1
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
2
|
Yang B, Li M, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X, Guo L. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. THE PLANT CELL 2021; 33:766-780. [PMID: 33955494 PMCID: PMC8136900 DOI: 10.1093/plcell/koaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maoyin Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Anne Phillips
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Author for correspondence: (L.G) and (X.W.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Author for correspondence: (L.G) and (X.W.)
| |
Collapse
|
3
|
Ding N, Huertas R, Torres‐Jerez I, Liu W, Watson B, Scheible W, Udvardi M. Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation. PLANT, CELL & ENVIRONMENT 2021; 44:186-202. [PMID: 32822068 PMCID: PMC7821211 DOI: 10.1111/pce.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 05/10/2023]
Abstract
Knowing how switchgrass (Panicum virgatum L.) responds and adapts to phosphorus (P)-limitation will aid efforts to optimize P acquisition and use in this species for sustainable biomass production. This integrative study investigated the impacts of mild, moderate, and severe P-stress on genome transcription and whole-plant metabolism, physiology and development in switchgrass. P-limitation reduced overall plant growth, increased root/shoot ratio, increased root branching at moderate P-stress, and decreased root diameter with increased density and length of root hairs at severe P-stress. RNA-seq analysis revealed thousands of genes that were differentially expressed under moderate and severe P-stress in roots and/or shoots compared to P-replete plants, with many stress-induced genes involved in transcriptional and other forms of regulation, primary and secondary metabolism, transport, and other processes involved in P-acquisition and homeostasis. Amongst the latter were multiple miRNA399 genes and putative targets of these. Metabolite profiling showed that levels of most sugars and sugar alcohols decreased with increasing P stress, while organic and amino acids increased under mild and moderate P-stress in shoots and roots, although this trend reversed under severe P-stress, especially in shoots.
Collapse
Affiliation(s)
- Na Ding
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | | | | - Wei Liu
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | | | | | |
Collapse
|
4
|
Nakamura Y, Ngo AH. Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development. JOURNAL OF PLANT RESEARCH 2020; 133:489-497. [PMID: 32372398 PMCID: PMC7862535 DOI: 10.1007/s10265-020-01199-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 05/10/2023]
Abstract
Non-specific phospholipase C (NPC) is a novel class of phospholipase C found only in bacteria and higher plants. NPC hydrolyzes major phospholipid classes such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to produce diacylglycerol (DAG) and a corresponding phosphate-containing polar head group. Originally known as a toxin in certain bacteria to invade the host cell, this class of phospholipase has been well-investigated in bacteriology. Since the first discovery of eukaryotic NPC in Arabidopsis in 2005, this emerging class of phospholipase has received greater attention in plant biology in elucidating the biochemical characteristics and physiological function in the context of plant growth regulation and stress response. Particularly in the last few years, there has been significant progress made in understanding the fundamental character of 6 NPC isoforms in Arabidopsis, as well as novel function in other plant models. Now that research with plant NPC is entering into a new phase, this review aims to summarize recent progress in plant NPC along with some future perspectives.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec. 2 Academia Rd., Nankang, Taipei, 11529, Taiwan.
| | - Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec. 2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
5
|
Bunbury F, Helliwell KE, Mehrshahi P, Davey MP, Salmon DL, Holzer A, Smirnoff N, Smith AG. Responses of a Newly Evolved Auxotroph of Chlamydomonas to B 12 Deprivation. PLANT PHYSIOLOGY 2020; 183:167-178. [PMID: 32079734 PMCID: PMC7210614 DOI: 10.1104/pp.19.01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
The corrinoid B12 is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B12 dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non-B12-requiring alga Chlamydomonas reinhardtii in media supplemented with B12 generated a B12-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B12 auxotroph. Our analyses demonstrate that B12 deprivation of metE7 disrupts C1 metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B12 deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B12 limitation and an increase in B12 use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B12-producing bacterium. Therefore, although an early B12-dependent alga would likely be poorly adapted to coping with B12 deprivation, association with B12-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B12 limitation better.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Katherine E Helliwell
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth EX4 4PY, United Kingdom
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Deborah L Salmon
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Andre Holzer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Nicholas Smirnoff
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
6
|
Chaffai R, Cherif A. The cadmium-induced changes in the polar and neutral lipid compositions suggest the involvement of triacylglycerol in the defense response in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:15-23. [PMID: 32158117 PMCID: PMC7036388 DOI: 10.1007/s12298-019-00734-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/26/2019] [Accepted: 11/18/2019] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a heavy metal ion leading to morphological and physiological disorders in plants; a specific toxicity target is the membrane lipids. The total lipids were separated by thin-layer chromatography, and the fatty acid composition of the total (TLs), polar lipids (PLs) and triacylglycerol (TAG)-a neutral lipid-was analyzed in maize seedlings in hydroponics and treated by various Cd concentrations (0-200 µM Cd). The TLs and PLs significantly decreased in roots after Cd treatment, suggesting the onset of lipid peroxidation mediated by oxygen free radicals, that induce alterations of the membrane structure and function. There were also increases in the TAG from 28.2 to 36.9% of TLs, and the TAG/PLs ratio varied from 0.59 to 0.84, in control and after exposure to 200 µM Cd, respectively. The TAG plays potent roles in membrane turnover serving as energy and carbon resources for the biosynthesis of membrane lipids, to preserve membrane structure and function, and therefore cell homeostasis in response to Cd. In shoots, a significant increase in the levels of C16:0, C18:1, and C18:2, while a decrease in that of C18:3 was observed, suggesting inhibition of desaturases enzymes. These lead to impairment of the chloroplast membrane. The total lipid content did not change under Cd stress. The PLs, however, decreased from 22.4 to 13.6 mg g-1 DW; their percent to TLs varied from 86.6 to 52.5%, in control, and after Cd treatment, respectively. In conclusion, the accumulation of TAG may represent a defense strategy by which maize seedlings can withstand the effects of Cd toxicity, leading to reduced oxidative stress.
Collapse
Affiliation(s)
- Radhouane Chaffai
- The University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
- Department of Fundamental Sciences, ISBST, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Ameur Cherif
- The University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
- Department of Fundamental Sciences, ISBST, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| |
Collapse
|
7
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
8
|
Xu Y, Caldo KMP, Jayawardhane K, Ozga JA, Weselake RJ, Chen G. A transferase interactome that may facilitate channeling of polyunsaturated fatty acid moieties from phosphatidylcholine to triacylglycerol. J Biol Chem 2019; 294:14838-14844. [PMID: 31481466 DOI: 10.1074/jbc.ac119.010601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/25/2019] [Indexed: 12/23/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (ALA, 18:3Δ9 cis ,12 cis ,15 cis ) have high nutritional and industrial values. In oilseed crops, PUFAs are synthesized on phosphatidylcholine (PC) and accumulated in triacylglycerol (TAG). Therefore, exploring the mechanisms that route PC-derived PUFA to TAG is essential for understanding and improving PUFA production. The seed oil of flax (Linum usitatissimum) is enriched in ALA, and this plant has many lipid biosynthetic enzymes that prefer ALA-containing substrates. In this study, using membrane yeast two-hybrid and bimolecular fluorescence complementation assays, we probed recombinant flax transferase enzymes, previously shown to contribute to PUFA enrichment of TAG, for physical interactions with each other under in vivo conditions. We found that diacylglycerol acyltransferases, which catalyze the final reaction in acyl-CoA-dependent TAG biosynthesis, interact with the acyl-editing enzymes phosphatidylcholine: diacylglycerol cholinephosphotransferase, and lysophosphatidylcholine acyltransferase. Physical interactions among the acyl-editing enzymes were also identified. These findings reveal the presence of an assembly of interacting transferases that may facilitate the channeling of PUFA from PC to TAG in flax and possibly also in other oleaginous plants that produce seeds enriched in PC-modified fatty acids.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jocelyn A Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
9
|
Michaud M, Jouhet J. Lipid Trafficking at Membrane Contact Sites During Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:2. [PMID: 30713540 PMCID: PMC6346683 DOI: 10.3389/fpls.2019.00002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
The biogenesis of cellular membranes involves an important traffic of lipids from their site of synthesis to their final destination. Lipid transfer can be mediated by vesicular or non-vesicular pathways. The non-vesicular pathway requires the close apposition of two membranes to form a functional platform, called membrane contact sites (MCSs), where lipids are exchanged. These last decades, MCSs have been observed between virtually all organelles and a role in lipid transfer has been demonstrated for some of them. In plants, the lipid composition of membranes is highly dynamic and can be drastically modified in response to environmental changes. This highlights the importance of understanding the mechanisms involved in the regulation of membrane lipid homeostasis in plants. This review summarizes our current knowledge about the non-vesicular transport of lipids at MCSs in plants and its regulation during stress.
Collapse
|
10
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Conte M, Lupette J, Seddiki K, Meï C, Dolch LJ, Gros V, Barette C, Rébeillé F, Jouhet J, Maréchal E. Screening for Biologically Annotated Drugs That Trigger Triacylglycerol Accumulation in the Diatom Phaeodactylum. PLANT PHYSIOLOGY 2018; 177:532-552. [PMID: 29535162 PMCID: PMC6001342 DOI: 10.1104/pp.17.01804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Microalgae are a promising feedstock for the production of triacylglycerol (TAG) for a variety of potential applications, ranging from food and human health to biofuels and green chemistry. However, obtaining high TAG yields is challenging. A phenotypic assay for the accumulation of oil droplets was developed to screen a library of 1,200 drugs, annotated with pharmacology information, to select compounds that trigger TAG accumulation in the diatom Phaeodactylum tricornutum Using this screen, we identified 34 molecules acting in a dose-dependent manner. Previously characterized targets of these compounds include cell division and cell signaling effectors, membrane receptors and transporters, and sterol metabolism. Among the five compounds possibly acting on sterol metabolism, we focused our study on ethynylestradiol, a synthetic form of estrogen that is used in contraceptive pills and known for its ecological impact as an endocrine disruptor. Ethynylestradiol impaired the production of very-long-chain polyunsaturated fatty acids, destabilized the galactolipid versus phospholipid balance, and triggered the recycling of fatty acids from membrane lipids to TAG. The P. tricornutum transcriptomic response to treatment with ethynylestradiol was consistent with the reallocation of carbon from sterols to acetyl-coenzyme A and TAG. The mode of action and catabolism of ethynylestradiol are unknown but might involve several up-regulated cytochrome P450 proteins. A fatty acid elongase, Δ6-ELO-B1, might be involved in the impairment of very-long-chain polyunsaturated fatty acids and fatty acid turnover. This phenotypic screen opens new perspectives for the exploration of novel bioactive molecules, potential target genes, and pathways controlling TAG biosynthesis. It also unraveled the sensitivity of diatoms to endocrine disruptors, highlighting an impact of anthropogenic pollution on phytoplankton.
Collapse
Affiliation(s)
- Melissa Conte
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Josselin Lupette
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Khawla Seddiki
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Coline Meï
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Lina-Juana Dolch
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Caroline Barette
- Laboratoire de Biologie à Grande Echelle, Commissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Commissariat à l'Energie Atomique-Grenoble, 38000 Grenoble, France
| |
Collapse
|
12
|
Hanchi M, Thibaud MC, Légeret B, Kuwata K, Pochon N, Beisson F, Cao A, Cuyas L, David P, Doerner P, Ferjani A, Lai F, Li-Beisson Y, Mutterer J, Philibert M, Raghothama KG, Rivasseau C, Secco D, Whelan J, Nussaume L, Javot H. The Phosphate Fast-Responsive Genes PECP1 and PPsPase1 Affect Phosphocholine and Phosphoethanolamine Content. PLANT PHYSIOLOGY 2018; 176:2943-2962. [PMID: 29475899 PMCID: PMC5884592 DOI: 10.1104/pp.17.01246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/06/2018] [Indexed: 05/24/2023]
Abstract
Phosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response.
Collapse
Affiliation(s)
- Mohamed Hanchi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Marie-Christine Thibaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Nathalie Pochon
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Aiqin Cao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Laura Cuyas
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Pascale David
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Peter Doerner
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan 184-8501
| | - Fan Lai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Jérôme Mutterer
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique, University of Strasbourg, 67084 Strasbourg, France
| | - Michel Philibert
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Corinne Rivasseau
- CEA, CNRS, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, UMR5168, Grenoble, France
| | - David Secco
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth 6009 WA, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Australia
| | - Laurent Nussaume
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Hélène Javot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| |
Collapse
|
13
|
Dolch LJ, Lupette J, Tourcier G, Bedhomme M, Collin S, Magneschi L, Conte M, Seddiki K, Richard C, Corre E, Fourage L, Laeuffer F, Richards R, Reith M, Rébeillé F, Jouhet J, McGinn P, Maréchal E. Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids. PLANT PHYSIOLOGY 2017; 175:1407-1423. [PMID: 28924015 PMCID: PMC5664477 DOI: 10.1104/pp.17.01042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.
Collapse
Affiliation(s)
- Lina-Juana Dolch
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Josselin Lupette
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Guillaume Tourcier
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Mariette Bedhomme
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
- Total Refining Chemicals, Tour Michelet, 24 Cours Michelet - La Défense 10, 92069 Paris La Défense Cedex, France
| | - Séverine Collin
- Total Refining Chemicals, Tour Michelet, 24 Cours Michelet - La Défense 10, 92069 Paris La Défense Cedex, France
| | - Leonardo Magneschi
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Melissa Conte
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Khawla Seddiki
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Christelle Richard
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Erwan Corre
- Station Biologique de Roscoff, CNRS - Université Pierre et Marie Curie, Analyses and Bioinformatics for Marine Science, 29680 Roscoff, France
| | - Laurent Fourage
- Total Refining Chemicals, Tour Michelet, 24 Cours Michelet - La Défense 10, 92069 Paris La Défense Cedex, France
| | - Frédéric Laeuffer
- Total Refining Chemicals, Tour Michelet, 24 Cours Michelet - La Défense 10, 92069 Paris La Défense Cedex, France
| | - Robert Richards
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H3Z1, Canada
| | - Michael Reith
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H3Z1, Canada
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Patrick McGinn
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia B3H3Z1, Canada
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| |
Collapse
|
14
|
Jouhet J, Lupette J, Clerc O, Magneschi L, Bedhomme M, Collin S, Roy S, Maréchal E, Rébeillé F. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS One 2017; 12:e0182423. [PMID: 28771624 PMCID: PMC5542700 DOI: 10.1371/journal.pone.0182423] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Methods to analyze lipidomes have considerably evolved, more and more based on mass spectrometry technics (LC-MS/MS). However, accurate quantifications using these methods require 13C-labeled standards for each lipid, which is not feasible because of the very large number of molecules. Thus, quantifications rely on standard molecules representative of a whole class of lipids, which might lead to false estimations of some molecular species. Here, we determined and compared glycerolipid distributions from three different types of cells, two microalgae (Phaeodactylum tricornutum, Nannochloropsis gaditana) and one higher plant (Arabidopsis thaliana), using either LC-MS/MS or Thin Layer Chromatography coupled with Gas Chromatography (TLC-GC), this last approach relying on the precise quantification of the fatty acids present in each glycerolipid class. Our results showed that the glycerolipid distribution was significantly different depending on the method used. How can one reconcile these two analytical methods? Here we propose that the possible bias with MS data can be circumvented by systematically running in tandem with the sample to be analyzed a lipid extract from a qualified control (QC) of each type of cells, previously analyzed by TLC-GC, and used as an external standard to quantify the MS results. As a case study, we applied this method to compare the impact of a nitrogen deficiency on the three types of cells.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Josselin Lupette
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Olivier Clerc
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Leonardo Magneschi
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Mariette Bedhomme
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Séverine Collin
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Sylvaine Roy
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
- * E-mail:
| |
Collapse
|