1
|
Meligy FY, Mohammed HSED, Abou Elghait AT, Mohamed HK, Ashry IESM, Abdel-Rahman Sayed A, Hussein OA, Salman A, Atia T, Mohamed AS, Behnsawy NH, Gaber SS, Sakr HI, Ahmed SF. Mesenchymal stem cells versus mesenchymal stem cells-derived exosomes as potential autophagy pathway modulators in a diabetic model. Adv Med Sci 2025; 70:152-165. [PMID: 39956208 DOI: 10.1016/j.advms.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
PURPOSE This work compared the potential effects of bone marrow mesenchymal stem cells (BM-MSCs) with BM-MSCs-derived exosomes against impaired autophagy in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Three days after STZ injection, a single dose of (3 × 10^6) BM- MSCs or BM-MSCs-derived exosomes (80 μg/rat) was administered to evaluate their effects against nondiabetic and diabetic control rats. We assessed pancreatic structure via light and electron microscopy and evaluated its staining for insulin and the autophagy marker P62 immunohistochemically. Moreover, autophagy marker LC3 gene expression was examined by PCR. RESULTS Both BM-MSCs and BM-MSCs derived exosomes showed histological restoration of pancreatic tissues. Both treatments markedly increased the amount of insulin and significantly decreased the autophagy markers P62 and LC3. CONCLUSION Our findings suggest that both BM-MSCs and BM-MSCs-derived exosomes provides a potential alternative to modulate diabetes mellitus.
Collapse
Affiliation(s)
- Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Amal T Abou Elghait
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Histology and Cell Biology Department, Sphinx University, New Assiut city, Assiut, Egypt
| | - Heba K Mohamed
- Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Anatomy and Embryology Department, Sphinx University, New Assiut city, Assiut, Egypt
| | | | - Ayat Abdel-Rahman Sayed
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| | - Ola A Hussein
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Salman
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman, Jordan; Department of Anatomy, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Tarek Atia
- Department of Medical Laboratories, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abir S Mohamed
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nour H Behnsawy
- Faculty of Medicine, Assiut University, Assiut, Egypt; Skilled Medical Practitioners Focus Area Coordinator 24/25, International Federation of Medical Students Association, Egypt
| | - Safy Salah Gaber
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia.
| | - Salwa Fares Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Anatomy Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Tian X, Wang W, Zhang L, Wang L, Zhang K, Ge X, Luo Z, Zhao Y, Zhai X, Li C. Acupuncture and Drug Combination Therapy for Abnormal Glucose Metabolism: Exploring Synergistic Enhancement and Reduced Toxicity Mechanisms. Diabetes Metab Syndr Obes 2024; 17:4525-4537. [PMID: 39624791 PMCID: PMC11611509 DOI: 10.2147/dmso.s492626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/16/2024] [Indexed: 01/03/2025] Open
Abstract
This review examines the impact of combining acupuncture with drug therapy on abnormal glucose metabolism and investigates their underlying mechanisms. Conditions like diabetes pose significant health risks due to irregular glucose metabolism. Traditional drug treatments often encounter challenges related to side effects and drug resistance. Acupuncture, as a non-pharmacological intervention, is thought to enhance glucose metabolism and mitigate medication side effects. We selected the relevant studies of acupuncture or electroacupuncture combined with drugs in the treatment of abnormal glucose metabolism in the past five years, and the results indicate that the combination of acupuncture or electroacupuncture and drug therapy markedly enhances glucose metabolism and mitigates medication-related side effects such as gastrointestinal discomfort and hypoglycemia. Overall, this review underscores the synergistic benefits of acupuncture and drug therapy in improving treatment efficacy and reducing adverse effects, offering promising new approaches for managing abnormal glucose metabolism. Our review provides evidence for the potential benefits of combining acupuncture with drug therapy for abnormal glucose metabolism, which could lead to improved treatment outcomes and reduced side effects for patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xinyi Tian
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Wenjun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Lu Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Liuqing Wang
- Institute of Chinese Medical History and Literatures, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Kaiqi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Xiaolei Ge
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Zhengrong Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Yaqian Zhao
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Xu Zhai
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Chunjing Li
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| |
Collapse
|
3
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
4
|
Ahmed Salıh Gezh S, Deveci K, Sivgin H, Guzelgul F. Serum L C3-II levels in type 2 diabetic patients with impaired renal functions. Cytokine 2024; 181:156683. [PMID: 38943738 DOI: 10.1016/j.cyto.2024.156683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
This study was designed to evaluate serum LC3-II, BCL-2, IL-1β, TGF-β1, and podocin levels in. type 2 diabetes (T2DM) patients with renal dysfunction. MATERIALS 176 Turkish subjects were enrolled, of whom 26 were healthy, and 150 had T2DM. PATIENTS were classified according to albumin urea ratio: 88 patients had macroalbuminuria, 20. patients had microalbuminuria, and 42 had normoalbuminuria. T2DM patients were also. classified into three groups according to proteinuria and eGFR stages. RESULTS Increased serum LC3-II levels in patients with T2DM with increased urinary albumin. extraction and impaired renal functions. There was a strong relationship between serum. LC3-II levels and serum BCL-2, IL-1β, TGF-β1, and Podocin levels. The efficiency of LC3- II as a diagnostic biomarker in the differential diagnosis of DM patients with. macroproteinuria from DM patients with normoproteinuria was 75.4%. CONCLUSIONS It was thought that increased serum LC3-II levels in T2DM patients with impaired renal. functions may cause renal podocyte damage. In these patients, serum LC3-II levels can be. evaluated as a new biomarker to follow the development of renal damage.
Collapse
Affiliation(s)
- Shahab Ahmed Salıh Gezh
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, 60100, Tokat, Turkey.
| | - Koksal Deveci
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, 60100, Tokat, Turkey.
| | - Hakan Sivgin
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Internal Medicine, 60100, Tokat, Turkey.
| | - Figen Guzelgul
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, 60100, Tokat, Turkey.
| |
Collapse
|
5
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Rezaie J, Jahanghiri M, Heris RM, Hassannezhad S, Abdyazdani N, Rahbarghazi A, Ahmadi M. Melatonin reduces lung injury in type 1 diabetic mice by the modulation of autophagy. BMC Mol Cell Biol 2024; 25:7. [PMID: 38486170 PMCID: PMC10938779 DOI: 10.1186/s12860-024-00505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In recent years, the role of autophagy has been highlighted in the pathogenesis of diabetes and inflammatory lung diseases. In this study, using a diabetic model of mice, we investigated the expression of autophagy-related genes in the lung tissues following melatonin administration. RESULTS Data showed histopathological remodeling in lung tissues of the D group coincided with an elevated level of IL-6, Becline-1, LC3, and P62 compared to the control group (p < 0.05). After melatonin treatment, histopathological remodeling was improved D + Mel group. In addition, expression levels of IL-6, Becline-1, LC3, and P62 were decreased in D + Mel compared to D group (P < 0.05). Statistically significant differences were not obtained between Mel group and C group (p > 0.05). CONCLUSION Our results showed that melatonin injection can be effective in the amelioration of lung injury in diabetic mice presumably by modulating autophagy-related genes.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Jahanghiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sina Hassannezhad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
He J, Liu B, Du X, Wei Y, Kong D, Feng B, Guo R, Asiamah EA, Griffin MD, Hynes SO, Shen S, Liu Y, Cui H, Ma J, O'Brien T. Amelioration of diabetic nephropathy in mice by a single intravenous injection of human mesenchymal stromal cells at early and later disease stages is associated with restoration of autophagy. Stem Cell Res Ther 2024; 15:66. [PMID: 38443965 PMCID: PMC10916232 DOI: 10.1186/s13287-024-03647-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND AND AIMS Mesenchymal stromal cells (MSCs) a potentially effective disease-modulating therapy for diabetic nephropathy (DN) but their clinical translation has been hampered by incomplete understanding of the optimal timing of administration and in vivo mechanisms of action. This study aimed to elucidate the reno-protective potency and associated mechanisms of single intravenous injections of human umbilical cord-derived MSCs (hUC-MSCs) following shorter and longer durations of diabetes. METHODS A streptozotocin (STZ)-induced model of diabetes and DN was established in C57BL/6 mice. In groups of diabetic animals, human (h)UC-MSCs or vehicle were injected intravenously at 8 or 16 weeks after STZ along with vehicle-injected non-diabetic animals. Diabetes-related kidney abnormalities was analyzed 2 weeks later by urine and serum biochemical assays, histology, transmission electron microscopy and immunohistochemistry. Serum concentrations of pro-inflammatory and pro-fibrotic cytokines were quantified by ELISA. The expression of autophagy-related proteins within the renal cortices was investigated by immunoblotting. Bio-distribution of hUC-MSCs in kidney and other organs was evaluated in diabetic mice by injection of fluorescent-labelled cells. RESULTS Compared to non-diabetic controls, diabetic mice had increases in urine albumin creatinine ratio (uACR), mesangial matrix deposition, podocyte foot process effacement, glomerular basement membrane thickening and interstitial fibrosis as well as reduced podocyte numbers at both 10 and 18 weeks after STZ. Early (8 weeks) hUC-MSC injection was associated with reduced uACR and improvements in multiple glomerular and renal interstitial abnormalities as well as reduced serum IL-6, TNF-α, and TGF-β1 compared to vehicle-injected animals. Later (16 weeks) hUC-MSC injection also resulted in reduction of diabetes-associated renal abnormalities and serum TGF-β1 but not of serum IL-6 and TNF-α. At both time-points, the kidneys of vehicle-injected diabetic mice had higher ratio of p-mTOR to mTOR, increased abundance of p62, lower abundance of ULK1 and Atg12, and reduced ratio of LC3B to LC3A compared to non-diabetic animals, consistent with diabetes-associated suppression of autophagy. These changes were largely reversed in the kidneys of hUC-MSC-injected mice. In contrast, neither early nor later hUC-MSC injection had effects on blood glucose and body weight of diabetic animals. Small numbers of CM-Dil-labeled hUC-MSCs remained detectable in kidneys, lungs and liver of diabetic mice at 14 days after intravenous injection. CONCLUSIONS Single intravenous injections of hUC-MSCs ameliorated glomerular abnormalities and interstitial fibrosis in a mouse model of STZ-induced diabetes without affecting hyperglycemia, whether administered at relatively short or longer duration of diabetes. At both time-points, the reno-protective effects of hUC-MSCs were associated with reduced circulating TGF-β1 and restoration of intra-renal autophagy.
Collapse
Affiliation(s)
- Jingjing He
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Boxin Liu
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yan Wei
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Ernest Amponsah Asiamah
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Forensic Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Matthew D Griffin
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Sanbing Shen
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Yan Liu
- Department of Endocrinology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, 050051, Hebei, China
| | - Huixian Cui
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Timothy O'Brien
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
8
|
Song W, Xing R, Yang H, Liu S, Yu H, Li P. Therapeutic potential of enzymatically extracted eumelanin from squid ink in type 2 diabetes mellitus ICR mice: Multifaceted intervention against hyperglycemia, oxidative stress and depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:993-1007. [PMID: 37715565 DOI: 10.1002/jsfa.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that poses significant health risks due to its numerous complications. However, the effects of eumelanin on oxidative stress, hyperglycemia and depression in diabetic mice have not been extensively studied. RESULTS Our study employed an enzymatic approach to extract eumelanin from squid ink and characterized it using spectroscopic techniques. Remarkably, eumelanin extracted with alkaline-neutral-flavor protease (ANF) displayed superior inhibitory activity against α-glucosidase and α-amylase, while enhancing glucose utilization and hepatic glycogen synthesis in human hepatocellular carcinoma cell line (HepG2) insulin resistance model. Further evaluation of ANF in a T2DM ICR mouse model demonstrated its significant potential in alleviating hyperglycemia, reducing glycosylated serum protein levels, improving glucose tolerance and modulating total cholesterol and low-density lipoprotein levels, as well as antioxidant indices at a dosage of 0.04 g kg-1 . Additionally, ANF exhibited positive effects on energy levels and reduced immobility time in antidepressant behavioral experiments. Moreover, ANF positively influenced the density and infiltration state of renal cells, while mitigating inflammatory enlargement and deformation of liver cells, without inducing any adverse effects in mice. CONCLUSION Overall, these findings underscore the significant therapeutic potential of ANF in the treatment of T2DM and its associated complications. By augmenting lipid and glucose metabolism, mitigating oxidative stress and alleviating depression, ANF emerges as a promising candidate for multifaceted intervention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Song
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronge Xing
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoyue Yang
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Huahua Yu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Pengcheng Li
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
9
|
Yaribeygi H, Maleki M, Santos RD, Jamialahmadi T, Sahebkar A. Glp-1 Mimetics and Autophagy in Diabetic Milieu: State-of-the-Art. Curr Diabetes Rev 2024; 20:e250124226181. [PMID: 38299271 DOI: 10.2174/0115733998276570231222105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024]
Abstract
The diabetic milieu is associated with cascades of pathophysiological pathways that culminate in diabetic complications and tissue injuries. Autophagy is an essential process mandatory for cell survival and tissue homeostasis by degrading damaged organelles and removing injured cells. However, it may turn into a pathological process in an aberrant mode in the diabetic and/or malignant milieu. Moreover, autophagy could serve as a promising therapeutic target for many complications related to tissue injury. Glp-1 mimetics are a class of newer antidiabetic agents that reduce blood glucose through several pathways. However, some evidence suggests that they can provide extra glycemic benefits by modulating autophagy, although there is no complete understanding of this mechanism and its underlying molecular pathways. Hence, in the current review, we aimed to provide new insights on the possible impact of Glp-1 mimetics on autophagy and consequent benefits as well as mediating pathways.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Tannaz Jamialahmadi
- Medical Toxicolgy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Medical Toxicolgy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Szychowski KA, Skóra B. The elastin-derived peptide (VGVAPG) activates autophagy in neuroblastoma (SH-SY5Y) cells via peroxisome proliferator-activated receptor gamma (PPARγ). Mol Cell Neurosci 2023; 127:103902. [PMID: 37918553 DOI: 10.1016/j.mcn.2023.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Autophagy is a self-degradative process important for balancing the sources of energy and involved in the development of Alzheimer's disease (AD). To date, a number of papers have shown that elastin-derived peptides (EDPs) affect the expression and activation of peroxisome proliferator-activated receptor gamma (PPARγ), which is crucial for the development of AD and autophagy initiation. Therefore, the aim of the present study was to determine whether EDPs with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence activate the autophagic process in undifferentiated SH-SY5Y human neuroblastoma cells. Our study is the first to show that EDPs with the VGVAPG sequence initiate the autophagy process in the undifferentiated SH-SY5Y cell line exhibiting a number of features of normal neuroblasts. In particular, we observed in our study that VGAVPG peptide increased ULK1, AKT, PPARγ, and LC3B protein expression. Moreover, our experiments with the agonist (rosiglitazone) and antagonist (GW9662) of PPARγ confirm that the studied EDP acts through the PPARγ pathway affecting mTOR and finally autophagy. Some studies have shown that autophagy disturbances are involved in the development of AD. Therefore, we believe that our study will provide new evidence of the possible involvement of EDPs (especially VGVAPG) in the development of AD.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
11
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Obradovic M, Zafirovic S, Gluvic Z, Radovanovic J, Isenovic ER. Autophagy and diabetes. EXPLORATION OF MEDICINE 2023:576-588. [DOI: 10.37349/emed.2023.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 10/13/2023] Open
Abstract
The current literature findings on autophagy’s beneficial and detrimental roles in diabetes mellitus (DM) and diabetes-related comorbidities were reviewed. The effects of oral hypoglycaemic medicines and autophagy in DM. Autophagy plays an important function in cellular homeostasis by promoting cell survival or initiating cell death in physiological settings was also assessed. Although autophagy protects insulin-target tissues, organelle failure caused by autophagy malfunction influences DM and other metabolic diseases. Endoplasmic reticulum and oxidative stress enhance autophagy levels, making it easier to regulate stress-induced intracellular changes. Evidence suggests that autophagy-caused cell death can occur when autophagy is overstimulated and constitutively activated, which might prevent or develop DM. Even though the precise role of autophagy in DM complications is uncertain, deregulation of the autophagic machinery is strongly linked to beta cell destruction and the aetiology of DM. Thus, improving autophagy dysfunction is a possible therapeutic objective in treating DM and other metabolic disorders.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Zemun Clinical Hospital, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Xu J, Zheng B, Ma Y, Zhang X, Cheng J, Yang J, Li P, Zhang J, Jing L, Xu F. PI3K-AKT-mTOR signaling pathway regulates autophagy of hippocampal neurons in diabetic rats with chronic unpredictable mild stress. Behav Brain Res 2023; 452:114558. [PMID: 37390967 DOI: 10.1016/j.bbr.2023.114558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
It is reported that the co-morbidities of diabetes and depression will be a new challenge for humanity. However, the underlying mechanism is not clear. The present study investigated the histopathology, autophagy of hippocampal neurons, and the PI3K-AKT- mTOR signaling pathway in type 2 diabetes with depression(T2DD) rats. The results showed that, the chronic unpredictable mild stress (CUMS), Type 2 diabetes mellitus (T2DM) and T2DD in rats were induced successfully. Compared with the CUMS and T2DM groups, the T2DD group performed significantly fewer autonomic activities in the open-field test, and longer immobile in the force swimming test, and increasing of Corticosterone (CORT) in blood. The number of pyknotic neurons at cornu ammonis 1 (CA1) and dentate gyrus (DG) of the hippocampus in T2DD was significantly increased compared with CUMS and T2DM groups. Moreover, compared with the CUMS and T2DM groups, the mitochondrial autophagosomes were most abundant in the T2DD group. As shown in western blot and immunofluorescence, compared with the control group, in the CUMS, T2DM and T2DD groups, significantly increased expression of Beclin-1 and LC3B and decreased P62 were detected. In the PC12 cells, the relative amount of parkin and LC3B in the CORT+HG group was significantly higher than that in the CORT and HG groups. Compared with the control group, p-AKT/AKT and p-mTOR/mTOR in CUMS, T2DM and T2DD groups were significantly decreased. Compared with the CUMS group, p-AKT/AKT, p-PI3K/PI3K and p-mTOR/mTOR in the T2DD group exhibited further decrease. Similar results were obtained in PC12 cells in vitro. It is suggests that memory and cognitive impairment in rats with co-morbidities of diabetes and depression might be related with hippocampal neuronal damage and autophagy increase, which was involved in the PI3K-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China; Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Bowen Zheng
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Yanmei Ma
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Xiaopeng Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Jianhua Cheng
- Department of Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Yang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Peng Li
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Jianzhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| | - Fang Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
14
|
Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo TTKS, de Clerck E, Polivka J, Potuznik P, Polivka J, Stetkarova I, Kubatka P, Thumann G. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J 2023; 14:21-42. [PMID: 36866156 PMCID: PMC9971534 DOI: 10.1007/s13167-023-00314-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
Proliferative diabetic retinopathy (PDR) the sequel of diabetic retinopathy (DR), a frequent complication of diabetes mellitus (DM), is the leading cause of blindness in the working-age population. The current screening process for the DR risk is not sufficiently effective such that often the disease is undetected until irreversible damage occurs. Diabetes-associated small vessel disease and neuroretinal changes create a vicious cycle resulting in the conversion of DR into PDR with characteristic ocular attributes including excessive mitochondrial and retinal cell damage, chronic inflammation, neovascularisation, and reduced visual field. PDR is considered an independent predictor of other severe diabetic complications such as ischemic stroke. A "domino effect" is highly characteristic for the cascading DM complications in which DR is an early indicator of impaired molecular and visual signaling. Mitochondrial health control is clinically relevant in DR management, and multi-omic tear fluid analysis can be instrumental for DR prognosis and PDR prediction. Altered metabolic pathways and bioenergetics, microvascular deficits and small vessel disease, chronic inflammation, and excessive tissue remodelling are in focus of this article as evidence-based targets for a predictive approach to develop diagnosis and treatment algorithms tailored to the individual for a cost-effective early prevention by implementing the paradigm shift from reactive medicine to predictive, preventive, and personalized medicine (PPPM) in primary and secondary DR care management.
Collapse
Affiliation(s)
- Martina Kropp
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Trong-Tin Kevin Steve Vo
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Eline de Clerck
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Jiri Polivka
- Department of Histology and Embryology, and Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Pavel Potuznik
- Department of Neurology, University Hospital Plzen, and Faculty of Medicine in Plzen, Charles University, 100 34 Prague, Czech Republic
| | - Jiri Polivka
- Department of Neurology, University Hospital Plzen, and Faculty of Medicine in Plzen, Charles University, 100 34 Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Gabriele Thumann
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|