1
|
Bigagli E, Spataro E, Pasquini L, Cinci L, D'Ambrosio M, De Blasi C, Bartolini C, Petraglia F, Luceri C. Vaginal miR-210-3p as a potential biomarker for pregnancies complicated by early fetal growth restriction: A proof-of-concept case-control study. Placenta 2025; 163:8-15. [PMID: 40023010 DOI: 10.1016/j.placenta.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is associated with increased risk of neonatal morbidity and mortality or long-term adverse outcomes. We investigated the ability of hypoxia and angiogenesis-related miR-210-3p and miR-126-5p to identify early FGR cases and their correlations with neonatal outcomes. METHODS Twenty-nine women with pregnancies complicated by early FGR diagnosis and 25 controls matched for gestational age (GA) were enrolled and their vaginal fluid (VF) and plasma were collected. MiR-210-3p and miR-126-5p were measured by RT-qPCR and their targets were identified by in-silico analysis limited only to those already experimentally validated in other contexts. RESULTS Overall, VF levels of miR-210-3p were lower in early FGR cases compared to controls (p < 0.05). miR-210-3p was lower in severe cases and in women who later developed preeclampsia (p < 0.05). VF miR-210-3p levels correlated with lower birth weight, premature birth and severe complications at birth (p < 0.05). miR-210-3p was not detected in plasma and no correlations were observed between miR-126-5p and FGR or neonatal outcomes. In silico analyses identified HIF-1α, HIF-3α, BDNF, IGFBP3, RAD52 and TWIST-1 as experimentally validated targets of miR-210-3p. Among the predicted biological pathways controlled by miR-210-3p, we found hypoxia-responsive signaling such as autophagy, oxidative stress and metabolic pathways. DISCUSSION Although validation is needed, these findings suggest that VF levels of miR-210-3p may potentially serve as biomarker for the diagnosis of early FGR; future mechanistic studies are also advisable to investigate whether pharmacological strategies based on miR-210-3p, or its downstream targets may be useful for FGR.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Elisa Spataro
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology, University of Florence, Florence, Italy; Obstetrics and Gynecology, Department of Maternal and Child Health, University of Florence, Careggi University Hospital, Florence, Italy
| | - Lucia Pasquini
- Fetal Medicine Unit, Department for Woman and Child Health, Careggi University Hospital, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D'Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara De Blasi
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology, University of Florence, Florence, Italy; Obstetrics and Gynecology, Department of Maternal and Child Health, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chiara Bartolini
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology, University of Florence, Florence, Italy; Obstetrics and Gynecology, Department of Maternal and Child Health, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology, University of Florence, Florence, Italy; Obstetrics and Gynecology, Department of Maternal and Child Health, University of Florence, Careggi University Hospital, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular Vesicles Alter Trophoblast Function in Pregnancies Complicated by COVID-19. J Extracell Vesicles 2025; 14:e70051. [PMID: 40205960 PMCID: PMC11982706 DOI: 10.1002/jev2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/05/2025] [Indexed: 04/11/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) cause placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro. Trophoblast exposure to EVs isolated from patients with an active infection (AI), but not controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an AI, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19, depending on the gestational timing of infection, and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs, and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
Affiliation(s)
- Thea N. Golden
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sneha Mani
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca L. Linn
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Rita Leite
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Natalie A. Trigg
- Epigenetics InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Annette Wilson
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren Anton
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Monica Mainigi
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Colin C. Conine
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Epigenetics InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of NeonatologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Brett A. Kaufman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jerome F. Strauss
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Samuel Parry
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca A. Simmons
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of NeonatologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Gerede A, Stavros S, Danavasi M, Potiris A, Moustakli E, Machairiotis N, Zikopoulos A, Nikolettos K, Drakakis P, Nikolettos N, Eleftheriades M, Domali E. MicroRNAs in Preeclampsia: Bridging Diagnosis and Treatment. J Clin Med 2025; 14:2003. [PMID: 40142811 PMCID: PMC11942707 DOI: 10.3390/jcm14062003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder that typically manifests after the twentieth week of pregnancy, significantly impacting perinatal mortality and neonatal morbidity. Its development is influenced by immunological components, systemic inflammation, and genetic factors, with placental malfunction playing a crucial role. While many aspects of its pathophysiology have been elucidated, its key mechanisms remain incompletely understood. MicroRNAs (miRNAs), small noncoding RNA molecules that regulate gene expression, have emerged as promising biomarkers and therapeutic targets in PE. Dysregulated miRNAs have been identified in pregnant PE patients, highlighting their role in disease onset. Placenta-specific miRNAs, such as miR-210 and miR-155, influence inflammation, endothelial function, and hypoxia responses, which are closely associated with PE development. These miRNAs play a crucial role in regulating trophoblast invasion, angiogenesis, and immune modulation, further linking their dysregulation to the pathophysiology of PE. This review aims to provide a comprehensive overview of the role of miRNAs in PE, focusing on their potential as diagnostic biomarkers and therapeutic targets. By integrating recent advancements in molecular research, we explore their implications in clinical practice, particularly in risk assessment, early detection, and novel treatment strategies.
Collapse
Affiliation(s)
- Angeliki Gerede
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 691 00 Campus, Greece; (M.D.); (K.N.); (N.N.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (N.M.); (A.Z.); (P.D.)
| | - Maria Danavasi
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 691 00 Campus, Greece; (M.D.); (K.N.); (N.N.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (N.M.); (A.Z.); (P.D.)
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece;
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (N.M.); (A.Z.); (P.D.)
| | - Athanasios Zikopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (N.M.); (A.Z.); (P.D.)
| | - Konstantinos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 691 00 Campus, Greece; (M.D.); (K.N.); (N.N.)
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.S.); (N.M.); (A.Z.); (P.D.)
| | - Nikolaos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 691 00 Campus, Greece; (M.D.); (K.N.); (N.N.)
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, University Hospital “Aretaieion”, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| |
Collapse
|
4
|
Bardan CR, Ioniță I, Iordache M, Călămar-Popovici D, Todorescu V, Popescu R, Bernad BC, Bardan R, Bernad ES. Epigenetic Biomarkers in Thrombophilia-Related Pregnancy Complications: Mechanisms, Diagnostic Potential, and Therapeutic Implications: A Narrative Review. Int J Mol Sci 2024; 25:13634. [PMID: 39769397 PMCID: PMC11728153 DOI: 10.3390/ijms252413634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/14/2025] Open
Abstract
Pregnancy complications associated with thrombophilia represent significant risks for maternal and fetal health, leading to adverse outcomes such as pre-eclampsia, recurrent pregnancy loss, and intra-uterine growth restriction (IUGR). They are caused by disruptions in key physiological processes, including the coagulation cascade, trophoblast invasion, angiogenesis, and immune control. Recent advancements in epigenetics have revealed that non-coding RNAs, especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and extracellular vesicles (EVs) carrying these RNAs, play crucial roles in the regulation of these biological processes. This review aims to identify the epigenetic biomarkers that are the best candidates for evaluating thrombophilia-related pregnancy complications and for assessing the efficacy of anticoagulant and antiaggregant therapies. We emphasize their potential integration into personalized treatment plans, aiming to improve the risk assessment and therapy strategies for thrombophilic pregnancies. Future research should focus on validating these epigenetic biomarkers and establishing standardized protocols to enable their integration into clinical practice, paving the way for a precision medicine approach in obstetric care.
Collapse
Affiliation(s)
- Claudia Ramona Bardan
- Doctoral School, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.R.B.); (B.C.B.)
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
| | - Ioana Ioniță
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Maria Iordache
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Despina Călămar-Popovici
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Violeta Todorescu
- Clinic of Hematology, Municipal Clinical Emergency Hospital, 300254 Timisoara, Romania; (I.I.); (M.I.); (D.C.-P.); (V.T.)
- Department of Hematology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Division of Cell and Molecular Biology, Department of Microscopic Morphology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Brenda Cristiana Bernad
- Doctoral School, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.R.B.); (B.C.B.)
- Center for Neuropsychology and Behavioral Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Răzvan Bardan
- Department of Urology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Urology, “Pius Brînzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Elena Silvia Bernad
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinic of Obstetrics and Gynecology, “Pius Brînzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Lai Y, Fu Z, Gao Y, Ma N, Li L. Hypoxia-inducible factors (HIFs) in early pregnancy: implications for miscarriage†. Biol Reprod 2024; 111:987-999. [PMID: 39325972 DOI: 10.1093/biolre/ioae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Miscarriage poses a significant threat to both maternal and fetal health. Its etiology remains unknown, and there are no established effective identification or prevention strategies. A low-oxygen environment in early pregnancy is a physiological necessity for embryonic and placental growth. Hypoxia-inducible factors are a family of classic hypoxia signaling molecules whose expression level may fluctuate abnormally because of an imbalance in oxygen levels. Its unusual fluctuations initiate multiple signaling pathways at the maternal womb. Hypoxia-inducible factors are a family of classic hypoxia-signaling molecules and immune tolerance. Notably, aberrant regulation of these processes may lead to miscarriage. This review aims to clarify how the hypoxia-inducible factor-1α mediates the aberrant regulation of biological processes, including autophagy, metabolic reprogramming, et al., and how these effects impact trophoblasts and other cells at the maternal-fetal interface. These findings provide new insights into potential therapeutic and preventive strategies for miscarriage.
Collapse
Affiliation(s)
- Yuxuan Lai
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Fu
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Gao
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Bowman-Gibson S, Chandiramani C, Stone ML, Waker CA, Rackett TM, Maxwell RA, Dhanraj DN, Brown TL. Streamlined Analysis of Maternal Plasma Indicates Small Extracellular Vesicles are Significantly Elevated in Early-Onset Preeclampsia. Reprod Sci 2024; 31:2771-2782. [PMID: 38777947 PMCID: PMC11393201 DOI: 10.1007/s43032-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.
Collapse
Affiliation(s)
- Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Chandni Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Madison L Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Traci M Rackett
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Rose A Maxwell
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - David N Dhanraj
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA.
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
7
|
Jiang LL, Yang DL, Han Q, Zhang HL, Pan M, Yan JY. LncRNA-NEAT1 blocks the Wnt/β-catenin signaling pathway by targeting miR-217 to inhibit trophoblast cell migration and invasion. J Assist Reprod Genet 2024; 41:2107-2115. [PMID: 38709402 PMCID: PMC11338999 DOI: 10.1007/s10815-024-03124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVE This study aimed to study the correlation between preeclampsia (PE) and lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1), and to examine the molecular mechanisms behind the development of PE. METHODS 30 PE and 30 normal pregnant women placental samples were assessed the levels of NEAT1 and miR-217 by quantitative real-time PCR (qRT-PCR). The trophoblast cell line HTR8/SVneo was used for silencing NEAT1 or miR-217 inhibitor in the absence or presence of an inhibitor and H2O2. Cell counting Kit 8 (CCK-8), flow cytometry, and Transwell were used to detect cell proliferation, apoptosis, migration, and invasion. Luciferase reporter gene assay was utilized to verify the binding between miR-217 and Wnt family member 3 (Wnt3), and between the miR-217 and NEAT1. Proteins related to the Wnt/β-catenin signaling pathway were detected using western blotting. RESULTS The PE group exhibited a significantly downregulated expression of miR-217 and a significantly upregulated expression of NEAT1. NEAT1 targeted miR-217, and Wnt is a miR-217 target gene. siRNA-NEAT1 inhibited the apoptosis of trophoblast cells, but promoted their invasion, migration, and proliferation. MiR-217 inhibitor could partially reverse the effects of siRNA-NEAT1. The expression of the Wnt/β-catenin signaling pathway-related proteins, WNT signaling pathway inhibitor 1 (DKK1), cyclin-D1 and β-catenin, was significantly increased after siRNA-NEAT1. CONCLUSIONS NEAT1 could reduce trophoblast cell invasion and migration by suppressing miR-217/Wnt signaling pathway, leading to PE.
Collapse
Affiliation(s)
- Ling-Ling Jiang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Dan-Lin Yang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Qing Han
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Hua-le Zhang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Mian Pan
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China.
| | - Jian-Ying Yan
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
8
|
Meruvu S, Ding Z, Choudhury M. Mono-(2-ethylhexyl) phthalate induces trophoblast hypoxia and mitochondrial dysfunction through HIF-1α-miR-210-3p axis in HTR-8/SVneo cell line. Curr Res Toxicol 2024; 7:100188. [PMID: 39175913 PMCID: PMC11338994 DOI: 10.1016/j.crtox.2024.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we've revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| |
Collapse
|
9
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
10
|
Mani S, Garifallou J, Kim SJ, Simoni MK, Huh DD, Gordon SM, Mainigi M. Uterine macrophages and NK cells exhibit population and gene-level changes after implantation but maintain pro-invasive properties. Front Immunol 2024; 15:1364036. [PMID: 38566989 PMCID: PMC10985329 DOI: 10.3389/fimmu.2024.1364036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Prior to pregnancy, hormonal changes lead to cellular adaptations in the endometrium allowing for embryo implantation. Critical for successful pregnancy establishment, innate immune cells constitute a significant proportion of uterine cells prior to arrival of the embryo and throughout the first trimester in humans and animal models. Abnormal uterine immune cell function during implantation is believed to play a role in multiple adverse pregnancy outcomes. Current work in humans has focused on uterine immune cells present after pregnancy establishment, and limited in vitro models exist to explore unique functions of these cells. Methods With single-cell RNA-sequencing (scRNAseq), we comprehensively compared the human uterine immune landscape of the endometrium during the window of implantation and the decidua during the first trimester of pregnancy. Results We uncovered global and cell-type-specific gene signatures for each timepoint. Immune cells in the endometrium prior to implantation expressed genes associated with immune metabolism, division, and activation. In contrast, we observed widespread interferon signaling during the first trimester of pregnancy. We also provide evidence of specific inflammatory pathways enriched in pre- and post-implantation macrophages and natural killer (NK) cells in the uterine lining. Using our novel implantation-on-a-chip (IOC) to model human implantation ex vivo, we demonstrate for the first time that uterine macrophages strongly promote invasion of extravillous trophoblasts (EVTs), a process essential for pregnancy establishment. Pre- and post-implantation uterine macrophages promoted EVT invasion to a similar degree as pre- and post-implantation NK cells on the IOC. Conclusions This work provides a foundation for further investigation of the individual roles of uterine immune cell subtypes present prior to embryo implantation and during early pregnancy, which will be critical for our understanding of pregnancy complications associated with abnormal trophoblast invasion and placentation.
Collapse
Affiliation(s)
- Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - James Garifallou
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Se-jeong Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael K. Simoni
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Dan Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- National Science Foundation (NSF) Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Zhou Q, Li X, Zhou H, Zhao J, Zhao H, Li L, Zhou Y. Mitochondrial respiratory chain component NDUFA4: a promising therapeutic target for gastrointestinal cancer. Cancer Cell Int 2024; 24:97. [PMID: 38443961 PMCID: PMC10916090 DOI: 10.1186/s12935-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Honglian Zhou
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lijuan Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
12
|
Vrzić Petronijević S, Vilotić A, Bojić-Trbojević Ž, Kostić S, Petronijević M, Vićovac L, Jovanović Krivokuća M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023; 11:2681. [PMID: 37893055 PMCID: PMC10604227 DOI: 10.3390/biomedicines11102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications-premature birth due to placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction on the APS and aPL is followed by an overview of the effects of aPL on trophoblast-survival, cell function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction and the associated mechanisms.
Collapse
Affiliation(s)
- Svetlana Vrzić Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Sanja Kostić
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Miloš Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Ljiljana Vićovac
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
13
|
Zhu XZ, Deng ZM, Dai FF, Liu H, Cheng YX. The impact of early pregnancy metabolic disorders on pregnancy outcome and the specific mechanism. Eur J Med Res 2023; 28:197. [PMID: 37355665 DOI: 10.1186/s40001-023-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Miscarriage is the most common complication of pregnancy. The most common causes of early miscarriage are chromosomal abnormalities of the embryo, maternal endocrine abnormalities, organ malformations, and abnormal immune factors. Late miscarriages are mostly caused by factors such as cervical insufficiency. However, the causes of 50% of miscarriages remain unknown. Recently, increasing attention has been given to the role of metabolic abnormalities in miscarriage. In this review, we mainly discuss the roles of four major metabolic pathways (glucose, lipid, and amino acid metabolism, and oxidation‒reduction balance) in miscarriage and the metabolism-related genes that lead to metabolic disorders in miscarriage. Depending on aetiology, the current treatments for miscarriage include hormonal and immunological drugs, as well as surgery, while there are few therapies for metabolism. Therefore, we also summarize the drugs for metabolism-related targets. The study of altered metabolism underlying miscarriage not only helps us to understand the mechanisms involved in miscarriage but also provides an important basis for clinical research on new therapies.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
14
|
Kanter J, Gordon SM, Mani S, Sokalska A, Park JY, Senapati S, Huh DD, Mainigi M. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation. Hum Reprod 2023; 38:1047-1059. [PMID: 37075311 PMCID: PMC10501469 DOI: 10.1093/humrep/dead069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Indexed: 04/21/2023] Open
Abstract
STUDY QUESTION How does an altered maternal hormonal environment, such as that seen during superovulation with gonadotropins in ART, impact human uterine immune cell distribution and function during the window of implantation? SUMMARY ANSWER Hormonal stimulation with gonadotropins alters abundance of maternal immune cells including uterine natural killer (uNK) cells and reduces uNK cell ability to promote extravillous trophoblast (EVT) invasion. WHAT IS KNOWN ALREADY An altered maternal hormonal environment, seen following ART, can lead to increased risk for adverse perinatal outcomes associated with disordered placentation. Maternal immune cells play an essential role in invasion of EVTs, a process required for proper establishment of the placenta, and adverse perinatal outcomes have been associated with altered immune cell populations. How ART impacts maternal immune cells and whether this can in turn affect implantation and placentation in humans remain unknown. STUDY DESIGN, SIZE, DURATION A prospective cohort study was carried out between 2018 and 2021 on 51 subjects: 20 from natural cycles 8 days after LH surge; and 31 from stimulated IVF cycles 7 days after egg retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrial biopsies and peripheral blood samples were collected during the window of implantation in subjects with regular menstrual cycles or undergoing superovulation. Serum estradiol and progesterone levels were measured by chemiluminescent competitive immunoassay. Immune cell populations in blood and endometrium were analyzed using flow cytometry. uNK cells were purified using fluorescence-activated cell sorting and were subjected to RNA sequencing (RNA-seq). Functional changes in uNK cells due to hormonal stimulation were evaluated using the implantation-on-a-chip (IOC) device, a novel bioengineered platform using human primary cells that mimics early processes that occur during pregnancy in a physiologically relevant manner. Unpaired t-tests, one-way ANOVA, and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE Baseline characteristics were comparable for both groups. As expected, serum estradiol levels on the day of biopsy were significantly higher in stimulated (superovulated) patients (P = 0.0005). In the setting of superovulation, we found an endometrium-specific reduction in the density of bulk CD56+ uNK cells (P < 0.05), as well as in the uNK3 subpopulation (P = 0.025) specifically (CD103+ NK cells). In stimulated samples, we also found that the proportion of endometrial B cells was increased (P < 0.0001). Our findings were specific to the endometrium and not seen in peripheral blood. On the IOC device, uNK cells from naturally cycling secretory endometrium promote EVT invasion (P = 0.03). However, uNK cells from hormonally stimulated endometrium were unable to significantly promote EVT invasion, as measured by area of invasion, depth of invasion, and number of invaded EVTs by area. Bulk RNA-seq of sorted uNK cells from stimulated and unstimulated endometrium revealed changes in signaling pathways associated with immune cell trafficking/movement and inflammation. LIMITATIONS, REASONS FOR CAUTION Patient numbers utilized for the study were low but were enough to identify significant overall population differences in select immune cell types. With additional power and deeper immune phenotyping, we may detect additional differences in immune cell composition of blood and endometrium in the setting of hormonal stimulation. Flow cytometry was performed on targeted immune cell populations that have shown involvement in early pregnancy. A more unbiased approach might identify changes in novel maternal immune cells not investigated in this study. We performed RNA-seq only on uNK cells, which demonstrated differences in gene expression. Ovarian stimulation may also impact gene expression and function of other subsets of immune cells, as well as other cell types within the endometrium. Finally, the IOC device, while a major improvement over existing in vitro methods to study early pregnancy, does not include all possible maternal cells present during early pregnancy, which could impact functional effects seen. Immune cells other than uNK cells may impact invasion of EVTs in vitro and in vivo, though these remain to be tested. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate that hormonal stimulation affects the distribution of uNK cells during the implantation window and reduces the proinvasive effects of uNK cells during early pregnancy. Our results provide a potential mechanism by which fresh IVF cycles may increase risk of disorders of placentation, previously linked to adverse perinatal outcomes. STUDY FUNDING/COMPETING INTEREST(S) Research reported in this publication was supported by the University of Pennsylvania University Research Funding (to M.M.), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD068157 to M.M., S.S., and S.M.), National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR001880 to J.K.), the Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania, the Children's Hospital of Philadelphia Research Institute (to S.M.G.), and the National Institute of Allergy and Infectious Diseases (K08AI151265 to S.M.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- J Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S M Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - A Sokalska
- Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, USA
| | - J Y Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - S Senapati
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - D D Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Characterization of Maternal Circulating MicroRNAs in Obese Pregnancies and Gestational Diabetes Mellitus. Antioxidants (Basel) 2023; 12:antiox12020515. [PMID: 36830073 PMCID: PMC9952647 DOI: 10.3390/antiox12020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Maternal obesity (MO) is expanding worldwide, contributing to the onset of Gestational Diabetes Mellitus (GDM). MO and GDM are associated with adverse maternal and foetal outcomes, with short- and long-term complications. Growing evidence suggests that MO and GDM are characterized by epigenetic alterations contributing to the pathogenesis of metabolic diseases. In this pilot study, plasma microRNAs (miRNAs) of obese pregnant women with/without GDM were profiled at delivery. Nineteen women with spontaneous singleton pregnancies delivering by elective Caesarean section were enrolled: seven normal-weight (NW), six obese without comorbidities (OB/GDM(-)), and six obese with GDM (OB/GDM(+)). miRNA profiling with miRCURY LNA PCR Panel allowed the analysis of the 179 most expressed circulating miRNAs in humans. Data acquisition and statistics (GeneGlobe and SPSS software) and Pathway Enrichment Analysis (PEA) were performed. Data analysis highlighted patterns of significantly differentially expressed miRNAs between groups: OB/GDM(-) vs. NW: n = 4 miRNAs, OB/GDM(+) vs. NW: n = 1, and OB/GDM(+) vs. OB/GDM(-): n = 14. For each comparison, PEA revealed pathways associated with oxidative stress and inflammation, as well as with nutrients and hormones metabolism. Indeed, miRNAs analysis may help to shed light on the complex epigenetic network regulating metabolic pathways in both the mother and the foeto-placental unit. Future investigations are needed to deepen the pregnancy epigenetic landscape in MO and GDM.
Collapse
|
16
|
Gu Z, Yu C. Harnessing bioactive nanomaterials in modulating tumor glycolysis-associated metabolism. J Nanobiotechnology 2022; 20:528. [PMID: 36510194 PMCID: PMC9746179 DOI: 10.1186/s12951-022-01740-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Glycolytic reprogramming is emerging as a hallmark of various cancers and a promising therapeutic target. Nanotechnology is revolutionizing the anti-tumor therapeutic approaches associated with glycolysis. Finely controlled chemical composition and nanostructure provide nanomaterials unique advantages, enabling an excellent platform for integrated drug delivery, biochemical modulation and combination therapy. Recent studies have shown promising potential of nanotherapeutic strategies in modulating tumor glycolytic metabolism alone or in combination with other treatments such as chemotherapy, radiotherapy and immunotherapy. To foster more innovation in this cutting-edge and interdisciplinary field, this review summarizes recent understandings of the origin and development of tumor glycolysis, then provides the latest advances in how nanomaterials modulate tumor glycolysis-related metabolism. The interplay of nanochemistry, metabolism and immunity is highlighted. Ultimately, the challenges and opportunities are presented.
Collapse
Affiliation(s)
- Zhengying Gu
- grid.22069.3f0000 0004 0369 6365School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 People’s Republic of China
| | - Chengzhong Yu
- grid.22069.3f0000 0004 0369 6365School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 People’s Republic of China ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
17
|
Abstract
MicroRNAs (miRNAs) are a class of small non-coding, single-stranded RNAs (ribonucleic acids) that play important roles in many vital processes through their impact on gene expression. One such miRNA, miR210, represents a hypoxia-induced cellular miRNA group that hold a variety of functions. This review article highlights the importance of miR-210 in the development of pre-eclampsia.KEY MESSAGEmiR-210 is a promising biomarker for monitoring pregnancy with pre-eclampsia. Overexpression of miR-210 had a negative impact on the process of cell migration and trophoblast invasion.
Collapse
Affiliation(s)
- Ilona Jaszczuk
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Dorota Koczkodaj
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
| | - Izabela Winkler
- Second Department of Gynecological Oncology, St. John's Center of Oncology of the Lublin Region, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
18
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
19
|
Ismaeel A, Fletcher E, Miserlis D, Wechsler M, Papoutsi E, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Skeletal muscle MiR-210 expression is associated with mitochondrial function in peripheral artery disease patients. Transl Res 2022; 246:66-77. [PMID: 35288364 PMCID: PMC9197925 DOI: 10.1016/j.trsl.2022.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that circulating microRNA (miR)-210 levels are elevated in peripheral artery disease (PAD) patients. MiR-210 is known to be a negative regulator of mitochondrial respiration; however, the relationship between miR-210 and mitochondrial function has yet to be studied in PAD. We aimed to compare skeletal muscle miR-210 expression of PAD patients to non-PAD controls (CON) and to examine the relationship between miR-210 expression and mitochondrial function. Skeletal muscle biopsies from CON (n = 20), intermittent claudication (IC) patients (n = 20), and critical limb ischemia (CLI) patients (n = 20) were analyzed by high-resolution respirometry to measure mitochondrial respiration of permeabilized fibers. Samples were also analyzed for miR-210 expression by real-time PCR. MiR-210 expression was significantly elevated in IC and CLI muscle compared to CON (P = 0.008 and P < 0.001, respectively). Mitochondrial respiration of electron transport chain (ETC) Complexes II (P = 0.001) and IV (P < 0.001) were significantly reduced in IC patients. Further, CLI patients demonstrated significant reductions in respiration during Complexes I (state 2: P = 0.04, state 3: P = 0.003), combined I and II (P < 0.001), II (P < 0.001), and IV (P < 0.001). The expression of the miR-210 targets, cytochrome c oxidase assembly factor heme A: farnesyltransferase (COX10), and iron-sulfur cluster assembly enzyme (ISCU) were down-regulated in PAD muscle. MiR-210 may play a role in the cellular adaptation to hypoxia and may be involved in the metabolic myopathy associated with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, Texas
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Marissa Wechsler
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | | | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
20
|
Hu XQ, Song R, Dasgupta C, Romero M, Juarez R, Hanson J, Blood AB, Wilson SM, Zhang L. MicroRNA-210-mediated mitochondrial reactive oxygen species confer hypoxia-induced suppression of spontaneous transient outward currents in ovine uterine arteries. Br J Pharmacol 2022; 179:4640-4654. [PMID: 35776536 PMCID: PMC9474621 DOI: 10.1111/bph.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Purpose Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA‐210 (miR‐210) in gestational hypoxia‐induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR‐210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia‐induced suppression of STOCs in uterine arteries. Experimental Approach Resistance‐sized uterine arteries were isolated from near‐term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2) for 48 h. Key Results Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR‐210 mimic to normoxic arteries and blocked by antagomir miR‐210‐LNA in hypoxic arteries. Hypoxia or miR‐210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria‐targeted antioxidant MitoQ. Hypoxia and miR‐210 down‐regulated iron–sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large‐conductance Ca2+‐activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. Conclusion and Implications This study demonstrates a novel mechanistic role for the miR‐210‐ISCU‐mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Monica Romero
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rucha Juarez
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jenna Hanson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
21
|
Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Young R, Kanter J, Gordon S, Yi AY, Mainigi M, Huh DD. A microphysiological model of human trophoblast invasion during implantation. Nat Commun 2022; 13:1252. [PMID: 35292627 PMCID: PMC8924260 DOI: 10.1038/s41467-022-28663-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Successful establishment of pregnancy requires adhesion of an embryo to the endometrium and subsequent invasion into the maternal tissue. Abnormalities in this critical process of implantation and placentation lead to many pregnancy complications. Here we present a microenigneered system to model a complex sequence of orchestrated multicellular events that plays an essential role in early pregnancy. Our implantation-on-a-chip is capable of reconstructing the three-dimensional structural organization of the maternal-fetal interface to model the invasion of specialized fetal extravillous trophoblasts into the maternal uterus. Using primary human cells isolated from clinical specimens, we demonstrate in vivo-like directional migration of extravillous trophoblasts towards a microengineered maternal vessel and their interactions with the endothelium necessary for vascular remodeling. Through parametric variation of the cellular microenvironment and proteomic analysis of microengineered tissues, we show the important role of decidualized stromal cells as a regulator of extravillous trophoblast migration. Furthermore, our study reveals previously unknown effects of pre-implantation maternal immune cells on extravillous trophoblast invasion. This work represents a significant advance in our ability to model early human pregnancy, and may enable the development of advanced in vitro platforms for basic and clinical research of human reproduction.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles K Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Young
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
TCDD-induced IL-24 secretion in human chorionic stromal cells inhibits placental trophoblast cell migration and invasion. Reprod Toxicol 2022; 108:10-17. [PMID: 34995713 DOI: 10.1016/j.reprotox.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/30/2022]
Abstract
Environmental pollutant dioxins are potentially harmful to pregnant women and can lead to severe adverse outcomes in pregnancy, such as spontaneous abortion and stillbirth. However, little is currently known about the underlying toxicological mechanism. Our previous study reported that the IL-24 gene is a dioxin response gene during 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) treatment. Here, we further tested the effect of TCDD on IL-24 expression in human chorionic stromal cells. We also investigated the effect of IL-24 on the behaviors of human placental trophoblast cells and predicted the potential mechanism underlying these behaviors using functional network analysis. We found that TCDD stimulates IL-24 expression in human chorionic stromal cells in an AhR (aromatic hydrocarbon receptor)-related manner. We also found that IL-24 inhibits the migration and invasion of human placental trophoblast cells, the possible mechanism of which involves thirteen key proteins and mitochondrial function. Our findings suggest that IL-24 is a potential factor induced by TCDD to regulate trophoblast cell invasion, which potentially involves in TCDD-induced abortion.
Collapse
|
23
|
Brunst KJ, Hsu HHL, Zhang L, Zhang X, Carroll KN, Just A, Coull BA, Kloog I, Wright RO, Baccarelli AA, Wright RJ. Prenatal particulate matter exposure and mitochondrial mutational load at the maternal-fetal interface: Effect modification by genetic ancestry. Mitochondrion 2022; 62:102-110. [PMID: 34785263 PMCID: PMC9175302 DOI: 10.1016/j.mito.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Prenatal ambient particulate matter (PM2.5) exposure impacts infant development and alters placental mitochondrial DNA abundance. We investigated whether the timing of PM2.5 exposure predicts placental mitochondrial mutational load using NextGen sequencing in 283 multi-ethnic mother-infant dyads. We observed increased PM2.5exposure, particularly during mid- to late-pregnancy and among genes coding for NADH dehydrogenase and subunits of ATP synthase, was associated with a greater amount of nonsynonymous mutations. The strongest associations were observed for participants of African ancestry. Further work is needed to tease out the role of mitochondrial genetics and its impact on offspring development and emerging disease disparities.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA.
| | - Li Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Kecia N Carroll
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA 02115, USA.
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B 653, Beer Sheva, Israel.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168(th) St. New York, NY 10032, USA.
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| |
Collapse
|
24
|
Significance of Sex Differences in ncRNAs Expression and Function in Pregnancy and Related Complications. Biomedicines 2021; 9:biomedicines9111509. [PMID: 34829737 PMCID: PMC8614665 DOI: 10.3390/biomedicines9111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
In the era of personalized medicine, fetal sex-specific research is of utmost importance for comprehending the mechanisms governing pregnancy and pregnancy-related complications. In recent times, noncoding RNAs (ncRNAs) have gained increasing attention as critical players in gene regulation and disease pathogenesis, and as candidate biomarkers in human diseases as well. Different types of ncRNAs, including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in every step of pregnancy progression, although studies taking into consideration fetal sex as a central variable are still limited. To date, most of the available data have been obtained investigating sex-specific placental miRNA expression. Several studies revealed that miRNAs regulate the (patho)-physiological processes in a sexually dimorphic manner, ensuring normal fetal development, successful pregnancy, and susceptibility to diseases. Moreover, the observation that ncRNA profiles differ according to cells, tissues, and developmental stages of pregnancy, along with the complex interactions among different types of ncRNAs in regulating gene expression, strongly indicates that more studies are needed to understand the role of sex-specific ncRNA in pregnancy and associated disorders.
Collapse
|
25
|
Functional succinate dehydrogenase deficiency is a common adverse feature of clear cell renal cancer. Proc Natl Acad Sci U S A 2021; 118:2106947118. [PMID: 34551979 PMCID: PMC8488664 DOI: 10.1073/pnas.2106947118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/28/2023] Open
Abstract
This study demonstrates that underexpression of succinate dehydrogenase (SDH) subunits resulting in accumulation of oncogenic succinate is a common, adverse, epigenetic modulating feature in clear cell renal cell carcinoma (ccRCC), during pathogenesis and progression. The study sheds light on the mechanisms of down-regulation of SDH subunits in ccRCC and deciphers the consequent oncogenic effects. It shows that functional SDH deficiency is a common feature of ccRCC (∼80% of all kidney cancers), and not just limited to the 0.05 to 0.5% of kidney cancers with germline SDH mutations. Reduced succinate dehydrogenase (SDH) activity resulting in adverse succinate accumulation was previously considered relevant only in 0.05 to 0.5% of kidney cancers associated with germline SDH mutations. Here, we sought to examine a broader role for SDH loss in kidney cancer pathogenesis/progression. We report that underexpression of SDH subunits resulting in accumulation of oncogenic succinate is a common feature in clear cell renal cell carcinoma (ccRCC) (∼80% of all kidney cancers), with a marked adverse impact on survival in ccRCC patients (n = 516). We show that SDH down-regulation is a critical brake in the TCA cycle during ccRCC pathogenesis and progression. In exploring mechanisms of SDH down-regulation in ccRCC, we report that Von Hippel-Lindau loss-induced hypoxia-inducible factor–dependent up-regulation of miR-210 causes direct inhibition of the SDHD transcript. Moreover, shallow deletion of SDHB occurs in ∼20% of ccRCC. We then demonstrate that SDH loss-induced succinate accumulation contributes to adverse loss of 5-hydroxymethylcytosine, gain of 5-methylcytosine, and enhanced invasiveness in ccRCC via inhibition of ten-eleven translocation (TET)-2 activity. Intriguingly, binding affinity between the catalytic domain of recombinant TET-2 and succinate was found to be very low, suggesting that the mechanism of succinate-induced attenuation of TET-2 activity is likely via product inhibition rather than competitive inhibition. Finally, exogenous ascorbic acid, a TET-activating demethylating agent, led to reversal of the above oncogenic effects of succinate in ccRCC cells. Collectively, our study demonstrates that functional SDH deficiency is a common adverse feature of ccRCC and not just limited to the kidney cancers associated with germline SDH mutations.
Collapse
|
26
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
27
|
Screening Candidate Genes Regulating Placental Development from Trophoblast Transcriptome at Early Pregnancy in Dazu Black Goats ( Capra hircus). Animals (Basel) 2021; 11:ani11072132. [PMID: 34359260 PMCID: PMC8300351 DOI: 10.3390/ani11072132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The trophoblast is an original placental tissue whose normal proliferation, differentiation, migration, adhesion, and angiopoiesis are essential for placenta formation and fetal survival during early pregnancy. However, the key genes and molecular mechanisms involved in placenta development in goats are unknown. Herein, the morphology and histological structures of trophoblast tissues from day 20 to 30 of pregnancy were determined. RNA-sequencing was used to screen potential functional genes in common highly expressed and differentially expressed genes. RAP1 signaling pathway was used as the contact center and coordinated with other pathways to regulate placenta development. This study could provide insights into the molecular mechanisms underlying ruminant placentation. Abstract This study explored the trophoblast transcriptome to understand potential functional genes involved in early placental development in goats and their enriched signaling pathways. Trophoblast samples were collected from nine Dazu Black goats on days 20, 25, and 30 of pregnancy (D20, D25, and D30). As the pregnancy progressed, the morphology and histological structures showed significant growth, adhesion, and angiogenesis. A total of 23,253 commonly expressed genes (CEGs) and 4439 differently expressed genes (DEGs) were detected by RNA sequencing. The common highly expressed genes (ChEGs) (the top 100 CEGs) with the highest FPKM percentage (29.9%) of all CEGs were annotated to the ribosome pathway and maintain pregnancy. DEGs were abundant in D30 vs. D20 (3715 DEGs). Besides, the DEGs were associated with the inhibition of oxidative phosphorylation and activation of PI3K-Akt, focal adhesion, ECM–receptor interaction, Rap1, and CAM signaling pathways. The RAP1 may be a central pathway since it coordinates with others to regulate the cell proliferation, invasion, migration, and fusion of trophoblasts. qRT-PCR and Western blot analysis confirmed the transcriptional expression in IGF1, VEGFC, RAPGEF3, PIK3CA, AKT3, ITGB3, ITGA11, SPP1, NOS1, and ATP6V0B genes and protein levels in VEGF, RAPGEF3, and Akt. This is the first study of transcriptome profiling in goat placenta and provides diverse genetic resources for further research on placenta development.
Collapse
|
28
|
Chen D, Hou Y, Cai X. MiR-210-3p Enhances Cardiomyocyte Apoptosis and Mitochondrial Dysfunction by Targeting the NDUFA4 Gene in Sepsis-Induced Myocardial Dysfunction. Int Heart J 2021; 62:636-646. [PMID: 33994501 DOI: 10.1536/ihj.20-512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a common complication with high incidence rates in sepsis patients. This study aimed to investigate the roles of miR-210-3p in regulating cardiomyocyte apoptosis and mitochondrial dysfunction associated with SIMD pathogenesis.A rat sepsis model was established by cecal ligation and puncture. Serum inflammatory factors, myocardial tissue apoptosis, and expression of miR-210-3p were evaluated. In vitro, miR-210-3p expression in H9C2 cells was altered by transfection with its mimics or inhibitors. H9C2 viability was assessed via CCK-8 assay, and reactive oxygen species (ROS) production and apoptosis were detected through flow cytometry. The targeting regulatory relations between miR-210-3p and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (NDUFA4) were validated by dual luciferase reporter assay.The rat sepsis model showed increased serum TNF-α and IL-6 levels, significant myocardial tissue injuries and apoptosis with decreased Bcl-2 and increased Caspase-1 protein levels. In vitro, septic rat serum suppressed viability, promoted ROS production and apoptosis, impaired COX IV activities and increased cytochrome release in H9C2 cells. The expression of miR-210-3p was greatly increased in myocardial tissues of septic rats and septic serum-treated H9C2 cells. miR-210-3p directly binds to the 3' UTR of the NDUFA4 gene. Septic rat serum suppressed NDUFA4 and Iron-Sulfur Cluster Assembly Protein U gene expressions in H9C2 cells. The above cellular and molecular alterations in H9C2 cells induced by septic serum were enhanced by miR-210-3p mimics and abrogated by miR-210-3p inhibitors.miR-210-3p promoted SIMD pathogenesis by targeting NDUFA4 to enhance cardiomyocyte apoptosis and impair mitochondrial function.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University
| | - Yu Hou
- Department of Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital
| |
Collapse
|
29
|
Brunst KJ, Zhang L, Zhang X, Baccarelli AA, Bloomquist T, Wright RJ. Associations Between Maternal Lifetime Stress and Placental Mitochondrial DNA Mutations in an Urban Multiethnic Cohort. Biol Psychiatry 2021; 89:570-578. [PMID: 33229036 PMCID: PMC7889635 DOI: 10.1016/j.biopsych.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disrupted placental functioning due to stress can have lifelong implications. Cumulative stress and trauma are likely to have lasting impacts on maternal physiological functioning and offspring development, resulting in increased risk for later-life complex disorders for which racial disparities exist. METHODS This study examined the association between maternal lifetime stress and placental mitochondrial DNA mutational load in an urban multiethnic cohort. Maternal lifetime exposure to stressful events was assessed using the validated Life Stressor Checklist-Revised. Whole mitochondrial DNA sequencing was performed and mutations were determined for 365 placenta samples with complete exposure and covariate data. Multivariable regression was used to model maternal lifetime stress in relation to placental mitochondrial DNA mutational load. Racial/ethnic differences were examined by cross-product terms and contrast statements. Gene-wise analyses were conducted. RESULTS We identified 13,189 heteroplasmies (Phred score > 10,000, minor allele frequency < 0.5, number of mutant reads > 1). Women experiencing increased psychosocial stress over their lifetime exhibited a higher number of total placental mitochondrial mutations (β = .23, 95% confidence interval = .03 to .42) and heteroplasmic mutations (β = .18, 95% confidence interval = .05 to .31) but not homoplasmic mutations (β = -.008, 95% confidence interval = -.03 to .01); the strongest associations were observed among Black women and genes coding for NADH dehydrogenase and cytochrome c oxidase subunits. CONCLUSIONS Cumulative maternal lifetime stress is associated with a greater mitochondrial mutational load, particularly among Black women. The impact of racial/ethnic differences in mutational load on placental function directly affecting offspring development and/or leading to chronic disease disparities warrants further investigation.
Collapse
Affiliation(s)
- Kelly J. Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Li Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Xiang Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Andrea A. Baccarelli
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Tessa Bloomquist
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Rosalind J. Wright
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics and Department of Environmental Medicine & Public Health, 1 Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
30
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Hu XQ, Zhang L. Hypoxia and Mitochondrial Dysfunction in Pregnancy Complications. Antioxidants (Basel) 2021; 10:antiox10030405. [PMID: 33800426 PMCID: PMC7999178 DOI: 10.3390/antiox10030405] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common and severe stress to an organism's homeostatic mechanisms, and hypoxia during gestation is associated with significantly increased incidence of maternal complications of preeclampsia, adversely impacting on the fetal development and subsequent risk for cardiovascular and metabolic disease. Human and animal studies have revealed a causative role of increased uterine vascular resistance and placental hypoxia in preeclampsia and fetal/intrauterine growth restriction (FGR/IUGR) associated with gestational hypoxia. Gestational hypoxia has a major effect on mitochondria of uteroplacental cells to overproduce reactive oxygen species (ROS), leading to oxidative stress. Excess mitochondrial ROS in turn cause uteroplacental dysfunction by damaging cellular macromolecules, which underlies the pathogenesis of preeclampsia and FGR. In this article, we review the current understanding of hypoxia-induced mitochondrial ROS and their role in placental dysfunction and the pathogenesis of pregnancy complications. In addition, therapeutic approaches selectively targeting mitochondrial ROS in the placental cells are discussed.
Collapse
|
32
|
Chu X, Gu Y, Sheng W, Sun J, Morgan JA, Lewis DF, Cooper DB, McCathran CE, Wang Y. Downregulation of miR-126-3p expression contributes to increased inflammatory response in placental trophoblasts in preeclampsia. J Reprod Immunol 2021; 144:103281. [PMID: 33549904 DOI: 10.1016/j.jri.2021.103281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
MiR-126-3p is a prototype of an endothelial miRNA and has protective effects on endothelial cells. However, little is known about the effects of miR-126-3p on placental trophoblasts. In the present study, we tested the hypothesis that aberrant miR-126-3p expression is present in preeclamptic placenta which contributes to increased inflammatory response in trophoblasts. Placentas were obtained immediately after delivery from normotensive and preeclamptic pregnancies. Villous tissue was either fixed with formalin or used for trophoblast isolation. Trophoblast miR-126-3p expression was assessed by in situ hybridization of formalin-fixed tissue sections and by RT-PCR in cultured syncytiotrophoblasts. Culture medium was collected for measurement of IL-6, TNFα, and 8-Isoprostane production by ELISA and total cellular protein was collected for evaluation of HIF1α expression by Western blot. Effects of overexpression of miR-126-3p in trophoblasts on cytokine production were tested by transfection of pre-mir-126, a precursor of miR-126, into primary isolated trophoblasts. We found that downregulation of miR-126-3p expression was associated with increased IL-6 and TNFα production in trophoblasts from preeclamptic placentas vs. normal placentas. Moreover, transient overexpression of miR-126-3p significantly reduced IL-6 and TNFα production in trophoblasts from both normal and preeclamptic placentas. We further found that increase in miR-126-3p expression not only suppressed hypoxia-induced increases in IL-6 and TNFα production, but also attenuated hypoxia-induced increases in HIF1α expression and 8-Isoprostane production in trophoblasts cultured under hypoxic condition. These results provide plausible evidence that downregulation of miR-126-3p expression reduces anti-inflammatory and anti-oxidative stress activities in placental trophoblasts in preeclampsia.
Collapse
Affiliation(s)
- Xiaodan Chu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States; Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Yang Gu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States
| | - Wenji Sheng
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States; Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jingxia Sun
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States; Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - John A Morgan
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States
| | - David F Lewis
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States
| | - Danielle B Cooper
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States
| | - Charles E McCathran
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States
| | - Yuping Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, LA, 71103, United States.
| |
Collapse
|
33
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Bartho LA, Fisher JJ, Cuffe JSM, Perkins AV. Mitochondrial transformations in the aging human placenta. Am J Physiol Endocrinol Metab 2020; 319:E981-E994. [PMID: 32954826 DOI: 10.1152/ajpendo.00354.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria play a key role in homeostasis and are central to one of the leading hypotheses of aging, the free radical theory. Mitochondria function as a reticulated network, constantly adapting to the cellular environment through fusion (joining), biogenesis (formation of new mitochondria), and fission (separation). This adaptive response is particularly important in response to oxidative stress, cellular damage, and aging, when mitochondria are selectively removed through mitophagy, a mitochondrial equivalent of autophagy. During this complex process, mitochondria influence surrounding cell biology and organelles through the release of signaling molecules. Given that the human placenta is a unique organ having a transient and somewhat defined life span of ∼280 days, any adaption or dysfunction associated with mitochondrial physiology as a result of aging will have a dramatic impact on the health and function of both the placenta and the fetus. Additionally, a defective placenta during gestation, resulting in reduced fetal growth, has been shown to influence the development of chronic disease in later life. In this review we focus on the mitochondrial adaptions and transformations that accompany gestational length and share similarities with age-related diseases. In addition, we discuss the role of such changes in regulating placental function throughout gestation, the etiology of gestational complications, and the development of chronic diseases later in life.
Collapse
Affiliation(s)
- Lucy A Bartho
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| | - Joshua J Fisher
- Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
35
|
Placental miRNAs in feto-maternal communication mediated by extracellular vesicles. Placenta 2020; 102:27-33. [PMID: 33218575 DOI: 10.1016/j.placenta.2020.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
A complex network composed of at least 1900 microRNA (miRNA) species orchestrates the development and function of the human placenta. These molecules regulate genes and pathways operating major functional processes in trophoblast cells such as proliferation, invasion, differentiation, and metabolism. Nevertheless, the cellular localization and role of most placental miRNAs remain to be determined. The existence of eutherian- (C14MC) and primate-specific miRNA clusters (C19MC), together with human placenta-specific miRNAs, indicate the relevance of these molecules in evolution and diversification of the placenta, including the acquisition of its unique features in humans. They may be related also to diseases that are exclusively present in primates, such as preeclampsia. Changes in the miRNA expression profile have been reported in several placental pathologies. Which miRNAs are involved in the pathomechanism of these diseases or act to maintain placental homeostasis is uncertain. Placenta-derived miRNAs are packed into extracellular vesicles (EVs) and distributed through the maternal circulation to distant organs, where they contribute to adaptations required during pregnancy. Similarly, the placenta also receives molecular information from other tissues to adapt fetoplacental metabolic demands to the maternal energetic supply. These processes can be impaired in pathologic conditions. Therefore, the collection of circulating placental miRNAs constitutes potentially a minimally-invasive approach to assess the fetoplacental status and to diagnose pregnancy diseases. Future therapies may include manipulation of miRNA levels for prevention and treatment of placental complications to protect maternal health and fetal development.
Collapse
|
36
|
Nakada C, Hijiya N, Tsukamoto Y, Yano S, Kai T, Uchida T, Kimoto M, Takahashi M, Daa T, Matsuura K, Shin T, Mimata H, Moriyama M. A transgenic mouse expressing miR-210 in proximal tubule cells shows mitochondrial alteration: possible association of miR-210 with a shift in energy metabolism. J Pathol 2020; 251:12-25. [PMID: 32073141 DOI: 10.1002/path.5394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Previously we reported that the microRNA miR-210 is aberrantly upregulated in clear cell renal cell carcinoma (ccRCC) via deregulation of the VHL-HIF pathway. In the present study, to investigate the biological impact of miR-210 in ccRCC tumorigenesis, we developed a transgenic mouse line expressing miR-210 in proximal tubule cells under control of the mouse SGLT2/Slc5a2 promoter. Light microscopy revealed desquamation of the tubule cells and regeneration of the proximal tubule, suggesting that miR-210 expression led to damage of the proximal tubule cells. Electron microscopy revealed alterations to the mitochondria in proximal tubule cells, with marked reduction of the mitochondrial inner membrane, which is the main site of ATP production via oxidative phosphorylation (OxPhos). An additional in vitro study revealed that this loss of the inner membrane was associated with downregulation of Iscu and Ndufa4, the target genes of miR-210, suggesting that the miR-210-ISCU/NDUFA4 axis may affect mitochondrial energy metabolism. Furthermore, metabolome analysis revealed activation of anaerobic glycolysis in miR-210-transfected cells, and consistent with this the secretion of lactate, the final metabolite of anaerobic glycolysis, was significantly increased. Lactate concentration was higher in the kidney cortex of transgenic mice relative to wild-type mice, although the difference was not significant (p = 0.070). On the basis of these findings, we propose that miR-210 may induce a shift of energy metabolism from OxPhos to glycolysis by acting on the mitochondrial inner membrane. In addition to activation of glycolysis, we observed activation of the pentose phosphate pathway (PPP) and an increase in the total amount of amino acids in miR-210-transfected cells. This may help cells synthesize nucleotides and proteins for building new cells. These results suggest that miR-210 may be involved in the metabolic changes in the early stage of ccRCC development, helping the cancer cells to acquire growth and survival advantages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan.,Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Shinji Yano
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomoki Kai
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mami Kimoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mika Takahashi
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| |
Collapse
|
37
|
Zeng Y, Wei L, Lali MS, Chen Y, Yu J, Feng L. miR-150-5p mediates extravillous trophoblast cell migration and angiogenesis functions by regulating VEGF and MMP9. Placenta 2020; 93:94-100. [PMID: 32250744 DOI: 10.1016/j.placenta.2020.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION miR-150-5p is involved in placenta function. Matrix metalloproteinases (MMPs) play important roles in migration and invasion of cells, while VEGF is the major contributing factor in angiogenesis, and they are related to miR-150-5p. However, the mechanism by which miR-150-5p regulates placental functions is not known. Thus, we investigated the influence of miR-150-5p on extravillous trophoblast function and the underlying epigenetic mechanism. METHODS Real-time PCR were used to detect the miR-150-5p in the placenta of patients with preeclampsia and normal pregnant women. HTR-8/SVneo and JEG-3 cells were transfected with miR-150-5p inhibitor. Furthermore, we used CoCl2 to establish the hypoxia cell model. qRT-PCR and Western blot analysis were performed to detect VEGF and MMP9 expression levels in the transfected cells. Cell Counting Kit-8 assay was conducted to evaluate the proliferation ability. Wound-healing and transwell assays were used to detect the migration and invasion capacities. Tube formation assay was performed to evaluate the angiogenesis ability. RESULTS miR-150-5p was up-regulated in the placenta of patients with preeclampsia. Inhibition of miR-150-5p significantly enhanced migration, invasion, and angiogenesis ability of both JEG-3 and HTR-8/SVneo cells. Similar results were seen in the hypoxic HTR-8/SVneo cell model. Moreover, mRNA and protein expression levels of VEGF and MMP9 were upregulated by the inhibition of miR-150-5p. DISCUSSION miR-150-5p impacts placental cellular abilities, including migration, invasion, and angiogenesis of extravillous trophoblast cells. More importantly, miR-150-5p regulates VEGF and MMP9 expression. The results suggest that miR-150-5p may have an impact on placenta functions.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lijie Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Mwamaka Sharifu Lali
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuting Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
38
|
Liu R, Wei C, Ma Q, Wang W. Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregnancy Hypertens 2019; 19:1-10. [PMID: 31841877 DOI: 10.1016/j.preghy.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The present study aims to explore the possible mechanisms of Hippo-YAP1 signaling pathway in the development of severe preeclampsia (sPE). METHODS A total of 14 pregnancies complicated with severe preeclampsia as well as 14 healthy pregnancies were involved in this research from Department of Obstetrics, the First Affiliated Hospital of Xi'An Jiaotong University, from 15th March 2016 to 15th March 2018. The mRNA levels of YAP1, TAZ, MST1 and MST2 were tested via the RT-qPCR in the placentas between the two groups. Also, the protein expression degrees of YAP1, TAZ, MST 1 and MST 2 were detected using the technology of Western blotting. At the same time, immune-histochemistry method was performed to localize the expression of YAP1, TAZ, MST 1 and MST 2 proteins in the placentas between the two groups. Yes-associated protein expression was also detected in BeWo and HTR-8/SVneo. Overexpressed plasmid and YAP1 si-RNA were transfered into HTR-8/SVneo trophoblast cells. Transwell invasion assay was used to examine the role of YAP1 in the invasion of HTR-8/SVneo trophoblast cells. RESULTS In comparison with the normal pregnancy placentas, the mRNA levels of YAP (0.659 ± 0.169 vs. 1.758 ± 0.587, P < 0.001) and TAZ (1.148 ± 0.313 vs. 2.894 ± 0.470, P < 0.001) were decreased in the placentas of severe preeclampsia group while the mRNA levels of MST 1 (1.433 ± 0.306 vs. 0.663 ± 0.162, P < 0.001) and MST 2 (1.497 ± 0.378 vs. 0.554 ± 0.130, P < 0.001) were increased. The Western blotting shown that the expression degrees of YAP1 and TAZ proteins were significantly decreased in the placentas of severe preeclampsia, while the expression level of MST 1 and MST 2 was obviously increased. Furthermore, the staining intensity of YAP1 and TAZ were weaker in the placentas of the severe PE group while the staining intensity of MST 1 and MST 2 was significantly stronger in the placentas of the severe PE group. The invasion ability of the HTR-8/SVneo cells in the YAP1-overexpressed group was significantly higher than the corresponding control group ((313.7 ± 5.86) vs.(194.0 ± 4.00), P < 0.05) while the si-YAP1 group was significantly lower than that of the corresponding control group ((81.33 ± 2.52) vs. (204.67 ± 11.02), P < 0.05). CONCLUSIONS Hippo-YAP1 signaling pathway may play an essential role in the pathogenesis of sPE by regulating the invasion and proliferation of trophoblast.
Collapse
Affiliation(s)
- Rui Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Gynecology, Maternity and Children's Healthcare Hospital of Foshan, Foshan, Guangdong 528000,China
| | - Chan Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiang Ma
- Department of Peripheral Vessels, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weimin Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|