1
|
Machado López E, Darghan A, Flórez Roncancio VJ. Post-harvest evaluation of the effect of foliar and edaphic applications of silicon in pre-harvest of rose cv. 'Brighton'. PLANT SIGNALING & BEHAVIOR 2025; 20:2465234. [PMID: 39962859 PMCID: PMC11845016 DOI: 10.1080/15592324.2025.2465234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
The longevity of the rose stem is often affected by the rate of respiration and the evolution in ethylene production, which also favors the development of Botrytis. Silicon is involved in plant defense, and its application could be a strategy to improve disease control. This research evaluated the effect of foliar and edaphic applications of silicon on the life of the Brighton rose using three sources of liquid silicon applied every 2 weeks in three foliar and edaphic conditions and one control. After harvest, the fresh mass loss, ethylene concentration, O2 consumption and CO2 evolution were measured. The number of fallen petals was counted, and the severity of the Botrytis infection was evaluated. The biomass loss of the floral stem was analyzed with profile analysis. For the evaluation of the change in values of O2, CO2 and ethylene, a multivariate semiparametric analysis of variance analysis was used and the generalized estimating equation methodology for the longitudinal binary response of severity. It was found that the soil treatment with lower potassium and soluble silicon was associated with a decrease in ethylene concentration as well as also turned out to be the one that best controlled Botrytis in post-harvest.
Collapse
Affiliation(s)
- Eduard Machado López
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota, Colombia
| | - Aquiles Darghan
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota, Colombia
| | | |
Collapse
|
2
|
Siddiqi KS, Husen A, Zahra N, Moheman A. Harnessing silicon nanoparticles and various forms of silicon for enhanced plant growth performance under salinity stress: application and mechanism. DISCOVER NANO 2025; 20:89. [PMID: 40439761 PMCID: PMC12123022 DOI: 10.1186/s11671-025-04270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
Agricultural production faces significant losses due to salinity, drought, pests, insects, and weeds, particularly in nutrient- and fertilizer-deficient soils. This review focuses on enhancing the productivity of crops grown in dry and saline environments. Silicon nanoparticles (Si NPs) and silicon compounds (SiO₂/SiO₃2⁻) have shown potential to improve crop yields while mitigating the effects of biotic and abiotic stresses. As an eco-friendly alternative to chemical fertilizers, herbicides, and pesticides, Si NPs stimulate germination, plant growth, biomass accumulation, and nutrient absorption due to their small size, large surface area, and ease of cellular penetration. These nanoparticles reduce salinity stress by modulating gene expression, leading to the activation of antioxidant enzymes such as SOD, CAT, and APX, which help combat reactive oxygen species (ROS). Treatment with low concentrations of nano-silica (100-300 mg/L) significantly enhances plants' tolerance to salinity. Si NPs, when combined with soluble polymeric materials and rhizobacteria, provide a sustainable impact due to their slow-release properties, offering prolonged protection against bacterial and viral infections under saline stress conditions.
Collapse
Affiliation(s)
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University Faisalabad, Faisalabad, 38000, Pakistan
| | - Abdul Moheman
- Department of Chemistry, Gandhi Faiz-E-Aam College (Affiliated to Mahatma Jyotiba Phule Rohilkhand University), Shahjahanpur, 242001, India
| |
Collapse
|
3
|
Gharbi P, Amiri J, Mahna N, Naseri L, Sadaghiani MR. Silicon-induced mitigation of salt stress in GF677 and GN15 rootstocks: insights into physiological, biochemical, and molecular mechanisms. BMC PLANT BIOLOGY 2025; 25:719. [PMID: 40437355 PMCID: PMC12117800 DOI: 10.1186/s12870-025-06753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025]
Abstract
Salinity is a common environmental stress that disrupts physiological and biochemical processes in plants, inhibiting growth. Silicon is a key element that enhances plant tolerance to such abiotic stresses. This study examined the effects of silicon supplementation on physiological, biochemical, and molecular responses of GF677 and GN15 rootstocks under NaCl-induced salinity stress. The experiment was conducted in a greenhouse using a factorial design with two rootstocks, three NaCl concentrations (0, 50, and 100 mM), and three silicon levels (0, 1, and 2 mM) in a randomized complete block design with three replicates. Salinity significantly reduced growth parameters, including shoot and root fresh and dry weights, RWC, and photosynthetic activity, with GN15 being more sensitive to salt stress than GF677. Silicon supplementation, especially at 2 mM, alleviated NaCl-induced damage, enhancing biomass retention and RWC under moderate and high NaCl levels. Additionally, silicon reduced electrolyte leakage, lipid peroxidation, and hydrogen peroxide accumulation, suggesting a protective role against oxidative stress. Biochemical analyses showed that silicon increased the accumulation of osmolytes such as proline, soluble sugars, glycine betaine, and total soluble protein, particularly in GF677. Silicon also boosted antioxidant enzyme activities, mitigating oxidative damage. In terms of mineral nutrition, silicon reduced Na+ and Cl- accumulation in leaves and roots, with the greatest reduction observed at 2 mM Si. Gene expression analysis indicated that NaCl stress upregulated key salt tolerance genes, including HKT1, AVP1, NHX1, and SOS1, with silicon application further enhancing their expression, particularly in GF677. The highest levels of gene expression were found in plants treated with both NaCl and 2 mM Si, suggesting that silicon improves salt tolerance by modulating gene expression. In conclusion, this study demonstrates the potential of silicon as an effective mitigator of NaCl stress in GF677 and GN15 rootstocks, particularly under moderate to high salinity conditions. Silicon supplementation enhances plant growth, osmotic regulation, reduces oxidative damage, and modulates gene expression for salt tolerance. Further research is needed to assess silicon's effectiveness under soil-based conditions and its applicability to other rootstocks and orchard environments. This study is the first to concurrently evaluate the physiological, biochemical, and molecular responses of GF677 and GN15 rootstocks to silicon application under salt stress conditions.
Collapse
Affiliation(s)
- Pouya Gharbi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jafar Amiri
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Lotfali Naseri
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | |
Collapse
|
4
|
Khan AL. Silicon: A valuable soil element for improving plant growth and CO 2 sequestration. J Adv Res 2025; 71:43-54. [PMID: 38806098 DOI: 10.1016/j.jare.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston TX, USA.
| |
Collapse
|
5
|
Zainurin N, Imran M, Shaffique S, Khan MA, Kang SM, Injamum-UL-Hoque M, Das AK, Yun BW, Lee IJ. New Insights into the Synergistic Interaction Between Pseudomonas qingdaonensis NZ 1 and Silicon to Mitigate Drought Stress in Rice. Microorganisms 2025; 13:1046. [PMID: 40431217 PMCID: PMC12114193 DOI: 10.3390/microorganisms13051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
The current study assessed the synergistic effects of PGPR and Si in alleviating drought stress in rice. Bacteria were isolated from Phragmites australis inhabiting an urban riverbank. Among the isolated strains, Pseudomonas qingdaonensis NZ 1 showed promising results under in vitro drought stress induced by PEG-6000 (-0.28 MPa). To further investigate the synergistic effect of Pseudomonas qingdaonensis NZ 1 and silicon, a plant growth experiment was conducted comprising the control (dH2O) and plants treated with NZ 1, Si (1 mM), and NZ 1+Si under normal and drought stress conditions. The results revealed that NZ 1+Si-treated plants showed improved plant growth parameters, chlorophyll contents, relative water contents, antioxidant potential, and nutrient uptake under normal and drought conditions. Moreover, endogenous abscisic acid and jasmonic acid levels were substantially reduced, while the salicylic acid level was increased in NZ 1+Si-treated plants. Moreover, the relative expression of the ABA metabolic genes OsNCED3 and OsCYP707A6 and transcription factors OsbZIP23 and OsDREB1B were significantly altered. Furthermore, the leaf Si, calcium, potassium, and phosphorus contents were increased in NZ 1+Si-treated drought-stressed plants, along with the upregulation of OsLSi1. The combined application of NZ 1 and Si offers a sustainable agricultural strategy to effectively mitigate the detrimental effects of drought.
Collapse
Affiliation(s)
- Nazree Zainurin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| | - Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University, Peshawar 25000, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| | - Md. Injamum-UL-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| | - Ashim Kumar Das
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (N.Z.)
| |
Collapse
|
6
|
Wang L, Wang Y, Deng C, Eggleston I, Gao S, Li A, Alvarez Reyes WR, Cai K, Qiu R, Haynes CL, White JC, Xing B. Optimizing SiO 2 Nanoparticle Structures to Enhance Drought Resistance in Tomato ( Solanum lycopersicum L.): Insights into Nanoparticle Dissolution and Plant Stress Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9983-9993. [PMID: 40200726 DOI: 10.1021/acs.jafc.5c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Drought stress significantly limits crop productivity and poses a critical threat to global food security. Silica nanoparticles (SiO2NPs) have shown a potential to mitigate drought stress, but the role of the nanostructure on overall efficacy remains unclear. This study evaluated solid (SSiO2NPs), porous (PSiO2NPs), and hollow (HSiO2NPs) SiO2NPs for their effects on drought-stressed tomatoes (Solanum lycopersicum L.). Silicic acid release rates followed the order: HSiO2NPs > PSiO2NPs > SSiO2NPs > Bulk-SiO2. Compared to untreated controls, foliar application of PSiO2NPs and HSiO2NPs under drought stress significantly improved shoot Si concentrations and plants' dry weight. These treatments also enhanced antioxidant enzyme activities (catalase, peroxidase, and superoxide dismutase) and phytohormone-targeted metabolome levels (jasmonic acid, salicylic acid, and auxin), contributing to greater drought tolerance. Conversely, SSiO2NPs, silicic acid, and Bulk-SiO2 had minimal impact on plant dry weight or physiological responses. These results highlight the importance of nanoparticles architecture in alleviating drought stress and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Lei Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Ian Eggleston
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shang Gao
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Aoze Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wilanyi R Alvarez Reyes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Munawar S, Ikram RM, Roetter RP, Hussain I, Afzal M, Ghazy AH, Ahmad S, Habib-Ur-Rahman M. Silicon seed inoculation enhances antioxidants, physiology and yield of hybrid maize under heat stress. BMC PLANT BIOLOGY 2025; 25:417. [PMID: 40175913 PMCID: PMC11963459 DOI: 10.1186/s12870-025-06399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Heat stress, next to drought, is one of the major constraints to maize crop growth, development and sustainable yield in the tropics and sub-tropics, particularly in arid and semi-arid climatic regions. Hence, there is a dire need to explore strategies that alleviate adverse effects of heat stress. In this regard, silicon (Si) is an important plant nutrient which may support crop in alleviating heat stress-induced damages by modulating plant defense mechanisms. The aim of the study was to explore the potential role of Si for inducing heat tolerance in hybrid maize. Yet, to date, limited knowledge is available on how Si modulates plant defense mechanisms to induce heat tolerance in maize crop. METHODS Two maize hybrids were adopted for field experiment (heat tolerant and sensitive selected from a pot experiment study) on the basis of traits performance through screening in the glasshouse. Six maize hybrids were tested at different heat stress levels (T1 = control; T2 = 40 °C ± 3 and T3 = 45 °C ± 3 for a period of 6 h per day) at six leaf growth stage (V6) in the glasshouse. Secondly, a field experiment was conducted to evaluate the effect of Si seed inoculation [Si0 = 0.0 mM (control); Si1 = 3.0 mM (recommended); Si2 = 6.0 mM] on physiology, growth, antioxidants activity and yield traits of two selected maize hybrids; H1 = AA-9633 (heat sensitive); H2 = YH-5427 (heat tolerant) under heat stress conditions (HS0 = control (without heat stress); HS1 = heat stress at pollination stage- 65 days after sowing for a period of 8 consecutive days). RESULTS The field study results showed that maize hybrid "YH-5427", a prior rated as heat tolerant, produced higher cob length, number of grains per cob, thousand grain weight and grain yield through improved photosynthetic rate, stomatal conductance, water use efficiency, activity of superoxide dismutase, peroxidase and catalase with the seed inoculation of Si (6.0 mM) under heat stress conditions. However, heat sensitive hybrid (AA-9633) produced reduced grain yield (9.26%) and yield components as attained by YH-5427 with the seed inoculation of Si (6.0 mM) under heat stress conditions. CONCLUSION Maize hybrid YH-5427 with Si seed inoculation (6 mM) is a promising option to maintain relatively high maize grain yield (t ha- 1) under heat stress conditions.
Collapse
Affiliation(s)
- Sajid Munawar
- Department of Agronomy, Faculty of Agriculture and Environmental Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Rao Muhammad Ikram
- Department of Agronomy, Faculty of Agriculture and Environmental Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Reimund P Roetter
- Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Goettingen, Grisebachstr. 6, 37077, Goettingen, Germany
- Campus Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Buesgenweg 1, 37077, Goettingen, Germany
| | - Ijaz Hussain
- Department of Agronomy, Faculty of Agriculture and Environmental Sciences, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Afzal
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 2460, 11451, Saudi Arabia
| | - Abdel-Halim Ghazy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 2460, 11451, Saudi Arabia
| | - Saeed Ahmad
- Department of Agronomy, Faculty of Agriculture and Environmental Sciences, MNS University of Agriculture, Multan, Pakistan
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Muhammad Habib-Ur-Rahman
- Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Goettingen, Grisebachstr. 6, 37077, Goettingen, Germany.
| |
Collapse
|
8
|
Álvarez R, Fernandez-Gonzalez SA, Perera-Bonaño A, De Cires A, Castillo JM, Gallego-Tévar B. Ecophysiological and biochemical responses to cold and heat waves of native Spartina maritima, alien S. densiflora and their reciprocal hybrids. PLANTA 2025; 261:99. [PMID: 40167806 PMCID: PMC11961512 DOI: 10.1007/s00425-025-04675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
MAIN CONCLUSION Spartina hybrids outperform parental species, showing transgressive acclimation to extreme climates. Native S. maritima demonstrates high seasonal adaptability and invasive S. densiflora low physiological impact, suggesting resilience under climate change. Extreme climatic events, such as cold and heat waves, are becoming more frequent, intense, and prolonged due to climate change. Simultaneously, invasive alien plant species are altering the composition of plant communities. Both climate change and the introduction of alien species pose significant threats to biodiversity. We studied the responses of 25 biochemical and physiological functional traits for native Spartina maritima, alien invasive S. densiflora and their reciprocal hybrids to changing environmental conditions during a cold snap in winter and a heat wave in summer in Guadiana Marshes (Southwest Iberian Peninsula). These four closely related taxa responded differently to seasonal environmental fluctuations. Both hybrid taxa, particularly S. maritima × densiflora, exhibited transgressive responses, allowing them to display a wider range of acclimation responses to air temperature compared to their parental species. Native S. maritima also demonstrated a relatively high acclimation capacity to seasonal meteorological changes. In contrast, alien S. densiflora presented few acclimation responses to seasonal environmental changes, responding primarily to sediment salinity rather than to air temperature. Even so, all four studied Spartina taxa appear to be well-adapted to the occurrence of cold and heat waves in the Gulf of Cadiz. These findings underscore the complexity of plant acclimation strategies in response to extreme climatic events and highlight the potential for hybrid taxa to face the future dynamics of salt marshes under climate change.
Collapse
Affiliation(s)
- Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap 1095, 41080, Seville, Spain
| | | | - Adrián Perera-Bonaño
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap 1095, 41080, Seville, Spain
| | - Alfonso De Cires
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap 1095, 41080, Seville, Spain
| | - Jesús M Castillo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap 1095, 41080, Seville, Spain
| | - Blanca Gallego-Tévar
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap 1095, 41080, Seville, Spain.
| |
Collapse
|
9
|
Khundi Q, Jiang Y, Sun Y, Rui Y. Nanofertilizers for Sustainable African Agriculture: A Global Review of Agronomic Efficiency and Environmental Sustainability. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:390. [PMID: 40072193 PMCID: PMC11901558 DOI: 10.3390/nano15050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
As Africa's population continues to grow, the need for sustainable agricultural practices has intensified, sparking greater interest in nanofertilizers This review critically evaluates the agronomic efficiency and environmental sustainability of nanofertilizers in the African context. It combines existing research on nanofertilizers' effectiveness, nutrient-use efficiency, and environmental impact. Nanofertilizers have shown a nutrient-use efficiency boost of up to 30% compared to conventional fertilizers. This review also highlights benefits such as enhanced crop yields (up to 25% increase in maize production), reduced chemical fertilizer requirements (up to 40% reduction in nitrogen application), and improved soil health. The analysis informs policy, research, and practice aimed at optimizing nanofertilizer deployment for sustainable African agriculture. The projected global population of 2.4 billion by 2050 highlights that the need for sustainable agricultural solutions has never been more important. Our review conveys an assessment of nanofertilizers' potential contribution to Africa's agricultural sustainability and food security.
Collapse
Affiliation(s)
- Queen Khundi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.K.); (Y.J.); (Y.S.)
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.K.); (Y.J.); (Y.S.)
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.K.); (Y.J.); (Y.S.)
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.K.); (Y.J.); (Y.S.)
- China Agricultural University Professor’s Workstation of Yuhuangmiao Town, Shanghe County, Jinan 250061, China
- China Agricultural University Professor’s Workstation of Sunji Town, Shanghe County, Jinan 250061, China
| |
Collapse
|
10
|
Pandey R, Singh C, Mishra S, Abdulraheem MI, Vyas D. Silicon uptake and transport mechanisms in plants: processes, applications and challenges in sustainable plant management. Biol Futur 2025; 76:19-31. [PMID: 39587007 DOI: 10.1007/s42977-024-00247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Silicon (Si) is an abundant element in the earth's crust essential for plant growth and development. Recent studies silicon's potential for improving plant resilience to numerous biotic stressors, notably fungal diseases. This review seeks to offer a comprehensive understanding of the processes and advantages of silicon-induced systemic resistance in plants, with a special focus on its interactions with fungal pathogens. Furthermore, we investigate the effect of silicon on plant physiological and biochemical changes, such as enhanced lignification, strengthening of physical barriers, and activation of antioxidant systems. Additionally, we examine the influence of silicon on microbial populations within the rhizosphere and its effects on mycorrhizal associations. Lastly, we discuss the potential applications and challenges of integrating silicon-based strategies in sustainable plant disease management. This review provides valuable insights into using silicon as a novel approach to enhance plant systemic resistance against fungal pathogens, offering prospects for developing eco-friendly and efficient agricultural practices.
Collapse
Affiliation(s)
- Raghvendra Pandey
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Chandan Singh
- Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India.
| | - Smita Mishra
- Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | | | - Deepak Vyas
- Lab of Microbial Technology and Plant Pathology, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
11
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
12
|
Mittra PK, Rahman MA, Roy SK, Kwon SJ, Mojumdar A, Yun SH, Cho K, Cho SW, Zhou M, Katsube-Tanaka T, Woo SH. Proteomic analysis reveals the roles of silicon in mitigating glyphosate-induced toxicity in Brassica napus L. Sci Rep 2025; 15:2465. [PMID: 39828778 PMCID: PMC11743794 DOI: 10.1038/s41598-025-87024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus. The proteome analysis identified a total of 4,407 proteins, of which 594 were differentially abundant, including 208 up-regulated and 386 down-regulated proteins. These proteins are associated with diverse biological processes in B. napus, including energy metabolism, antioxidant activity, signal transduction, photosynthesis, sulfur assimilation, cell wall functions, herbicide tolerance, and plant development. Protein-protein interactome analyses confirmed the involvement of six key proteins, including L-ascorbate peroxidase, superoxide dismutase, glutaredoxin-C2, peroxidase, glutathione peroxidase (GPX) 2, and peptide methionine sulfoxide reductase A3 which involved in antioxidant activity, sulfur assimilation, and herbicide tolerance, contributing to the resilience of B. napus against Gly toxicity. The proteomics insights into Si-mediated Gly-toxicity mitigation is an eco-friendly approach, and alteration of key molecular processes opens a new perspective of multi-omics-assisted B. napus breeding for enhancing herbicide resistant oilseed crop production.
Collapse
Affiliation(s)
- Probir Kumar Mittra
- Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea
| | | | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Soo-Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea
| | - Abhik Mojumdar
- Digital Omics Research Center, Ochang Center, Korea Basic Science Institute, Cheongju-si, 28119, Republic of Korea
- Division of Bio-Analytical Sciences, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sung Ho Yun
- Digital Omics Research Center, Ochang Center, Korea Basic Science Institute, Cheongju-si, 28119, Republic of Korea
| | - Kun Cho
- Digital Omics Research Center, Ochang Center, Korea Basic Science Institute, Cheongju-si, 28119, Republic of Korea
- Division of Bio-Analytical Sciences, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seong-Woo Cho
- Department of Agronomy and Medicinal Plant Resources, Gyeongsang National University, 33 Dongjin-Ro, Jinju, 52725, Gyeongnan, Korea
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhongguancun Street, Haidian, Beijing, 100081, China
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea.
| |
Collapse
|
13
|
de Oliveira RS, Ajulo AA, Cardoso MAA, Gonçalves AR, Bezerra GA, Lanna AC, de Castro AP, de Filippi MCC. Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions. PLANTA 2024; 261:22. [PMID: 39733387 DOI: 10.1007/s00425-024-04598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
MAIN CONCLUSION Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions. The experiment was conducted during two growing seasons (E1 and E2), in randomized block design with four replications, and consisted of five treatments, combining a mix of three rhizobacteria, BRM 32114 and BRM62523 (Serratia marcescens), and BRM32110 (Bacillus toyonensis), and three application methods (seed treatment, drenching, spraying). Calcium and magnesium silicate (2 t/ha) was applied over a low soil P, 30 days before sowing. Leaf blast (LBS) and panicle blast (PBS), area under the disease progress curve (AUDPC), activity of enzymes related to oxidative stress, pathogenesis-related (PR), biochemical indicators such as hydrogen peroxide, chlorophyll a and b, carotenoids, and grain yield (GY), were assessed. Bioagents and silicon suppressed LBS by 77.93 and PBS by 62.37%, reduced AUDPC by 77.3 (LBS) and 60.6% (PBS). The yield in E1 was 25% higher than in E2. The treatments statistically differ only in E2, the yield with bioagents and silicon (2435.72 kg ha-1) was 71.95% higher compared to the absolute control. All enzymatic activities related to oxidative stress and PR proteins were modulated by bioagents and silicon association. The association of rhizobacteria and silicon exhibited a synergistic effect, and represents a bioprotective combination to reduce the effects of different stresses and indirectly reduces the use of chemical inputs.
Collapse
Affiliation(s)
- Rodrigo Silva de Oliveira
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil
| | - Akintunde Abiodun Ajulo
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil
| | - Marco Antônio Adorno Cardoso
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil
| | - Ariany Rosa Gonçalves
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil
| | | | - Anna Cristina Lanna
- Research and Development, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Adriano Pereira de Castro
- Research and Development, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Marta Cristina Corsi de Filippi
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.
- Research and Development, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, GO, 75375-000, Brazil.
| |
Collapse
|
14
|
Tobiasz-Salach R, Stadnik B, Mazurek M, Buczek J, Leszczyńska D. Foliar Application of Silicon Influences the Physiological and Epigenetic Responses of Wheat Grown Under Salt Stress. Int J Mol Sci 2024; 25:13297. [PMID: 39769059 PMCID: PMC11677764 DOI: 10.3390/ijms252413297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Soil salinity is considered a serious problem that limits agricultural productivity. Currently, solutions are being sought to mitigate the negative impact of salt on economically important crops. The aim of the study was to evaluate the effect of foliar application of silicon (Si) on the physiological and epigenetic responses of wheat grown under salt stress conditions. The experiment with wheat seedlings was established in pots with 200 mM NaCl added. After 7 days, foliar fertilizer (200 g L-1 SiO2) was used at concentrations of 0.05, 0.1 and 0.2%. Physiological parameters were measured three times. The addition of salt caused a significant decrease in the values of the measured parameters in plants of all variants. In plants sprayed with Si fertilizer under salinity conditions, a significant increase in CCI and selected gas exchange parameters (PN, Ci, E, gs) and chlorophyll fluorescence (PI, RC/ABS, FV/Fm, Fv/F0) was observed. Si doses of 0.1 and 0.2% showed a better mitigating effect compared to the dose of 0.05%. The observed effect was maintained over time. The results obtained indicate a positive role for foliar silicon fertilization in mitigating salinity stress in wheat. Epigenetic mechanisms play an important role in regulating gene expression in response to stress. Changes in the status of methylation of the 5'CCGG3' sequence of the nuclear genome of wheat plants exposed to salinity and treated with Si at different doses were determined by the MSAP approach. The obtained results showed a clear alteration of DNA methylation in plants as a response to experimental factors. The methylation changes were silicon dose-dependent. These modifications may suggest a mechanism for plant adaptation under salt stress after silicon application.
Collapse
Affiliation(s)
- Renata Tobiasz-Salach
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland; (B.S.); (J.B.)
| | - Barbara Stadnik
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland; (B.S.); (J.B.)
- Doctoral School of the University of Rzeszow, University of Rzeszow, Rejtana 16C St., 35-959 Rzeszow, Poland
| | - Marzena Mazurek
- Department of Physiology and Plant Biotechnology, University of Rzeszow, Ćwiklińskiej 2 St., 35-601 Rzeszow, Poland;
| | - Jan Buczek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland; (B.S.); (J.B.)
| | - Danuta Leszczyńska
- Department of Crops and Yield Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8 St., 24-100 Puławy, Poland;
| |
Collapse
|
15
|
Meng X, Jin N, Jin L, Wang S, Zhao W, Xie Y, Huang S, Zhang Z, Xu Z, Liu Z, Lyu J, Yu J. Silicon-seed priming promotes seed germination under CA-induced autotoxicity by improving sucrose and respiratory metabolism in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2024; 24:1164. [PMID: 39627714 PMCID: PMC11616314 DOI: 10.1186/s12870-024-05908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
Seed germination is one of the critical and sensitive stages of early plant growth, and its process is prevented by cinnamic acid (CA). Silicon (Si) plays a critical role in mitigating abiotic stresses and seed germination in plants, but little is known about its role in seed germination and physiology in CA-stressed cucumber. Here, we conducted experiments in the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University from March to June 2021 to investigate the effects of Si-seed priming on growth, antioxidant capacity, sucrose mobilization and respiratory metabolism during germination under CA stress. Our results showed that seed soaking with Si (9 mmol/L) significantly reduced membrane lipid peroxidation and promoted post-germination growth of cucumber seeds under CA (2.0 mmol/L) stress. Si increased key enzyme activities in sucrose metabolism in CA-stressed seeds after germination, accelerating sucrose degradation and fructose synthesis. Si also enhanced the activities of key enzymes in the glycolytic pathway and pentose phosphate pathway in seeds, as well as in the post-germination tricarboxylic acid cycle, promoting glucose decomposition and ATP synthesis. Principal component analysis significantly separated the CK, Si, and CA + Si treatments from the CA treatment in the first principal component after 48 h of treatment. In addition, qRT-PCR analysis showed that Si induced overexpression of genes related to sucrose and respiratory metabolism in seeds treated with CA for 48 h. In conclusion, our findings provide evidence that Si priming may be an effective method to reverse CA inhibition of cucumber seeds, which effectively improve germination under CA stress by attenuating membrane lipid peroxidation and enhancing sucrose mobilization and respiratory metabolism in cucumber.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Wang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yandong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiqi Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zitong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
16
|
Costa MG, Alves DMR, da Silva BC, de Lima PSR, Prado RDM. Elucidating the underlying mechanisms of silicon to suppress the effects of nitrogen deficiency in pepper plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109113. [PMID: 39276673 DOI: 10.1016/j.plaphy.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In many regions, nitrogen (N) deficiency limits pepper cultivation, presenting significant cultivation challenges. This study investigates the impact of N deficiency and silicon (Si) supplementation on physiological responses and antioxidant modulation in pepper plants, focusing particularly on the homeostasis of carbon (C), nitrogen, and phosphorus (P), and their effects on growth and biomass production. Conducted in a factorial design, the experiment examined pepper plants under conditions of N sufficiency and deficiency, with and without Si supplementation (0.0 mM and 2.0 mM). Results showed that N deficiency sensitizes pepper plants, leading to increased electrolyte leakage (39.59%) and disrupted C, N, and P homeostasis. This disruption manifests as reductions in photosynthetic pigments (-64.53%), photochemical efficiency (-14.92%), and the synthesis of key metabolites such as total free amino acids (-86.97%), sucrose (-53.88%), and soluble sugars (-39.96%), ultimately impairing plant growth. However, Si supplementation was found to alleviate these stresses. It modulated the antioxidant system, enhanced the synthesis of ascorbic acid (+30.23), phenolic compounds (+33.19%), and flavonoids (+7.52%), and reduced cellular electrolyte leakage (-25.02%). Moreover, Si helped establish a new homeostasis of C, N, and P, optimizing photosynthetic and nutritional efficiency by improving the utilization of C (+17.46%) and N (+13.20%). These Si-induced modifications in plant physiology led to increased synthesis of amino acids (+362.20%), soluble sugars (+51.34%), and sucrose (77.42%), thereby supporting enhanced growth of pepper plants. These findings elucidate the multifaceted biological roles of Si in mitigating N deficiency effects, offering valuable insights for more sustainable horticultural practices.
Collapse
Affiliation(s)
- Milton Garcia Costa
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil.
| | - Deyvielen Maria Ramos Alves
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| | - Bianca Cavalcante da Silva
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| | - Paulo Sergio Rodrigues de Lima
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| | - Renato de Mello Prado
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| |
Collapse
|
17
|
Nowakowska J, Dang M, Kiełtyk P, Niemczyk M, Malewski T, Szulc W, Rutkowska B, Borowik P, Oszako T. Silicon Modifies Photosynthesis Efficiency and hsp Gene Expression in European Beech ( Fagus sylvatica) Seedlings Exposed to Drought Stress. Genes (Basel) 2024; 15:1233. [PMID: 39336824 PMCID: PMC11431362 DOI: 10.3390/genes15091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Climate change is leading to severe and long-term droughts in European forest ecosystems. can have profound effects on various physiological processes, including photosynthesis, gene expression patterns, and nutrient uptake at the developmental stage of young trees. Objectives: Our study aimed to test the hypothesis that the application of silica (SiO2) influences photosynthetic efficiency and gene expression in 1- to 2-year-old Fagus sylvatica (L.) seedlings. Additionally, we aimed to assess whether silicon application positively influences the structural properties of leaves and roots. To determine whether the plant physiological responses are genotype-specific, seedlings of four geographically different provenances were subjected to a one-year evaluation under greenhouse conditions. Methods: We used the Kruskal-Wallis test followed by Wilcoxon's test to evaluate the differences in silicon content and ANOVA followed by Tukey's test to evaluate the physiological responses of seedlings depending on treatment and provenance. Results: Our results showed a significantly higher Si content in the roots compared with the leaves, regardless of provenance and treatment. The most significant differences in photosynthetic performance were found in trees exposed to Si treatment, but the physiological responses were generally nuanced and provenance-dependent. Expression of hsp70 and hsp90 was also increased in leaf tissues of all provenances. These results provide practical insights that Si can improve the overall health and resilience of beech seedlings in nursery and forest ecosystems, with possible differences in the beneficial role of silicon application arising from the large differences in wild populations of forest tree species.
Collapse
Affiliation(s)
- Justyna Nowakowska
- Faculty of Biology and Environmental Sciences, Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (J.N.); (P.K.)
| | - Monika Dang
- Faculty of Biology and Environmental Sciences, Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (J.N.); (P.K.)
| | - Piotr Kiełtyk
- Faculty of Biology and Environmental Sciences, Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (J.N.); (P.K.)
| | - Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Tadeusz Malewski
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, 00-679 Warsaw, Poland;
| | - Wiesław Szulc
- Institute of Agriculture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.S.); (B.R.)
| | - Beata Rutkowska
- Institute of Agriculture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.S.); (B.R.)
| | - Piotr Borowik
- Forest Protection Department, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| |
Collapse
|
18
|
Tabur S, Ozmen S, Oney-Birol S. Promoter role of putrescine for molecular and biochemical processes under drought stress in barley. Sci Rep 2024; 14:19202. [PMID: 39160181 PMCID: PMC11333763 DOI: 10.1038/s41598-024-70137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.
Collapse
Affiliation(s)
- Selma Tabur
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Serkan Ozmen
- Department of Biology, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Signem Oney-Birol
- Department of Moleculer Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
| |
Collapse
|
19
|
Ashaq B, Rasool K, Habib S, Bashir I, Nisar N, Mustafa S, Ayaz Q, Nayik GA, Uddin J, Ramniwas S, Mugabi R, Wani SM. Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances. Food Chem X 2024; 22:101521. [PMID: 38952570 PMCID: PMC11215000 DOI: 10.1016/j.fochx.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Lemongrass essential oil (LEO), extracted from high-oil lemongrass, gains prominence as a versatile natural product due to growing demand for safe health solutions. LEO comprises beneficial compounds like citral, isoneral, geraniol, and citronellal, offering diverse pharmacological benefits such as antioxidant, antifungal, antibacterial, antiviral, and anticancer effects. LEO finds applications in food preservation, cosmetics, and pharmaceuticals, enhancing profitability across these sectors. The review focuses on the extraction of LEO, emphasizing the need for cost-effective methods. Ultrasound and supercritical fluid extraction are effective in reducing extraction time, increasing yields, and enhancing oil quality. LEO shows promise as a valuable natural resource across industries, with applications in packaging, coating, and film development. LEO's ability to extend the shelf life of food items and impart natural flavors positions it as a valuable asset. Overall, the review emphasizes LEO's therapeutic, antimicrobial, and antioxidant properties, strengthening its potential in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Barjees Ashaq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Khansa Rasool
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Samira Habib
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Naseh Nisar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Sehrish Mustafa
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Qudsiya Ayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| |
Collapse
|
20
|
Moradi S, Zamani Z, Fatahi R, Saba MK, Paliaga S, Laudicina VA, Inglese P, Liguori G. Fruit quality, antioxidant, and mineral attributes of pomegranate cv. Ghojagh, influenced by shading and spray applications of potassium sulfate and sodium silicate. Sci Rep 2024; 14:14831. [PMID: 38937529 PMCID: PMC11211349 DOI: 10.1038/s41598-024-65084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Pomegranate (Punica granatum L.) fruit quality depends on many traits including visual, biochemical and mineral characteristics. One of the negative traits is aril whitening (AW) which is a frequently observed disorder in hot and dry climates, that leads to decline in desirable fruit quality. Color, antioxidant, and mineral contents of the arils are of prime importance as quality traits. Therefore, this study aims to investigate the effect of shading and foliar minerals on fruit quality during the fruit development stages of pomegranate. Treatments included shaded (50% green net) and unshaded trees and foliar application of trees with potassium sulfate (K, 1% and 2%) or sodium silicate (Si, 0.05, 0.1 and 0.15%) during two growing seasons. Results showed that the severity of AW at harvest decreased significantly when trees were covered with shading compared to control. The color values of L* and ⁰hue for arils were lower in fruits grown under shading conditions indicating darker red arils. Shading significantly reduced chilling injury in cold storage compared to open field fruits. Shading and Si 0.15% increased superoxide dismutase, and catalase enzymes activity while decreased Polyphenol oxidase and peroxidase. Covering trees with shading and Si 0.15% spray resulted in the highest total anthocyanin, antioxidant activity, and total phenolics content in the arils. Shading as well as Si 0.15% increased macronutrients content of the arils. The study concluded that covering pomegranate trees and spraying with Si in hot climate reduced AW, increased antioxidant traits, and led to higher fruit quality.
Collapse
Affiliation(s)
- Samira Moradi
- Department of Horticulture Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Zabihollah Zamani
- Department of Horticulture Science, Faculty of Agriculture, University of Tehran, Karaj, Iran.
| | - Reza Fatahi
- Department of Horticulture Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Mahmoud Koushesh Saba
- Department of Horticulture Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Sara Paliaga
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Edificio 4, Ingresso H, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Edificio 4, Ingresso H, 90128, Palermo, Italy
| | - Paolo Inglese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Edificio 4, Ingresso H, 90128, Palermo, Italy
| | - Giorgia Liguori
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Edificio 4, Ingresso H, 90128, Palermo, Italy
| |
Collapse
|
21
|
Ali H, Mahmood I, Ali MF, Waheed A, Jawad H, Hussain S, Abasi F, Zulfiqar U, Siddiqui MH, Alamri S. Individual and interactive effects of amino acid and paracetamol on growth, physiological and biochemical aspects of Brassica napus L . under drought conditions. Heliyon 2024; 10:e31544. [PMID: 38882271 PMCID: PMC11176763 DOI: 10.1016/j.heliyon.2024.e31544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Drought stress poses a significant threat to Brassica napus (L.), impacting its growth, yield, and profitability. This study investigates the effects of foliar application of individual and interactive pharmaceutical (Paracetamol; 0 and 250 mg L-1) and amino acid (0 and 4 ml/L) on the growth, physiology, and yield of B. napus under drought stress. Seedlings were subjected to varying levels of drought stress (100% field capacity (FC; control) and 50% FC). Sole amino acid application significantly improved chlorophyll content, proline content, and relative water contents, as well as the activities of antioxidative enzymes (such as superoxide dismutase and catalase) while potentially decreased malondialdehyde and hydrogen peroxide contents under drought stress conditions. Pearson correlation analysis revealed strong positive correlations between these parameters and seed yield (R2 = 0.8-1), indicating their potential to enhance seed yield. On the contrary, sole application of paracetamol exhibited toxic effects on seedling growth and physiological aspects of B. napus. Furthermore, the combined application of paracetamol and amino acids disrupted physio-biochemical functions, leading to reduced yield. Overall, sole application of amino acids proves to be more effective in ameliorating the negative effects of drought on B. napus.
Collapse
Affiliation(s)
- Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Imran Mahmood
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Muhammad Faizan Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Alishba Waheed
- Department of Life Sciences, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan Punjab, 64200, Pakistan
| | - Husnain Jawad
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Fozia Abasi
- Department of Life Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
22
|
Rachappanavar V, Kumar M, Negi N, Chowdhury S, Kapoor M, Singh S, Rustagi S, Rai AK, Shreaz S, Negi R, Yadav AN. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108680. [PMID: 38701606 DOI: 10.1016/j.plaphy.2024.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India; Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Manish Kumar
- Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Narender Negi
- ICAR-National Bureau of Plant Genetic Resources-Regional Station, Shimla, Phagli Shimla, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India.
| |
Collapse
|
23
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
24
|
Zhang J, Lu J, Zhu Y, Shen X, Zhu B, Qin L. Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development. CHINESE HERBAL MEDICINES 2024; 16:204-213. [PMID: 38706819 PMCID: PMC11064630 DOI: 10.1016/j.chmed.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 05/07/2024] Open
Abstract
Medicinal plants, as medicinal materials and important drug components, have been used in traditional and folk medicine for ages. However, being sessile organisms, they are seriously affected by extreme environmental conditions and abiotic stresses such as salt, heavy metal, temperature, and water stresses. Medicinal plants usually produce specific secondary metabolites to survive such stresses, and these metabolites can often be used for treating human diseases. Recently, medicinal plants have been found to partner with endophytic fungi to form a long-term, stable, and win-win symbiotic relationship. Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. The close relationship can improve host plant resistance to the abiotic stresses of soil salinity, drought, and extreme temperatures. Their symbiosis also sheds light on plant growth and active compound production. Here, we show that endophytic fungi can improve the host medicinal plant resistance to abiotic stress by regulating active compounds, reducing oxidative stress, and regulating the cell ion balance. We also identify the deficiencies and burning issues of available studies and present promising research topics for the future. This review provides guidance for endophytic fungi research to improve the ability of medicinal plants to resist abiotic stress. It also suggests ideas and methods for active compound accumulation in medicinal plants and medicinal material development during the response to abiotic stress.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichun Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoxia Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| |
Collapse
|
25
|
Thakral V, Raturi G, Sudhakaran S, Mandlik R, Sharma Y, Shivaraj SM, Tripathi DK, Sonah H, Deshmukh R. Silicon, a quasi-essential element: Availability in soil, fertilizer regime, optimum dosage, and uptake in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108459. [PMID: 38484684 DOI: 10.1016/j.plaphy.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.
Collapse
Affiliation(s)
- Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - S M Shivaraj
- Department of Science, Alliance University, Bengaluru, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Uttar Pradesh, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India.
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India.
| |
Collapse
|
26
|
Abdullahi S, Haris H, Zarkasi KZ, Ghazali AH. Alleviation of Cadmium Stress in Rice Seedlings Inoculated with Enterobacter tabaci 4M9 (CCB-MBL 5004). Trop Life Sci Res 2024; 35:107-121. [PMID: 39262859 PMCID: PMC11383631 DOI: 10.21315/tlsr2024.35.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 09/13/2024] Open
Abstract
The growth of crop plants is greatly affected by the increased toxicity of metals. Luckily, certain beneficial bacteria can potentially reduce the effects of metal stress and promote the growth of the host plants. Many species of bacteria were reported as heavy metal tolerant and plant growth promoting, with very little or no report available concerning Enterobacter tabaci as heavy metal tolerant plant growth promoting. The present study aimed to evaluate the potential of Cadmium (Cd) tolerant Enterobacter tabaci 4M9 (CCB-MBL 5004) to alleviate heavy metals stress and enhance the growth of rice seedlings grown under Cd stress conditions. Rice seedlings were grown in Yoshida medium supplemented with different concentrations of Cd and inoculated with 4M9. The results showed that the inoculum tested successfully reduced oxidative stress in the seedlings by reducing the electrolyte leakage (EL) and increasing catalase (CAT) and superoxide dismutase (SOD) activities in the inoculated seedlings compared to the control counterparts. The results also revealed a significant increase in plant growth, biomass, and chlorophyll content of inoculated rice seedlings compared to the control. In general, the Cd tolerant E. tabaci 4M9 confers heavy metal alleviation and thereby improves the growth and survival of rice seedlings under Cd stress conditions. Therefore, the findings stated the potential of 4M9 for alleviating heavy metal stress and promoting the development of inoculated rice seedlings if accidentally grown under Cd-contaminated conditions.
Collapse
Affiliation(s)
- Saidu Abdullahi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Department of Botany, Ahmadu Bello University, 810001 Zaria, Nigeria
| | - Hazzeman Haris
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Amir Hamzah Ghazali
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
27
|
Wang Y, Chen W, Gu X, Zhou D. Comparison of the arsenic protective effects of four nanomaterials on pakchoi in an alkaline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168918. [PMID: 38040373 DOI: 10.1016/j.scitotenv.2023.168918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Accurately applying engineered nanoparticles (NPs) in farmland stress management is important for sustainable agriculture and food safety. We investigated the protective effects of four engineered NPs (SiO2, CeO2, ZnO, and S) on pakchoi under arsenic (As) stress using pot experiments. The results showed that CeO2, SiO2, and S NPs resulted in biomass reduction, while ZnO NPs (100 and 500 mg kg-1) significantly increased shoot height. Although 500 mg kg-1 S NPs rapidly dissolved to release SO42-, reducing soil pH and pore water As content and further reducing shoot As content by 21.6 %, the growth phenotype was inferior to that obtained with 100 mg kg-1 ZnO NPs, probably due to acid damage. The addition of 100 mg kg-1 ZnO NPs not only significantly reduced the total As content in pakchoi by 23.9 % compared to the As-alone treatment but also enhanced plant antioxidative activity by increasing superoxide dismutase (SOD) and peroxidase (POD) activities and decreasing malondialdehyde (MDA) content. ZnO NPs in soil might inhibit As uptake by roots by increasing the dissolved organic carbon (DOC) by 19.12 %. According to the DLVO theory, ZnO NPs were the most effective in preventing As in pore water from entering plant roots due to their smaller hydrated particle size. Redundancy analysis (RDA) further confirmed that DOC and SO42- were the primary factors controlling plant As uptake under the ZnO NP and S NP treatments, respectively. These findings provide an important basis for the safer and more sustainable application of NP-conjugated agrochemicals.
Collapse
Affiliation(s)
- Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wanli Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Iwuala E, Olajide O, Abiodun I, Odjegba V, Utoblo O, Ajewole T, Oluwajobi A, Uzochukwu S. Silicon ameliorates cadmium (Cd) toxicity in pearl millet by inducing antioxidant defense system. Heliyon 2024; 10:e25514. [PMID: 38333779 PMCID: PMC10850601 DOI: 10.1016/j.heliyon.2024.e25514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Cadmium (Cd) stress is a significant environmental pollutant that can negatively impact crop yield and growth, and is a serious global issue. However, silicon (Si) has been shown to have a potential function in alleviating the effects of several abiotic stress conditions on crops, including Cd stress. This study investigated the effectiveness of applying silicon to soil as a method for reducing cadmium toxicity in pearl millet (IP14599) seedlings. Seeds of IP14599 were treated with Si + Cd element which cumulated to a combination of 9 treatments. Different Cd concentration of (0, 200, and 300 mg/kg-1) was taken and manually mixed into a sieved soil prior to planting and Si (0, 100 and 200 mg/kg-1) was selectively introduced till after attaining 12 days of seedling emergence. The physiochemical parameters of Cd stressed plants investigated includes chlorophyll, gas exchange attributes, proline, relative water contents, malondialdehyde (MDA) content and antioxidant enzymes (superoxide dismutase (SOD),catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD). Our result revealed that the metal (Cd) caused serious oxidative impairment thereby reducing photosynthetic performance, increased activity of MDA and Cd content in the roots and leaves of IP14599.In addition, Si increased the growth pattern and antioxidant defense action thereby mitigating the Cd toxicity. The results revealed that at Si 200, Si significantly increased the chlorophyll, carotenoids and plant height at 122 %, 69 % and 128 % under the Cd 200 and Cd 300 mg/kg-1 treatment, respectively. The single treatment at Si100 and Si 200 decreased ROS by 29 %, and 37 % respectively and MDA decreased by 33 % and 43 % in contrast to Cd 200 and 300 treatments, respectively. However, Si200 showed significant increase in the activities of APX 97 %, SOD by 89 %, CAT 35 % and POD 86 % as compared to single Si, Cd or combine Cd + Si treatment. Also, a gradual decline in Cd level in both the leaf and root was present when exposed to high concentrations of Si at Si200 and 300 mg/kg-1. Our findings revealed that Si might significantly increase the capacity to tolerate Cd stress in crop plants. Therefore, the study revealed that Si has the potential to alleviate Cd-induced toxicity by reducing Cd assimilation and enhancing the growth attributes of IP14599 plants.
Collapse
Affiliation(s)
- Emmanuel Iwuala
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Olubunmi Olajide
- Department of Landscape and Horticulture, Ekiti State University, Ekiti, Nigeria
| | - Isaika Abiodun
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Victor Odjegba
- Department of Botany, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
| | - Obaiya Utoblo
- Department of Plant Science and Biotechnology, University of Jos, Plateau State, Nigeria
| | - Tolulope Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Ayoola Oluwajobi
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Sylvia Uzochukwu
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| |
Collapse
|
29
|
Pang Z, Zhu Y, Guan DX, Wang Y, Peng H, Liang Y. Unveiling mechanisms of silicon-mediated resistance to chromium stress in rice using a newly-developed hierarchical system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108368. [PMID: 38237424 DOI: 10.1016/j.plaphy.2024.108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/16/2024]
Abstract
Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F, Sun Y, Shahzad K, Ali B, Zhou W. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123013. [PMID: 38012966 DOI: 10.1016/j.envpol.2023.123013] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Chromium (Cr) is a highly toxic heavy metal that is extensively released into the soil and drastically reduces plant yield. Silicon nanoparticles (Si NPs) were chosen to mitigate Cr toxicity due to their ability to interact with heavy metals and reduce their uptake. This manuscript explores the mechanisms of Cr-induced toxicity and the potential of Si NPs to mitigate Cr toxicity by regulating photosynthesis, oxidative stress, and antioxidant defence, along with the role of transcription factors and heavy metal transporter genes in rapeseed (Brassica napus L.). Rapeseed plants were grown hydroponically and subjected to hexavalent Cr stress (50 and 100 μM) in the form of K2Cr2O7 solution. Si NPs were foliar sprayed at concentrations of 50, 100 and 150 μM. The findings showed that 100 μM Si NPs under 100 μM Cr stress significantly increased the leaf Si content by 169% while reducing Cr uptake by 92% and 76% in roots and leaves, respectively. The presence of Si NPs inside the plant leaf cells was confirmed by using energy-dispersive spectroscopy, inductively coupled plasma‒mass spectrometry, and confocal laser scanning microscopy. The study's findings showed that Cr had adverse effects on plant growth, photosynthetic gas exchange attributes, leaf mesophyll ultrastructure, PSII performance and the activity of enzymatic and nonenzymatic antioxidants. However, Si NPs minimized Cr-induced toxicity by reducing total Cr accumulation and decreasing oxidative damage, as evidenced by reduced ROS production (such as H2O2 and MDA) and increased enzymatic and nonenzymatic antioxidant activities in plants. Interestingly, Si NPs under Cr stress effectively increased the NPQ, ETR and QY of PSII, indicating a robust protective response of PSII against stress. Furthermore, the enhancement of Cr tolerance facilitated by Si NPs was linked to the upregulation of genes associated with antioxidant enzymes and transcription factors, alongside the concurrent reduction in metal transporter activity.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Khuram Shahzad
- Department of Botany, University of Sargodha, Sargodha, 40162, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Khan I, Awan SA, Rizwan M, Huizhi W, Ulhassan Z, Xie W. Silicon nanoparticles improved the osmolyte production, antioxidant defense system, and phytohormone regulation in Elymus sibiricus (L.) under drought and salt stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8985-8999. [PMID: 38183551 DOI: 10.1007/s11356-023-31730-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Drought and salt stress negatively influence the growth and development of various plant species. Thus, it is crucial to overcome these stresses for sustainable agricultural production and the global food chain. Therefore, the present study investigated the potential effects of exogenous silicon nanoparticles (SiNPs) on the physiological and biochemical parameters, and endogenous phytohormone contents of Elymus sibiricus under drought and salt stress. Drought stress was given as 45% water holding capacity, and salt stress was given as 120 mM NaCl. The seed priming was done with different SiNP concentrations: SiNP1 (50 mg L-1), SiNP2 (100 mg L-1), SiNP3 (150 mg L-1), SiNP4 (200 mg L-1), and SiNP5 (250 mg L-1). Both stresses imposed harmful impacts on the analyzed parameters of plants. However, SiNP5 increased the chlorophylls and osmolyte accumulation such as total proteins by 96% and 110% under drought and salt stress, respectively. The SiNP5 significantly decreased the oxidative damage and improved the activities of SOD, CAT, POD, and APX by 10%, 54%, 104%, and 211% under drought and 42%, 75%, 72%, and 215% under salt stress, respectively. The SiNPs at all concentrations considerably improved the level of different phytohormones to respond to drought and salt stress and increased the tolerance of Elymus plants. Moreover, SiNPs decreased the Na+ and increased K+ concentrations in Elymus suggesting the reduction in salt ion accumulation under salinity stress. Overall, exogenous application (seed priming/dipping) of SiNPs considerably enhanced the physio-biochemical and metabolic responses, resulting in an increased tolerance to drought and salt stresses. Therefore, this study could be used as a reference to further explore the impacts of SiNPs at molecular and genetic level to mitigate abiotic stresses in forages and related plant species.
Collapse
Affiliation(s)
- Imran Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Wang Huizhi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
32
|
Ahmad W, Coffman L, Weerasooriya AD, Crawford K, Khan AL. The silicon regulates microbiome diversity and plant defenses during cold stress in Glycine max L. FRONTIERS IN PLANT SCIENCE 2024; 14:1280251. [PMID: 38269137 PMCID: PMC10805835 DOI: 10.3389/fpls.2023.1280251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Introduction With climate change, frequent exposure of bioenergy and food crops, specifically soybean (Glycine max L.), to low-temperature episodes is a major obstacle in maintaining sustainable plant growth at early growth stages. Silicon (Si) is a quasi-essential nutrient that can help to improve stress tolerance; however, how Si and a combination of cold stress episodes influence plant growth, plant physiology, and microbiome diversity has yet to be fully discovered. Methods The soybean plants were exposed to cold stress (8-10°C) with or without applying Si, and the different plant organs (shoot and root) and rhizospheric soil were subjected to microbiome analysis. The plant growth, physiology, and gene expression analysis of plant defenses during stress and Si were investigated. Results and discussion We showed that cold stress significantly retarded soybean plants' growth and biomass, whereas, Si-treated plants showed ameliorated negative impacts on plant growth at early seedling stages. The beneficial effects of Si were also evident from significantly reduced antioxidant activities - suggesting lower cold-induced oxidative stress. Interestingly, Si also downregulated critical genes of the abscisic acid pathway and osmotic regulation (9-cis-epoxy carotenoid dioxygenase and dehydration-responsive element binding protein) during cold stress. Si positively influenced alpha and beta diversities of bacterial and fungal microbiomes with or without cold stress. Results showed significant variation in microbiome composition in the rhizosphere (root and soil) and phyllosphere (shoot) in Si-treated plants with or without cold stress exposures. Among microbiome phyla, Proteobacteria, Bacteroidota, and Ascomycota were significantly more abundant in Si treatments in cold stress than in control conditions. For the core microbiome, we identified 179 taxa, including 88 unique bacterial genera in which Edaphobacter, Haliangium, and Streptomyces were highly abundant. Enhanced extracellular enzyme activities in the cold and Si+cold treatments, specifically phosphatase and glucosidases, also reflected the microbiome abundance. In conclusion, this work elucidates cold-mediated changes in microbiome diversity and plant growth, including the positive impact Si can have on cold tolerance at early soybean growth stages - a step toward understanding crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| | - Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Aruna D Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture & Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Kerri Crawford
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
33
|
Wei C, Luo S, Liu L, Shi K, Han C, Mohamad OAA, Shao H. Potential of utilizing pathogen-derived mycotoxins as alternatives to synthetic herbicides in controlling the noxious invasive plant Xanthium italicum. PEST MANAGEMENT SCIENCE 2024; 80:122-132. [PMID: 37036068 DOI: 10.1002/ps.7499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Discovery of environmentally friendly agents for controlling alien invasive species (AIS) is challenging and in urgent need as their expansion continues to increase. Xanthium italicum is a notorious invasive weed that has caused serious ecological and economic impacts worldwide. For the purpose of exploring the possibility of utilizing herbicidal mycotoxins to control this species, three compounds, a new compound, curvularioxide (1), a new naturally occurring compound, dehydroradicinin (2), and a known compound, radicinin (3), were isolated via activity-guided fractionation from the secondary metabolites of the pathogenic Curvularia inaequalis, which was found to infect X. italicum in natural habitats. All isolated compounds exhibited potent herbicidal activity on receiver species. It is noteworthy to mention that their effects on X. italicum in our bioassays were equivalent to the commercial herbicide glyphosate. Subsequent morphological analysis revealed that application of radicinin (3) severely hindered X. italicum seedlings' hypocotyl and root development. Malondialdehyde content and the activity of catalase and peroxidase of the seedlings were also significantly different from the control, implying the occurrence of induced oxidative stress. Our results suggest that pathogens infecting invasive plants might be valuable resources for developing safer herbicides for controlling weeds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixia Wei
- State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lin Liu
- College of Pharmacy, Linyi University, Linyi, China
| | - Kai Shi
- State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caixia Han
- State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
34
|
Mantovska DI, Zhiponova MK, Petrova D, Alipieva K, Bonchev G, Boycheva I, Evstatieva Y, Nikolova D, Tsacheva I, Simova S, Yordanova ZP. Exploring the Phytochemical Composition and Biological Potential of Balkan Endemic Species Stachys scardica Griseb. PLANTS (BASEL, SWITZERLAND) 2023; 13:30. [PMID: 38202340 PMCID: PMC10780532 DOI: 10.3390/plants13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Stachys scardica Griseb. is a Balkan endemic species listed in The Red Data Book of Bulgaria with the conservation status "endangered". Successful micropropagation was achieved on MS medium supplemented with 1.5 mg/L benzyladenine (BA), followed by a subsequent ex vitro adaptation in an experimental field resulting in 92% regenerated plants. Using nuclear magnetic resonance (NMR), phenylethanoid glycosides (verbascoside, leucosceptoside A), phenolic acids (chlorogenic acid), iridoids (allobetonicoside and 8-OAc-harpagide), and alkaloids (trigonelline) were identified, characteristic of plants belonging to the genus Stachys. High antioxidant and radical scavenging activities were observed in both in situ and ex vitro acclimated S. scardica plants, correlating with the reported high concentrations of total phenols and flavonoids in these variants. Ex vitro adapted plants also exhibited a well-defined anti-inflammatory potential, demonstrating high inhibitory activity against the complement system. Employing a disk diffusion method, a 100% inhibition effect was achieved compared to positive antibiotic controls against Staphylococcus epidermidis and Propionibacterium acnes, with moderate activity against Bacillus cereus. The induced in vitro and ex vitro model systems can enable the conservation of S. scardica in nature and offer future opportunities for the targeted biosynthesis of valuable secondary metabolites, with potential applications in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Desislava I. Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| | - Miroslava K. Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (K.A.); (S.S.)
| | - Georgi Bonchev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (G.B.); (I.B.)
| | - Irina Boycheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (G.B.); (I.B.)
| | - Yana Evstatieva
- Department of Biotechnology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (Y.E.); (D.N.)
| | - Dilyana Nikolova
- Department of Biotechnology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (Y.E.); (D.N.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (K.A.); (S.S.)
| | - Zhenya P. Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria (M.K.Z.); (D.P.)
| |
Collapse
|
35
|
Weisany W, Razmi J, Pashang D. Improving seed germination and physiological characteristics of maize seedlings under osmotic stress through potassium nano-silicate treatment. FRONTIERS IN PLANT SCIENCE 2023; 14:1274396. [PMID: 38179480 PMCID: PMC10765601 DOI: 10.3389/fpls.2023.1274396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Introduction Osmotic stress can significantly affect the survival and functioning of living organisms, particularly during vulnerable stages such as seed germination and seedling growth. To address this issue, advanced technologies like nanofertilizers have been developed to improve soil conditions and enhance plant growth in stressed ecosystems due to their multiple effects and efficient consumption. Methods The objective of this study was to investigate the impact of potassium nano-silicate (PNS) on the physiological characteristics of maize seedlings and seed germination under various levels of osmotic stress induced by polyethylene glycol (PEG). The study considered two factors: two levels of PNS concentration (500 and 1000 ppm) and PEG-6000 solution with different osmotic stress levels (-2, -4, -6, and -8 bars). Results and discussion The results demonstrated that the application of PNS at a concentration of 1000 ppm led to increased radicle length and hypocotyl length as well as fresh weight of maize seedlings. Furthermore, PNS at a concentration of 1000 ppm had a more beneficial effect on the germination rate of maize seedlings under osmotic stress compared to 500 ppm. Additionally, the application of PNS under osmotic stress conditions resulted in an increase in various physiological parameters, including protein content, chlorophyll a, chlorophyll b, total chlorophyll content, proline content, and the activity of catalase (CAT) and ascorbate peroxidase (AXPO) enzymes. These findings indicate that the use of PNS can have a positive impact on the physiological characteristics of maize seedlings and seed germination under osmotic stress conditions. Overall, this technology has the potential to enhance crop growth and yield in stressed ecosystems. By improving the survival and function of plants during vulnerable stages, such as seed germination and seedling growth, the application of PNS can contribute to more resilient agricultural practices and promote sustainable food production in challenging environments.
Collapse
Affiliation(s)
- Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Razmi
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danial Pashang
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Shah T, Khan Z, Khan SR, Imran A, Asad M, Ahmad A, Ahmad P. Silicon inhibits cadmium uptake by regulating the genes associated with the lignin biosynthetic pathway and plant hormone signal transduction in maize plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123996-124009. [PMID: 37995035 DOI: 10.1007/s11356-023-31044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Cadmium (Cd) contamination in soil poses a severe threat to plant growth and development. In contrast, silicon (Si) has shown promise in enhancing plant resilience under Cd-induced stress. In this study, we conducted an integrated investigation employing morphological studies, gene expression analysis, and metabolomics to unravel the molecular mechanisms underlying Cd tolerance in maize plants. Our results demonstrate that Si biofortification significantly mitigated Cd stress by reducing Cd accumulation in plant tissues, increasing Si content, and enhancing maize biomass in Cd-stressed plants resulted in a substantial enhancement in shoot dry weight (+ 75%) and root dry weight (+ 30%). Notably, Si treatment upregulated key lignin-related genes (TaPAL, TaCAD, Ta4CL, and TaCOMT) and promoted the accumulation of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, cafeyl alcohol, and coniferaldehyde) essential for cell wall strength, particularly under Cd stress conditions. Si application enriched the signal transduction by hormones and increased resistance by induction of biosynthesis genes (TaBZR1, TaLOX3, and TaNCDE1) and metabolites (brassinolide, abscisic acid, and jasmonate) in the roots and leaves under Cd stress. Furthermore, our study provides a comprehensive view of the intricate molecular crosstalk between Si, Cd stress, and plant hormonal responses. We unveil a network of genetic and metabolic interactions that culminate in a multifaceted defense system, enabling maize plants to thrive even in the presence of Cd-contaminated soil. This knowledge not only advances our understanding of the protective role of Si but also highlights the broader implications for sustainable agricultural practices. By harnessing the insights gained from this research, we may pave the way for innovative strategies to fortify crops against environmental stressors, ultimately contributing to the goal of food security in an ever-changing world. In summary, our research offers valuable insights into the protective mechanisms facilitated by Si, which enhance plants' ability to withstand environmental stress, and holds promise for future applications in sustainable agriculture.
Collapse
Affiliation(s)
- Tariq Shah
- Plant Science Research Unit United States, Department for Agriculture, Agricultural Research Service, Raleigh, NC, USA
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Shah Rukh Khan
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ayesha Imran
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Asad
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
37
|
Biru FN, Cazzonelli CI, Elbaum R, Johnson SN. Silicon-mediated herbivore defence in a pasture grass under reduced and Anthropocene levels of CO 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1268043. [PMID: 38023935 PMCID: PMC10646432 DOI: 10.3389/fpls.2023.1268043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The uptake and accumulation of silicon (Si) in grass plants play a crucial role in alleviating both biotic and abiotic stresses. Si supplementation has been reported to increase activity of defence-related antioxidant enzyme, which helps to reduce oxidative stress caused by reactive oxygen species (ROS) following herbivore attack. Atmospheric CO2 levels are known to affect Si accumulation in grasses; reduced CO2 concentrations increase Si accumulation whereas elevated CO2 concentrations often decrease Si accumulation. This can potentially affect antioxidant enzyme activity and subsequently insect herbivory, but this remains untested. We examined the effects of Si supplementation and herbivory by Helicoverpa armigera on antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidase, APX) activity in tall fescue grass (Festuca arundinacea) grown under CO2 concentrations of 200, 410, and 640 ppm representing reduced, ambient, and elevated CO2 levels, respectively. We also quantified foliar Si, carbon (C), and nitrogen (N) concentrations and determined how changes in enzymes and elemental chemistry affected H. armigera relative growth rates and plant consumption. Rising CO2 concentrations increased plant mass and foliar C but decreased foliar N and Si. Si supplementation enhanced APX and SOD activity under the ranging CO2 regimes. Si accumulation and antioxidant enzyme activity were at their highest level under reduced CO2 conditions and their lowest level under future levels of CO2. The latter corresponded with increased herbivore growth rates and plant consumption, suggesting that some grasses could become more susceptible to herbivory under projected CO2 conditions.
Collapse
Affiliation(s)
- Fikadu N. Biru
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
38
|
Aqeel U, Parwez R, Aftab T, Khan MMA, Naeem M. Silicon dioxide nanoparticles suppress copper toxicity in Mentha arvensis L. by adjusting ROS homeostasis and antioxidant defense system and improving essential oil production. ENVIRONMENTAL RESEARCH 2023; 236:116851. [PMID: 37558115 DOI: 10.1016/j.envres.2023.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Rukhsar Parwez
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India.
| |
Collapse
|
39
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
40
|
Tran TLC, Guirguis A, Jeyachandran T, Wang Y, Cahill DM. Mesoporous silica nanoparticle-induced drought tolerance in Arabidopsis thaliana grown under in vitro conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:889-900. [PMID: 37055916 DOI: 10.1071/fp22274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Nanoparticles of varying formats and functionalities have been shown to modify and enhance plant growth and development. Nanoparticles may also be used to improve crop production and performance, particularly under adverse environmental conditions such as drought. Nanoparticles composed of silicon dioxide, especially those that are mesoporous (mesoporous silica nanoparticles; MSNs), have been shown to be taken up by plants; yet their potential to improve tolerance to abiotic stress has not been thoroughly examined. In this study, a range of concentrations of MSNs (0-5000mgL-1 ) were used to determine their effects, in vitro , on Arabidopsis plants grown under polyethylene glycol (PEG)-simulated drought conditions. Treatment of seeds with MSNs during PEG-simulated drought resulted in higher seed germination and then greater primary root length. However, at the highest tested concentration of 5000mgL-1 , reduced germination was found when seeds were subjected to drought stress. At the optimal concentration of 1500mgL-1 , plants treated with MSNs under non-stressed conditions showed significant increases in root length, number of lateral roots, leaf area and shoot biomass. These findings suggest that MSNs can be used to stimulate plant growth and drought stress tolerance.
Collapse
Affiliation(s)
- Thi Linh Chi Tran
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Vic. 3216, Australia
| | - Albert Guirguis
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Vic. 3216, Australia
| | - Thanojan Jeyachandran
- Deakin University, Institute for Frontier Materials, Waurn Ponds, Vic. 3216, Australia
| | - Yichao Wang
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Vic. 3216, Australia
| | - David M Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Vic. 3216, Australia
| |
Collapse
|
41
|
Shohani F, Hosseinin Sarghein S, Fazeli A. Simultaneous application of salicylic acid and silicon in aerial parts of Scrophularia striata L. in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107936. [PMID: 37647821 DOI: 10.1016/j.plaphy.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Plants respond to water shortage by regulating biochemical pathways which result in the biosynthesis of osmotic compounds. Active metabolites and compatible osmolytes control the inhibition of oxygen free radicals and dehydration. The physiological response of scrophularia striata to drought stress, a factorial completely randomized design (FCRD) experiment was conducted in three replication. Drought stress was induced at two levels (100% and 50% field capacity), and salicylic acid (SA) and silicon (Si) and Ecotype were also used at two levels of (0 and 100 PPM), (0 and 1 g/L) and (Ilam and Abdanan) respectively. Data analysis results indicated that the H2O2 content, Malondialdehyde (MDA), glycine betaine (GB) and the activity of the enzyme glutathione reductase (GR; EC 1.6.4.2) of aerial parts increased during the entire stress exposure period. Although the SA + Si + stress + ecotype interaction increased the content of soluble carbohydrate s and the GR activity in aerial parts of Ilam and Abdanan ecotypes, this interaction led to a decrease in MDA, H2O2 in Ilam ecotypes. The interaction between the stress + SA + Si + ecotype led to an increase in the phenylalanine ammonialyase (PAL; EC 4.3.1.5) activity in the Abdanan ecotype, but no important difference was observed. As compared to the control treatment, the content of Polyphenol increased, The interaction between ecotype + stress + Si caused to increased the of proline content in the Abadanan ecotype. The results showed that the increase in antioxidant defense and compatible osmolytes due to the use of SA and Si can improve the drought tolerance in S.striata.
Collapse
Affiliation(s)
- Fariba Shohani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.
| | | | - Arash Fazeli
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, 6939177111, Iran.
| |
Collapse
|
42
|
Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J, Xing H, Guo N. Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3007. [PMID: 37631217 PMCID: PMC10459988 DOI: 10.3390/plants12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The Ethylene Response Factor (ERF) transcription factors form a subfamily of the AP2/ERF family that is instrumental in mediating plant responses to diverse abiotic stressors. Herein, we present the isolation and characterization of the GmERF105 gene from Williams 82 (W82), which is rapidly induced by salt, drought, and abscisic acid (ABA) treatments in soybean. The GmERF105 protein contains an AP2 domain and localizes to the nucleus. GmERF105 was selectively bound to GCC-box by gel migration experiments. Under salt stress, overexpression of GmERF105 in Arabidopsis significantly reduced seed germination rate, fresh weight, and antioxidant enzyme activity; meanwhile, sodium ion content, malonic dialdehyde (MDA) content, and reactive oxygen species (ROS) levels were markedly elevated compared to the wild type. It was further found that the transcription levels of CSD1 and CDS2 of two SOD genes were reduced in OE lines. Furthermore, the GmERF105 transgenic plants displayed suppressed expression of stress response marker genes, including KIN1, LEA14, NCED3, RD29A, and COR15A/B, under salt treatment. Our findings suggest that GmERF105 can act as a negative regulator in plant salt tolerance pathways by affecting ROS scavenging systems and the transcription of stress response marker genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming Zhao
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Han Xing
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Na Guo
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| |
Collapse
|
43
|
Ijaz U, Ahmed T, Rizwan M, Noman M, Shah AA, Azeem F, Alharby HF, Bamagoos AA, Alharbi BM, Ali S. Rice straw based silicon nanoparticles improve morphological and nutrient profile of rice plants under salinity stress by triggering physiological and genetic repair mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107788. [PMID: 37302256 DOI: 10.1016/j.plaphy.2023.107788] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023]
Abstract
The agricultural sector is facing numerous challenges worldwide, owing to global climate change and limited resources. Crop production is limited by numerous abiotic constraints. Among them, salinity stress as a combination of osmotic and ionic stress adversely influences the physiological and biochemical processes of the plant. Nanotechnology facilitates the production of crops either directly by eradicating the losses due to challenging environmental conditions or indirectly by improving tolerance against salinity stress. In this study, the protective role of silicon nanoparticles (SiNPs) was determined in two rice genotypes, N-22 and Super-Bas, differing in salinity tolerance. The SiNPs were confirmed through standard material characterization techniques, which showed the production of spherical-shaped crystalline SiNPs with a size in the range of 14.98-23.74 nm, respectively. Salinity stress adversely affected the morphological and physiological parameters of both varieties, with Super-Bas being more affected. Salt stress disturbed the ionic balance by minimizing the uptake of K+ and Ca2+ contents and increased the uptake of Na+ in plants. Exogenous SiNPs alleviated the toxic effects of salt stress and promoted the growth of both N-22 and Super-Bas, chlorophyll contents (16% and 13%), carotenoids (15% and 11%), total soluble protein contents (21% and 18%), and the activities of antioxidant enzymes. Expression analysis from quantitative real-time PCR showed that SiNPs relieved plants from oxidative bursts by triggering the expression of HKT genes. Overall, these findings demonstrate that SiNPs significantly alleviated salinity stress by triggering physiological and genetic repair mechanisms, offering a potential solution for food security.
Collapse
Affiliation(s)
- Usman Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabd, Pakistan
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabd, Pakistan.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
44
|
Jiang D, Xu H, Zhang Y, Chen G. Silicon mediated redox homeostasis in the root-apex transition zone of rice plays a key role in aluminum tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107871. [PMID: 37393859 DOI: 10.1016/j.plaphy.2023.107871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The supply of silicon (Si) mitigates the aluminum (Al) toxicity on plant root growth, while the underlying mechanism remains unknown. Transition zone (TZ) emerges as the Al-toxicity target of plant root apex. The objective of the study was to evaluate the effect of Si on redox homeostasis in root-apex TZ of rice seedlings under Al stress. Si alleviated Al toxicity as revealed by promotion of root elongation and less Al accumulation. In Si-deprived plants, treatment with Al altered the normal distribution of superoxide anion (O2·-) and hydrogen peroxide (H2O2) in root tip. Al induced a significant increase of reactive oxygen species (ROS) in root-apex TZ, resulting in the peroxidation of membrane lipid and loss of plasma membrane integrity in root-apex TZ. However, Si greatly increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and enzymes involved in ascorbate-glutathione (AsA-GSH) cycle in root-apex TZ under Al stress, and enhanced AsA and GSH contents, which reduced ROS and callose contents, thereby reducing malondialdehyde (MDA) content and Evans blue uptake. These results allow to precise the changes of ROS in root-apex TZ after exposure to Al, and the positive role of Si in maintaining redox balance in root-apex TZ.
Collapse
Affiliation(s)
- Dexing Jiang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China; Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hui Xu
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yafang Zhang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guoxiang Chen
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
45
|
Chaganti C, Phule AS, Chandran LP, Sonth B, Kavuru VPB, Govindannagari R, Sundaram RM. Silicate solubilizing and plant growth promoting bacteria interact with biogenic silica to impart heat stress tolerance in rice by modulating physiology and gene expression. Front Microbiol 2023; 14:1168415. [PMID: 37520375 PMCID: PMC10374332 DOI: 10.3389/fmicb.2023.1168415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 08/01/2023] Open
Abstract
Heat stress caused due to increasing warming climate has become a severe threat to global food production including rice. Silicon plays a major role in improving growth and productivity of rice by aiding in alleviating heat stress in rice. Soil silicon is only sparingly available to the crops can be made available by silicate solubilizing and plant-growth-promoting bacteria that possess the capacity to solubilize insoluble silicates can increase the availability of soluble silicates in the soil. In addition, plant growth promoting bacteria are known to enhance the tolerance to abiotic stresses of plants, by affecting the biochemical and physiological characteristics of plants. The present study is intended to understand the role of beneficial bacteria viz. Rhizobium sp. IIRR N1 a silicate solublizer and Gluconacetobacter diazotrophicus, a plant growth promoting bacteria and their interaction with insoluble silicate sources on morpho-physiological and molecular attributes of rice (Oryza sativa L.) seedlings after exposure to heat stress in a controlled hydroponic system. Joint inoculation of silicates and both the bacteria increased silicon content in rice tissue, root and shoot biomass, significantly increased the antioxidant enzyme activities (viz. superoxidase dismutase, catalase and ascorbate peroxidase) compared to other treatments with sole application of either silicon or bacteria. The physiological traits (viz. chlorophyll content, relative water content) were also found to be significantly enhanced in presence of silicates and both the bacteria after exposure to heat stress conditions. Expression profiling of shoot and root tissues of rice seedlings revealed that seedlings grown in the presence of silicates and both the bacteria exhibited higher expression of heat shock proteins (HSPs viz., OsHsp90, OsHsp100 and 60 kDa chaperonin), hormone-related genes (OsIAA6) and silicon transporters (OsLsi1 and OsLsi2) as compared to seedlings treated with either silicates or with the bacteria alone. The results thus reveal the interactive effect of combined application of silicates along with bacteria Rhizobium sp. IIRR N1, G. diazotrophicus inoculation not only led to augmented silicon uptake by rice seedlings but also influenced the plant biomass and elicited higher expression of HSPs, hormone-related and silicon transporter genes leading to improved tolerance of seedling to heat stress.
Collapse
|
46
|
Aouz A, Khan I, Chattha MB, Ahmad S, Ali M, Ali I, Ali A, Alqahtani FM, Hashem M, Albishi TS, Qari SH, Chatta MU, Hassan MU. Silicon Induces Heat and Salinity Tolerance in Wheat by Increasing Antioxidant Activities, Photosynthetic Activity, Nutrient Homeostasis, and Osmo-Protectant Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2606. [PMID: 37514221 PMCID: PMC10385395 DOI: 10.3390/plants12142606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Modern agriculture is facing the challenges of salinity and heat stresses, which pose a serious threat to crop productivity and global food security. Thus, it is necessary to develop the appropriate measures to minimize the impacts of these serious stresses on field crops. Silicon (Si) is the second most abundant element on earth and has been recognized as an important substance to mitigate the adverse effects of abiotic stresses. Thus, the present study determined the role of Si in mitigating adverse impacts of salinity stress (SS) and heat stress (HS) on wheat crop. This study examined response of different wheat genotypes, namely Akbar-2019, Subhani-2021, and Faisalabad-2008, under different treatments: control, SS (8 dSm-1), HS, SS + HS, control + Si, SS + Si, HS+ Si, and SS + HS+ Si. This study's findings reveal that HS and SS caused a significant decrease in the growth and yield of wheat by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) production; sodium (Na+) and chloride (Cl-) accumulation; and decreasing relative water content (RWC), chlorophyll and carotenoid content, total soluble proteins (TSP), and free amino acids (FAA), as well as nutrient uptake (potassium, K; calcium, Ca; and magnesium, Mg). However, Si application offsets the negative effects of both salinity and HS and improved the growth and yield of wheat by increasing chlorophyll and carotenoid contents, RWC, antioxidant activity, TSP, FAA accumulation, and nutrient uptake (Ca, K, and Mg); decreasing EL, electrolyte leakage, MDA, and H2O2; and restricting the uptake of Na+ and Cl-. Thus, the application of Si could be an important approach to improve wheat growth and yield under normal and combined saline and HS conditions by improving plant physiological functioning, antioxidant activities, nutrient homeostasis, and osmolyte accumulation.
Collapse
Affiliation(s)
- Ansa Aouz
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agriculture Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shahbaz Ahmad
- Department of Entomology, Faculty of Agriculture Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Iftikhar Ali
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Abid Ali
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Tasahil S Albishi
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Umer Chatta
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
47
|
Carneiro-Carvalho A, Pinto T, Gomes-Laranjo J, Anjos R. The potential of SiK® fertilization in the resilience of chestnut plants to drought - a biochemical study. FRONTIERS IN PLANT SCIENCE 2023; 14:1120226. [PMID: 37448863 PMCID: PMC10338186 DOI: 10.3389/fpls.2023.1120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 07/15/2023]
Abstract
Silicon is an essential mineral nutrient, that plays a crucial role in the metabolic, biochemical, and functional mechanisms of many crops under environmental stress. In the current study, we evaluated the effect of SiK® fertilization on the biochemical defense response in plants exposed to water stress. Castanea sativa plants were fertilized with different concentrations of potassium silicate (0, 5, 7.5, and 10 mM of SiK®) and exposed to a non-irrigation phase and an irrigation phase. The results indicate that silicon promoted the synthesis of soluble proteins and decreased the proline content and the oxidative stress (reduced electrolyte leakage, lipid peroxidation, and hydrogen peroxide accumulation) in tissues, due to an increase in ascorbate peroxidase, catalase, and peroxidase activity, which was accompanied by the rise in total phenol compounds and the number of thiols under drought conditions. This study suggests that exogenous Si applications have a protective role in chestnut plants under water deficit by increasing their resilience to this abiotic stress.
Collapse
|
48
|
de Faria Melo CC, Silva Amaral D, de Mello Prado R, de Moura Zanine A, de Jesus Ferreira D, de Cássia Piccolo M. Nanosilica modulates C:N:P stoichiometry attenuating phosphorus toxicity more than deficiency in Megathyrsus maximus cultivated in an Oxisol and Entisol. Sci Rep 2023; 13:10284. [PMID: 37355676 PMCID: PMC10290668 DOI: 10.1038/s41598-023-37504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Silicon (Si) nanoparticles can attenuate nutritional disorders caused by phosphorus in forages through nutritional homeostasis. This paper aims to evaluate the effects of P deficiency and toxicity in Megathyrsus maximus cultivated in two types of soils and to verify whether Si application via fertigation can mitigate these imbalances. The following two experiments were carried out: cultivation of forage plants in pots with Entisol and Oxisol, in a 3 × 2 factorial design, with three nutritional levels of phosphorus (deficient, adequate, and excessive) and two Si concentrations in the irrigation water (0 and 1.5 mmol L-1). Height, number of tillers, rate of leaf senescence, dry matter production, C:N, C:Si, C:P, and N:P ratios; and C, P, and N use efficiencies were evaluated in two growth cycles. P imbalances hampered carbon assimilation, C:N:P homeostasis, and dry matter production. Nanosilica fertigation promoted silicon uptake, improving C:N:P homeostasis and nutritional efficiency in plants under P deficiency and toxicity. Leaf senescence was reduced with addition of Si in plants grown in Oxisol in the three nutritional states of P. Silicon attenuated the stress caused by P toxicity in Entisol and Oxisol, improving production in plants without nutritional stress in Oxisol. The supply of Si nanoparticles in the cultivation of M. maximus can contribute to a more efficient and sustainable use of phosphorus in pastures.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 Km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 Km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
49
|
Ning D, Zhang Y, Li X, Qin A, Huang C, Fu Y, Gao Y, Duan A. The Effects of Foliar Supplementation of Silicon on Physiological and Biochemical Responses of Winter Wheat to Drought Stress during Different Growth Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:2386. [PMID: 37376009 DOI: 10.3390/plants12122386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Drought is one of the major environmental stresses, resulting in serious yield reductions in wheat production. Silicon (Si) has been considered beneficial to enhancing wheat resistance to drought stress. However, few studies have explored the mediated effects of foliar supplementation of Si on drought stress imposed at different wheat growth stages. Therefore, a field experiment was carried out to investigate the effects of Si supplementation on the physiological and biochemical responses of wheat to drought stress imposed at the jointing (D-jointing), anthesis (D-anthesis) and filling (D-filling) stages. Our results showed that a moderate water deficit markedly decreased the dry matter accumulation, leaf relative water content (LRWC), photosynthetic rate (Pn), stomatal conductance (Sc), transpiration rate (Tr) and antioxidant activity [peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT)]. On the contrary, it remarkably increased the content of osmolytes (proline, soluble sugar, soluble protein) and lipid peroxidation. The grain yields of D-jointing, D-anthesis and D-filling treatments were 9.59%, 13.9% and 18.9% lower, respectively, compared to the control treatment (CK). However, foliar supplementation of Si at the anthesis and filling stages significantly improved plant growth under drought stress due to the increased Si content. Consequently, the improvement in antioxidant activity and soluble sugar, and the reduction in the content of ROS, increased the LRWC, chlorophyll content, Pn, Sc and Tr, and ultimately boosted wheat yield by 5.71% and 8.9%, respectively, in comparison with the non-Si-treated plants subjected to water stress at the anthesis and filling stages. However, the mitigating effect of Si application was not significant at the jointing stage. It was concluded that foliar supplementation of Si, especially at the reproductive stage, was effective in alleviating drought-induced yield reduction.
Collapse
Affiliation(s)
- Dongfeng Ning
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yingying Zhang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xiaojing Li
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Anzhen Qin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Chao Huang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yuanyuan Fu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| |
Collapse
|
50
|
Rizwan A, Zia-Ur-Rehman M, Rizwan M, Usman M, Anayatullah S, Alharby HF, Bamagoos AA, Alharbi BM, Ali S. Effects of silicon nanoparticles and conventional Si amendments on growth and nutrient accumulation by maize (Zea mays L.) grown in saline-sodic soil. ENVIRONMENTAL RESEARCH 2023; 227:115740. [PMID: 36997044 DOI: 10.1016/j.envres.2023.115740] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Salinity is one of the major abiotic stresses in arid and semiarid climates which threatens the food security of the world. Present study had been designed to assess the efficacy of different abiogenic sources of silicon (Si) to mitigate the salinity stress on maize crop grown on salt-affected soil. Abiogenic sources of Si including silicic acid (SA), sodium silicate (Na-Si), potassium silicate (K-Si), and nanoparticles of silicon (NPs-Si) were applied in saline-sodic soil. Two consecutive maize crops with different seasons were harvested to evaluate the growth response of maize under salinity stress. Post-harvest soil analysis showed a significant decrease in soil electrical conductivity of soil paste extract (ECe) (-23.0%), sodium adsorption ratio (SAR) (-47.7%) and pH of soil saturated paste (pHs) (-9.5%) by comparing with salt-affected control. Results revealed that the maximum root dry weight was recorded in maize1 by the application of NPs-Si (149.3%) and maize2 (88.6%) over control. The maximum shoot dry weight was observed by the application of NPs-Si in maize1 (42.0%) and maize2 (7.4%) by comparing with control treatment. The physiological parameters like chlorophyll contents (52.5%), photosynthetic rate (84.6%), transpiration (100.2%), stomatal conductance (50.5%), and internal CO2 concentration (61.6%) were increased by NPs-Si in the maize1 crop when compared with the control treatment. The application of an abiogenic source (NPs-Si) of Si significantly increased the concentration of phosphorus (P) in roots (223.4%), shoots (22.3%), and cobs (130.3%) of the first maize crop. The current study concluded that the application of NPs-Si and K-Si improved the plant growth by increasing the availability of nutrients like P and potassium (K), physiological attributes, and by reducing the salts stress and cationic ratios in maize after maize crop rotation..
Collapse
Affiliation(s)
- Ali Rizwan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|