found to be lowly expressed in the EVs from mice with long-term exercise (Exe-EVs). Functional experiments revealed that Exe-EVs promoted WAT browning by the silencing of miR-191-5p. At the molecular level, siRNA-mediated PRDM16 partly inhibited uncoupling protein-1(UCP-1) expression by miR-191-5p inhibitor in white adipocytes. Here, we observed that the lowly expressed miR-191-5p in Exe-EVs promoted the browning of WAT by negatively targeting the PRDM16-3'-untranslated region (PRDM16-3'UTR), thereby enhancing heat production and reducing obesity. SIGNIFICANCE MiR-191-5p may serve as a potential target for the identification and treatment of obesity.
Collapse
|
21
|
Paeonol inhibits NLRP3 mediated inflammation in rat endothelial cells by elevating hyperlipidemic rats plasma exosomal miRNA-223. Eur J Pharmacol 2020; 885:173473. [PMID: 32800809 DOI: 10.1016/j.ejphar.2020.173473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis (AS) is a multifactorial chronic inflammatory disease, and hyperlipidemia is the important factors leading to AS, which can cause vascular endothelial dysfunction. Paeonol (Pae) is a potential therapeutic drug for AS, and we have previously shown that Pae regulated the expression of monocytes-derived exosomal microRNA-223 (miR-223). However, the mechanisms of the anti-AS effect of Pae are still not fully understood. In this study, we aim to investigate if Pae could inhibit NLRP3 inflammasome mediated inflammation via elevating hyperlipidemic rats plasma-derived exosomal miR-223. We used high-fat-diet induced hyperlipidemic rats as model for further investigation. Rats were treated with Pae (75, 150 or 300 mg/kg) orally, and then exosomes were isolated from hyperlipidemic rat plasma by ultracentrifugation. In vivo experiments confirmed that Pae markedly reduced serum TC, TG, IL-1β, and IL-6 levels. Both CCK-8 and trypan blue staining showed that the survival rate of rat aortic endothelial cells (RAECs) in the Pae-exo group was higher than that in the model group. Also, Pae-exo dose-dependently increased the survival rate of RAECs and reduced inflammatory cytokines level (IL-1β, and IL-6). Furthermore, Pae-exo successfully increased the expression of exosomal miR-223 and relieved inflammatory secretion. Finally, decreased expression of NLRP3, ASC, caspase-1 and ICAM-1 indicated that Pae-exo attenuated inflammatory reaction of RAECs by suppressing NLRP3 signaling pathway. Altogether, our results showed that Pae inhibited the downstream NLRP3 inflammasome pathway by increasing the level of miR-223 in plasma derived exosomes of hyperlipidemic rats, providing new insights in the treatment of AS with the use of Pae.
Collapse
|
22
|
Smith HJ, Sharma A, Mair WB. Metabolic Communication and Healthy Aging: Where Should We Focus Our Energy? Dev Cell 2020; 54:196-211. [PMID: 32619405 PMCID: PMC8168458 DOI: 10.1016/j.devcel.2020.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/09/2023]
Abstract
Aging is associated with a loss of metabolic homeostasis and plasticity, which is causally linked to multiple age-onset pathologies. The majority of the interventions-genetic, dietary, and pharmacological-that have been found to slow aging and protect against age-related disease in various organisms do so by targeting central metabolic pathways. However, targeting metabolic pathways chronically and ubiquitously makes it difficult to define the downstream effects responsible for lifespan extension and often results in negative effects on growth and health, limiting therapeutic potential. Insight into how metabolic signals are relayed between tissues, cells, and organelles opens up new avenues to target metabolic regulators locally rather than globally for healthy aging. In this review, we discuss the pro-longevity effects of targeting metabolic pathways in specific tissues and how these interventions communicate with distal cells to modulate aging. These studies may be crucial in designing interventions that promote longevity without negative health consequences.
Collapse
Affiliation(s)
- Hannah J Smith
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Arpit Sharma
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - William B Mair
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.
| |
Collapse
|
23
|
Delmonico L, Alves G, Bines J. Cell free DNA biology and its involvement in breast carcinogenesis. Adv Clin Chem 2020; 97:171-223. [PMID: 32448434 DOI: 10.1016/bs.acc.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy represents a procedure for minimally invasive analysis of non-solid tissue, blood and other body fluids. It comprises a set of analytes that includes circulating tumor cells (CTCs) and circulating free DNA (cfDNA), RNA, long noncoding RNA (lncRNA) and micro RNA (miRNA), as well as extracellular vesicles. These novel analytes represent an alternative tool to complement diagnosis and monitor and predict response to treatment of the tumoral process and may be used for other disease processes such viral and parasitic infection. This review focuses on the biologic and molecular characteristics of cfDNA in general and the molecular changes (mutational and epigenetic) proven useful in oncologic practice for diagnosis, monitoring and treatment of breast cancer specifically.
Collapse
Affiliation(s)
- Lucas Delmonico
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Gilda Alves
- Laboratório de Marcadores Circulantes, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - José Bines
- Instituto Nacional de Câncer (INCA-HCIII), Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration. Clin Sci (Lond) 2020; 133:2265-2282. [PMID: 31657855 DOI: 10.1042/cs20190680] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
Tumor-associated macrophages (TAMs) play a regulatory role in inflammation and cancer. Exosomes derived from macrophages carrying microRNAs (miRNAs or miRs) are of great value for cancer therapy. Gremlin 1 (GREM1), a member of the antagonists of secreted bone morphogenetic protein, has been implicated in the pathophysiology of multiple diseases or cancers. Based on the predictions of miRNA-mRNA interaction, GREM1 was found to be a target gene of miR-155-5p. Here, the present study aims to explore the role of TAM-derived exosomal miR-155-5p by regulating GREM1 in intracranial aneurysm (IA). The collected results showed that GREM1 was down-regulated in IA, while miR-155-5p was up-regulated in TAM-derived exosomes. Smooth muscle cells (SMCs) were co-cultured with TAMs or exposed to exosomes derived from TAMs transfected with either miR-155-5p mimic or miR-155-5p inhibitor for exploring their roles in proliferation and migration of SMCs in vitro. Accordingly, in vitro experiments showed that TAM-derived exosomal miR-155-5p could promote proliferation and migration of SMCs by targeting GREM1. The effects of TAM-derived exosomal miR-155-5p on IA formation and TAM activation and infiltration by regulation of GREM1 in vivo were measured in IA rats injected with exosomes or those from TAMs transfected with miR-155-5p inhibitor. In vivo experimental results consistently confirmed that TAM-derived exosomes carrying miR-155-5p promoted IA formation and TAM activation and infiltration. In conclusion, TAM-derived exosomal miR-155-5p promotes IA formation via GREM1, which points to miR-155-5p as a possible therapeutic target for IA.
Collapse
|
25
|
Ramzan F, D'Souza RF, Durainayagam BR, Milan AM, Roy NC, Kruger MC, Henry CJ, Mitchell CJ, Cameron-Smith D. Inflexibility of the plasma miRNA response following a high-carbohydrate meal in overweight insulin-resistant women. GENES AND NUTRITION 2020; 15:2. [PMID: 32042348 PMCID: PMC7001289 DOI: 10.1186/s12263-020-0660-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Context Metabolic inflexibility is a characteristic of insulin resistance, limiting the ability to transiently regulate oxidative metabolism and gene expression in response to nutrient availability. Little is known of the flexibility of post-transcriptional regulation, including circulatory miRNAs (c-miRNAs). Design The abundances of targeted c-miRNAs, with reported functions in metabolic regulation, were analysed in response to a high-carbohydrate meal in healthy weight insulin-sensitive (IS) and overweight insulin-resistant (IR) women. Participants Age-matched healthy weight IS (n = 20, BMI = 24.3 ± 0.70) and overweight IR (n = 20, BMI = 28.6 ± 0.67) women. Methods An abundance of c-miRNAs was quantified prior to and following a high-carbohydrate breakfast meal (2500 kJ; 50% carbohydrate, 20% fat and 27% protein). Target genes of the differentially regulated c-miRNA were measured in RNA extracted from circulatory peripheral blood mononuclear cells (PBMCs). Results In healthy weight IS women, both miR-15a-5p (p = 0.03) and miR-17-5p (p < 0.01) levels were halved at 4 h post-meal. These miRNA remained unaltered following the same meal in the overweight IR women. Furthermore, amongst genes targeted by these miRNA, CPT1A (p = 0.01) and IL8 (p = 0.03) had also reduced expression 4 h post-meal only in the healthy weight IS women. Conclusions The study findings provide preliminary evidence for a possible extension of metabolic inflexibility to include c-miRNAs. Trial registration The clinical trial is registered with Australian New Zealand Clinical Trials Registry under Trial registration: ANZCTR: ACTRN12615001108505. Registered on 21 October 2015.
Collapse
Affiliation(s)
- F Ramzan
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,2The Riddet Institute, Palmerston North, New Zealand
| | - R F D'Souza
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,3School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - B R Durainayagam
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand
| | - A M Milan
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand
| | - N C Roy
- 2The Riddet Institute, Palmerston North, New Zealand.,4Food Nutrition & Health Team, AgResearch Ltd, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - M C Kruger
- 6Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - C J Henry
- 7Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, 117609 Singapore
| | - C J Mitchell
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,8School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - D Cameron-Smith
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,2The Riddet Institute, Palmerston North, New Zealand.,9Food & Bio-Based Products Group, AgResearch Ltd, Palmerston North, New Zealand.,10Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, 117609 Singapore
| |
Collapse
|
26
|
Maugeri M, Nawaz M, Papadimitriou A, Angerfors A, Camponeschi A, Na M, Hölttä M, Skantze P, Johansson S, Sundqvist M, Lindquist J, Kjellman T, Mårtensson IL, Jin T, Sunnerhagen P, Östman S, Lindfors L, Valadi H. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun 2019; 10:4333. [PMID: 31551417 PMCID: PMC6760118 DOI: 10.1038/s41467-019-12275-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
RNA-based therapeutics hold great promise for treating diseases and lipid nanoparticles (LNPs) represent the most advanced platform for RNA delivery. However, the fate of the LNP-mRNA after endosome-engulfing and escape from the autophagy-lysosomal pathway remains unclear. To investigate this, mRNA (encoding human erythropoietin) was delivered to cells using LNPs, which shows, for the first time, a link between LNP-mRNA endocytosis and its packaging into extracellular vesicles (endo-EVs: secreted after the endocytosis of LNP-mRNA). Endosomal escape of LNP-mRNA is dependent on the molar ratio between ionizable lipids and mRNA nucleotides. Our results show that fractions of ionizable lipids and mRNA (1:1 molar ratio of hEPO mRNA nucleotides:ionizable lipids) of endocytosed LNPs were detected in endo-EVs. Importantly, these EVs can protect the exogenous mRNA during in vivo delivery to produce human protein in mice, detected in plasma and organs. Compared to LNPs, endo-EVs cause lower expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Marco Maugeri
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Alexandros Papadimitriou
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Annelie Angerfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Mikko Hölttä
- Translational Biomarkers and Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Pia Skantze
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Svante Johansson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Johnny Lindquist
- Translational Biomarkers and Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Tomas Kjellman
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Gothenburg, Sweden
| | - Sofia Östman
- Animal Sciences and Technologies, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
| |
Collapse
|
27
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
28
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
29
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Xu D, Song M, Chai C, Wang J, Jin C, Wang X, Cheng M, Yan S. Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4. J Cell Physiol 2019; 234:1502-1511. [PMID: 30132861 DOI: 10.1002/jcp.27014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Exosome-encapsulated microRNAs (miRNAs) have been identified as potential biomarkers in autoimmune diseases. However, little is known about the role of exosome-delivered miRNAs in rheumatoid arthritis (RA). In this study, we investigated the profile of specific exosomal miRNAs by microarray analysis of serum exosomes from three patients with RA and three healthy controls. Quantitative real-time PCR (qRT-PCR) was performed to validate the aberrantly expressed exosomal miRNAs. A total of 20 exosome-encapsulated miRNAs were identified to be differently expressed in the serum of patients with RA compared with controls. Interestingly, we found that exosome-encapsulated miR-6089 was significantly decreased after validation by qRT-PCR in serum exosomes from 76 patients with RA and 20 controls. Besides, miR-6089 could inhibit lipopolysaccharide (LPS)-induced cell proliferation and activation of macrophage-like THP-1 cells. TLR4 was a direct target for miR-6089. MiR-6089 regulated the generation of IL-6, IL-29, and TNF-α by targetedly controlling TLR4 signaling. In conclusion, exosome-encapsulated miR-6089 regulates LPS/TLR4-mediated inflammatory response, which may serve as a novel, promising biomarker in RA.
Collapse
Affiliation(s)
- Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Meiyan Song
- Department of Nursing, Yantai Mountain Hospital of Yantai, Yantai, China
| | - Chunxiang Chai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Clinical Medicine College, Weifang Medical University, Weifang, China
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
31
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
32
|
Marrugo-Ramírez J, Mir M, Samitier J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int J Mol Sci 2018; 19:E2877. [PMID: 30248975 PMCID: PMC6213360 DOI: 10.3390/ijms19102877] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer is one of the greatest threats facing our society, being the second leading cause of death globally. Currents strategies for cancer diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a solid biopsy is expensive and time consuming and cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method; it has no risk, it is non-invasive and painless, it does not require surgery and reduces cost and diagnosis time. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Improvements in isolation technologies, based on a higher grade of purification of CTCs, exosomes, and ctDNA, will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of diseases, and the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers.
Collapse
Affiliation(s)
- José Marrugo-Ramírez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Mònica Mir
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Gieseler F, Plattfaut C, Quecke T, Freund A, Ungefroren H, Ender F. Heterogeneity of microvesicles from cancer cell lines under inflammatory stimulation with TNF-α. Cell Biol Int 2018; 42:1533-1544. [PMID: 30080276 DOI: 10.1002/cbin.11040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/29/2018] [Indexed: 12/11/2022]
Abstract
Microvesicles (MVs) represent a subgroup of extracellular vesicles (EVs) emerging from various cells by blebbing of their outer membrane. Therefore, they share features such as membrane composition and antigenicity with their parental cells. Released by many immune and tumor cells, MVs act as intercellular messengers, account for horizontal gene transfer and can activate the coagulation system. With the aim to investigate their relevance for tumor cell biology, we characterized MVs released by human tumor cell lines of various origins in the absence or presence of TNF-α. After stimulation, we used the combination of low and high-speed centrifugation to enrich MVs from cell culture supernatants. We analyzed the presentation of phosphatidylserine (PS) and tissue factor (TF) activity on the cell surface and investigated their potency to induce tumor cell migration. In all tumor cell lines, TNF-α stimulation enhanced the release of MVs. While the expression of PS was universally increased, an elevated activity of procoagulant TF could be detected on MVs from lung, pancreatic, and colon carcinoma, but not from breast and ovarian cancer cell lines. Functionally, TNF-α stimulation significantly increased the potency of MVs to induce tumor cell migration. In conclusion, inflammatory conditions promote the release of MVs with increased procoagulant activity from tumor cell lines in vitro. PS-containing and TF-expressing MVs may account for systemic activation of the coagulation system as seen in cancer patients and, since they induce tumor cell migration, they may serve as biomarkers for tumor progression.
Collapse
Affiliation(s)
- Frank Gieseler
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Corinna Plattfaut
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Tabea Quecke
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Annika Freund
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Hendrik Ungefroren
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany.,Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Fanny Ender
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| |
Collapse
|
34
|
Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018; 7:cells7080093. [PMID: 30071693 PMCID: PMC6115997 DOI: 10.3390/cells7080093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.
Collapse
Affiliation(s)
- James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
35
|
Kim HS, Park SY, Moon SH, Lee JD, Kim S. Autophagy in Human Skin Fibroblasts: Impact of Age. Int J Mol Sci 2018; 19:ijms19082254. [PMID: 30071626 PMCID: PMC6121946 DOI: 10.3390/ijms19082254] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/02/2022] Open
Abstract
Autophagy is an intracellular stress response that is enhanced under starvation conditions, and also when the cellular components are damaged. Aging accompanies an increase in intracellular stress and has significant impact on the skin. Since dermal fibroblasts are a powerful indicator of skin aging, we compared the autophagic activity of human skin fibroblasts between the young and old. According to TEM analyses, the number of autophagosomes per 1 μm2 cytoplasmic area was similar between young and aged fibroblasts. The amount of LC3 (microtubule-associated protein 1 light chain 3)-II, a form associated with autophagic vacuolar membranes, was also similar between the groups from Western blot analysis. Although residual bodies were more common in aged dermal fibroblasts, LC3 turnover and p62 assay showed little difference in the rate of lysosomal proteolysis between the young and old. RNA-seq analysis revealed that the major autophagy-modulating genes (BECN1, MAP1LC3B, ATG5, ATG7, ULK1, PIK3C3, mTOR) were not differentially expressed with age. Our results suggest that the basal autophagic flux in aged dermal fibroblasts is largely comparable to that of young fibroblasts. However, with a higher speed and amount of waste production in aged cells, we postulate that such autophagic flux may not be sufficient in keeping the old cells “clean”, resulting in skin aging. Aging is a complex process and, as such, the relationship between autophagy and aging is not straightforward. That is to say, autophagy does not simply decline with age. Regardless of the controversies on autophagic activity with age, autophagy plays a crucial role in counteracting aging, and strategies aimed at its modulation should hold promise for the prevention of skin aging.
Collapse
Affiliation(s)
- Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seo-Yeon Park
- Department of Medical Life Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seok Hoon Moon
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Jeong Deuk Lee
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Sungjoo Kim
- Department of Medical Life Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
36
|
Protein Expression Profile of Twenty-Week-Old Diabetic db/db and Non-Diabetic Mice Livers: A Proteomic and Bioinformatic Analysis. Biomolecules 2018; 8:biom8020035. [PMID: 29857581 PMCID: PMC6023011 DOI: 10.3390/biom8020035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance in the liver. Insulin is not only involved in carbohydrate metabolism, it also regulates protein synthesis. This work describes the expression of proteins in the liver of a diabetic mouse and identifies the metabolic pathways involved. Twenty-week-old diabetic db/db mice were hepatectomized, after which proteins were separated by 2D-Polyacrylamide Gel Electrophoresis (2D-PAGE). Spots varying in intensity were analyzed using mass spectrometry, and biological function was assigned by the Database for Annotation, Visualization and Integrated Discovery (DAVID) software. A differential expression of 26 proteins was identified; among these were arginase-1, pyruvate carboxylase, peroxiredoxin-1, regucalcin, and sorbitol dehydrogenase. Bioinformatics analysis indicated that many of these proteins are mitochondrial and participate in metabolic pathways, such as the citrate cycle, the fructose and mannose metabolism, and glycolysis or gluconeogenesis. In addition, these proteins are related to oxidation⁻reduction reactions and molecular function of vitamin binding and amino acid metabolism. In conclusion, the proteomic profile of the liver of diabetic mouse db/db exhibited mainly alterations in the metabolism of carbohydrates and nitrogen. These differences illustrate the heterogeneity of diabetes in its different stages and under different conditions and highlights the need to improve treatments for this disease.
Collapse
|
37
|
Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One 2018; 13:e0195969. [PMID: 29689087 PMCID: PMC5918169 DOI: 10.1371/journal.pone.0195969] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
The RNA that is packaged into exosomes is termed as exosomal-shuttle RNA (esRNA); however, the players, which take this subset of RNA (esRNA) into exosomes, remain largely unknown. We hypothesized that RNA binding proteins (RBPs) could serve as key players in this mechanism, by making complexes with RNAs and transporting them into exosomes during the biosynthesis of exosomes. Here, we demonstrate the presence of 30 RBPs in exosomes that were shown to form RNA-RBP complexes with both cellular RNA and exosomal-RNA species. To assess the involvement of these RBPs in RNA-transfer into exosomes, the gene transcripts encoding six of the proteins identified in exosomes (HSP90AB1, XPO5, hnRNPH1, hnRNPM, hnRNPA2B1, and MVP) were silenced by siRNA and subsequent effect on esRNA was assessed. A significant reduction of total esRNA was observed by post-transcriptional silencing of MVP, compared to other RBPs. Furthermore, to confirm the binding of MVP with esRNA, a biotinylated-MVP was transiently expressed in HEK293F cells. Higher levels of esRNA were recovered from MVP that was eluted from exosomes of transfected cells, as compared to those of non-transfected cells. Our data indicate that these RBPs could end up in exosomes together with RNA molecules in the form of RNA-ribonucleoprotein complexes, which could be important for the transport of RNAs into exosomes and the maintenance of RNAs inside exosomes. This type of maintenance may favor the shuttling of RNAs from exosomes to recipient cells in the form of stable complexes.
Collapse
|
38
|
Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Xu J, Xia K, Chang Y, Liu J, Yuan W. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer 2018; 17:82. [PMID: 29678180 PMCID: PMC5909226 DOI: 10.1186/s12943-018-0831-z] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by many cell types and have been attributed for their roles in many diseases including cancer. Exosomes secreted by tumor cells and stromal cells are critical mediators of intercellular communication in tumor microenvironments. Long noncoding RNAs (lncRNAs) are selectively sorted into exosomes and can regulate cancer onset and progression in a variety of ways. In this review, we summarize the characteristics of exosomal lncRNAs and their dysregulation in multiple types of cancer. We provide an overview of current research on exosomal lncRNAs in tumor microenvironments, especially the functions of exosomal lncRNAs in regulating tumor biology. A deeper understanding of the role of exosomal lncRNAs in the tumor microenvironment may help provide new diagnostic and prognostic markers for cancer.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Shuaixi Yang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guixian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junmin Song
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiyong Zhang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jizhong Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kunkun Xia
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuan Chang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
39
|
Fatima F, Ekstrom K, Nazarenko I, Maugeri M, Valadi H, Hill AF, Camussi G, Nawaz M. Non-coding RNAs in Mesenchymal Stem Cell-Derived Extracellular Vesicles: Deciphering Regulatory Roles in Stem Cell Potency, Inflammatory Resolve, and Tissue Regeneration. Front Genet 2017; 8:161. [PMID: 29123544 PMCID: PMC5662888 DOI: 10.3389/fgene.2017.00161] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized vesicles secreted by various cell types. There is mounting evidence that EVs have widespread roles in transporting proteins, lipids, and nucleic acids between cells and serve as mediators of intercellular communication. EVs secreted from stem cells could function as paracrine factors, and appear to mimic and recapitulate several features of their secreting cells. EV-mediated transport of regulatory RNAs provides a novel source of trans-regulation between cells. As such, stem cells have evolved unique forms of paracrine mechanisms for recapitulating their potencies with specialized functions by transporting non-coding RNAs (ncRNAs) via EVs. This includes the dissemination of stem cell-derived EV-ncRNAs and their regulatory effects elicited in differentiation, self-renewal, pluripotency, and the induction of reparative programs. Here, we summarize and discuss the therapeutic effects of mesenchymal stem cell-derived EV-ncRNAs in the induction of intrinsic regenerative programs elicited through regulating several mechanisms. Among them, most noticeable are the EV-mediated enrichment of ncRNAs at the injury sites contributing the regulation of matrix remodeling, epithelial mesenchymal transitions, and attraction of fibroblasts. Additionally, we emphasize EV-mediated transmission of anti-inflammatory RNAs from stem cells to injury site that potentially orchestrate the resolution of the inflammatory responses and immune alleviation to better facilitate healing processes. Collectively, this knowledge indicates a high value and potential of EV-mediated RNA-based therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karin Ekstrom
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Irina Nazarenko
- Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Marco Maugeri
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Giovanni Camussi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Nawaz M. Extracellular vesicle-mediated transport of non-coding RNAs between stem cells and cancer cells: implications in tumor progression and therapeutic resistance. Stem Cell Investig 2017; 4:83. [PMID: 29167804 DOI: 10.21037/sci.2017.10.04] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Recent years have witnessed intensive progress in studying extracellular vesicles (EVs), both for understanding their basic biology and contribution to variety of diseases, biomarker discovery, and their potential as gene delivery vectors and source of innovative therapies. As such, stem cell-derived EVs have contributed significant knowledge which led to the development of cell-free therapies in regenerative medicine. Although, the role of stem cell-derived EVs in maintaining stemness, differentiation and repairing tissue injuries is relatively well-understood; however, knowledge about the contribution of stem cell-derived EVs in cancer progression is just emerging. The aim of this review is, therefore, to discuss the recent developments in stem cell-derived EVs and tumor progression, placing a particular focus on non-coding RNA (ncRNA) mediated cancer progression and resistance against therapies. This includes the failure of normal hematopoiesis and the progression of myeloid neoplasms, enhanced capacity of cancer cells to proliferate and metastasize, and the conversion of normal cells into cancer cells, activation of angiogenic pathways and dormancy in cancer cells. These processes are shared by mesenchymal stem cells (MSCs), cancer stem like-cells and cancer cells in an intricate intratumoral network in order to create self-strengthening tumor niche. In this context, EV-ncRNAs serve as mediators to relay bystander effects of secreting cancer stem cells (CSCs) into recipient cells for priming a tumor permissive environment and relaying therapeutic resistance. Collectively, this knowledge will improve our understandings and approaches in finding new therapeutic targets in the context of CSCs, which could be benefited through engineering EVs for innovative therapies.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|