1
|
Randolph LN, Castiglioni C, Tavian M, Sturgeon CM, Ditadi A. Bloodhounds chasing the origin of blood cells. Trends Cell Biol 2025:S0962-8924(25)00067-4. [PMID: 40221343 DOI: 10.1016/j.tcb.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The generation of blood cells during embryonic development involves a process resembling lineage reprogramming, where specialized cells within the vasculature become blood forming, or hemogenic. These hemogenic cells undergo rapid transcriptional and morphological changes as they appear to switch from an endothelial to blood identity. What controls this process and the exact nature of the hemogenic cells remains debated, with evidence supporting several hypotheses. In this opinion, we synthesize current knowledge and propose a model reconciling conflicting observations, integrating evolutionary and mechanistic insights into blood cell emergence.
Collapse
Affiliation(s)
- Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Castiglioni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Tavian
- University of Strasbourg, INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Kasirer S, Sprinzak D. Interplay between Notch signaling and mechanical forces during developmental patterning processes. Curr Opin Cell Biol 2024; 91:102444. [PMID: 39608232 DOI: 10.1016/j.ceb.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
The coordination between biochemical signals and cell mechanics has emerged in recent years as a crucial mechanism driving developmental patterning processes across a variety of developing and homeostatic systems. An important class of such developmental processes relies on local communication between neighboring cells through Notch signaling. Here, we review how the coordination between Notch-mediated differentiation and cell mechanics can give rise to unique cellular patterns. We discuss how global and local mechanical cues can affect, and be affected by, cellular differentiation and reorganization controlled by Notch signaling. We compare recent studies of such developmental processes, including the mammalian inner ear, Drosophila ommatidia, intestinal organoids, and zebrafish myocardium, to draw shared general concepts and their broader implications in biology.
Collapse
Affiliation(s)
- Shahar Kasirer
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
4
|
Chouly M, Bally-Cuif L. Generating neurons in the embryonic and adult brain: compared principles and mechanisms. C R Biol 2024; 347:199-221. [PMID: 39535540 DOI: 10.5802/crbiol.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Neurogenesis is a lifelong process, generating neurons in the right amount, time and place and with the correct identity to permit the growth, function, plasticity and repair of the nervous system, notably the brain. Neurogenesis originates from neural progenitor cells (NPs), endowed with the capacity to divide, renew to maintain the progenitor population, or commit to engage in the neurogenesis process. In the adult brain, these progenitors are classically called neural stem cells (NSCs). We review here the commonalities and differences between NPs and NSCs, in their cellular and molecular attributes but also in their potential, regulators and lineage, in the embryonic and adult brains. Our comparison is based on the two most studied model systems, namely the telencephalon of the zebrafish and mouse. We also discuss how the population of embryonic NPs gives rise to adult NSCs, and outstanding questions pertaining to this transition.
Collapse
|
5
|
Pujar AA, Barua A, Dey PS, Singh D, Roy U, Jolly MK, Hatzikirou H. Microenvironmental entropy dynamics analysis reveals novel insights into Notch-Delta-Jagged decision-making mechanism. iScience 2024; 27:110569. [PMID: 39318535 PMCID: PMC11420447 DOI: 10.1016/j.isci.2024.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 09/26/2024] Open
Abstract
Notch-Delta-Jagged (NDJ) signaling among neighboring cells contributes crucially to spatiotemporal pattern formation and developmental decision-making. Despite numerous detailed mathematical models, their high-dimensionality parametric space limits analytical treatment, especially regarding local microenvironmental fluctuations. Using the low-dimensional dynamics of the recently postulated least microenvironmental uncertainty principle (LEUP) framework, we showcase how the LEUP formalism recapitulates a noisy NDJ spatial patterning. Our LEUP simulations show that local phenotypic entropy increases for lateral inhibition but decreases for lateral induction. This distinction allows us to identify a critical parameter that captures the transition from a Notch-Delta-driven lateral inhibition to a Notch-Jagged-driven lateral induction phenomenon and suggests random phenotypic patterning in the case of lack of dominance of either Notch-Delta or Notch-Jagged signaling. Our results enable an analytical treatment to map the high-dimensional dynamics of NDJ signaling on tissue-level patterning and can possibly be generalized to decode operating principles of collective cellular decision-making.
Collapse
Affiliation(s)
- Aditi Ajith Pujar
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Partha Sarathi Dey
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Divyoj Singh
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Ushasi Roy
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Haralampos Hatzikirou
- Mathematics Department, Khalifa University, P.O. Box: 127788, Abu Dhabi, UAE
- Technische Univesität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, P.O. Box: 01062, Dresden, Germany
| |
Collapse
|
6
|
Garibyan M, Hoffman T, Makaske T, Do SK, Wu Y, Williams BA, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Santoso JW, Khademhosseini A, Thomson M, Li S, McCain ML, Morsut L. Engineering programmable material-to-cell pathways via synthetic notch receptors to spatially control differentiation in multicellular constructs. Nat Commun 2024; 15:5891. [PMID: 39003263 PMCID: PMC11246427 DOI: 10.1038/s41467-024-50126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
Collapse
Affiliation(s)
- Mher Garibyan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Thijs Makaske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Utrecht University in the lab of Prof. Dr. Lukas Kapitein, Los Angeles, CA, 90024, USA
| | - Stephanie K Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander R March
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathan Cho
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo Espinosa Lima
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brooke Jackson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan L McCain
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Zhang L, Xue G, Zhou X, Huang J, Li Z. A mathematical framework for understanding the spontaneous emergence of complexity applicable to growing multicellular systems. PLoS Comput Biol 2024; 20:e1011882. [PMID: 38838038 PMCID: PMC11182560 DOI: 10.1371/journal.pcbi.1011882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
In embryonic development and organogenesis, cells sharing identical genetic codes acquire diverse gene expression states in a highly reproducible spatial distribution, crucial for multicellular formation and quantifiable through positional information. To understand the spontaneous growth of complexity, we constructed a one-dimensional division-decision model, simulating the growth of cells with identical genetic networks from a single cell. Our findings highlight the pivotal role of cell division in providing positional cues, escorting the system toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical mechanism translating spatial contacts into gene expression. Our model demonstrates that the spatial arrangement resulting from cell division, combined with cell lineages, imparts positional information, specifying multiple cell states with increased complexity-illustrated through examples in C.elegans. This study constitutes a foundational step in comprehending developmental intricacies, paving the way for future quantitative formulations to construct synthetic multicellular patterns.
Collapse
Affiliation(s)
- Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaolin Zhou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
9
|
Dawson J, Bryant A, Jordan T, Bhikot S, Macon S, Walton B, Ajamu-Johnson A, Langridge PD, Malmi-Kakkada AN. Contact area and tissue growth dynamics shape synthetic juxtacrine signaling patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548752. [PMID: 37503188 PMCID: PMC10370035 DOI: 10.1101/2023.07.12.548752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns. We find that the area of contact between cells largely determines the extent of synNotch activation, leading to the prediction that the shape of the interface between signal-sending and signal-receiving cells will impact the magnitude of the synNotch response. Notably, synNotch outputs form a graded spatial profile that extends several cell diameters from the signal source, providing evidence that the response to juxtacrine signals can persist in cells as they proliferate away from source cells, or that cells remain able to communicate directly over several cell diameters. Our model suggests the former mechanism may be sufficient, since it predicts graded outputs without diffusion or long-range cell-cell communication. Overall, we identify that cell-cell contact area together with output synthesis and decay rates likely govern the pattern of synNotch outputs in both space and time during tissue growth, insights that may have broader implications for juxtacrine signaling in general.
Collapse
|
10
|
Yu P, Li Y, Fang W, Feng XQ, Li B. Mechanochemical dynamics of collective cells and hierarchical topological defects in multicellular lumens. SCIENCE ADVANCES 2024; 10:eadn0172. [PMID: 38691595 PMCID: PMC11062584 DOI: 10.1126/sciadv.adn0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Collective cell dynamics is essential for tissue morphogenesis and various biological functions. However, it remains incompletely understood how mechanical forces and chemical signaling are integrated to direct collective cell behaviors underlying tissue morphogenesis. Here, we propose a three-dimensional (3D) mechanochemical theory accounting for biochemical reaction-diffusion and cellular mechanotransduction to investigate the dynamics of multicellular lumens. We show that the interplay between biochemical signaling and mechanics can trigger either pitchfork or Hopf bifurcation to induce diverse static mechanochemical patterns or generate oscillations with multiple modes both involving marked mechanical deformations in lumens. We uncover the crucial role of mechanochemical feedback in emerging morphodynamics and identify the evolution and morphogenetic functions of hierarchical topological defects including cell-level hexatic defects and tissue-level orientational defects. Our theory captures the common mechanochemical traits of collective dynamics observed in experiments and could provide a mechanistic context for understanding morphological symmetry breaking in 3D lumen-like tissues.
Collapse
Affiliation(s)
- Pengyu Yu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Wei Fang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Fazelzadeh Haghighi M, Jafari Khamirani H, Fallahi J, Monfared AA, Ashrafi Dehkordi K, Tabei SMB. Novel insight into FCSK-congenital disorder of glycosylation through a CRISPR-generated cell model. Mol Genet Genomic Med 2024; 12:e2445. [PMID: 38722107 PMCID: PMC11080630 DOI: 10.1002/mgg3.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.
Collapse
Affiliation(s)
- Maryam Fazelzadeh Haghighi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | | | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Arabi Monfared
- Central Research LaboratoryShiraz University of Medical SciencesShirazIran
| | - Korosh Ashrafi Dehkordi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical GeneticsShiraz University of Medical SciencesShirazIran
- Maternal‐Fetal Medicine Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
12
|
Kang TY, Bocci F, Nie Q, Onuchic JN, Levchenko A. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. eLife 2024; 12:RP89262. [PMID: 38376371 PMCID: PMC10942579 DOI: 10.7554/elife.89262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| |
Collapse
|
13
|
Urman MA, John NS, Jung T, Lee C. Aging disrupts spatiotemporal regulation of germline stem cells and niche integrity. Biol Open 2024; 13:bio060261. [PMID: 38156664 PMCID: PMC10810562 DOI: 10.1242/bio.060261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
A major factor driving stem cell decline is stem cell niche aging, but its molecular mechanism remains elusive. We use the Caenorhabditis elegans distal tip cell (DTC), the mesenchymal niche that employs Notch signaling to regulate germline stem cells (GSCs), as an in vivo niche aging model and delineate the molecular details of the DTC/niche aging process. Here, we demonstrate that a drastic decrease in C. elegans germline fecundity, which begins even in early adulthood, is mainly due to an age-induced disruption in spatial regulation of Notch-dependent transcription in the germline combined with a moderate reduction in Notch transcription at both tissue and cellular levels. Consequently, the Notch-responsive GSC pool shifts from the distal end of the gonad to a more proximal region, disrupting the distal-to-proximal germline polarity. We find that this GSC pool shift is due to a dislocation of the DTC/niche nucleus, which is associated with age-induced changes in the structure and morphology of the DTC/niche. Our findings reveal a critical link between physiological changes in the aging niche, their consequences in stem cell regulation, and germline tissue functions.
Collapse
Affiliation(s)
- Michelle A. Urman
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Nimmy S. John
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Tyler Jung
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - ChangHwan Lee
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
14
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
15
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
16
|
Sego TJ, Sluka JP, Sauro HM, Glazier JA. Tissue Forge: Interactive biological and biophysics simulation environment. PLoS Comput Biol 2023; 19:e1010768. [PMID: 37871133 PMCID: PMC10621971 DOI: 10.1371/journal.pcbi.1010768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Tissue Forge is an open-source interactive environment for particle-based physics, chemistry and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore models and virtual experiments based on soft condensed matter physics at multiple scales, from the molecular to the multicellular, using a simple, consistent interface. While Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and tissue biophysics, it supports applications ranging from classic molecular dynamics to agent-based multicellular systems with dynamic populations. Tissue Forge users can build and interact with models and simulations in real-time and change simulation details during execution, or execute simulations off-screen and/or remotely in high-performance computing environments. Tissue Forge provides a growing library of built-in model components along with support for user-specified models during the development and application of custom, agent-based models. Tissue Forge includes an extensive Python API for model and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as well as C and C++ APIs for integrated applications with other software tools. Tissue Forge supports installations on 64-bit Windows, Linux and MacOS systems and is available for local installation via conda.
Collapse
Affiliation(s)
- T. J. Sego
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - James P. Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - James A. Glazier
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
17
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
18
|
Docshin P, Bairqdar A, Malashicheva A. Interplay between BMP2 and Notch signaling in endothelial-mesenchymal transition: implications for cardiac fibrosis. Stem Cell Investig 2023; 10:18. [PMID: 37842185 PMCID: PMC10570623 DOI: 10.21037/sci-2023-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Background The endothelial-to-mesenchymal transition (EndoMT) is a crucial process in cardiovascular development and disorders. Cardiac fibrosis, characterized by excessive collagen deposition, occurs in heart failure, leading to the organ remodeling. Embryonic signaling pathways such as bone morphogenetic protein 2 (BMP2) and Notch are involved in its regulation. However, the interplay between these pathways in EndoMT remains unclear. Methods This study investigates the downstream targets of Notch and BMP2 and their effect on EndoMT markers in cardiac mesenchymal cells (CMCs) and human umbilical vein endothelial cells (HUVECs). We transduced cell cultures with vectors carrying intracellular domain of NOTCH1 (NICD) and/or BMP2 and evaluated gene expression and activation of EndoMT markers. Results The results suggest that the Notch and BMP2 signaling pathways have common downstream targets that regulate EndoMT. The activation of BMP2 and Notch is highly dependent on cell type, and co-cultivation of CMCs and HUVECs produced opposing cellular responses to target gene expression and α-smooth muscle actin (α-SMA) synthesis. Conclusions The balance between Notch and BMP2 signaling determines the outcome of EndoMT and fibrosis in the heart. The study's findings highlight the need for further research to understand the interaction between Notch and BMP2 in the heart and develop new therapeutic strategies for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Pavel Docshin
- Laboratory of Molecular Cardiology, Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Science, Saint Petersburg, Russia
| | - Ahmad Bairqdar
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Science, Saint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Science, Saint Petersburg, Russia
| |
Collapse
|
19
|
Xiong LI, Garfinkel A. Are physiological oscillations physiological? J Physiol 2023. [PMID: 37622389 DOI: 10.1113/jp285015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to argue that oscillations play critical physiological roles, such as enabling systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic β-cells, glycolytic oscillations synchronize with calcium and mitochondrial oscillations to drive pulsatile insulin release, critical for liver regulation of glucose. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a re-thinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed in the clinic. A more dynamic approach will initiate a paradigm shift in our view of health and disease. A deeper look into the mechanisms that create, sustain and abolish oscillatory processes requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory. Nonlinear dynamics enables us to identify oscillatory ('pacemaking') mechanisms at the cellular, tissue and system levels.
Collapse
Affiliation(s)
- Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:10.1088/1361-6633/acec88. [PMID: 37531952 PMCID: PMC10521208 DOI: 10.1088/1361-6633/acec88] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
Affiliation(s)
- Federico Bocci
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - José Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
21
|
Corsaro L, Gambino VS. Notch, SUMOylation, and ESR-Mediated Signalling Are the Main Molecular Pathways Showing Significantly Different Epimutation Scores between Expressing or Not Oestrogen Receptor Breast Cancer in Three Public EWAS Datasets. Cancers (Basel) 2023; 15:4109. [PMID: 37627137 PMCID: PMC10452656 DOI: 10.3390/cancers15164109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that, although not completely homogeneous, differ in biological characteristics, clinical behaviour, and therapeutic options. The study, based on three publicly available EWAS (Epigenetic Wide Association Study) datasets, focuses on the comparison between these two groups of breast cancer using an epimutation score. The score is calculated not only based on the presence of the epimutation, but also on the deviation amplitude of the methylation outlier value. For each dataset, we performed a functional analysis based first on the functional gene region of each annotated gene (we aggregated the data per gene region TSS1500, TSS200, first-exon, and body-gene identified by the information from the Illumina Data Sheet), and then, we performed a pathway enrichment analysis through the REACTOME database based on the genes with the highest epimutation score. Thus, we blended our results and found common pathways for all three datasets. We found that a higher and significant epimutation score due to hypermethylation in ER-positive BC is present in the promoter region of the genes belonging to the SUMOylation pathway, the Notch pathway, the IFN-γ signalling pathway, and the deubiquitination protease pathway, while a higher and significant level of epimutation due to hypomethylation in ER-positive BC is present in the promoter region of the genes belonging to the ESR-mediated pathway. The presence of this state of promoter hypomethylation in the ESR-mediated signalling genes is consistent and coherent with an active signalling pathway mediated by oestrogen function in the group of ER-positive BC. The SUMOylation and Notch pathways are associated with BC pathogenesis and have been found to play distinct roles in the two BC subgroups. We speculated that the altered methylation profile may play a role in regulating signalling pathways with specific functions in the two subgroups of ER BC.
Collapse
Affiliation(s)
- Luigi Corsaro
- Centro Diagnostico Italiano, Università di Pavia, 20100 Milan, Italy
| | | |
Collapse
|
22
|
Yoshihara M, Takahashi S. Recent advances in in situ Notch signaling measurement. Front Cell Dev Biol 2023; 11:1244105. [PMID: 37576594 PMCID: PMC10416437 DOI: 10.3389/fcell.2023.1244105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Notch signaling is necessary for the development of many organ systems, including the nervous system, biliary system, and visual and auditory sensory systems. This signaling pathway is composed of DSL ligands and Notch receptors. Upon the interaction of those components between neighboring cells, the intracellular domain of the Notch receptor is cleaved from the cell membrane to act as a transcription factor. To date, many mechanistic insights, including lateral inhibition and lateral induction, have been proposed from observation of patterning morphogenesis and expression profiles of Notch signaling-associated molecules. The lack of a direct measurement method for Notch signaling, however, has impeded the examination of those mechanistic insights. In this mini-review, recent advances in the direct measurement of Notch signaling are introduced with a focus on the application of genetic modification of Notch receptors with the components of the Cre/loxP system and Gal4/UAS system. The combination of such conventional genetic techniques is opening a new era in Notch signaling biology by direct visualization of Notch "signaling" in addition to Notch signaling-associated molecules.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. ARXIV 2023:arXiv:2302.07401v2. [PMID: 36824430 PMCID: PMC9949162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
|
24
|
Mukherjee M, Levine H. The alternate ligand Jagged enhances the robustness of Notch signaling patterns. SOFT MATTER 2023. [PMID: 37323020 DOI: 10.1039/d2sm01508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The Notch pathway, an example of juxtacrine signaling, is an evolutionary conserved cell-cell communication mechanism. It governs emergent spatiotemporal patterning in tissues during development, wound healing and tumorigenesis. Communication occurs when Notch receptors of one cell bind to either of its ligands, Delta/Jagged of the neighboring cell. In general, Delta-mediated signaling drives neighboring cells to have an opposite fate (lateral inhibition) whereas Jagged-mediated signaling drives cells to maintain similar fates (lateral induction). Here, by deriving and solving a reduced set of 12 coupled ordinary differential equations for the Notch-Delta-Jagged system on a hexagonal grid of cells, we determine the allowed states across different parameter sets. We also show that Jagged (at low dose) acts synergistically with Delta to enable more robust pattern formation by making the neighboring cell states more distinct from each other, despite its lateral induction property. Our findings extend our understanding of the possible synergistic role of Jagged with Delta which had been previously proposed through experiments and models in the context of chick inner ear development. Finally, we show how Jagged can help to expand the bistable (both uniform and hexagon phases are stable) region, where a local perturbation can spread over time in an ordered manner to create a biologically relevant, perfectly ordered lateral inhibition pattern.
Collapse
Affiliation(s)
- Mrinmoy Mukherjee
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
- Depts. of Physics and Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
Adler M, Moriel N, Goeva A, Avraham-Davidi I, Mages S, Adams TS, Kaminski N, Macosko EZ, Regev A, Medzhitov R, Nitzan M. Emergence of division of labor in tissues through cell interactions and spatial cues. Cell Rep 2023; 42:112412. [PMID: 37086403 PMCID: PMC10242439 DOI: 10.1016/j.celrep.2023.112412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Abstract
Most cell types in multicellular organisms can perform multiple functions. However, not all functions can be optimally performed simultaneously by the same cells. Functions incompatible at the level of individual cells can be performed at the cell population level, where cells divide labor and specialize in different functions. Division of labor can arise due to instruction by tissue environment or through self-organization. Here, we develop a computational framework to investigate the contribution of these mechanisms to division of labor within a cell-type population. By optimizing collective cellular task performance under trade-offs, we find that distinguishable expression patterns can emerge from cell-cell interactions versus instructive signals. We propose a method to construct ligand-receptor networks between specialist cells and use it to infer division-of-labor mechanisms from single-cell RNA sequencing (RNA-seq) and spatial transcriptomics data of stromal, epithelial, and immune cells. Our framework can be used to characterize the complexity of cell interactions within tissues.
Collapse
Affiliation(s)
- Miri Adler
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Noa Moriel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aleksandrina Goeva
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Inbal Avraham-Davidi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Simon Mages
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Evan Z Macosko
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023; 141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
Affiliation(s)
- Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Garibyan M, Hoffman T, Makaske T, Do S, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Khademhosseini A, Li S, McCain M, Morsut L. Engineering Programmable Material-To-Cell Pathways Via Synthetic Notch Receptors To Spatially Control Cellular Phenotypes In Multi-Cellular Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541497. [PMID: 37293089 PMCID: PMC10245658 DOI: 10.1101/2023.05.19.541497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic Notch (synNotch) receptors are modular synthetic components that are genetically engineered into mammalian cells to detect signals presented by neighboring cells and respond by activating prescribed transcriptional programs. To date, synNotch has been used to program therapeutic cells and pattern morphogenesis in multicellular systems. However, cell-presented ligands have limited versatility for applications that require spatial precision, such as tissue engineering. To address this, we developed a suite of materials to activate synNotch receptors and serve as generalizable platforms for generating user-defined material-to-cell signaling pathways. First, we demonstrate that synNotch ligands, such as GFP, can be conjugated to cell- generated ECM proteins via genetic engineering of fibronectin produced by fibroblasts. We then used enzymatic or click chemistry to covalently link synNotch ligands to gelatin polymers to activate synNotch receptors in cells grown on or within a hydrogel. To achieve microscale control over synNotch activation in cell monolayers, we microcontact printed synNotch ligands onto a surface. We also patterned tissues comprising cells with up to three distinct phenotypes by engineering cells with two distinct synthetic pathways and culturing them on surfaces microfluidically patterned with two synNotch ligands. We showcase this technology by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined spatial patterns towards the engineering of muscle tissue with prescribed vascular networks. Collectively, this suite of approaches extends the synNotch toolkit and provides novel avenues for spatially controlling cellular phenotypes in mammalian multicellular systems, with many broad applications in developmental biology, synthetic morphogenesis, human tissue modeling, and regenerative medicine.
Collapse
|
28
|
Espina JA, Cordeiro MH, Barriga EH. Tissue interplay during morphogenesis. Semin Cell Dev Biol 2023; 147:12-23. [PMID: 37002130 DOI: 10.1016/j.semcdb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
The process by which biological systems such as cells, tissues and organisms acquire shape has been named as morphogenesis and it is central to a plethora of biological contexts including embryo development, wound healing, or even cancer. Morphogenesis relies in both self-organising properties of the system and in environmental inputs (biochemical and biophysical). The classical view of morphogenesis is based on the study of external biochemical molecules, such as morphogens. However, recent studies are establishing that the mechanical environment is also used by cells to communicate within tissues, suggesting that this mechanical crosstalk is essential to synchronise morphogenetic transitions and self-organisation. In this article we discuss how tissue interaction drive robust morphogenesis, starting from a classical biochemical view, to finalise with more recent advances on how the biophysical properties of a tissue feedback with their surroundings to allow form acquisition. We also comment on how in silico models aid to integrate and predict changes in cell and tissue behaviour. Finally, considering recent advances from the developmental biomechanics field showing that mechanical inputs work as cues that promote morphogenesis, we invite to revisit the concept of morphogen.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Marilia H Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
| |
Collapse
|
29
|
Arcuschin CD, Pinkasz M, Schor IE. Mechanisms of robustness in gene regulatory networks involved in neural development. Front Mol Neurosci 2023; 16:1114015. [PMID: 36814969 PMCID: PMC9940843 DOI: 10.3389/fnmol.2023.1114015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
The functions of living organisms are affected by different kinds of perturbation, both internal and external, which in many cases have functional effects and phenotypic impact. The effects of these perturbations become particularly relevant for multicellular organisms with complex body patterns and cell type heterogeneity, where transcriptional programs controlled by gene regulatory networks determine, for example, the cell fate during embryonic development. Therefore, an essential aspect of development in these organisms is the ability to maintain the functionality of their genetic developmental programs even in the presence of genetic variation, changing environmental conditions and biochemical noise, a property commonly termed robustness. We discuss the implication of different molecular mechanisms of robustness involved in neurodevelopment, which is characterized by the interplay of many developmental programs at a molecular, cellular and systemic level. We specifically focus on processes affecting the function of gene regulatory networks, encompassing transcriptional regulatory elements and post-transcriptional processes such as miRNA-based regulation, but also higher order regulatory organization, such as gene network topology. We also present cases where impairment of robustness mechanisms can be associated with neurodevelopmental disorders, as well as reasons why understanding these mechanisms should represent an important part of the study of gene regulatory networks driving neural development.
Collapse
Affiliation(s)
- Camila D. Arcuschin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Pinkasz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio E. Schor
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
31
|
Xu X, Seymour PA, Sneppen K, Trusina A, Egeskov-Madsen ALR, Jørgensen MC, Jensen MH, Serup P. Jag1-Notch cis-interaction determines cell fate segregation in pancreatic development. Nat Commun 2023; 14:348. [PMID: 36681690 PMCID: PMC9867774 DOI: 10.1038/s41467-023-35963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The Notch ligands Jag1 and Dll1 guide differentiation of multipotent pancreatic progenitor cells (MPCs) into unipotent pro-acinar cells (PACs) and bipotent duct/endocrine progenitors (BPs). Ligand-mediated trans-activation of Notch receptors induces oscillating expression of the transcription factor Hes1, while ligand-receptor cis-interaction indirectly represses Hes1 activation. Despite Dll1 and Jag1 both displaying cis- and trans-interactions, the two mutants have different phenotypes for reasons not fully understood. Here, we present a mathematical model that recapitulates the spatiotemporal differentiation of MPCs into PACs and BPs. The model correctly captures cell fate changes in Notch pathway knockout mice and small molecule inhibitor studies, and a requirement for oscillatory Hes1 expression to maintain the multipotent state. Crucially, the model entails cell-autonomous attenuation of Notch signaling by Jag1-mediated cis-inhibition in MPC differentiation. The model sheds light on the underlying mechanisms, suggesting that cis-interaction is crucial for exiting the multipotent state, while trans-interaction is required for adopting the bipotent fate.
Collapse
Affiliation(s)
- Xiaochan Xu
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Philip Allan Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kim Sneppen
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Ala Trusina
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mogens Høgh Jensen
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
32
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
33
|
Furman DP, Bukharina TA. Genetic Regulation of Morphogenesis of Drosophila melanogaster Mechanoreceptors. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
35
|
Hawley J, Manning C, Biga V, Glendinning P, Papalopulu N. Dynamic switching of lateral inhibition spatial patterns. J R Soc Interface 2022; 19:20220339. [PMID: 36000231 PMCID: PMC9399705 DOI: 10.1098/rsif.2022.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hes genes are transcriptional repressors activated by Notch. In the developing mouse neural tissue, HES5 expression oscillates in neural progenitors (Manning et al. 2019 Nat. Commun. 10, 1-19 (doi:10.1038/s41467-019-10734-8)) and is spatially organized in small clusters of cells with synchronized expression (microclusters). Furthermore, these microclusters are arranged with a spatial periodicity of three-four cells in the dorso-ventral axis and show regular switching between HES5 high/low expression on a longer time scale and larger amplitude than individual temporal oscillators (Biga et al. 2021 Mol. Syst. Biol. 17, e9902 (doi:10.15252/msb.20209902)). However, our initial computational modelling of coupled HES5 could not explain these features of the experimental data. In this study, we provide theoretical results that address these issues with biologically pertinent additions. Here, we report that extending Notch signalling to non-neighbouring progenitor cells is sufficient to generate spatial periodicity of the correct size. In addition, introducing a regular perturbation of Notch signalling by the emerging differentiating cells induces a temporal switching in the spatial pattern, which is longer than an individual cell's periodicity. Thus, with these two new mechanisms, a computational model delivers outputs that closely resemble the complex tissue-level HES5 dynamics. Finally, we predict that such dynamic patterning spreads out differentiation events in space, complementing our previous findings whereby the local synchronization controls the rate of differentiation.
Collapse
Affiliation(s)
- Joshua Hawley
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Cerys Manning
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Veronica Biga
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Glendinning
- Department of Mathematics, The University of Manchester, Manchester, UK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Galbraith M, Bocci F, Onuchic JN. Stochastic fluctuations promote ordered pattern formation of cells in the Notch-Delta signaling pathway. PLoS Comput Biol 2022; 18:e1010306. [PMID: 35862460 PMCID: PMC9345490 DOI: 10.1371/journal.pcbi.1010306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/02/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
The Notch-Delta signaling pathway mediates cell differentiation implicated in many regulatory processes including spatiotemporal patterning in tissues by promoting alternate cell fates between neighboring cells. At the multicellular level, this "lateral inhibition” principle leads to checkerboard patterns with alternation of Sender and Receiver cells. While it is well known that stochasticity modulates cell fate specification, little is known about how stochastic fluctuations at the cellular level propagate during multicell pattern formation. Here, we model stochastic fluctuations in the Notch-Delta pathway in the presence of two different noise types–shot and white–for a multicell system. Our results show that intermediate fluctuations reduce disorder and guide the multicell lattice toward checkerboard-like patterns. By further analyzing cell fate transition events, we demonstrate that intermediate noise amplitudes provide enough perturbation to facilitate “proofreading” of disordered patterns and cause cells to switch to the correct ordered state (Sender surrounded by Receivers, and vice versa). Conversely, high noise can override environmental signals coming from neighboring cells and lead to switching between ordered and disordered patterns. Therefore, in analogy with spin glass systems, intermediate noise levels allow the multicell Notch system to escape frustrated patterns and relax towards the lower energy checkerboard pattern while at large noise levels the system is unable to find this ordered base of attraction. The Notch pathway is involved in many biological processes and is known to form precise spatial patterns alternating Sender and Receiver cell states. Quantifying the implications of stochastic fluctuations provided insight that patterns formed in Notch-mediated pathways must follow a predetermined path towards checkerboard or exist in a noisy environment which promotes order through error correction. We model Notch pattern formation stochastically and analyze the spatiotemporal dynamics. Our results show multicellular systems equilibrate towards ordered systems, but mistakes in the initial lattice propagate causing the systems to relax into frustrated systems. Only through existing in a noisy environment are the systems able to relax into the checkerboard pattern. Analyzing the temporal dynamics confirms, in environments with intermediate noise, the “incorrect” cells (Sender in a Sender environment, and vice versa) can be flipped to the correct state (Sender in a Receiver environment, and vice versa). Comparing with the spin glass energy landscape, we suggest the multicellular model follows a rugged landscape to form patterns with stochastic fluctuations required to enforce order throughout the system.
Collapse
Affiliation(s)
- Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate research, University of California Irvine, California, United States of America
- * E-mail: (FB); (JNO)
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
- Department of Chemistry, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (FB); (JNO)
| |
Collapse
|
37
|
Lee Y, Kim B, Jung J, Koh B, Jhang SY, Ban C, Chi WJ, Kim S, Yu J. Chromosome-level genome assembly of Plazaster borealis sheds light on the morphogenesis of multiarmed starfish and its regenerative capacity. Gigascience 2022; 11:giac063. [PMID: 35809048 PMCID: PMC9270726 DOI: 10.1093/gigascience/giac063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plazaster borealis has a unique morphology, displaying multiple arms with a clear distinction between disk and arms, rather than displaying pentaradial symmetry, a remarkable characteristic of echinoderms. Herein we report the first chromosome-level reference genome of P. borealis and an essential tool to further investigate the basis of the divergent morphology. FINDINGS In total, 57.76 Gb of a long read and 70.83 Gb of short-read data were generated to assemble a de novo 561-Mb reference genome of P. borealis, and Hi-C sequencing data (57.47 Gb) were used for scaffolding into 22 chromosomal scaffolds comprising 92.38% of the genome. The genome completeness estimated by BUSCO was 98.0% using the metazoan set, indicating a high-quality assembly. Through the comparative genome analysis, we identified evolutionary accelerated genes known to be involved in morphogenesis and regeneration, suggesting their potential role in shaping body pattern and capacity of regeneration. CONCLUSION This first chromosome-level genome assembly of P. borealis provides fundamental insights into echinoderm biology, as well as the genomic mechanism underlying its unique morphology and regeneration.
Collapse
Affiliation(s)
- Yujung Lee
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| | - Bongsang Kim
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehoon Jung
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul 08826, Republic of Korea
| | - Bomin Koh
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| | - So Yun Jhang
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaeyoung Ban
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| | - Won-Jae Chi
- Department of Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Soonok Kim
- Department of Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Jaewoong Yu
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| |
Collapse
|
38
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
39
|
Cassim A, Hettiarachchi D, Dissanayake VHW. Genetic determinants of syndactyly: perspectives on pathogenesis and diagnosis. Orphanet J Rare Dis 2022; 17:198. [PMID: 35549993 PMCID: PMC9097448 DOI: 10.1186/s13023-022-02339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The formation of the digits is a tightly regulated process. During embryogenesis, disturbance of genetic pathways in limb development could result in syndactyly; a common congenital malformation consisting of webbing in adjacent digits. Currently, there is a paucity of knowledge regarding the exact developmental mechanism leading to this condition. The best studied canonical interactions of Wingless‐type–Bone Morphogenic Protein–Fibroblast Growth Factor (WNT–BMP–FGF8), plays a role in the interdigital cell death (ICD) which is thought to be repressed in human syndactyly. Animal studies have displayed other pathways such as the Notch signaling, metalloprotease and non-canonical WNT-Planar cell polarity (PCP), to also contribute to failure of ICD, although less prominence has been given. The current diagnosis is based on a clinical evaluation followed by radiography when indicated, and surgical release of digits at 6 months of age is recommended. This review discusses the interactions repressing ICD in syndactyly, and characterizes genes associated with non-syndromic and selected syndromes involving syndactyly, according to the best studied canonical WNT-BMP-FGF interactions in humans. Additionally, the controversies regarding the current syndactyly classification and the effect of non-coding elements are evaluated, which to our knowledge has not been previously highlighted. The aim of the review is to better understand the developmental process leading to this condition.
Collapse
Affiliation(s)
- Afraah Cassim
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka.
| | - Dineshani Hettiarachchi
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| | - Vajira H W Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| |
Collapse
|
40
|
Zhang Y, Hernandez M, Gower J, Winicki N, Morataya X, Alvarez S, Yuan JXJ, Shyy J, Thistlethwaite PA. JAGGED-NOTCH3 signaling in vascular remodeling in pulmonary arterial hypertension. Sci Transl Med 2022; 14:eabl5471. [PMID: 35507674 DOI: 10.1126/scitranslmed.abl5471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Within the pulmonary arterial tree, the NOTCH3 pathway is crucial in controlling vascular smooth muscle cell proliferation and maintaining smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (PAH) is a fatal disease without cure, characterized by elevated pulmonary vascular resistance due to vascular smooth muscle cell proliferation in precapillary arteries, perivascular inflammation, and asymmetric neointimal hyperplasia. Here, we show that human PAH is characterized by overexpression of the NOTCH ligand JAGGED-1 (JAG-1) in small pulmonary artery smooth muscle cells and that JAG-1 selectively controls NOTCH3 signaling and cellular proliferation in an autocrine fashion. In contrast, the NOTCH ligand DELTA-LIKE 4 is minimally expressed in small pulmonary artery smooth muscle cells from individuals with PAH, inhibits NOTCH3 cleavage and signaling, and retards vascular smooth muscle cell proliferation. A new monoclonal antibody for the treatment of PAH, which blocks JAG-1 cis- and trans-induced cleavage of the NOTCH3 receptor in the pulmonary vasculature, was developed. Inhibition of JAG-1-induced NOTCH3 signaling in the lung reverses clinical and pathologic pulmonary hypertension in two rodent models of disease, without toxic side effects associated with nonspecific NOTCH inhibitors. Our data suggest opposing roles of NOTCH ligands in the pulmonary vasculature in pulmonary hypertension. We propose that selectively targeting JAG-1 activation of NOTCH3 may be an effective, safe strategy to treat PAH.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan Gower
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nolan Winicki
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xena Morataya
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Alvarez
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Shyy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
41
|
Alhashem Z, Feldner-Busztin D, Revell C, Alvarez-Garcillan Portillo M, Camargo-Sosa K, Richardson J, Rocha M, Gauert A, Corbeaux T, Milanetto M, Argenton F, Tiso N, Kelsh RN, Prince VE, Bentley K, Linker C. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 2022; 11:e73550. [PMID: 35438077 PMCID: PMC9129880 DOI: 10.7554/elife.73550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice versa, remains largely unknown. We address these questions by combining in silico modelling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | - Christopher Revell
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
| | | | - Karen Camargo-Sosa
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Joanna Richardson
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Anton Gauert
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Tatianna Corbeaux
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | | | - Natascia Tiso
- Department of Biology, University of PadovaPadovaItaly
| | - Robert N Kelsh
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, The University of ChicagoChicagoUnited States
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
- Department of Informatics, King's College LondonLondonUnited Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| |
Collapse
|
42
|
Lam C, Saluja S, Courcoubetis G, Yu D, Chung C, Courte J, Morsut L. Parameterized Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis Based on Contact-Dependent Signaling and Changes in Cell-Cell Adhesion. ACS Synth Biol 2022; 11:1417-1439. [PMID: 35363477 PMCID: PMC10389258 DOI: 10.1021/acssynbio.0c00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthetic development is a nascent field of research that uses the tools of synthetic biology to design genetic programs directing cellular patterning and morphogenesis in higher eukaryotic cells, such as mammalian cells. One specific example of such synthetic genetic programs was based on cell-cell contact-dependent signaling using synthetic Notch pathways and was shown to drive the formation of multilayered spheroids by modulating cell-cell adhesion via differential expression of cadherin family proteins in a mouse fibroblast cell line (L929). The design method for these genetic programs relied on trial and error, which limited the number of possible circuits and parameter ranges that could be explored. Here, we build a parameterized computational framework that, given a cell-cell communication network driving changes in cell adhesion and initial conditions as inputs, predicts developmental trajectories. We first built a general computational framework where contact-dependent cell-cell signaling networks and changes in cell-cell adhesion could be designed in a modular fashion. We then used a set of available in vitro results (that we call the "training set" in analogy to similar pipelines in the machine learning field) to parameterize the computational model with values for adhesion and signaling. We then show that this parameterized model can qualitatively predict experimental results from a "testing set" of available in vitro data that varied the genetic network in terms of adhesion combinations, initial number of cells, and even changes to the network architecture. Finally, this parameterized model is used to recommend novel network implementation for the formation of a four-layered structure that has not been reported previously. The framework that we develop here could function as a testing ground to identify the reachable space of morphologies that can be obtained by controlling contact-dependent cell-cell communications and adhesion with these molecular tools and in this cellular system. Additionally, we discuss how the model could be expanded to include other forms of communication or effectors for the computational design of the next generation of synthetic developmental trajectories.
Collapse
Affiliation(s)
- Calvin Lam
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Sajeev Saluja
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - George Courcoubetis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| | - Dottie Yu
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Christian Chung
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089-1111, United States
| |
Collapse
|
43
|
Vilchez Mercedes SA, Bocci F, Ahmed M, Eder I, Zhu N, Levine H, Onuchic JN, Jolly MK, Wong PK. Nrf2 Modulates the Hybrid Epithelial/Mesenchymal Phenotype and Notch Signaling During Collective Cancer Migration. Front Mol Biosci 2022; 9:807324. [PMID: 35480877 PMCID: PMC9037689 DOI: 10.3389/fmolb.2022.807324] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Hybrid epithelial/mesenchymal cells (E/M) are key players in aggressive cancer metastasis. It remains a challenge to understand how these cell states, which are mostly non-existent in healthy tissue, become stable phenotypes participating in collective cancer migration. The transcription factor Nrf2, which is associated with tumor progression and resistance to therapy, appears to be central to this process. Here, using a combination of immunocytochemistry, single cell biosensors, and computational modeling, we show that Nrf2 functions as a phenotypic stability factor for hybrid E/M cells by inhibiting a complete epithelial-mesenchymal transition (EMT) during collective cancer migration. We also demonstrate that Nrf2 and EMT signaling are spatially coordinated near the leading edge. In particular, computational analysis of an Nrf2-EMT-Notch network and experimental modulation of Nrf2 by pharmacological treatment or CRISPR/Cas9 gene editing reveal that Nrf2 stabilizes a hybrid E/M phenotype which is maximally observed in the interior region immediately behind the leading edge. We further demonstrate that the Nrf2-EMT-Notch network enhances Dll4 and Jagged1 expression at the leading edge, which correlates with the formation of leader cells and protruding tips. Altogether, our results provide direct evidence that Nrf2 acts as a phenotypic stability factor in restricting complete EMT and plays an important role in coordinating collective cancer migration.
Collapse
Affiliation(s)
- Samuel A. Vilchez Mercedes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Mona Ahmed
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Ian Eder
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics and Department of Bioengineering, Northeastern University, Boston, MA, United States
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, United States
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Herbert Levine, ; José N. Onuchic, ; Mohit Kumar Jolly, ; Pak Kin Wong,
| |
Collapse
|
44
|
Abstract
Notch signalling is an evolutionarily highly conserved signalling mechanism governing differentiation and regulating homeostasis in many tissues. In this review, we discuss recent advances in our understanding of the roles that Notch signalling plays in the vasculature. We describe how Notch signalling regulates different steps during the genesis and remodelling of blood vessels (vasculogenesis and angiogenesis), including critical roles in assigning arterial and venous identities to the emerging blood vessels and regulation of their branching. We then proceed to discuss how experimental perturbation of Notch signalling in the vasculature later in development affects vascular homeostasis. In this review, we also describe how dysregulated Notch signalling, as a consequence of direct mutations of genes in the Notch pathway or aberrant Notch signalling output, contributes to various types of vascular disease, including CADASIL, Snedden syndrome and pulmonary arterial hypertension. Finally, we point out some of the current knowledge gaps and identify remaining challenges in understanding the role of Notch in the vasculature, which need to be addressed to pave the way for Notch-based therapies to cure or ameliorate vascular disease.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
45
|
Zhao C, Lancman JJ, Yang Y, Gates KP, Cao D, Barske L, Matalonga J, Pan X, He J, Graves A, Huisken J, Chen C, Dong PDS. Intrahepatic cholangiocyte regeneration from an Fgf-dependent extrahepatic progenitor niche in a zebrafish model of Alagille Syndrome. Hepatology 2022; 75:567-583. [PMID: 34569629 PMCID: PMC8844142 DOI: 10.1002/hep.32173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Alagille Syndrome (ALGS) is a congenital disorder caused by mutations in the Notch ligand gene JAGGED1, leading to neonatal loss of intrahepatic duct (IHD) cells and cholestasis. Cholestasis can resolve in certain patients with ALGS, suggesting regeneration of IHD cells. However, the mechanisms driving IHD cell regeneration following Jagged loss remains unclear. Here, we show that cholestasis due to developmental loss of IHD cells can be consistently phenocopied in zebrafish with compound jagged1b and jagged2b mutations or knockdown. APPROACH AND RESULTS Leveraging the transience of jagged knockdown in juvenile zebrafish, we find that resumption of Jagged expression leads to robust regeneration of IHD cells through a Notch-dependent mechanism. Combining multiple lineage tracing strategies with whole-liver three-dimensional imaging, we demonstrate that the extrahepatic duct (EHD) is the primary source of multipotent progenitors that contribute to the regeneration, but not to the development, of IHD cells. Hepatocyte-to-IHD cell transdifferentiation is possible but rarely detected. Progenitors in the EHD proliferate and migrate into the liver with Notch signaling loss and differentiate into IHD cells if Notch signaling increases. Tissue-specific mosaic analysis with an inducible dominant-negative Fgf receptor suggests that Fgf signaling from the surrounding mesenchymal cells maintains this extrahepatic niche by directly preventing premature differentiation and allocation of EHD progenitors to the liver. Indeed, transcriptional profiling and functional analysis of adult mouse EHD organoids uncover their distinct differentiation and proliferative potential relative to IHD organoids. CONCLUSIONS Our data show that IHD cells regenerate upon resumption of Jagged/Notch signaling, from multipotent progenitors originating from an Fgf-dependent extrahepatic stem cell niche. We posit that if Jagged/Notch signaling is augmented, through normal stochastic variation, gene therapy, or a Notch agonist, regeneration of IHD cells in patients with ALGS may be enhanced.
Collapse
Affiliation(s)
- Chengjian Zhao
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Dan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Lindsey Barske
- Department of Pediatrics, College of Medicine & Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonathan Matalonga
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - Jiaye He
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Alyssa Graves
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, People's Republic of China
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
46
|
Wahiduzzaman M, Liu Y, Huang T, Wei W, Li Y. Cell-cell communication analysis for single-cell RNA sequencing and its applications in carcinogenesis and COVID-19. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Nakajima K, Nakabayashi H, Kawahara M. Cell fate‐inducing CARs orthogonally control multiple signaling pathways. Biotechnol J 2022; 17:e2100463. [DOI: 10.1002/biot.202100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kyoko Nakajima
- Laboratory of Cell Vaccine Center for Vaccine and Adjuvant Research (CVAR) National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7‐6‐8 Saito‐Asagi Ibaraki‐shi Osaka 567‐0085 Japan
| | - Hideto Nakabayashi
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113–8656 Japan
| | - Masahiro Kawahara
- Laboratory of Cell Vaccine Center for Vaccine and Adjuvant Research (CVAR) National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7‐6‐8 Saito‐Asagi Ibaraki‐shi Osaka 567‐0085 Japan
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113–8656 Japan
| |
Collapse
|
48
|
Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022; 11:194. [PMID: 35053310 PMCID: PMC8773594 DOI: 10.3390/cells11020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), 630099 Novosibirsk, Russia; (V.T.); (V.K.); (S.S.)
| | | | | | | |
Collapse
|
49
|
Hadjivasiliou Z, Hunter G. Talking to your neighbors across scales: Long-distance Notch signaling during patterning. Curr Top Dev Biol 2022; 150:299-334. [DOI: 10.1016/bs.ctdb.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Bocci F, Zhou P, Nie Q. Single-Cell RNA-Seq Analysis Reveals the Acquisition of Cancer Stem Cell Traits and Increase of Cell-Cell Signaling during EMT Progression. Cancers (Basel) 2021; 13:5726. [PMID: 34830900 PMCID: PMC8616061 DOI: 10.3390/cancers13225726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 01/31/2023] Open
Abstract
Intermediate cell states (ICSs) during the epithelial-mesenchymal transition (EMT) are emerging as a driving force of cancer invasion and metastasis. ICSs typically exhibit hybrid epithelial/mesenchymal characteristics as well as cancer stem cell (CSC) traits including proliferation and drug resistance. Here, we analyze several single-cell RNA-seq (scRNA-seq) datasets to investigate the relation between several axes of cancer progression including EMT, CSC traits, and cell-cell signaling. To accomplish this task, we integrate computational methods for clustering and trajectory inference with analysis of EMT gene signatures, CSC markers, and cell-cell signaling pathways, and highlight conserved and specific processes across the datasets. Our analysis reveals that "standard" measures of pluripotency often used in developmental contexts do not necessarily correlate with EMT progression and expression of CSC-related markers. Conversely, an EMT circuit energy that quantifies the co-expression of epithelial and mesenchymal genes consistently increases along EMT trajectories across different cancer types and anatomical locations. Moreover, despite the high context specificity of signal transduction across different cell types, cells undergoing EMT always increased their potential to send and receive signals from other cells.
Collapse
Affiliation(s)
- Federico Bocci
- Department of Mathematics, University of California, Irvine, CA 92697, USA; (F.B.); (P.Z.)
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, CA 92697, USA; (F.B.); (P.Z.)
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697, USA; (F.B.); (P.Z.)
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|