1
|
Shah W, Gong Y, Qiao X, Lu Y, Ding Y, Zhang Z, Gao Y. Exploring Endothelial Cell Dysfunction's Impact on the Brain-Retina Microenvironment Connection: Molecular Mechanisms and Implications. Mol Neurobiol 2025; 62:7484-7505. [PMID: 39904964 DOI: 10.1007/s12035-025-04714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The intricate linking between the health of blood vessels and the functioning of neurons has attracted growing attention in the context of disorders that affect the neurological environment. Endothelial cells, forming the blood-brain barrier and blood-retinal barrier, play a fundamental role in maintaining the integrity of the brain-retina microenvironment connection. This review explores the molecular foundations of endothelial cell dysfunction and its implications for the brain-retina interaction. A comprehensive analysis of the complex factors contributing to endothelial dysfunction is presented, including oxidative stress, inflammation, reduced nitric oxide signaling, and disrupted vascular autoregulation. The significance of endothelial dysfunction extends to neurovascular coupling, synaptic plasticity, and trophic support. To our knowledge, there is currently no existing literature review addressing endothelial microvascular dysfunction and its interplay with the brain-retina microenvironment. The review also explains bidirectional communication between the brain and retina, highlighting how compromised endothelial function can disrupt this vital crosstalk and inhibit normal physiological processes. As neurodegenerative diseases frequently exhibit vascular involvement, a deeper comprehension of the interaction between endothelial cells and neural tissue holds promise for innovative therapeutic strategies. By targeting endothelial dysfunction, we may enhance our ability to preserve the intricate dynamics of the brain-retina microenvironment connection and ameliorate the progression of neurological disorders.
Collapse
Affiliation(s)
- Wahid Shah
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxing Gong
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Qiao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yaling Lu
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yufei Ding
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Ziting Zhang
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yuan Gao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China.
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Bellemare M, Bourcier L, Iglesies‐Grau J, Boulet J, O'Meara E, Bouabdallaoui N. Mechanisms of diabetic cardiomyopathy: Focus on inflammation. Diabetes Obes Metab 2025; 27:2326-2338. [PMID: 39930551 PMCID: PMC11964996 DOI: 10.1111/dom.16242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Type 2 diabetes (T2D) significantly increases the risk of heart failure (HF), either through the progression of coronary artery disease (CAD) or through direct myocardial alterations, termed diabetic cardiomyopathy. This review examines key pathophysiological mechanisms underlying diabetic cardiomyopathy, focusing on the role of inflammation. It also addresses diagnostic and therapeutic approaches to mitigate myocardial damage in T2D. RECENT FINDINGS Chronic low-grade inflammation is considered as a major contributor to diabetic cardiomyopathy. T2D-related factors, including hyperglycemia and insulin resistance, activate inflammatory pathways that worsen myocardial dysfunction. Despite advances in understanding these mechanisms, no therapies specifically targeting the cardiac changes in T2D have been identified. SUMMARY While significant advances have been made in elucidating the inflammatory mechanisms contributing to diabetic cardiomyopathy, therapeutic advancements remain limited, potentially due to an incomplete understanding of regulatory pathways. A comprehensive investigation into the specific roles of immune cells and inflammatory mediators in diabetic cardiomyopathy is essential for identifying novel therapeutic targets. Expanding our knowledge of these molecular mechanisms has the potential to facilitate the development of innovative therapeutic strategies, thereby improving clinical outcomes in patients with T2D.
Collapse
Affiliation(s)
- Myriam Bellemare
- Department of MedicineMontreal Heart InstituteMontrealQCCanada
- Université de MontréalMontrealQCCanada
| | - Liane Bourcier
- Department of MedicineMontreal Heart InstituteMontrealQCCanada
- Université de MontréalMontrealQCCanada
| | - Josep Iglesies‐Grau
- Department of MedicineMontreal Heart InstituteMontrealQCCanada
- Université de MontréalMontrealQCCanada
| | - Jacinthe Boulet
- Department of MedicineMontreal Heart InstituteMontrealQCCanada
- Université de MontréalMontrealQCCanada
| | - Eileen O'Meara
- Department of MedicineMontreal Heart InstituteMontrealQCCanada
- Université de MontréalMontrealQCCanada
| | - Nadia Bouabdallaoui
- Department of MedicineMontreal Heart InstituteMontrealQCCanada
- Université de MontréalMontrealQCCanada
| |
Collapse
|
3
|
Song M, Dai H, Zhou Q, Meng X. The immunology of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1542208. [PMID: 40260277 PMCID: PMC12009709 DOI: 10.3389/fendo.2025.1542208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Diabetic cardiomyopathy is a notable microvascular complication of diabetes, characterized primarily by myocardial fibrosis and functional abnormalities. Long-term hyperglycemia induces excessive activation and recruitment of immune cells and triggers the cascade of inflammatory responses, resulting in systemic and local cardiac inflammation. Emerging evidence highlights the significant roles of immunology in modulating the pathology of diabetic cardiomyopathy. As the primary effectors of inflammatory reactions, immune cells are consistently present in cardiac tissue and can be recruited under pathological hyperglycemia circumstances. A disproportionate favor to proinflammatory types of immune cells and the increased proinflammatory cytokine levels mediate fibroblast proliferation, phenotypic transformation, and collagen synthesis and ultimately rise to cardiac fibrosis and hypertrophy. Meanwhile, the severity of cardiac fibrosis is also strongly associated with the diverse phenotypes and phenotypic alterations of the immune cells, including macrophages, dendritic cells, mast cells, neutrophils, and natural killer cells in innate immunity and CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes in adaptive immunity. In this review, we synthesized the current analysis of the critical role played by the immune system and its components in the progression of diabetic cardiomyopathy. Finally, we highlight preclinical and clinical immune targeting strategies and translational implications.
Collapse
Affiliation(s)
| | | | | | - Xiao Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Luong TVT, Yang S, Kim J. Lipotoxicity as a therapeutic target in the type 2 diabetic heart. J Mol Cell Cardiol 2025; 201:105-121. [PMID: 40020774 DOI: 10.1016/j.yjmcc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Cardiac lipotoxicity, characterized by excessive lipid accumulation in the cardiac tissue, is a critical contributor to the pathogenesis of diabetic heart. Recent research has highlighted the key mechanisms underlying lipotoxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, and cell apoptosis, which ultimately impair the cardiac function. Various therapeutic interventions have been developed to target these pathways, mitigate lipotoxicity, and improve cardiovascular outcomes in diabetic patients. Given the global escalation in the prevalence of diabetes and the urgent demand for effective therapeutic approaches, this review focuses on how targeting cardiac lipotoxicity may be a promising avenue for treating diabetes.
Collapse
Affiliation(s)
- Trang Van T Luong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seonbu Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhang YF, Liu YX, Yang WX. Sodium-dependent glucose transporter 2 inhibitors improve heart function in patients with type 2 diabetes and heart failure. World J Cardiol 2025; 17:100886. [PMID: 39866214 PMCID: PMC11755127 DOI: 10.4330/wjc.v17.i1.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
This article discusses the study by Grubić Rotkvić et al on the mechanisms of action of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF). T2DM and HF are highly comorbid, with a significantly increased prevalence of HF in patients with T2DM. SGLT2i exhibit potential in reducing hospitalization rates for HF and cardiovascular mortality through multiple mechanisms, including improving blood glucose control, promoting urinary sodium excretion, reducing sympathetic nervous system activity, lowering both preload and afterload on the heart, alleviating inflammation and oxidative stress, enhancing endothelial function, improving myocardial energy metabolism, and stabilizing cardiac ion homeostasis. Further research and clinical practice will help optimize the use of SGLT2i in HF patients.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yu-Xiang Liu
- Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Wu-Xiao Yang
- Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China.
| |
Collapse
|
6
|
Shriya ASK, Pawar VB, Paul AA. Diabetic Heart Disease: An Intricate Interplay of a Widespread Metabolic Disorder with the Cardiovascular System. Curr Diabetes Rev 2025; 21:93-101. [PMID: 38994615 DOI: 10.2174/0115733998305019240702095537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Diabetes is a chronic medical condition that causes high glycaemic levels, leading to damage to vital organs over time. It is a common disease worldwide, affecting around 422 million individuals living in middle- and low-income countries, which make up most of the population. Unfortunately, diabetes results in 1.5 million deaths annually. Diabetic patients are at a higher risk for developing cardiovascular conditions. Diabetic heart disease constitutes multiple genres, including diabetic cardiomyopathy, coronary artery disease, and heart failure. Hypoglycaemic agents aim to prevent these metabolic issues however some of these are cardiotoxic in nature. In contrast, other hypoglycaemic agents work beyond controlling glycaemic levels with their cardioprotective properties. Given that there is an alarming increase in diabetic heart disease cases universally, we have attempted to review the existing data on the topic and the effects of hypoglycaemic drugs on heart diseases.
Collapse
Affiliation(s)
- A S Kamakshi Shriya
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - Vaishnavi B Pawar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - Acsah Annie Paul
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| |
Collapse
|
7
|
Zhu L, He J. Morin Ameliorates Myocardial Injury in Diabetic Rats via Modulation of Autophagy, Apoptosis, Inflammation, and Oxidative Stress. Diabetes Metab Syndr Obes 2024; 17:4867-4882. [PMID: 39742288 PMCID: PMC11687097 DOI: 10.2147/dmso.s476867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
Background Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats. Methods Diabetic cardiomyopathy in albino Wistar rats was induced by streptozotocin (STZ). After treatment with a dose of 25, 50, and 100 mg/kg/day orally for the next 60 days, autophagic (p62, LC3, and BECN1), apoptotic (BCL2, CASP-3, and CASP9), inflammatory (IL-1β, IL-6, TNF-α), and oxidative stress (CAT, SOD, and MDA) markers in protein and gene levels as well as cardiac function tests were measured. Results The findings revealed that long-term morin treatment improved weight gain, lipid and glycemic profile, hypertension, and cardiac hypertrophy and fibrosis in diabetic rats compared to controls (p-value<0.001). Moreover, the upregulation of BCL-2, LC3, and BECN1 along with the downregulation of p62, CASP-3, and CASP-9 revealed that morin suppressed apoptosis and promoted autophagy in the cardiac tissue of rats with diabetes (p-value<0.05). Additionally, the reduction in IL-1β, IL-6, TNF-α, and MDA levels and the increment of SOD and CAT activity suggested that morin decreased inflammation and apoptosis in the heart of the rat models of diabetes (p-value<0.01). Conclusion These results may highlight the potential properties of morin as a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Jizhong He
- Department of Cardiology, Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
| |
Collapse
|
8
|
Xu Y, Guo J, Li Y, Wang S, Wan K, Li W, Wang J, Xu Z, Cheng W, Sun J, Zhang Q, Han Y, Chen Y. Increased epicardial adipose tissue is associated with left ventricular reverse remodeling in dilated cardiomyopathy. Cardiovasc Diabetol 2024; 23:447. [PMID: 39696268 PMCID: PMC11657914 DOI: 10.1186/s12933-024-02517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has been suggested to play paradoxical roles in patients with heart failure. The role of EAT in dilated cardiomyopathy (DCM) patients remains unclear. We aimed to assess the associations between the dynamic changes EAT and left ventricular reverse remodeling (LVRR) in DCM patients based on baseline and follow-up CMR. METHODS In this prospective study, we consecutive enrolled DCM patients with baseline and follow-up cardiac magnetic resonance (CMR) examinations. All participating patients underwent 1-2 years of guideline-directed medical therapy (GDMT) at follow-up. The EAT was measured as pericardial and epicardial fat thickness, and paracardial fat volume, while the abdominal adiposity was measured in terms of subcutaneous and visceral fat thickness. The univariable and multivariable logistic regression analyses were performed to evaluate the associations of changes in abdominal and epicardial adiposities with the presence of LVRR. RESULTS A total of 232 patients (mean age, 45.7 ± 15.1 years, 157 male) at baseline were enrolled. After a period of GDMT with a median duration of 15.5 months (interquartile range, 12.5-19.1 months) all participants underwent follow-up CMR with the same standardized protocol. Patients who reached LVRR showed a significant increment in EAT parameters compared to those who did not. After adjusting for age, sex, and delta changes of body mass index (BMI), the increment of pericardial fat thickness (odds ratio [OR]: 1.53; 95% confidence interval [CI]: 1.27 to 1.83; p < 0.001), epicardial fat thickness (OR: 2.10; 95% CI: 1.68 to 2.63; p < 0.001), and paracardial fat volume (OR: 1.01; 95% CI: 1.01 to 1.02; p = 0.001) were significantly associated with LVRR. CONCLUSIONS In DCM patients, the CMR-derived EAT parameters increased after 1-2 years of GDMT and significantly correlated with improved ventricular structure and function, independent of changes in BMI and abdominal adiposity, which may indicate the potential protective role of EAT in DCM patients. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov ; Unique identifier: ChiCTR1800017058.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jiajun Guo
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yangjie Li
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Shiqian Wang
- West China Clinical Medical College of Sichuan University, Chengdu, China
| | - Ke Wan
- Center of Gerontology and Geriatrics, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Weihao Li
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jie Wang
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Ziqian Xu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wei Cheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qing Zhang
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yuchi Han
- Cardiac Imaging Cardiovascular Medicine, Wexner Medical Center, College of Medicine, The Ohio State University, Athens, OH, USA
| | - Yucheng Chen
- Department of Cardiology, Sichuan University, Chengdu, Sichuan Province, 610041, People's Republic of China.
| |
Collapse
|
9
|
Dhiman S, Dhankhar S, Garg A, Rohilla M, Saini M, Singh TG, Chauhan S, Selim S, Al Jaouni SK, Yasmin S, Begum N, Alshahrani A, Ansari MY. Mechanistic insights and therapeutic potential of astilbin and apigenin in diabetic cardiomyopathy. Heliyon 2024; 10:e39996. [PMID: 39583813 PMCID: PMC11582444 DOI: 10.1016/j.heliyon.2024.e39996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a critical complication of Diabetes mellitus (DM), characterized by structural and functional changes in the myocardium independent of coronary artery disease or hypertension. Emerging evidence highlights the significant roles of phytochemicals, particularly astilbin and apigenin, in modulating key molecular pathways implicated in DCM. This review synthesizes current mechanistic insights and therapeutic potential of these compounds, focusing on their interactions with AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), O-linked N-acetylglucosamine (O-GlcNAc), sodium-glucose co-transporter 2 (SGLT2), protein kinase C (PKC), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways. Astilbin and apigenin have demonstrated the ability to improve cardiac function, mitigate oxidative stress, and reduce inflammatory responses in diabetic conditions. By activating AMPK and PPARs, these flavonoids enhance glucose uptake and fatty acid oxidation, contributing to improved metabolic homeostasis. Their inhibition of O-GlcNAcylation, SGLT2 activity, and PKC signaling further attenuates hyperglycemia-induced cellular damage. Additionally, suppression of NF-κB, MAPK, and JNK pathways by astilbin and apigenin results in reduced pro-inflammatory cytokine production and apoptotic cell death. Collectively, these interactions position astilbin and apigenin as promising therapeutic agents for ameliorating DCM, offering novel avenues for treatment strategies aimed at modulating multiple pathogenic pathways.
Collapse
Affiliation(s)
- Sachin Dhiman
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sanchit Dhankhar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Anjali Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Devi Dyal College of Pharmacy, GolpuraBarwala, Panchkula, Haryana, 134118, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
10
|
Mahmoud LM, Mageed AAAA, Saadallah JM, Youssef MF, Rashed LA, Ammar HI. Interleukin 1β receptor blocker (Anakinra) and regenerative stem cell therapy: two novel approaches effectively ameliorating diabetic cardiomyopathy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8023-8041. [PMID: 38775851 PMCID: PMC11450109 DOI: 10.1007/s00210-024-03152-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 10/04/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a serious common complication of diabetes. Unfortunately, there is no satisfied treatment for those patients and more studies are in critical need to cure them. Therefore, we aimed to carry out our current research to explore the role of two novel therapeutic approaches: one a biological drug aimed to block inflammatory signaling of the IL 1beta (IL1β) axis, namely, anakinra; the other is provision of anti-inflammatory regenerative stem cells. Wistar male rats were allocated into four groups: control group: type 2 diabetes mellitus (DM) induced by 6-week high-fat diet (HFD) followed by a single-dose streptozotocin (STZ) 35 mg/kg i.p., then rats were allocated into: DM: untreated; DM BM-MSCs: received a single dose of BM-MSCs (1 × 106 cell/rat) into rat tail vein; DM-Anak received Anak 0.5 μg/kg/day i.p. for 2 weeks. Both therapeutic approaches improved cardiac performance, fibrosis, and hypertrophy. In addition, blood glucose and insulin resistance decreased, while the antioxidant parameter, nuclear factor erythroid 2-related factor 2 (Nrf2) and interleukin 10 (IL10), and anti-inflammatory agent increased. Furthermore, there is a significant reduction in tumor necrosis factor alpha (TNFα), IL1β, caspase1, macrophage marker CD 11b, inducible nitric oxide synthase (iNOS), and T-cell marker CD 8. Both Anak and BM-MSCs effectively ameliorated inflammatory markers and cardiac performance as compared to non-treated diabetics. Improvement is mostly due to anti-inflammatory, antioxidant, anti-apoptotic properties, and regulation of TNFα/IL1β/caspase1 and Nrf2/IL10 pathways.
Collapse
Affiliation(s)
| | | | | | | | - Liala Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hania Ibrahim Ammar
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Geng XF, Shang WY, Qi ZW, Zhang C, Li WX, Yan ZP, Fan XB, Zhang JP. The mechanism and promising therapeutic strategy of diabetic cardiomyopathy dysfunctions: Focus on pyroptosis. J Diabetes Complications 2024; 38:108848. [PMID: 39178624 DOI: 10.1016/j.jdiacomp.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xiao-Fei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Yu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhong-Wen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Xiu Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhi-Peng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xin-Biao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jun-Ping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
12
|
Singh AD, Chawda MB, Kulkarni YA. Cardioprotective Effects of 'Vasant Kusumakar Rasa,' a Herbo-metallic Formulation, in Type 2 Diabetic Cardiomyopathy in Rats. Cardiovasc Toxicol 2024; 24:942-954. [PMID: 39023814 DOI: 10.1007/s12012-024-09891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Diabetic cardiomyopathy (DCM) is one of the serious complications of type 2 diabetes mellitus. Vasant Kusumakar Rasa (VKR) is a Herbo-metallic formulation reported in Ayurveda, an Indian system of medicine. The present work was designed to study the effect of VKR in cardiomyopathy in type 2 diabetic rats. Diabetes was induced by feeding a high-fat diet (HFD) for 2 weeks followed by streptozotocin (STZ) administration (35 mg/kg i.p.). VKR was administered orally at dose of 28 and 56 mg/kg once a day for 16 weeks. The results of the study indicated that VKR treatment significantly improved the glycemic and lipid profile, serum insulin, CK-MB, LDH, and cardiac troponin-I when compared to diabetic control animals. VKR treatment in rats significantly improved the hemodynamic parameters and cardiac tissue levels of TNF-α, IL-1β, and IL- 6 were also reduced. Antioxidant enzymes such as GSH, SOD, and catalase were improved in all treatment groups. Heart sections stained with H & E and Masson's trichome showed decreased damage to histoarchitecture of the myocardium. Expression of PI3K, Akt, and GLUT4 in the myocardium was upregulated after 16 weeks of VKR treatment. The study data suggested the cardioprotective capability of VKR in the management of diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mukesh B Chawda
- Shree Dhootapapeshwar Limited, 135, Nanubhai Desai Road, Khetwadi, Girgaon, Mumbai, Maharashtra, 400004, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
13
|
Zhong H, Tang H, Wang Y, Tang S, Zhu H. MiR-29c alleviates hyperglycemia-induced inflammation via targeting TGF-β in cardiomyocytes. Mol Cell Biochem 2024; 479:2047-2054. [PMID: 37589861 DOI: 10.1007/s11010-023-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-β (TGF-β) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-β expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-β protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-β mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3'-UTR of TGF-β was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-β in cardiomyocytes, which provides a potential target for the treatment of DCM.
Collapse
Affiliation(s)
- Hongli Zhong
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Haitao Tang
- Anhui International Travel Healthcare Center (Hefei Customs Port Clinic), Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Zhou X, Liu H, Feng F, Kang GJ, Liu M, Guo Y, Dudley SC. Macrophage IL-1β mediates atrial fibrillation risk in diabetic mice. JCI Insight 2024; 9:e171102. [PMID: 38889387 PMCID: PMC11383594 DOI: 10.1172/jci.insight.171102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF). The mechanisms underlying DM-associated AF are unclear. AF and DM are both related to inflammation. We investigated whether DM-associated inflammation contributed to AF risk. Mice were fed with high-fat diet to induce type II DM and were subjected to IL-1β antibodies, macrophage depletion by clodronate liposomes, a mitochondrial antioxidant (mitoTEMPO), or a cardiac ryanodine receptor 2 (RyR2) stabilizer (S107). All tests were performed at 36-38 weeks of age. DM mice presented with increased AF inducibility, enhanced mitochondrial reactive oxygen species (mitoROS) generation, and activated innate immunity in the atria, as evidenced by enhanced monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, and IL-1β levels. Signs of aberrant RyR2 Ca2+ leak were observed in the atria of DM mice. IL-1β neutralization, macrophage depletion, and exposure to mitoTEMPO and S107 significantly ameliorated the AF vulnerability in DM mice. Atrial overexpression of MCP-1 increased AF occurrence in normal mice through the same mechanistic signaling cascade as observed in DM mice. In conclusion, macrophage-mediated IL-1β contributed to DM-associated AF risk through mitoROS modulation of RyR2 Ca2+ leak.
Collapse
|
15
|
Yao P, Yang X, Qiao Y. A Review on the Natural Products in Treatment of Diabetic Cardiomyopathy (DCM). Rev Cardiovasc Med 2024; 25:165. [PMID: 39076497 PMCID: PMC11267204 DOI: 10.31083/j.rcm2505165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 07/31/2024] Open
Abstract
Diabetic cardiomyopathy is an insidious and fatal disease, imposing major financial and social burdens on affected individuals. Among the various methods proposed for the treatment of diabetic cardiomyopathy (DCM), treatments with natural products have achieved promising results due to their high efficiency and minimal side-effects. Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, Excerpt Medica, Science Direct, and Springer. In this study, we reviewed the DCM-related studies on 72 representative natural products. These natural products have been confirmed to be applicable in the therapeutic intervention of DCM, acting through various mechanisms such as the amelioration of metabolic abnormalities, protecting the mitochondrial structure and function, anti-oxidant stress, anti-inflammatory, anti-fibrosis, regulation of Ca 2 + homeostasis and regulation of programmed cell death. The nuclear factor kappa B (NF- κ B), nuclear factor erythroid 2-related factor 2 (Nrf-2), and transforming growth factor- β (TGF- β ) have been extensively studied as high frequency signaling pathways for natural product intervention in DCM. The effectiveness of natural products in treating DCM has been revealed and studied, which provides a reference for DCM-specific drug discovery.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000 Jinan, Shandong, China
| | - Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), 250014 Jinan, Shandong, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
16
|
Luo Y, Jiang Y, Zhong T, Li Z, He J, Li X, Cui K. LncRNA HCG18 affects diabetic cardiomyopathy and its association with miR-9-5p/IGF2R axis. Heliyon 2024; 10:e24604. [PMID: 38322876 PMCID: PMC10845250 DOI: 10.1016/j.heliyon.2024.e24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
This paper aimed to investigate the role of lncRNA HCG18 (HCG18) in the progression of diabetic cardiomyopathy (DCM) and potential mechanisms. Streptozocin (STZ) was used to induce DCM model in rats, which was confirmed by blood glucose concentration, body weight, and HE staining. Myocardial apoptosis was detected by TUNEL. H9c2 cardiomyocytes were used to construct cell models of DCM through treatment of high glucose. The results showed that HCG18 was overexpressed in STZ induced DCM rat model and high glucose induced H9c2 cardiomyocytes. Si-HCG18 significantly increased cell viability, reduced cell apoptosis, attenuated activities of myocardial enzymes and enhanced activities of antioxidant enzymes in STZ induced DM model and high glucose induced H9c2 cardiomyocytes, while the results of upregulation of HCG18, in high glucose induced H9c2 cardiomyocytes, were opposite with that of si-HCG18. MiR-9-5p was a target of HCG18, and which was down-regulated in cardiomyocytes of DCM. The overexpression of miR-9-5p could neutralize the high glucose induced cardiomyocyte injury, and the silence of miR-9-5p could reverse the effect of si-HCG18 on high glucose induced cardiomyocytes. MiR-9-5p could directly target to IGF2R, and IGF2R was overexpressed in cardiomyocytes of DCM. Up-regulation of IGF2R can reverse the protective effect of si-HCG18 on cardiomyocytes. Taken together, HCG18 is significantly increased in cardiomyocytes of DCM. Down-regulation of HCG18 can improve cardiomyocyte injury through miR-9-5p/IGF2R axis in DCM.
Collapse
Affiliation(s)
- Yuhui Luo
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Yi Jiang
- Department of Geriatrics, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 40013, China
| | - Tingting Zhong
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Zhenggong Li
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Jia He
- Department of Echocardiogram, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Xiaoli Li
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Kun Cui
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| |
Collapse
|
17
|
Tian H, Huang Q, Cheng J, Xiong Y, Xia Z. Rev-erbα attenuates diabetic myocardial injury through regulation of ferroptosis. Cell Signal 2024; 114:111006. [PMID: 38086436 DOI: 10.1016/j.cellsig.2023.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Diabetes is a widespread disease that threatens the life and health of human beings, and diabetic cardiomyopathy (DCM) is one of the major complications of diabetic patients. The pathological mechanisms of DCM are complex, including inflammation, endoplasmic reticulum stress, and oxidative stress that have been reported previously. Although recent studies suggested that ferroptosis is also involved in the progression of DCM, the exact mechanism remains unclear. Rev-erbα cardiac conditional knockout mice were generated and type 2 diabetes were induced by high fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ) in in vivo experiments. In parallel, our in vitro experiments entailed the introduction of elevated levels of glucose (HG) and palmitic acid (PA) to induce glycolipid toxicity in H9c2 cardiomyocytes. Further deterioration of cardiac function was detected by echocardiography after the clock gene rev-erbα was knocked out. This was accompanied by significant elevations in markers of inflammation, myocardial fibrosis, and oxidative stress. In addition, iron content, transmission electron microscopy (TEM), and RT-PCR assays confirmed significantly increased levels of ferroptosis in rev-erbα-deficient DCM. Intriguingly, Co-Immunoprecipitation (Co-IP) data uncovered an interaction between rev-erbα and nuclear factor E2-related factor 2 (NRF2) in diabetic myocardial tissues. It is worth highlighting that ferroptosis within cardiomyocytes witnessed significant mitigation upon the administration of sulforaphane (SFN), an NRF2 agonist, to HG + PA-incubated H9c2 cells. Our study demonstrates for the first time that knockdown of the clock gene rev-erbα exacerbates myocardial injury and ferroptosis in type 2 diabetic mice, which can be reversed by activating NRF2.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qin Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianxin Cheng
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
18
|
Song MW, Cui W, Lee CG, Cui R, Son YH, Kim YH, Kim Y, Kim HJ, Choi SE, Kang Y, Kim TH, Jeon JY, Lee KW. Protective effect of empagliflozin against palmitate-induced lipotoxicity through AMPK in H9c2 cells. Front Pharmacol 2023; 14:1228646. [PMID: 38116084 PMCID: PMC10728651 DOI: 10.3389/fphar.2023.1228646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have recently emerged as novel cardioprotective agents. However, their direct impact on cardiomyocyte injury is yet to be studied. In this work, we investigate the underlying molecular mechanisms of empagliflozin (EMPA), an SGLT2 inhibitor, in mitigating palmitate (PA)-induced cardiomyocyte injury in H9c2 cells. We found that EMPA significantly attenuated PA-induced impairments in insulin sensitivity, ER stress, inflammatory cytokine gene expression, and cellular apoptosis. Additionally, EMPA elevated AMP levels, activated the AMPK pathway, and increased carnitine palmitoyl transferase1 (CPT1) gene expression, which collectively enhanced fatty acid oxidation and reduced stress signals. This study reveals a novel mechanism of EMPA's protective effects against PA-induced cardiomyocyte injury, providing new therapeutic insights into EMPA as a cardioprotective agent.
Collapse
Affiliation(s)
- Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Wenhao Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Republic of Korea
| | - Rihua Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Young Ho Son
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Ha Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yujin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
19
|
Jin B, Wang J, Chen Y, Zuo W, Hong B, Li J, Huang F, Zhang M, Wang Y. Focal adhesion kinase induces cardiac remodeling through NF-κB-mediated inflammatory responses in diabetic cardiomyopathy. Int Immunopharmacol 2023; 120:110280. [PMID: 37216798 DOI: 10.1016/j.intimp.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Hyperglycemia-induced chronic inflammation is a crucial risk factor that causes undesirable cardiac alternations in diabetic cardiomyopathy (DCM). Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that primarily regulates cell adhesion and migration. Based on recent studies, FAK is involved in inflammatory signaling pathway activation in cardiovascular diseases. Here, we evaluated the possibility of FAK as a therapeutic target for DCM. METHODS A small molecular selective FAKinhibitor, PND-1186 (PND), was used to evaluate the effect of FAK on DCM in both high glucose-stimulated cardiomyocytes and streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mice. RESULTS Increased FAK phosphorylation was found in the hearts of STZ-induced T1DM mice. PND treatment significantly decreased the expression of inflammatory cytokines and fibrogenic markers in cardiac specimens of diabetic mice. Notably, these reductions were correlated with improved cardiac systolic function. Furthermore, PND suppressed transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation and NF-κB activation in the hearts of diabetic mice. Cardiomyocytes were identified as the main contributor to FAK-mediated cardiac inflammation and the involvement of FAK in cultured primary mouse cardiomyocytes and H9c2 cells was identified. Both FAK inhibition or FAK deficiency prevented hyperglycemia-induced inflammatory and fibrotic responses in cardiomyocytes owing to the inhibition of NF-κB. Herein, FAK activation was revealed to FAK directly binding to TAK1, leading to activation of TAK1 and downstream NF-κB signaling pathway. CONCLUSIONS FAK is a key regulator of diabetes-associated myocardial inflammatory injury by directly targeting to TAK1.
Collapse
Affiliation(s)
- Bo Jin
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Bo Hong
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jie Li
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Fang Huang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Mengpei Zhang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China.
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
21
|
Wu M, Li T, Li G, Niu B, Wu T, Yan L, Wang S, He S, Huang C, Tong W, Li N, Jiang J. LncRNA DANCR deficiency promotes high glucose-induced endothelial to mesenchymal transition in cardiac microvascular cells via the FoxO1/DDAH1/ADMA signaling pathway. Eur J Pharmacol 2023; 950:175732. [PMID: 37116560 DOI: 10.1016/j.ejphar.2023.175732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cardiac fibrosis is the main pathological basis of diabetic cardiomyopathy (DCM), and endothelial-to-meschenymal transition (EndMT) is a key driver to cardiac fibrosis and plays an important role in the pathogenesis of DCM. Asymmetric dimethylarginine (ADMA), a crucial pathologic factor in diabetes mellitus, is involved in organ fibrosis. This study aims to evaluate underlying mechanisms of ADMA in DCM especially for EndMT under diabetic conditions. A diabetic rat model was induced by streptozotocin (STZ) injection, and human cardiac microvascular endothelial cells (HCMECs) were stimulated with high glucose to induce EndMT. Subsequently, the role of ADMA in EndMT was detected either by exogenous ADMA or by over-expressing dimethylarginine dimethylaminohydrolase 1 (DDAH1, degradation enzyme for ADMA) before high glucose stimulation. Furthermore, the relationships among forkhead box protein O1 (FoxO1), DDAH1 and ADMA were evaluated by FoxO1 over-expression or FoxO1 siRNA. Finally, we examined the roles of LncRNA DANCR in FoxO1/DDAH1/ADMA pathway and EndMT of HCMECs. Here, we found that EndMT in HCMECs was induced by high glucose, as evidenced by down-regulated expression of CD31 and up-regulated expression of FSP-1 and collagen Ⅰ. Importantly, ADMA induced EndMT in HCMECs, and over-expressing DDAH1 protected from developing EndMT by high glucose. Furthermore, we demonstrated that over-expression of FoxO1-ADA with mutant phosphorylation sites of T24A, S256D, and S316A induced EndMT of HCMECs by down-regulating of DDAH1 and elevating ADMA, and that EndMT of HCMECs induced by high glucose was reversed by FoxO1 siRNA. We also found that LncRNA DANCR siRNA induced EndMT of HCMECs, activated FoxO1, and inhibited DDAH1 expression. Moreover, over-expression of LncRNA DANCR could markedly attenuated high glucose-mediated EndMT of HCMECs by inhibiting the activation of FoxO1 and increasing the expression of DDAH1. Collectively, our results indicate that LncRNA DANCR deficiency promotes high glucose-induced EndMT in HCMECs by regulating FoxO1/DDAH1/ADMA pathway.
Collapse
Affiliation(s)
- Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Ting Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, 526020, China
| | - Bingxuan Niu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Collage of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shiming Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chuyi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Weiqiang Tong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Niansheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
22
|
Kaur N, Gare SR, Ruiz-Velasco A, Miller JM, Abouleisa RR, Ou Q, Shen J, Soran H, Mohamed TM, Liu W. FGF21/FGFR1-β-KL cascade in cardiomyocytes modulates angiogenesis and inflammation under metabolic stress. Heliyon 2023; 9:e14952. [PMID: 37123894 PMCID: PMC10133673 DOI: 10.1016/j.heliyon.2023.e14952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetes is a metabolic disorder with an increased risk of developing heart failure. Inflammation and damaged vasculature are the cardinal features of diabetes-induced cardiac damage. Moreover, systemic metabolic stress triggers discordant intercellular communication, thus culminating in cardiac dysfunction. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone transducing cellular signals via fibroblast growth factor receptor 1 (FGFR1) and its co-receptor beta-klotho (β-KL). This study first demonstrated a decreased expression or activity of FGFR1 and β-KL in both human and mouse diabetic hearts. Reinforcing cardiac FGFR1 and β-KL expression can alleviate pro-inflammatory response and endothelial dysfunction upon diabetic stress. Using proteomics, novel cardiomyocyte-derived anti-inflammatory and proangiogenic factors regulated by FGFR1-β-KL signaling were identified. Although not exhaustive, this study provides a unique insight into the protective topology of the cardiac FGFR1-β-KL signaling-mediated intercellular reactions in the heart in response to metabolic stress.
Collapse
Affiliation(s)
- Namrita Kaur
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | | - Jessica M. Miller
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Riham R.E. Abouleisa
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Jiahan Shen
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Handrean Soran
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Wei Liu
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| |
Collapse
|
23
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
24
|
Jin B, Chen Y, Wang J, Chen Y, Zhang M, Huang J, Wang Y. Costunolide alleviates hyperglycaemia-induced diabetic cardiomyopathy via inhibiting inflammatory responses and oxidative stress. J Cell Mol Med 2023; 27:831-845. [PMID: 36810875 PMCID: PMC10002915 DOI: 10.1111/jcmm.17686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
Hyperglycaemia-induced myocardial injury promotes the induction of heart failure in diabetic patients. Impaired antioxidant capability and sustained chronic inflammation play a vital role in the progression of diabetic cardiomyopathy (DCM). Costunolide (Cos), a natural compound with anti-inflammatory and antioxidant properties, has exhibited therapeutic effects in various inflammatory diseases. However, the role of Cos in diabetes-induced myocardial injury remains poorly understood. In this study, we investigated the effect of Cos on DCM and explored the potential mechanisms. C57BL/6 mice were administered intraperitoneal streptozotocin for DCM induction. Cos-mediated anti-inflammatory and antioxidation activities were examined in heart tissues of diabetic mice and high glucose (HG)-stimulated cardiomyocytes. Cos markedly inhibited HG-induced fibrotic responses in diabetic mice and H9c2 cells, respectively. The cardioprotective effects of Cos could be correlated to the reduced expression of inflammatory cytokines and decreased oxidative stress. Further investigations demonstrated Cos reversed diabetes-induced nuclear factor-κB (NF-κB) activation and alleviated impaired antioxidant defence system, principally via activation of nuclear factor-erythroid 2 p45-related factor-2 (Nrf-2). Cos alleviated cardiac damage and improved cardiac function in diabetic mice by inhibiting NF-κB-mediated inflammatory responses and activating the Nrf-2-mediated antioxidant effects. Therefore, Cos could be a potential candidate for the treatment of DCM.
Collapse
Affiliation(s)
- Bo Jin
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengpei Zhang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Jianxiong Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Yi Wang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Liu C, Liu Y, Chen H, Yang X, Lu C, Wang L, Lu J. Myocardial injury: where inflammation and autophagy meet. BURNS & TRAUMA 2023; 11:tkac062. [PMID: 36873283 PMCID: PMC9977361 DOI: 10.1093/burnst/tkac062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Indexed: 03/04/2023]
Abstract
Autophagy is a highly conserved bulk degradation mechanism that degrades damaged organelles, aged proteins and intracellular contents to maintain the homeostasis of the intracellular microenvironment. Activation of autophagy can be observed during myocardial injury, during which inflammatory responses are strongly triggered. Autophagy can inhibit the inflammatory response and regulate the inflammatory microenvironment by removing invading pathogens and damaged mitochondria. In addition, autophagy may enhance the clearance of apoptotic and necrotic cells to promote the repair of damaged tissue. In this paper, we briefly review the role of autophagy in different cell types in the inflammatory microenvironment of myocardial injury and discuss the molecular mechanism of autophagy in regulating the inflammatory response in a series of myocardial injury conditions, including myocardial ischemia, ischemia/reperfusion injury and sepsis cardiomyopathy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, China
| | - Yanjiao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Xiaofei Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
26
|
Saad H, Soliman HA, Mahmoud B, Moneim AA, Zaky MY. The Pathogenic Role of Oxidative Stress, Cytokine Expression, and Impaired Hematological Indices in Diabetic Cardiovascular Diseases. Inflammation 2023; 46:146-160. [PMID: 35997998 PMCID: PMC9971070 DOI: 10.1007/s10753-022-01718-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
A simultaneous increase in the prevalence of diabetes mellitus (DM), a risk factor for cardiovascular diseases (CVDs), has contributed to the escalation of CVD related mortalities. To date, oxidative stress and inflammation are increasingly recognized as significant drivers of cardiovascular complications in patients with diabetes. Therefore, this study aims to explore the correlation between oxidative stress, inflammation, and hematological indices in diabetic patients with CVDs. Patients were allocated into five groups: healthy controls; nondiabetic patients with myocardial infarction; diabetic patients with myocardial infarction; nondiabetic patients with heart failure; and diabetic patients with heart failure. The results revealed that the malondialdehyde levels were increased; whereas superoxide dismutase enzyme activities were markedly reduced in all CVD groups compared with those of healthy controls. Although the mRNA expression levels of interleukin (IL)-6, IL-18, and IL-38 were significantly increased, those of the anti-inflammatory cytokine, IL-35, have been reduced in all CVD groups compared with healthy controls. Regarding hematological indices, hematocrit, red blood cell distribution width, mean platelet (PLT) volume, plateletcrit, PLT distribution width, leukocyte count, and PLT-to-lymphocyte and neutrophil-to-lymphocyte ratios were markedly increased in the diabetic and nondiabetic CVD groups compared with those of the healthy controls. Oxidative stress and cytokine biomarkers may play a significant role in the complications of diabetic cardiomyopathy. Moreover, hematological indices are particularly sensitive to systemic inflammatory changes and are novel markers for the early detection of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Howaida Saad
- Department of Biochemistry Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Department of Biochemistry Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Basant Mahmoud
- Department of Biochemistry Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salem St, Beni-Suef, 62511 Egypt
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salem St, Beni-Suef, 62511 Egypt
| |
Collapse
|
27
|
Novoa U, Soto K, Valdés C, Villaseñor J, Treuer AV, González DR. Tetrahydrobiopterin (BH 4) Supplementation Prevents the Cardiorenal Effects of Diabetes in Mice by Reducing Oxidative Stress, Inflammation and Fibrosis. Biomedicines 2022; 10:biomedicines10102479. [PMID: 36289741 PMCID: PMC9599239 DOI: 10.3390/biomedicines10102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The effects of diabetes on the cardiovascular system as well as in the kidney are profound, which include hypertrophy and fibrosis. Diabetes also induces oxidative stress, at least in part due to the uncoupling of nitric oxide synthase (NOS); this is a shift in NO production toward superoxide production due to reduced levels of the NOS cofactor tetrahydrobiopterin (BH4). With this in mind, we tested the hypothesis that BH4 supplementation may prevent the development of diabetic cardiomyopathy and nephropathy. Methods: Diabetes was induced in Balb/c mice with streptozotocin. Then, diabetic mice were divided into two groups: one group provided with BH4 (sapropterin) in drinking water (daily doses of 15 mg/kg/day, during eight weeks) and the other that received only water. A third group of normoglycemic mice that received only water were used as the control. Results: Cardiac levels of BH4 were increased in mice treated with BH4 (p = 0.0019). Diabetes induced cardiac hypertrophy, which was prevented in the group that received BH4 (p < 0.05). In addition, hypertrophy was evaluated as cardiomyocyte cross-sectional area. This was reduced in diabetic mice that received BH4 (p = 0.0012). Diabetes induced cardiac interstitial fibrosis that was reduced in mice that received BH4 treatment (p < 0.05). We also evaluated in the kidney the impact of BH4 treatment on glomerular morphology. Diabetes induced glomerular hypertrophy compared with normoglycemic mice and was prevented by BH4 treatment. In addition, diabetic mice presented glomerular fibrosis, which was prevented in mice that received BH4. Conclusions: These results suggest that chronic treatment with BH4 in mice ameliorates the cardiorenal effects of diabetes,, probably by restoring the nitroso−redox balance. This offers a possible new alternative to explore a BH4-based treatment for the organ damage caused by diabetes.
Collapse
Affiliation(s)
- Ulises Novoa
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Karen Soto
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3466706, Chile
| | - Jorge Villaseñor
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Adriana V. Treuer
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Catolica del Maule, Talca 3466706, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
- Correspondence: ; Tel.: +56-71-2-418856
| |
Collapse
|
28
|
The Role of NLRP3 Inflammasome in Diabetic Cardiomyopathy and Its Therapeutic Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3790721. [PMID: 36111168 PMCID: PMC9470324 DOI: 10.1155/2022/3790721] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). However, the precise molecular mechanisms remain largely unclear, and it is still a challenging disease to diagnose and treat. The nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome is a critical part of the innate immune system in the host to defend against endogenous danger and pathogenic microbial infections. Dysregulated NLRP3 inflammasome activation results in the overproduction of cytokines, primarily IL-1β and IL-18, and eventually, inflammatory cell death-pyroptosis. A series of studies have indicated that NLRP3 inflammasome activation participates in the development of DCM, and that corresponding interventions could mitigate disease progression. Accordingly, this narrative review is aimed at briefly summarizing the cell-specific role of the NLRP3 inflammasome in DCM and provides novel insights into developing DCM therapeutic strategies targeting the NLRP3 inflammasome.
Collapse
|
29
|
Mengstie MA, Abebe EC, Teklemariam AB, Mulu AT, Teshome AA, Zewde EA, Muche ZT, Azezew MT. Molecular and cellular mechanisms in diabetic heart failure: Potential therapeutic targets. Front Endocrinol (Lausanne) 2022; 13:947294. [PMID: 36120460 PMCID: PMC9478122 DOI: 10.3389/fendo.2022.947294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes Mellitus (DM) is a worldwide health issue that can lead to a variety of complications. DM is a serious metabolic disorder that causes long-term microvascular and macro-vascular complications, as well as the failure of various organ systems. Diabetes-related cardiovascular diseases (CVD) including heart failure cause significant morbidity and mortality worldwide. Concurrent hypertensive heart disease and/or coronary artery disease have been thought to be the causes of diabetic heart failure in DM patients. However, heart failure is extremely common in DM patients even in the absence of other risk factors such as coronary artery disease and hypertension. The occurrence of diabetes-induced heart failure has recently received a lot of attention. Understanding how diabetes increases the risk of heart failure and how it mediates major cellular and molecular alteration will aid in the development of therapeutics to prevent these changes. Hence, this review aimed to summarize the current knowledge and most recent findings in cellular and molecular mechanisms of diabetes-induced heart failure.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
30
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
31
|
Hydrogen Sulfide Plays an Important Role by Regulating Endoplasmic Reticulum Stress in Diabetes-Related Diseases. Int J Mol Sci 2022; 23:ijms23137170. [PMID: 35806174 PMCID: PMC9266787 DOI: 10.3390/ijms23137170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) plays important roles in protein synthesis, protein folding and modification, lipid biosynthesis, calcium storage, and detoxification. ER homeostasis is destroyed by physiological and pharmacological stressors, resulting in the accumulation of misfolded proteins, which causes ER stress. More and more studies have shown that ER stress contributes to the pathogenesis of many diseases, such as diabetes, inflammation, neurodegenerative diseases, cancer, and autoimmune diseases. As a toxic gas, H2S has, in recent years, been considered the third most important gas signal molecule after NO and CO. H2S has been found to have many important physiological functions and to play an important role in many pathological and physiological processes. Recent evidence shows that H2S improves the body’s defenses to many diseases, including diabetes, by regulating ER stress, but its mechanism has not yet been fully understood. We therefore reviewed recent studies of the role of H2S in improving diabetes-related diseases by regulating ER stress and carefully analyzed its mechanism in order to provide a theoretical reference for future research.
Collapse
|
32
|
Anita NZ, Swardfager W. Soluble Epoxide Hydrolase and Diabetes Complications. Int J Mol Sci 2022; 23:6232. [PMID: 35682911 PMCID: PMC9180978 DOI: 10.3390/ijms23116232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) can result in microvascular complications such as neuropathy, retinopathy, nephropathy, and cerebral small vessel disease, and contribute to macrovascular complications, such as heart failure, peripheral arterial disease, and large vessel stroke. T2DM also increases the risks of depression and dementia for reasons that remain largely unclear. Perturbations in the cytochrome P450-soluble epoxide hydrolase (CYP-sEH) pathway have been implicated in each of these diabetes complications. Here we review evidence from the clinical and animal literature suggesting the involvement of the CYP-sEH pathway in T2DM complications across organ systems, and highlight possible mechanisms (e.g., inflammation, fibrosis, mitochondrial function, endoplasmic reticulum stress, the unfolded protein response and autophagy) that may be relevant to the therapeutic potential of the pathway. These mechanisms may be broadly relevant to understanding, preventing and treating microvascular complications affecting the brain and other organ systems in T2DM.
Collapse
Affiliation(s)
- Natasha Z. Anita
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King’s College Circle Room 4207, Toronto, ON M5S 1A8, Canada;
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Rumsey Centre Cardiac Rehabilitation, University Health Network Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON M4G 2V6, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King’s College Circle Room 4207, Toronto, ON M5S 1A8, Canada;
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Rumsey Centre Cardiac Rehabilitation, University Health Network Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON M4G 2V6, Canada
| |
Collapse
|
33
|
Armentaro G, D’Arrigo G, Miceli S, Cassano V, Perticone M, Maio R, Marra AM, Arturi F, Cittadini A, Tripepi G, Sesti G, Sciacqua A. Long Term Metabolic Effects of Sacubitril/Valsartan in Non-Diabetic and Diabetic Patients With Heart Failure Reduced Ejection Fraction: A Real Life Study. Front Physiol 2022; 13:897109. [PMID: 35694400 PMCID: PMC9174635 DOI: 10.3389/fphys.2022.897109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Sacubitril/Valsartan (sac/val) has improved clinical prognosis in patients affected by heart failure (HF) with reduced ejection fraction (HFrEF). HF and type 2 diabetes mellitus (T2DM) frequently coexist, with a prevalence of T2DM of 35%–40% in patients with HF. T2DM is the third co-morbidities in patients with HF and a strong independent risk factor for the progression of HF. In a post hoc analysis of PARADIGM-HF, improved glycemic control was shown in patients with T2DM and HFrEF receiving sac/val compared to enalapril at 12 months of follow-up. The aim of the present study was to evaluate, in a series of repeated observations in 90 HFrEF patients, the long term effect of sac/val treatment on renal function, glycometabolic state and insulin sensitivity parameters, according to diabetic status. We studied 90 patients (74 men and 16 women, mean age 68 ± 10 years, 60 diabetics and 30 non-diabetics) suffering from HFrEF and still symptomatic despite optimal pharmacological therapy. Patients with left ventricular ejection fraction (LVEF) <35% and II-III NYHA functional class were enrolled. All patients underwent clinical-instrumental and laboratory determinations and Minnesota Living with HF Questionnaire (MLHFQ) every 6 months until 30 months to evaluate benefits and adverse events. After 30 months follow-up, we observed a significant improvement in glycometabolic parameters including HbA1c, fasting glucose and insulin, insulin-like growth factor-1 (IGF-1), HOMA index, and LDL cholesterol. Moreover, renal function, NTpro-BNP levels and echocardiographic parameters significantly improved. In diabetic patients a significant reduction in use of oral antidiabetic drugs and insulin was observed after 30 months of sac/val treatment. In the whole population, multivariate analysis shows that the evolution of cardiac index (CI) was significantly associated to simultaneous changes in HOMA, IGF-1 and visit; per each visit and for 1 ng/ml increase in IGF-1 there was an increase in CI of 64.77 ml/min/m2 (p < 0.0001) and 0.98 ml/min/m2 (p = 0.003), respectively, whereas 1 point increase in HOMA was associated with a −7.33 ml/min/m2 (p = 0.003) reduction in CI. The present data confirm persistent metabolic improvement in patients with HFrEF after treatment with sac/val and highlights its potential therapeutical role in patients with metabolic comorbidities.
Collapse
Affiliation(s)
- Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Graziella D’Arrigo
- CNR-IFC, Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Raffaele Maio
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Alberto Maria Marra
- Department of Translational Medical Sciences, “Federico II” University Hospital and School of Medicine, Naples, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, “Federico II” University Hospital and School of Medicine, Naples, Italy
| | - Giovanni Tripepi
- CNR-IFC, Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University Rome-Sapienza, Naples, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, Catanzaro, Italy
- *Correspondence: Angela Sciacqua,
| |
Collapse
|
34
|
Liu H, Lan W. Alleviation of Myocardial Inflammation in Diabetic Rats by Flavonoid Extract of Helichrysum Arenarium and Its Effect on Damaged Myocardial Cells Induced by High Glucose. Front Surg 2022; 9:873010. [PMID: 35495751 PMCID: PMC9046775 DOI: 10.3389/fsurg.2022.873010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the effects of helichrysum arenarium flavonoid extract on high glucose damaged cardiomyocytes and the alleviation of myocardial inflammation in diabetic rats. Methods The study was divided into two parts, the first part was a cellular experiment in which a high-glucose cardiomyocyte injury model (H9C2) was established using a high-glucose culture medium, divided into low (group N1, 6.25 μg/mL), medium (group N2, 12.5 μg/mL), high dose group (group N3, 25 μg/mL) of helichrysum arenarium intervention and a model control group. The levels of enzyme activities [creatine kinase (CK) and lactate dehydrogenase (LDH)] in each group of H9c2 cells were measured by Enzyme-linked immunosorbent assay (ELISA), the expression levels of apoptotic proteins (Bax and Bcl-2) by western blot (WB), and the expression levels of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)] by RT-qPCR. The second part is animal experiments, after establishing the diabetic rat model, we used helichrysum arenarium flavonoid extract to intervene SD rats, divided into helichrysum arenarium intervention low (group S1, 250 mg/kg), medium (group S2, 500 mg/kg), high dose group (group S3, 1 g/kg), SD rat model group. Hematoxylin-eosin (HE) staining was used to observe myocardial tissue lesions, and Real Time Quantitative PCR (RT-qPCR) method was used to detect inflammatory (TNF-α, IL-1β, and IL-6) infiltration in myocardial tissue. Results Cellular experiments: The activity levels of enzymes such as CK and LDH and the levels of inflammatory factors such as TNF-α, IL-1β, and IL-6 in damaged cardiac myocytes were significantly decreased after helichrysum arenarium intervention; the expression levels of Bax protein were significantly down-regulated and the expression levels of Bcl-2 protein expression were significantly up-regulated. Animal experiment: HE staining showed that the model group had widened intercellular spaces, interstitial edema and obvious inflammatory cell infiltration in cardiac muscle tissue. After the intervention of helichrysum arenarium, the collagen fibers of rat myocardial cells were significantly reduced and cell degeneration was alleviated. Animal experiment: HE staining showed that the model group had widened intercellular spaces, interstitial edema and obvious inflammatory cell infiltration in cardiac muscle tissue. After the intervention of helichrysum arenarium, the collagen fibers of rat myocardial cells were significantly reduced and cell degeneration was alleviated; the levels of TNF-α, IL-1β, IL-6 and other inflammatory factors in myocardial tissues were significantly decreased. Conclusion The helichrysum arenarium flavonoid extract can reduce the degree of damage of H9C2 cells induced by high glucose and decrease the cellular inflammatory response, and its mechanism of action may be achieved by regulating the apoptotic factors Bax and Bcl-2. In addition, the extract of helichrysum arenarium can reduce the histopathological damage of myocardium in diabetic rats, decrease the inflammatory response in the tissue, and achieve the effect of myocardial protection.
Collapse
|
35
|
Kumawat VS, Kaur G. Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸβ inhibition. Can J Physiol Pharmacol 2022; 100:259-271. [PMID: 34860602 DOI: 10.1139/cjpp-2021-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-caryophyllene (BCP), a cannabinoid 2 (CB2) receptor agonist has recently been found to have cardioprotective activity as an anti-inflammatory and antioxidant molecule. L-arginine (LA), a nitric oxide (NO) donor, is a potential regulator of cardiovascular function. Considering the role of CB2 receptor activation and NO regulation in cardiovascular diseases, the combination of BCP with LA may be a possible treatment of diabetic cardiomyopathy (DCM). Hence, we investigated the efficacy of the novel combination of BCP with LA on cardiovascular inflammation and oxidative stress in diabetic rats. DCM was induced by streptozotocin (55 mg/kg) in Sprague-Dawley rats intraperitoneally. BCP, LA, and BCP with LA were administered to diabetic rats for 4 weeks. After completion of the study, hemodynamic parameters, biochemical parameters, and inflammatory cytokine levels were analyzed. Also, oxidative stress parameters, nuclear factor kappa beta (NF-ĸβ) expression, and histopathology in cardiac tissues were estimated. The combination of BCP (200 mg/kg) with LA (200 mg/kg) significantly normalized the hemodynamic parameters and decreased the glucose, cardiac markers, interleukin-6, and tumor necrosis factor-alpha levels. Treatment of BCP and LA showed a significant decrease in oxidative stress and downregulated the cardiac expression of NF-ĸβ. Thus, the combination of BCP with LA improves cardiac functions by attenuating inflammation through NF-ĸβ inhibition in DCM.
Collapse
Affiliation(s)
- Vivek S Kumawat
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
36
|
Sun X, Sun X, Meng H, Wu J, Guo X, Du L, Wu H. Krill Oil Inhibits NLRP3 Inflammasome Activation in the Prevention of the Pathological Injuries of Diabetic Cardiomyopathy. Nutrients 2022; 14:nu14020368. [PMID: 35057549 PMCID: PMC8780413 DOI: 10.3390/nu14020368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM), resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches have been developed for the intervention of DCM. In the present study, we investigate the effect of krill oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically, KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which are negative regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the pathological injuries of DCM, providing SIRT3, PGC-1α and NLRP3 as molecular targets of KO. This work suggests that KO supplementation may be a viable approach in clinical prevention of DCM.
Collapse
Affiliation(s)
- Xuechun Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan 250033, China;
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun 130041, China;
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
- Correspondence: (L.D.); (H.W.)
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan 250012, China; (X.S.); (H.M.); (X.G.)
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 105 Jiefang Rd., Jinan 250013, China
- Correspondence: (L.D.); (H.W.)
| |
Collapse
|
37
|
Capuano A, Clementi E, Paolisso G. Editorial: Metabolic Related Cardiomyopathy in Hyperglycemic Patients. Front Cardiovasc Med 2022; 8:826914. [PMID: 35097035 PMCID: PMC8792897 DOI: 10.3389/fcvm.2021.826914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Science “Luigi Sacco” (DIBIC), University of the Study of Milan, Milan, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Science, University of Campania Luigi Vanvitelli, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
- *Correspondence: Giuseppe Paolisso
| |
Collapse
|
38
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
39
|
Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Guo Q, Zhu Q, Zhang T, Qu Q, Cheang I, Liao S, Chen M, Zhu X, Shi M, Li X. Integrated bioinformatic analysis reveals immune molecular markers and potential drugs for diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:933635. [PMID: 36046789 PMCID: PMC9421304 DOI: 10.3389/fendo.2022.933635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition induced by diabetes mellitus that often causes heart failure (HF). However, their mechanistic relationships remain unclear. This study aimed to identify immune gene signatures and molecular mechanisms of DCM. Microarray data from the Gene Expression Omnibus (GEO) database from patients with DCM were subjected to weighted gene co-expression network analysis (WGCNA) identify co-expression modules. Core expression modules were intersected with the immune gene database. We analyzed and mapped protein-protein interaction (PPI) networks using the STRING database and MCODE and filtering out 17 hub genes using cytoHubba software. Finally, potential transcriptional regulatory factors and therapeutic drugs were identified and molecular docking between gene targets and small molecules was performed. We identified five potential immune biomarkers: proteosome subunit beta type-8 (PSMB8), nuclear factor kappa B1 (NFKB1), albumin (ALB), endothelin 1 (EDN1), and estrogen receptor 1 (ESR1). Their expression levels in animal models were consistent with the changes observed in the datasets. EDN1 showed significant differences in expression in both the dataset and the validation model by real-time quantitative PCR (qPCR) and Western blotting(WB). Subsequently, we confirmed that the potential transcription factors upstream of EDN1 were PRDM5 and KLF4, as its expression was positively correlated with the expression of the two transcription factors. To repurpose known therapeutic drugs, a connectivity map (CMap) database was retrieved, and nine candidate compounds were identified. Finally, molecular docking simulations of the proteins encoded by the five genes with small-molecule drugs were performed. Our data suggest that EDN1 may play a key role in the development of DCM and is a potential DCM biomarker.
Collapse
|
41
|
Ciumărnean L, Milaciu MV, Negrean V, Orășan OH, Vesa SC, Sălăgean O, Iluţ S, Vlaicu SI. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:207. [PMID: 35010467 PMCID: PMC8751147 DOI: 10.3390/ijerph19010207] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases create an important burden on the public health systems, especially in the elderly, mostly because this group of patients frequently suffer from multiple comorbidities. Accumulating cardiovascular risk factors during their lifetime has a detrimental effect on an older adult's health status. The modifiable and non-modifiable cardiovascular risk factors are very diverse, and are frequently in a close relationship with the metabolic comorbidities of the elderly, mainly obesity and Diabetes Mellitus. In this review, we aim to present the most important cardiovascular risk factors which link aging and cardiovascular diseases, starting from the pathophysiological links between these factors and the aging process. Next, we will further review the main interconnections between obesity and Diabetes Mellitus and cardiovascular diseases of the elderly. Lastly, we consider the most important aspects related to prevention through lifestyle changes and physical activity on the occurrence of cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Mircea Vasile Milaciu
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Vasile Negrean
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Olga Hilda Orășan
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Stefan Cristian Vesa
- Department 2 Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Regional Institute of Gastroenterology and Hepatology ‘Octavian Fodor’ Cluj-Napoca, 400162 Cluj-Napoca, Romania;
| | - Silvina Iluţ
- Department 10 Neurosciences, Discipline of Neurology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sonia Irina Vlaicu
- Department 5 Internal Medicine, 1st Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|