1
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Doddavarapu B, Lata C, Shah JM. Epigenetic regulation influenced by soil microbiota and nutrients: Paving road to epigenome editing in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130580. [PMID: 38325761 DOI: 10.1016/j.bbagen.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Soil is a complex ecosystem that houses microbes and nutrients that are necessary for plant development. Edaphic properties of the soil and environmental conditions influence microbial growth and nutrient accessibility. Various environmental stimuli largely affect the soil microbes and ionic balance, in turn influencing plants. Soil microflora helps decompose organic matter and is involved in mineral uptake. The combination of soil microbes and mineral nutrients notably affects plant growth. Recent advancements have enabled a deeper understanding of plant genetic/molecular regulators. Deficiencies/sufficiencies of soil minerals and microbes also alter plant gene regulation. Gene regulation mediated by epigenetic mechanisms comprises conformational alterations in chromatin structure, DNA/histone modifications, or involvement of small RNAs. Epigenetic regulation is unique due to its potential to inherit without involving alteration of the DNA sequence. Thus, the compilation study of heritable epigenetic changes driven by nutrient imbalances and soil microbes would facilitate understanding this molecular phenomenon in plants. This information can aid in epigenome editing, which has recently emerged as a promising technology for plant non-transgenic/non-mutagenic modification. Potential epigenetic marks induced by biotic and abiotic stresses in plants could be explored as target sites for epigenome editing. This review discusses novel ways of epigenome editing to create epigenome edited plants with desirable and heritable phenotypes. As plants are sessile and in constant exposure to the soil microbiome and nutrients, epigenetic changes induced by these factors could provide more effective, stable and a sustainable molecular solution for crop improvement.
Collapse
Affiliation(s)
- Bhavya Doddavarapu
- Department of Plant Science, Central University of Kerala, Kerala, India
| | - Charu Lata
- Inclusive Health & Traditional Knowledge Studies Division, CSIR- National Institute of Science Communication and Policy Research, New Delhi, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Kerala, India.
| |
Collapse
|
3
|
Hou X, Alagoz Y, Welsch R, Mortimer MD, Pogson BJ, Cazzonelli CI. Reducing PHYTOENE SYNTHASE activity fine-tunes the abundance of a cis-carotene-derived signal that regulates the PIF3/HY5 module and plastid biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1187-1204. [PMID: 37948577 DOI: 10.1093/jxb/erad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
PHYTOENE SYNTHASE (PSY) is a rate-limiting enzyme catalysing the first committed step of carotenoid biosynthesis, and changes in PSY gene expression and/or protein activity alter carotenoid composition and plastid differentiation in plants. Four genetic variants of PSY (psy-4, psy-90, psy-130, and psy-145) were identified using a forward genetics approach that rescued leaf virescence phenotypes and plastid abnormalities displayed by the Arabidopsis CAROTENOID ISOMERASE (CRTISO) mutant ccr2 (carotenoid and chloroplast regulation 2) when grown under a shorter photoperiod. The four non-lethal mutations affected alternative splicing, enzyme-substrate interactions, and PSY:ORANGE multi-enzyme complex binding, constituting the dynamic post-transcriptional fine-tuning of PSY levels and activity without changing localization to the stroma and protothylakoid membranes. psy genetic variants did not alter total xanthophyll or β-carotene accumulation in ccr2, yet they reduced specific acyclic linear cis-carotenes linked to the biosynthesis of a currently unidentified apocarotenoid signal regulating plastid biogenesis, chlorophyll biosynthesis, and photomorphogenic regulation. ccr2 psy variants modulated the PHYTOCHROME-INTERACTING FACTOR 3/ELONGATED HYPOCOTYL 5 (PIF3/HY5) ratio, and displayed a normal prolamellar body formation in etioplasts and chlorophyll accumulation during seedling photomorphogenesis. Thus, suppressing PSY activity and impairing PSY:ORANGE protein interactions revealed how cis-carotene abundance can be fine-tuned through holoenzyme-metabolon interactions to control plastid development.
Collapse
Affiliation(s)
- Xin Hou
- ARC Training Centre for Accelerated Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthew D Mortimer
- ARC Training Centre for Accelerated Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
4
|
Li Q, Zargar O, Park S, Pharr M, Muliana A, Finlayson SA. Mechanical stimulation reprograms the sorghum internode transcriptome and broadly alters hormone homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111555. [PMID: 36481363 DOI: 10.1016/j.plantsci.2022.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Stem structural failure, or lodging, affects many crops including sorghum, and can cause large yield losses. Lodging is typically caused by mechanical forces associated with severe weather like high winds, but exposure to sub-catastrophic forces may strengthen stems and improve lodging resistance. The responses of sorghum internodes at different developmental stages were examined at 2 and 26 h after initiating moderate mechanical stimulation with an automated apparatus. Transcriptome profiling revealed that mechanical stimulation altered the expression of over 900 genes, including transcription factors, cell wall-related and hormone signaling-related genes. IAA, GA1 and ABA abundances generally declined following mechanical stimulation, while JA increased. Weighted Gene Co-expression Network Analysis (WGCNA) identified three modules significantly enriched in GO terms associated with cell wall biology, hormone signaling and general stress responses, which were highly correlated with mechanical stimulation and with biomechanical and geometrical traits documented in a separate study. Additionally, mechanical stimulation-triggered responses were dependent on the developmental stage of the internode and the duration of stimulation. This study provides insights into the underlying mechanisms of plant hormone-regulated thigmomorphogenesis in sorghum stems. The critical biological processes and hub genes described here may offer opportunities to improve lodging resistance in sorghum and other crops.
Collapse
Affiliation(s)
- Qing Li
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Omid Zargar
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Sungkyu Park
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Anastasia Muliana
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843 USA.
| |
Collapse
|
5
|
Ornelas-Ayala D, Cortés-Quiñones C, Olvera-Herrera J, García-Ponce B, Garay-Arroyo A, Álvarez-Buylla ER, Sanchez MDLP. A Green Light to Switch on Genes: Revisiting Trithorax on Plants. PLANTS (BASEL, SWITZERLAND) 2022; 12:75. [PMID: 36616203 PMCID: PMC9824250 DOI: 10.3390/plants12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in plants; nevertheless, little is known about their interactions and if they can form TrxG complexes. Recent evidence suggests the existence of new TrxG components as well as new interactions of some TrxG complexes that may be acting in specific tissues in plants. In this review, we bring together the latest research on the topic, exploring the interactions and roles of TrxG proteins at different developmental stages, required for the fine-tuned transcriptional activation of genes at the right time and place. Shedding light on the molecular mechanism by which TrxG is recruited and regulates transcription.
Collapse
|
6
|
Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI. Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. PLANT, CELL & ENVIRONMENT 2022; 45:989-1010. [PMID: 34984703 DOI: 10.1111/pce.14252] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A single event of mechanical stimulation is perceived by mechanoreceptors that transduce rapid transient signalling to regulate gene expression. Prolonged mechanical stress for days to weeks culminates in cellular changes that strengthen the plant architecture leading to thigmomorphogenesis. The convergence of multiple signalling pathways regulates mechanically induced tolerance to numerous biotic and abiotic stresses. Emerging evidence showed prolonged mechanical stimulation can modify the baseline level of gene expression in naive tissues, heighten gene expression, and prime disease resistance upon a subsequent pathogen encounter. The phenotypes of thigmomorphogenesis can persist throughout growth without continued stimulation, revealing somatic-stress memory. Epigenetic processes regulate TOUCH gene expression and could program transcriptional memory in differentiating cells to program thigmomorphogenesis. We discuss the early perception, gene regulatory and phytohormone pathways that facilitate thigmomorphogenesis and mechanical stress acclimation in Arabidopsis and other plant species. We provide insights regarding: (1) the regulatory mechanisms induced by single or prolonged events of mechanical stress, (2) how mechanical stress confers transcriptional memory to induce cross-acclimation to future stress, and (3) why thigmomorphogenesis might resemble an epigenetic phenomenon. Deeper knowledge of how prolonged mechanical stimulation programs somatic memory and primes defence acclimation could transform solutions to improve agricultural sustainability in stressful environments.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mahfuza Pervin
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Scott Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Janet Braam
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
7
|
Sehrish S, Sumbal W, Xie M, Zhao C, Zuo R, Gao F, Liu S. Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L. Int J Mol Sci 2022; 23:ijms23041936. [PMID: 35216050 PMCID: PMC8879272 DOI: 10.3390/ijms23041936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022] Open
Abstract
SET domain group encoding proteins function as histone lysine methyltransferases. These proteins are involved in various biological processes, including plant development and adaption to the environment by modifying the chromatin structures. So far, the SET domain genes (SDGs) have not been systematically investigated in Brassica napus (B. napus). In the current study, through genome-wide analysis, a total of 122 SDGs were identified in the B. napus genome. These BnSDGs were subdivided into seven (I-VII) classes based on phylogeny analysis, domain configurations, and motif distribution. Segmental duplication was involved in the evolution of this family, and the duplicated genes were under strong purifying selection. The promoter sequence of BnSDGs consisted of various growth, hormones, and stress-related cis-acting elements along with transcription factor binding sites (TFBSs) for 20 TF families in 59 of the 122 BnSDGs. The gene ontology (GO) analysis revealed that BnSDGs were closely associated with histone and non-histone methylation and metal binding capacity localized mostly in the nucleus. The in silico expression analysis at four developmental stages in leaf, stem root, floral organ, silique, and seed tissues showed a broad range of tissue and stage-specific expression pattern. The expression analysis under four abiotic stresses (dehydration, cold, ABA, and salinity) also provided evidence for the importance of BnSDGs in stress environments. Based on expression analysis, we performed reverse transcription-quantitative PCR for 15 target BnSDGs in eight tissues (young leaf, mature leaf, root, stem, carpel, stamen, sepal, and petals). Our results were in accordance with the in silico expression data, suggesting the importance of these genes in plant development. In conclusion, this study lays a foundation for future functional studies on SDGs in B. napus.
Collapse
|
8
|
Barrero-Gil J, Mouriz A, Piqueras R, Salinas J, Jarillo JA, Piñeiro M. A MRG-operated chromatin switch at SOC1 attenuates abiotic stress responses during the floral transition. PLANT PHYSIOLOGY 2021; 187:462-471. [PMID: 34618146 PMCID: PMC8418395 DOI: 10.1093/plphys/kiab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Plants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed. Here, we reveal a molecular mechanism of stress response attenuation during the onset of flowering in Arabidopsis (Arabidopsis thaliana). We show that Arabidopsis MORF-RELATED GENE (MRG) proteins, components of the NuA4 histone acetyltransferase complex that bind trimethylated-lysine 36 in histone H3 (H3K36me3), function as a chromatin switch on the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to coordinate flowering initiation with plant responsiveness to hostile environments. MRG proteins are required to activate SOC1 expression during flowering induction by promoting histone H4 acetylation. In turn, SOC1 represses a broad array of genes that mediate abiotic stress responses. We propose that during the transition from vegetative to reproductive growth, the MRG-SOC1 module constitutes a central hub in a mechanism that tunes down stress responses to enhance the reproductive success and plant fitness at the expense of costly efforts for adaptation to challenging environments.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Raquel Piqueras
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - José A. Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
9
|
Dobránszki J. Application of naturally occurring mechanical forces in in vitro plant tissue culture and biotechnology. PLANT SIGNALING & BEHAVIOR 2021; 16:1902656. [PMID: 33902398 PMCID: PMC8143234 DOI: 10.1080/15592324.2021.1902656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Cues and signals of the environment in nature can be either beneficial or detrimental from the growth and developmental perspectives. Plants, despite their limited spatial mobility, have developed advanced strategies to overcome the various and changing environmental impacts including stresses. In vitro plantlets, tissues and cells are constantly exposed to the influence of their environment that is well controlled. Light has a widely known morphogenetic effect on plants; however, other physical cues and signals are at least as important but were often neglected. In this review, I summarize our knowledge about the role of the mechanical stimuli, like sound, ultrasound, touch, or wounding in in vitro plant cultures. I summarize the molecular, biochemical, physiological, growth, and developmental changes they cause and how these processes are controlled; moreover, how their regulating or stimulating roles are applied in various plant biotechnological applications. Recent studies revealed that mechanical forces can be used for affecting the plant development and growth in plant tissue culture efficiently, and for increasing the efficacy of other plant biotechnological methods, like genetic transformation and secondary metabolite production.
Collapse
Affiliation(s)
- Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
10
|
Li W, Yan J, Wang S, Wang Q, Wang C, Li Z, Zhang D, Ma F, Guan Q, Xu J. Genome-wide analysis of SET-domain group histone methyltransferases in apple reveals their role in development and stress responses. BMC Genomics 2021; 22:283. [PMID: 33874904 PMCID: PMC8054418 DOI: 10.1186/s12864-021-07596-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Histone lysine methylation plays an important role in plant development and stress responses by activating or repressing gene expression. Histone lysine methylation is catalyzed by a class of SET-domain group proteins (SDGs). Although an increasing number of studies have shown that SDGs play important regulatory roles in development and stress responses, the functions of SDGs in apple remain unclear. Results A total of 67 SDG members were identified in the Malus×domestica genome. Syntenic analysis revealed that most of the MdSDG duplicated gene pairs were associated with a recent genome-wide duplication event of the apple genome. These 67 MdSDG members were grouped into six classes based on sequence similarity and the findings of previous studies. The domain organization of each MdSDG class was characterized by specific patterns, which was consistent with the classification results. The tissue-specific expression patterns of MdSDGs among the 72 apple tissues in the different apple developmental stages were characterized to provide insight into their potential functions in development. The expression profiles of MdSDGs were also investigated in fruit development, the breaking of bud dormancy, and responses to abiotic and biotic stress; the results indicated that MdSDGs might play a regulatory role in development and stress responses. The subcellular localization and putative interaction network of MdSDG proteins were also analyzed. Conclusions This work presents a fundamental comprehensive analysis of SDG histone methyltransferases in apple and provides a basis for future studies of MdSDGs involved in apple development and stress responses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07596-0.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinjiao Yan
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Ghosh R, Barbacci A, Leblanc-Fournier N. Mechanostimulation: a promising alternative for sustainable agriculture practices. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2877-2888. [PMID: 33512423 DOI: 10.1093/jxb/erab036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Plants memorize events associated with environmental fluctuations. The integration of environmental signals into molecular memory allows plants to cope with future stressors more efficiently-a phenomenon that is known as 'priming'. Primed plants are more resilient to environmental stresses than non-primed plants, as they are capable of triggering more robust and faster defence responses. Interestingly, exposure to various forms of mechanical stimuli (e.g. touch, wind, or sound vibration) enhances plants' basal defence responses and stress tolerance. Thus, mechanostimulation appears to be a potential priming method and a promising alternative to chemical-based priming for sustainable agriculture. According to the currently available method, mechanical treatment needs to be repeated over a month to alter plant growth and defence responses. Such a long treatment protocol restricts its applicability to fast-growing crops. To optimize the protocol for a broad range of crops, we need to understand the molecular mechanisms behind plant mechanoresponses, which are complex and depend on the frequency, intervals, and duration of the mechanical treatment. In this review, we synthesize the molecular underpinnings of plant mechanoperception and signal transduction to gain a mechanistic understanding of the process of mechanostimulated priming.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Université Clermont Auvergne, INRAE, Laboratoire de Physique et Physiologie intégratives de l'Arbre en environnement Fluctuant (PIAF), 63000 Clermont-Ferrand, France
| | - Adelin Barbacci
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), 31326 Castanet-Tolosan, France
| | - Nathalie Leblanc-Fournier
- Université Clermont Auvergne, INRAE, Laboratoire de Physique et Physiologie intégratives de l'Arbre en environnement Fluctuant (PIAF), 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Li A, Hu B, Chu C. Epigenetic regulation of nitrogen and phosphorus responses in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153363. [PMID: 33508741 DOI: 10.1016/j.jplph.2021.153363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two of the most important nutrients for plant growth and crop yields. In the last decade, plenty of studies have revealed the genetic factors and their regulatory networks which are involved in N and/or P uptake and utilization in different model plant species, especially in Arabidopsis and rice. However, increasing evidences have shown that epigenetic regulation also plays a vital role in modulating plant responses to nutrient availability. In this review, we make a brief summary of epigenetic regulation including histone modifications, DNA methylation, and other chromatin structure alterations in tuning N and P responses. We also give an outlook for future research directions to comprehensively dissect the involvement of epigenetic regulation in modulating nutrient response in plants.
Collapse
Affiliation(s)
- Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Brenya E, Chen ZH, Tissue D, Papanicolaou A, Cazzonelli CI. Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC PLANT BIOLOGY 2020; 20:548. [PMID: 33287718 PMCID: PMC7720613 DOI: 10.1186/s12870-020-02759-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/26/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Prolonged mechanical stress (MS) causes thigmomorphogenesis, a stress acclimation response associated with increased disease resistance. What remains unclear is if; 1) plants pre-exposed to a short period of repetitive MS can prime defence responses upon subsequent challenge with necrotrophic pathogens, 2) MS mediates plant immunity via jasmonic acid (JA) signalling, and 3) a short period of repetitive MS can cause long-term changes in gene expression resembling a stress-induced memory. To address these points, 10-days old juvenile Arabidopsis seedlings were mechanically stressed for 7-days using a soft brush and subsequently challenged with the necrotrophic pathogens, Alternaria brassicicola, and Botrytis cinerea. Here we assessed how MS impacted structural cell wall appositions, disease symptoms and altered gene expression in response to infection. RESULTS The MS-treated plants exhibited enhanced cell wall appositions and jasmonic acid (JA) accumulation that correlated with a reduction in disease progression compared to unstressed plants. The expression of genes involved in JA signalling, callose deposition, peroxidase and phytoalexin biosynthesis and reactive oxygen species detoxification were hyper-induced 4-days post-infection in MS-treated plants. The loss-of-function in JA signalling mediated by the JA-insensitive coronatine-insensitive 1 (coi1) mutant impaired the hyper-induction of defense gene expression and promoted pathogen proliferation in MS-treated plants subject to infection. The basal expression level of PATHOGENESIS-RELATED GENE 1 and PLANT DEFENSIN 1.2 defense marker genes were constitutively upregulated in rosette leaves for 5-days post-MS, as well as in naïve cauline leaves that differentiated from the inflorescence meristem well after ceasing MS. CONCLUSION This study reveals that exposure of juvenile Arabidopsis plants to a short repetitive period of MS can alter gene expression and prime plant resistance upon subsequent challenge with necrotrophic pathogens via the JA-mediated COI1 signalling pathway. MS may facilitate a stress-induced memory to modulate the plant's response to future stress encounters. These data advance our understanding of how MS primes plant immunity against necrotrophic pathogens and how that could be utilised in sustainable agricultural practices.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Present address: Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Hesler Biology Building. 1441 Circle Drive, Knoxville, TN, 37996, USA
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
14
|
Wang L, Ahmad B, Liang C, Shi X, Sun R, Zhang S, Du G. Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling. BMC PLANT BIOLOGY 2020; 20:412. [PMID: 32887552 PMCID: PMC7473812 DOI: 10.1186/s12870-020-02618-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Histone modification genes (HMs) play potential roles in plant growth and development via influencing gene expression and chromatin structure. However, limited information is available about HMs genes in grapes (Vitis vinifera L.). RESULTS Here, we described detailed genome-wide identification of HMs gene families in grapevine. We identified 117 HMs genes in grapevine and classified these genes into 11 subfamilies based on conserved domains and phylogenetic relationships with Arabidopsis. We described the genes in terms of their chromosomal locations and exon-intron distribution. Further, we investigated the evolutionary history, gene ontology (GO) analysis, and syntenic relationships between grapes and Arabidopsis. According to results 21% HMs genes are the result of duplication (tandem and segmental) events and all the duplicated genes have negative mode of selection. GO analysis predicted the presence of HMs proteins in cytoplasm, nucleus, and intracellular organelles. According to seed development expression profiling, many HMs grapevine genes were differentially expressed in seeded and seedless cultivars, suggesting their roles in seed development. Moreover, we checked the response of HMs genes against powdery mildew infection at different time points. Results have suggested the involvement of some genes in disease resistance regulation mechanism. Furthermore, the expression profiles of HMs genes were analyzed in response to different plant hormones (Abscisic acid, Jasmonic acid, Salicylic acid, and Ethylene) at different time points. All of the genes showed differential expression against one or more hormones. CONCLUSION VvHMs genes might have potential roles in grapevine including seed development, disease resistance, and hormonal signaling pathways. Our study provides first detailed genome-wide identification and expression profiling of HMs genes in grapevine.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Ruyi Sun
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| |
Collapse
|
15
|
Dhami N, Cazzonelli CI. Prolonged cold exposure to Arabidopsis juvenile seedlings extends vegetative growth and increases the number of shoot branches. PLANT SIGNALING & BEHAVIOR 2020; 15:1789320. [PMID: 32631114 PMCID: PMC8550187 DOI: 10.1080/15592324.2020.1789320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors such as photoperiod, temperature, phytohormones, sugars, and soil nutrients can affect the development of axillary meristems and emergence of shoot branches in plants. We investigated how an extended period of cold exposure to Arabidopsis plants before and after inflorescence meristem differentiation would affect plant growth and shoot branching. The number of rosette leaves and shoot branches increased when wild type (WT) juvenile seedlings, but not adult plants, were subjected to a prolonged cold exposure (10/7°C day/night cycle). As the duration of cold exposure to WT juvenile seedlings increased, so too did the rosette area, number of leaves, and rosette branches revealing an extended period of vegetative growth. The prolonged cold treatment also increased the primary inflorescence stem height and number of cauline branches in WT plants revealing a delay in reproductive development that could be altered by early (set domain group 8; sdg8) and late (methyltransferase 1; met1) flowering mutants. The axillary buds/leaf and rosette branches/leaf ratios declined significantly in WT, yet were enhanced in the loss-of-function of carotenoid cleavage dioxygenase 7 (ccd7) and teosinte branched 1 (brc1) hyper-branched mutants. This indicated that axillary meristem differentiation continued during the cold exposure, which did not directly impact axillary bud formation or shoot branching. We conclude that a prolonged cold exposure to juvenile seedlings prior to inflorescence meristem development extended vegetative growth and delayed the reproductive phase to allow additional leaf primordia and axillary meristems to differentiate that enhanced the number of shoot branches in Arabidopsis.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | | |
Collapse
|
16
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
17
|
Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci 2020; 29:1120-1137. [PMID: 32134523 DOI: 10.1002/pro.3849] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
Abstract
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3-9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.
Collapse
Affiliation(s)
- Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Shuifeng Li
- Hangzhou Xiaoshan District Agricultural Technology Extension Center, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
19
|
Li Y, Brooks M, Yeoh-Wang J, McCoy RM, Rock TM, Pasquino A, Moon CI, Patrick RM, Tanurdzic M, Ruffel S, Widhalm JR, McCombie WR, Coruzzi GM. SDG8-Mediated Histone Methylation and RNA Processing Function in the Response to Nitrate Signaling. PLANT PHYSIOLOGY 2020; 182:215-227. [PMID: 31641075 PMCID: PMC6945839 DOI: 10.1104/pp.19.00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 05/04/2023]
Abstract
Chromatin modification has gained increased attention for its role in the regulation of plant responses to environmental changes, but the specific mechanisms and molecular players remain elusive. Here, we show that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) mediates genome-wide changes in H3K36 methylation at specific genomic loci functionally relevant to nitrate treatments. Moreover, we show that the specific H3K36 methyltransferase encoded by SDG8 is required for canonical RNA processing, and that RNA isoform switching is more prominent in the sdg8-5 deletion mutant than in the wild type. To demonstrate that SDG8-mediated regulation of RNA isoform expression is functionally relevant, we examined a putative regulatory gene, CONSTANS, CO-like, and TOC1 101 (CCT101), whose nitrogen-responsive isoform-specific RNA expression is mediated by SDG8. We show by functional expression in shoot cells that the different RNA isoforms of CCT101 encode distinct regulatory proteins with different effects on genome-wide transcription. We conclude that SDG8 is involved in plant responses to environmental nitrogen supply, affecting multiple gene regulatory processes including genome-wide histone modification, transcriptional regulation, and RNA processing, and thereby mediating developmental and metabolic processes related to nitrogen use.
Collapse
Affiliation(s)
- Ying Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Matthew Brooks
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Jenny Yeoh-Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Rachel M McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Tara M Rock
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Angelo Pasquino
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Chang In Moon
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Ryan M Patrick
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sandrine Ruffel
- Biochimie et Physiologie Moléculaire des Plantes, French National Institute for Agricultural Research, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | | | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
20
|
Liu R, Finlayson SA. Sorghum tiller bud growth is repressed by contact with the overlying leaf. PLANT, CELL & ENVIRONMENT 2019; 42:2120-2132. [PMID: 30875440 DOI: 10.1111/pce.13548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/14/2019] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
Basal branching in grasses, or tillering, is an important trait determining both form and function of crops. Although similarities exist between eudicot and grass branching programs, one notable difference is that the tiller buds of grasses are covered by the subtending leaf, whereas eudicot buds are typically unconstrained. The current study shows that contact with the leaf sheath represses sorghum bud growth by providing a mechanical signal that cues the bud to refrain from rapid growth. Leaf removal resulted in massive reprogramming of the bud transcriptome that included signatures of epigenetic modifications and also implicated several hormones in the response. Bud abscisic acid transiently increased, then decreased following leaf removal relative to controls, and abscisic acid was necessary to repress bud growth in the presence of the leaf. Jasmonic acid (JA) levels and signalling increased in buds following leaf removal. Remarkably, application of JA to buds in situ promoted growth. The repression of bud growth by leaf contact shares characteristics of thigmomorphogenic responses in other systems, including the involvement of JA, though the JA effect is opposite. The repression of bud growth by leaf contact may represent a mechanism to time tillering to an appropriate developmental stage of the plant.
Collapse
Affiliation(s)
- Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- Key Laboratory of Cotton and Rape in Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
21
|
Waterman JM, Cazzonelli CI, Hartley SE, Johnson SN. Simulated Herbivory: The Key to Disentangling Plant Defence Responses. Trends Ecol Evol 2019; 34:447-458. [DOI: 10.1016/j.tree.2019.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
|
22
|
Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Bulone V, Van Breusegem F, Whelan J, Wang Y. Mitochondrial function modulates touch signalling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:623-645. [PMID: 30537160 DOI: 10.1111/tpj.14183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Plants respond to short- and long-term mechanical stimuli, via altered transcript abundance and growth respectively. Jasmonate, gibberellic acid and calcium have been implicated in mediating responses to mechanical stimuli. Previously it has been shown that the transcript abundance for the outer mitochondrial membrane protein of 66 kDa (OM66), is induced several fold after 30 min in response to touch. Therefore, the effect of mitochondrial function on the response to mechanical stimulation by touch at 30 min was investigated. Twenty-five mutants targeting mitochondrial function or regulators revealed that all affected the touch transcriptome. Double and triple mutants revealed synergistic or antagonistic effects following the observed responses in the single mutants. Changes in the touch-responsive transcriptome were localised, recurring with repeated rounds of stimulus. The gene expression kinetics after repeated touch were complex, displaying five distinct patterns. These transcriptomic responses were altered by some regulators of mitochondrial retrograde signalling, such as cyclic dependent protein kinase E1, a kinase protein in the mediator complex, and KIN10 (SnRK1 - sucrose non-fermenting related protein kinase 1), revealing an overlap between the touch response and mitochondrial stress signalling and alternative mitochondrial metabolic pathways. Regulatory network analyses revealed touch-induced stress responses and suppressed growth and biosynthetic processes. Interaction with the phytohormone signalling pathways indicated that ethylene and gibberellic acid had the greatest effect. Hormone measurements revealed that mutations of genes that encoded mitochondrial proteins altered hormone concentrations. Mitochondrial function modulates touch-induced changes in gene expression directly through altered regulatory networks, and indirectly via altering hormonal levels.
Collapse
Affiliation(s)
- Yue Xu
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - Michelle Hooi
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
23
|
Chowrasia S, Panda AK, Rawal HC, Kaur H, Mondal TK. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:43-53. [PMID: 29960182 DOI: 10.1016/j.plaphy.2018.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/26/2023]
Abstract
The jumonji (JMJ)-C domain containing proteins belong to histone demethylases family with the ability to demethylate the tri-methylated histone residues. They act as chromatin regulators to regulate many physiological functions in plants. The present study deals with the characterization of JMJ-C gene family members in wild as well as cultivated rice species and their expression analysis in salt tolerant rice genotype, FL478. The genome wide study identified 151 members belonging to JMJ-C gene family in 11 different Oryza species. We also studied their structure, genomic location, gene duplication events, phylogenetic relationship, in silico expression analysis and identified cis elements in their promoters. We also found a few JMJ-C gene family members in rice which underwent duplication before the whole genome duplication event of the rice. The qRT-PCR based expression profiling revealed that out of the total 15 rice JMJ-C members, two were highly expressed in the flag leaf stage of FL478 under salt treatment. These two candidate JMJ-C members were also found to render salinity tolerance when over-expressed in yeast cells. Thus, the present study helps in further structural as well as functional characterization of JMJ-C genes under salinity stress in Oryza species.
Collapse
Affiliation(s)
- Soni Chowrasia
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Alok Kumar Panda
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Harmeet Kaur
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
24
|
Liu Y, Huang Y. Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of Arabidopsis histone methyltransferase SDG8. J Biol Chem 2018; 293:6470-6481. [PMID: 29496997 PMCID: PMC5925821 DOI: 10.1074/jbc.ra117.001390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Chromatin consists of DNA and histones, and specific histone modifications that determine chromatin structure and activity are regulated by three types of proteins, called writer, reader, and eraser. Histone reader proteins from vertebrates, vertebrate-infecting parasites, and higher plants possess a CW domain, which has been reported to read histone H3 lysine 4 (H3K4). The CW domain of Arabidopsis SDG8 (also called ASHH2), a histone H3 lysine 36 methyltransferase, preferentially binds monomethylated H3K4 (H3K4me1), unlike the mammalian CW domain protein, which binds trimethylated H3K4 (H3K4me3). However, the molecular basis of the selective binding by the CW domain of SDG8 (SDG8-CW) remains unclear. Here, we solved the 1.6-Å-resolution structure of SDG8-CW in complex with H3K4me1, which revealed that residues in the C-terminal α-helix of SDG8-CW determine binding specificity for low methylation levels at H3K4. Moreover, substitutions of key residues, specifically Ile-915 and Asn-916, converted SDG8-CW binding preference from H3K4me1 to H3K4me3. Sequence alignment and mutagenesis studies revealed that the CW domain of SDG725, the homolog of SDG8 in rice, shares the same binding preference with SDG8-CW, indicating that preference for low methylated H3K4 by the CW domain of ASHH2 homologs is conserved among higher-order plants. Our findings provide first structural insights into the molecular basis for specific recognition of monomethylated H3K4 by the H3K4me1 reader protein SDG8 from Arabidopsis.
Collapse
Affiliation(s)
- Yanchao Liu
- From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Huang
- From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China, To whom correspondence should be addressed. Tel.:
86-20778200; Fax:
86-20778200; E-mail:
| |
Collapse
|
25
|
EARLY FLOWERING IN SHORT DAYS (EFS) regulates the seed size in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:214-224. [PMID: 29372509 DOI: 10.1007/s11427-017-9236-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
Abstract
Post-transcriptional modifications, including histone modifications and DNA methylation, alter the chromatin landscape to regulate gene expression, thus control various cellular processes in plants. EARLY FLOWERING IN SHORT DAYS (EFS) is the major contributor for H3K36 methylation in Arabidopsis and is important for plant development. Here, we find that EFS is expressed in different stages of embryo morphogenesis, and the efs mutant produces larger embryo that results in enlarged seeds. Further analysis reveals that an imprinted gene MOP9.5 is hypomethylated at the promoter region and its expression is derepressed in efs mutant. MOP9.5 promoter is marked by various epigenetic modifications, and we find that following the increase of H3K36me3, H3K27me3 and H3K9me2 levels are reduced in efs mutant. This data indicates an antagonistic regulation between H3K36me3 and DNA methylation, and/or H3K27me3 at MOP9.5. Our results further show that both maternal and paternal EFS alleles are responsible for the seed size regulation, which unraveled a novel function of EFS in plant development.
Collapse
|
26
|
Fal K, Asnacios A, Chabouté ME, Hamant O. Nuclear envelope: a new frontier in plant mechanosensing? Biophys Rev 2017; 9:389-403. [PMID: 28801801 PMCID: PMC5578935 DOI: 10.1007/s12551-017-0302-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
27
|
Mostafa I, Yoo MJ, Zhu N, Geng S, Dufresne C, Abou-Hashem M, El-Domiaty M, Chen S. Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29. FRONTIERS IN PLANT SCIENCE 2017; 8:534. [PMID: 28443122 PMCID: PMC5387099 DOI: 10.3389/fpls.2017.00534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 05/09/2023]
Abstract
Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3'-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Mi-Jeong Yoo
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ning Zhu
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sisi Geng
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | | | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Sixue Chen
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- *Correspondence: Sixue Chen
| |
Collapse
|
28
|
Jensen GS, Fal K, Hamant O, Haswell ES. The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:499-511. [PMID: 28204553 PMCID: PMC5441907 DOI: 10.1093/jxb/erw439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 (Paf1) complex. The Paf1 complex is found in yeast, plants and animals, and has been implicated in histone modification and RNA processing. Several components of the Paf1 complex are required for reduced stem height in response to touch and normal root slanting and coiling responses. Global levels of histone H3K36 trimethylation are reduced in VIP3 mutants. In addition, THS1/VIP3 is required for wild type histone H3K36 trimethylation at the TOUCH3 (TCH3) and TOUCH4 (TCH4) loci and for rapid touch-induced upregulation of TCH3 and TCH4 transcripts. Thus, an evolutionarily conserved chromatin-modifying complex is required for both short- and long-term responses to mechanical stimulation, providing insight into how plants record mechanical signals for thigmomorphogenesis.
Collapse
Affiliation(s)
- Gregory S Jensen
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
29
|
Xiao J, Lee US, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:41-53. [PMID: 27614255 DOI: 10.1016/j.pbi.2016.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 05/17/2023]
Abstract
Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Un-Sa Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Liu B, Berr A, Chang C, Liu C, Shen WH, Ruan Y. Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:581-90. [DOI: 10.1016/j.bbagrm.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
|
31
|
Zhu QH, Shan WX, Ayliffe MA, Wang MB. Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:187-96. [PMID: 26524162 DOI: 10.1094/mpmi-08-15-0194-fi] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants have developed diverse molecular and cellular mechanisms to cope with a lifetime of exposure to a variety of pathogens. Host transcriptional reprogramming is a central part of plant defense upon pathogen recognition. Recent studies link DNA methylation and demethylation as well as chromatin remodeling by posttranslational histone modifications, including acetylation, methylation, and ubiquitination, to changes in the expression levels of defense genes upon pathogen challenge. Remarkably these inducible defense mechanisms can be primed prior to pathogen attack by epigenetic modifications and this heightened resistance state can be transmitted to subsequent generations by inheritance of these modification patterns. Beside the plant host, epigenetic mechanisms have also been implicated in virulence development of pathogens. This review highlights recent findings and insights into epigenetic mechanisms associated with interactions between plants and pathogens, in particular bacterial and fungal pathogens, and demonstrates the positive role they can have in promoting plant defense.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- 1 CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Wei-Xing Shan
- 2 College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China
| | | | - Ming-Bo Wang
- 1 CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
32
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
33
|
Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol 2015; 16:79. [PMID: 25928034 PMCID: PMC4464704 DOI: 10.1186/s13059-015-0640-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
Background Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. Results To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3′ end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. Conclusions The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0640-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Li
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Indrani Mukherjee
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Karen E Thum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA. .,School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Manpreet S Katari
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Mariana Obertello
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA. .,Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490 Piso 2, Buenos Aires, C1428ADN, Argentina.
| | - Molly B Edwards
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| | | | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
34
|
Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol 2015. [PMID: 25928034 DOI: 10.1186/s13059-015-0640-642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. RESULTS To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3' end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. CONCLUSIONS The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production.
Collapse
Affiliation(s)
- Ying Li
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Indrani Mukherjee
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Karen E Thum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Manpreet S Katari
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Mariana Obertello
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490 Piso 2, Buenos Aires, C1428ADN, Argentina.
| | - Molly B Edwards
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| | | | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
35
|
Xu J, Xu H, Liu Y, Wang X, Xu Q, Deng X. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process. FRONTIERS IN PLANT SCIENCE 2015; 6:607. [PMID: 26300904 PMCID: PMC4525380 DOI: 10.3389/fpls.2015.00607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/23/2015] [Indexed: 05/20/2023]
Abstract
In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuxin Deng
- *Correspondence: Xiuxin Deng, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|