1
|
Zhang C, Shen M, Xu Y, Sun Y, Sun L, Fan Y, Li H, Lu H. SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana. Int J Biol Macromol 2025; 295:139495. [PMID: 39788248 DOI: 10.1016/j.ijbiomac.2025.139495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells. In contrast, SCPL48 overexpression resulted in increased vessel cell abundance and accelerated degradation of vessel cell contents, suggesting its critical role in xylem vessel cell differentiation. Notably, SCPL48 expression was significantly up-regulated in response to ABA treatment and drought stress, with SCPL48 overexpression lines demonstrating enhanced drought resistance. Further molecular analyses revealed that SCPL48 was directly targeted and transcriptionally activated by key SCW regulators VND6, and MYB46. Furthermore, the expression of PCD-related protease genes, including XCP1, XSP1, RNS3, MC9, γVPE, and CEP1, showed compensatory changes in both scpl48 mutants and SCPL48 overexpression lines. Collectively, our findings demonstrate that SCPL48 functions as a key regulator in xylem vessel cell differentiation, PCD and drought stress responses.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxiao Shen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaoming Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Leiqian Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yawei Fan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
3
|
Yan M, Li X, Ji X, Gang B, Li Y, Li Z, Wang Y, Guo H. An R2R3-MYB transcription factor PdbMYB6 enhances drought tolerance by mediating reactive oxygen species scavenging, osmotic balance, and stomatal opening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109536. [PMID: 39884149 DOI: 10.1016/j.plaphy.2025.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Drought is a major environmental challenge that hinders the growth and development of plants. R2R3-MYB transcription factors (TFs) play a vital role in mediating responses to abiotic stress; however, their specific functions in Populus davidiana × Populus bolleana hybrid poplar plants remain underexplored. This study focused on PdbMYB6, a novel R2R3-MYB TF identified in P. davidiana × P. bolleana plants. We found that PdbMYB6 acts as a transcriptional activator. By conducting functional analyses of both overexpression and knockout models, we demonstrated that PdbMYB6 enhances drought tolerance in plants by improving reactive oxygen species scavenging and modulating osmotic balance. Additionally, PdbMYB6 plays a role in regulating stomatal openings to minimize water loss. The qRT-PCR and RNA sequencing results revealed that PdbMYB6 influences the expression of genes related to stress tolerance. TF-centered Yeast One-Hybrid (Y1H) and chromatin immunoprecipitation (ChIP) assays indicated that PdbMYB6 binds to two novel core sequences (C [A/G/C]TG and [T/A/G]GTA) as well as GT-1 (GGAAA) and MYBCORE (AACGG) elements, which are associated with light responses and stress resistance, thereby promoting the expression of stress-resistant genes. Furthermore, Y1H and ChIP assays identified four upstream factors that regulate PdbMYB6 expression by interacting with specific elements in its promoter. Notably, the overexpression of these four factors enhances plant drought resistance and affects the expression of stress-response genes. Our findings highlight the role of the PdbMYB6 TF in the drought regulatory mechanism and provide potential gene sources for the molecular breeding of drought-resistant plants through genetic engineering.
Collapse
Affiliation(s)
- Minglong Yan
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinxin Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Biyao Gang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Ying Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhuoran Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
4
|
Ndayambaza B, Si J, Zhao X, Zhao Y, Zhou D, Jia B, Zhu X, Liu Z, Bai X, Wang B. Comprehensive Genomic Analysis of Trihelix Transcription Factor Genes and Their Expression Underlying Abiotic Stress in Euphrates Poplar ( Populus euphratica). PLANTS (BASEL, SWITZERLAND) 2025; 14:662. [PMID: 40094554 PMCID: PMC11901485 DOI: 10.3390/plants14050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Trihelix transcription factors (TTFs) are light-sensitive proteins characterized by a triple-helix structure that play a crucial role in regulating plant growth and development, especially in response to abiotic stressors, such as drought and salinity. This intriguing family of proteins has been the focus of extensive functional studies across various plant species. Despite their recognized significance, the trihelix family in Populus euphratica has not been thoroughly explored, warranting more attention. This study identifies 35 full-length trihelix genes in Populus euphratica, which are grouped into five categories (GT-1, GT-γ, GT-2, SIP1, and SH4) based on their conserved motifs and structural similarities, and these genes are unevenly distributed across 19 linkage groups on the chromosomes. A syntenic analysis was conducted in P. euphratica, comparing it to various other species. The promoters of P. euphratica contain numerous stress-responsive cis-elements, indicating the potential for these trihelix genes to respond to abiotic stress. RT-qPCR analysis discovered significant induction of the trihelix gene family in response to drought and salt stress, with 21 PeuTTF genes exhibiting distinct expression levels under drought conditions and five PeuTTF genes responsive to salt stress. Notably, heightened expression of PeuTTF6, PeuTTF9, and PeuTTF20 was observed in both roots and leaves during drought stress, suggesting that TTF expression is connected to the plant's response to such conditions. Additionally, significant increases in expression were noted for PeuTTF2, PeuTTF31, and PeuTTF32, which may be convoluted in the response to salt stress. These discoveries highlight the role that PeuTTF genes play in improving drought tolerance in P. euphratica plants. We offer new perspectives on the evolutionary trends and variants of PeuTTF genes in P. euphratica, and we establish the groundwork for understanding the functional properties of PeuTTF genes under salt-stressed and drought-stressed conditions. This study provides opportunities for the advancement of desert poplar agriculture and may have wider ramifications for tree plant breeding techniques targeted at improving tree performance and durability, particularly in dry areas.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
| | - Xin Zhao
- Institutional Center for Shared Technologies and Facilities of NIEER, Chinese Academy of Sciences, Lanzhou 730000, China; (X.Z.); (Y.Z.)
| | - Yingxue Zhao
- Institutional Center for Shared Technologies and Facilities of NIEER, Chinese Academy of Sciences, Lanzhou 730000, China; (X.Z.); (Y.Z.)
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (D.Z.); (B.J.); (X.Z.); (Z.L.); (X.B.); (B.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
6
|
Liu X, Ban Z, Yang Y, Xu H, Cui Y, Wang C, Bi Q, Yu H, Wang L. The yellowhorn MYB transcription factor MYB30 is required for wax accumulation and drought tolerance. TREE PHYSIOLOGY 2024; 44:tpae111. [PMID: 39190879 DOI: 10.1093/treephys/tpae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 08/29/2024]
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is an economically important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of electrophoretic mobility shift assay, yeast one hybrid assay and dual-luciferase assay demonstrated that XsMYB30 could directly and specifically bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1 and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.
Collapse
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Zhuo Ban
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Huihui Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yifan Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Chenxue Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
7
|
Vukmirović A, Škvorc Ž, Bogdan S, Krstonošić D, Bogdan IK, Karažija T, Bačurin M, Brener M, Sever K. Photosynthetic Response to Phosphorus Fertilization in Drought-Stressed Common Beech and Sessile Oak from Different Provenances. PLANTS (BASEL, SWITZERLAND) 2024; 13:2270. [PMID: 39204706 PMCID: PMC11360473 DOI: 10.3390/plants13162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). In a common garden experiment, saplings originating from two provenances (wetter KA and drier SB provenances) were exposed to regular watering and drought in interaction with moderate and high phosphorus concentrations in the growing substrate. Results indicated that drought significantly reduced pre-dawn leaf water potential (ΨPD), net photosynthesis (Anet), stomatal conductance (gs) and photosynthetic performance index (PIabs) in both species. Phosphorus fertilization had a negative impact on Anet and PIabs, thus exacerbating the negative impact of drought on photosynthetic efficiency, potentially due to excessive phosphorus absorption by saplings. Provenance differences were notable, with the KA provenance showing better drought resilience. This research highlights the complexity of nutrient-drought interactions and underscores the need for cautious application of fertilization strategies in reforestation efforts under changing climatic conditions.
Collapse
Affiliation(s)
- Antonia Vukmirović
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Željko Škvorc
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Saša Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Daniel Krstonošić
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Ida Katičić Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Tomislav Karažija
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia
| | - Marko Bačurin
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Magdalena Brener
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Krunoslav Sever
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Song Q, Kong L, Yang J, Lin M, Zhang Y, Yang X, Wang X, Zhao Z, Zhang M, Pan J, Zhu S, Jiao B, Xu C, Luo K. The transcription factor PtoMYB142 enhances drought tolerance in Populus tomentosa by regulating gibberellin catabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:42-57. [PMID: 38112614 DOI: 10.1111/tpj.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Drought stress caused by global warming has resulted in significant tree mortality, driving the evolution of water conservation strategies in trees. Although phytohormones have been implicated in morphological adaptations to water deficits, the molecular mechanisms underlying these processes in woody plants remain unclear. Here, we report that overexpression of PtoMYB142 in Populus tomentosa results in a dwarfism phenotype with reduced leaf cell size, vessel lumen area, and vessel density in the stem xylem, leading to significantly enhanced drought resistance. We found that PtoMYB142 modulates gibberellin catabolism in response to drought stress by binding directly to the promoter of PtoGA2ox4, a GA2-oxidase gene induced under drought stress. Conversely, knockout of PtoMYB142 by the CRISPR/Cas9 system reduced drought resistance. Our results show that the reduced leaf size and vessel area, as well as the increased vessel density, improve leaf relative water content and stem water potential under drought stress. Furthermore, exogenous GA3 application rescued GA-deficient phenotypes in PtoMYB142-overexpressing plants and reversed their drought resistance. By suppressing the expression of PtoGA2ox4, the manifestation of GA-deficient characteristics, as well as the conferred resistance to drought in PtoMYB142-overexpressing poplars, was impeded. Our study provides insights into the molecular mechanisms underlying tree drought resistance, potentially offering novel transgenic strategies to enhance tree resistance to drought.
Collapse
Affiliation(s)
- Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuerui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaojing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhengjie Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Meng Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Pan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shunqin Zhu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Plant Genetic Engineering Center of Heibei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Grünhofer P, Herzig L, Zhang Q, Vitt S, Stöcker T, Malkowsky Y, Brügmann T, Fladung M, Schreiber L. Changes in wax composition but not amount enhance cuticular transpiration. PLANT, CELL & ENVIRONMENT 2024; 47:91-105. [PMID: 37718770 DOI: 10.1111/pce.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
This study focuses on the role of the qualitative leaf wax composition in modulating the cuticular water loss using a Populus × canescens cer6 mutant line, which accumulates C34-C46 wax ester dimers and is reduced in wax monomers >C24. The two literature-based hypotheses to be tested were the importance of the amount of wax esters and the weighted mean carbon chain length in restricting cuticular water loss. The main results were acquired by chemical analysis of cuticular wax and gravimetric cuticular transpiration measurements. Besides additional physiological measurements, the leaf surface properties were characterised by scanning electron microscopy and spectrophotometric light reflectance quantification. Mutation of the CER6 gene resulted in striking changes in qualitative wax composition but not quantitative wax amount. Based on the strong accumulation of dimeric wax esters, the relative proportion of esters increased to >90%, and the weighted mean carbon chain length increased by >6 carbon atoms. These qualitative alterations were found to increase the cuticular transpiration of leaves by twofold. Our results do not support the hypotheses that enhanced amounts of wax esters or increased weighted mean carbon chain lengths of waxes lead to reduced cuticular transpiration.
Collapse
Affiliation(s)
- Paul Grünhofer
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Lena Herzig
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Qihui Zhang
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Simon Vitt
- Institute for Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yaron Malkowsky
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | | | | | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Ndayambaza B, Si J, Deng Y, Jia B, He X, Zhou D, Wang C, Zhu X, Liu Z, Qin J, Wang B, Bai X. The Euphrates Poplar Responses to Abiotic Stress and Its Unique Traits in Dry Regions of China (Xinjiang and Inner Mongolia): What Should We Know? Genes (Basel) 2023; 14:2213. [PMID: 38137039 PMCID: PMC10743205 DOI: 10.3390/genes14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Provincial Administration, Xining 810000, China;
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui He
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Zhang C, Li Y, Yang T, Shi M. Overexpression of PsAMT1.2 in poplar enhances nitrogen utilization and resistance to drought stress. TREE PHYSIOLOGY 2023; 43:1796-1810. [PMID: 37384396 DOI: 10.1093/treephys/tpad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Ammonium is an important form of inorganic nitrogen, which is essential for plant growth and development, and the uptake of ammonium is mediated by different members of ammonium transporters (AMTs). It is reported that PsAMT1.2 is specially expressed in the root of poplar, and the overexpression of PsAMT1.2 could improve plant growth and the salt tolerance of poplar. However, the role of AMTs in plant drought and low nitrogen (LN) resistance remains unclear. To understand the role of PsAMT1.2 in drought and LN tolerance, the response of PsAMT1.2-overexpression poplar to polyethylene glycol (PEG)-simulated drought stress (5% PEG) under LN (0.001 mM NH4NO3) and moderate nitrogen (0.5 mM NH4NO3) conditions was investigated. The PsAMT1.2-overexpression poplar showed better growth with increased stem increment, net photosynthetic rate, chlorophyll content, root length, root area, average root diameter and root volume under drought and/or LN stress compared with the wild type (WT). Meanwhile, the content of malondialdehyde significantly decreased, and the activities of superoxide dismutase and catalase significantly increased in the roots and leaves of PsAMT1.2-overexpression poplar compared with WT. The content of NH4+ and NO2- in the roots and leaves of PsAMT1.2-overexpression poplar was increased, and nitrogen metabolism-related genes, such as GS1.3, GS2, Fd-GOGAT and NADH-GOGAT, were significantly upregulated in the roots and/or leaves of PsAMT1.2-overexpression poplar compared with WT under drought and LN stress. The result of this study would be helpful for understanding the function of PsAMT1.2 in plant drought and LN tolerance and also provides a new insight into improving the drought and LN tolerance of Populus at the molecular level.
Collapse
Affiliation(s)
- Chunxia Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| | - Yang Li
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| | - Tianli Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| | - Mengting Shi
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
12
|
Grünhofer P, Heimerich I, Herzig L, Pohl S, Schreiber L. Apoplastic barriers of Populus × canescens roots in reaction to different cultivation conditions and abiotic stress treatments. STRESS BIOLOGY 2023; 3:24. [PMID: 37676401 PMCID: PMC10441858 DOI: 10.1007/s44154-023-00103-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 09/08/2023]
Abstract
Populus is an important tree genus frequently cultivated for economical purposes. However, the high sensitivity of poplars towards water deficit, drought, and salt accumulation significantly affects plant productivity and limits biomass yield. Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers (Casparian bands and suberin lamellae) in roots of different monocotyledonous crop species. Thus, this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar (Populus × canescens) react to a set of selected cultivation conditions (hydroponics, aeroponics, or soil) and abiotic stress treatments (abscisic acid, oxygen deficiency) because a differing stress response could potentially help in explaining the observed higher stress susceptibility. The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species. Overall, dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments. The genetic optimization (e.g., overexpression of biosynthesis key genes) of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Ines Heimerich
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lena Herzig
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Svenja Pohl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
13
|
Pérez-Oliver MA, González-Mas MDC, Renau-Morata B, Arrillaga I, Sales E. Heat-Priming during Somatic Embryogenesis Increased Resilience to Drought Stress in the Generated Maritime Pine ( Pinus pinaster) Plants. Int J Mol Sci 2023; 24:ijms24119299. [PMID: 37298255 DOI: 10.3390/ijms24119299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drought stress is becoming the most important factor of global warming in forests, hampering the production of reproductive material with improved resilience. Previously, we reported that heat-priming maritime pine (Pinus pinaster) megagametophytes during SE produced epigenetic changes that generated plants better adapted to subsequent heat stress. In this work, we tested, in an experiment performed under greenhouse conditions, whether heat-priming will produce cross-tolerance to mild drought stress (30 days) in 3-year-old priming-derived plants. We found that they maintain constitutive physiological differences as compared to controls, such as higher proline, abscisic acid, starch, and reduced glutathione and total protein contents, as well as higher ΦPSII yield. Primed plants also displayed a constitutive upregulation of the WRKY transcription factor and the Responsive to Dehydration 22 (RD22) genes, as well as of those coding for antioxidant enzymes (APX, SOD, and GST) and for proteins that avoid cell damage (HSP70 and DHNs). Furthermore, osmoprotectants as total soluble sugars and proteins were early accumulated in primed plants during the stress. Prolongated water withdrawal increased ABA accumulation and negatively affected photosynthesis in all plants but primed-derived plants recovered faster than controls. We concluded that high temperature pulses during somatic embryogenesis resulted in transcriptomic and physiological changes in maritime pine plants that can increase their resilience to drought stress, since heat-primed plants exhibit permanent activation of mechanisms for cell protection and overexpression of stress pathways that pre-adapt them to respond more efficiently to soil water deficit.
Collapse
Affiliation(s)
- María Amparo Pérez-Oliver
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - María Del Carmen González-Mas
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Begoña Renau-Morata
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Isabel Arrillaga
- Biotechnology and Biomedicine (BiotecMed) Institute and Plant Biology Department, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Ester Sales
- Agrarian and Environmental Sciences Department, Institute of Environmental Sciences (IUCA), University of Zaragoza, High Polytechnic School, Ctra. Cuarte s/n, 22197 Huesca, Spain
| |
Collapse
|
14
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Schubert M, Panzarasa G, Burgert I. Sustainability in Wood Products: A New Perspective for Handling Natural Diversity. Chem Rev 2023; 123:1889-1924. [PMID: 36535040 DOI: 10.1021/acs.chemrev.2c00360] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wood is a renewable resource with excellent qualities and the potential to become a key element of a future bioeconomy. The increasing environmental awareness and drive to achieve sustainability is leading to a resurgence of research on wood materials. Nevertheless, the global climate changes and associated consequences will soon challenge the wood-value chains in several regions (e.g., central Europe). To cope with these challenges, it is necessary to rethink the current practice of wood sourcing and transformation. The goal of this review is to address the intrinsic natural diversity of wood, from its origin to its technological consequences for the present and future manufacturing of wood products. So far, industrial processes have been optimized to repress the variability of wood properties, enabling more efficient processing and production of reliable products. However, the need to preserve biodiversity and the impact of climate change on forests call for new wood processing techniques and green chemistry protocols for wood modification as enabling factors necessary for managing a more diverse wood provision in the future. This article discusses the past developments that have resulted in the current wood value chains and provides a perspective about how natural variability could be turned into an asset for making truly sustainable wood products. After briefly introducing the chemical and structural complexity of wood, the methods conventionally adopted for industrial homogenization and modification of wood are discussed in relation to their evolution toward increased sustainability. Finally, a perspective is given on technological potentials of machine learning techniques and of novel functional wood materials. Here the main message is that through a combination of sustainable forestry, adherence to green chemistry principles and adapted processes based on machine learning, the wood industry could not only overcome current challenges but also thrive in the near future despite the awaiting challenges.
Collapse
Affiliation(s)
- Mark Schubert
- WoodTec Group, Cellulose & Wood Materials, Empa, CH-8600 Dübendorf, Switzerland
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Ingo Burgert
- WoodTec Group, Cellulose & Wood Materials, Empa, CH-8600 Dübendorf, Switzerland.,Wood Materials Science, Institute for Building Materials, ETH Zürich, CH-8093 Zurich, Switzerland
| |
Collapse
|
16
|
Yang M, He J, Sun Z, Li Q, Cai J, Zhou Q, Wollenweber B, Jiang D, Wang X. Drought priming mechanisms in wheat elucidated by in-situ determination of dynamic stomatal behavior. FRONTIERS IN PLANT SCIENCE 2023; 14:1138494. [PMID: 36875605 PMCID: PMC9983753 DOI: 10.3389/fpls.2023.1138494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Stomata play a critical role in balancing photosynthesis and transpiration, which are essential processes for plant growth, especially in response to abiotic stress. Drought priming has been shown to improve drought tolerance. Lots of studies have been done with the response of stomatal behavior to drought stress. However, how the stomatal dynamic movement in intact wheat plants response to drought priming process is not known. Here, a portable microscope was used to take microphotographs in order to in-stiu determination of stomatal behavior. Non-invasive micro-test technology was used for measurements of guard cell K+, H+ and Ca2+ fluxes. Surprisingly, the results found that primed plants close stomatal much faster under drought stress, and reopening the stomatal much quicker under recovery, in relation to non-primed plants. Compared with non-primed plants, primed plants showed higher accumulation of ABA and Ca2+ influx rate in guard cells under drought stress. Furthermore, genes encoding anion channels were higher expressed and K+ outward channels activated, leading to enhanced K+ efflux, resulting in faster stomatal closure in primed plants than non-primed plants. During recovery, both guard cell ABA and Ca2+ influx of primed plants were found to be significantly reducing K+ efflux and accelerating stomatal reopening. Collectively, a portable non-invasive stomatal observation of wheat found that priming promoted faster stomatal closure under drought stress and faster reopening during post-drought recovery in relation to non-primed plants, thereby enhancing overall drought tolerance.
Collapse
Affiliation(s)
- Mengxiang Yang
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | - Jiawei He
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | - Zhuangzhuang Sun
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | - Qing Li
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | - Jian Cai
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | - Qin Zhou
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | | | - Dong Jiang
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wang
- Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
18
|
Soheili F, Abdul-Hamid H, Almasi I, Heydari M, Tongo A, Woodward S, Naji HR. How Tree Decline Varies the Anatomical Features in Quercus brantii. PLANTS (BASEL, SWITZERLAND) 2023; 12:377. [PMID: 36679089 PMCID: PMC9866467 DOI: 10.3390/plants12020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Drought has serious effects on forests, especially semi-arid and arid forests, around the world. Zagros Forest in Iran has been severely affected by drought, which has led to the decline of the most common tree species, Persian oak (Quercus brantii). The objective of this study was to determine the effects of drought on the anatomical structure of Persian oak. Three healthy and three declined trees were sampled from each of two forest sites in Ilam Forest. Discs were cut at breast height, and three sapwood blocks were taken near the bark of each tree for sectioning. The anatomical characteristics measured included fiber length (FL), fiber wall thickness (FWT), number of axial parenchymal cells (NPC), ray number (RN), ray width (RW), and number of calcium oxalate crystals. Differences between healthy and declined trees were observed in the abundance of NPC and in RN, FL, and FWT, while no differences occurred in the number of oxalate crystals. The decline had uncertain effects on the FL of trees from sites A and B, which showed values of 700.5 and 837.3 μm compared with 592.7 and 919.6 μm in healthy trees. However, the decline resulted in an increase in the FWT of trees from sites A and B (9.33 and 11.53 μm) compared with healthy trees (5.23 and 9.56 μm). NPC, RN, and RW also increased in declined individuals from sites A and B (28.40 and 28.40 mm−1; 41.06 and 48.60 mm−1; 18.60 and 23.20 μm, respectively) compared with healthy trees (20.50 and 19.63 mm−2; 31.60 and 28.30 mm−2; 17.93 and 15.30 μm, respectively). Thus, drought caused measurable changes in the anatomical characteristics of declined trees compared with healthy trees.
Collapse
Affiliation(s)
- Forough Soheili
- Department of Forest Sciences, Ilam University, Ilam 67187-73654, Iran
| | - Hazandy Abdul-Hamid
- Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Isaac Almasi
- Faculty of Science, Department of Statistics, Razi University, Kermanshah 67144-14971, Iran
| | - Mehdi Heydari
- Department of Forest Sciences, Ilam University, Ilam 67187-73654, Iran
| | - Afsaneh Tongo
- Department of Forest Science and Engineering, Sari University of Agricultural Sciences and Natural Resources, Sari 48181-68984, Iran
| | - Stephen Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Hamid Reza Naji
- Department of Forest Sciences, Ilam University, Ilam 67187-73654, Iran
| |
Collapse
|
19
|
Rao S, Tian Y, Zhang C, Qin Y, Liu M, Niu S, Li Y, Chen J. The JASMONATE ZIM-domain-OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:443-457. [PMID: 36260345 DOI: 10.1093/jxb/erac418] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Drought, which directly affects the yield of crops and trees, is a natural stress with a profound impact on the economy. Improving water use efficiency (WUE) and drought tolerance are relatively effective strategies to alleviate drought stress. OPEN STOMATA1 (OST1), at the core of abscisic acid (ABA) signaling, can improve WUE by regulating stomatal closure and photosynthesis. Methyl jasmonate (MeJA) and ABA crosstalk is considered to be involved in the response to drought stress, but the detailed molecular mechanism is insufficiently known. Here, Populus euphratica, which naturally grows in arid and semiarid regions, was selected as the species for studying MeJA and ABA crosstalk under drought. A yeast two-hybrid assay was performed using PeOST1 as bait and a nucleus-localized factor, JASMONATE ZIM-domain protein 2 (PeJAZ2), was found to participate in MeJA signaling by interacting with PeOST1. Overexpression of PeJAZ2 in poplar notably increased water deficit tolerance and WUE in both severe and mild drought stress by regulating ABA signaling rather than ABA synthesis. Furthermore, a PeJAZ2 overexpression line was shown to have greater ABA-induced stomatal closure and hydrogen peroxide (H2O2) production. Collectively, this evidence establishes a mechanism in which PeJAZ2 acts as a positive regulator in response to drought stress via ABA-induced stomatal closure caused by H2O2 production. Our study presents a new insight into the crosstalk of ABA and jasmonic acid signaling in regulating WUE and drought stress, providing a basis of the drought tolerance mechanism of P. euphratica.
Collapse
Affiliation(s)
- Shupei Rao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Yuru Tian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingzhi Qin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqin Liu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
- Public Analyses and Test Center of Laboratory Equipment Division, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Yue Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Cahyo AN, Murti RH, Putra ETS, Oktavia F, Ismawanto S, Montoro P. Rubber Genotypes with Contrasting Drought Factor Index Revealed Different Mechanisms for Drought Resistance in Hevea brasiliensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3563. [PMID: 36559675 PMCID: PMC9781094 DOI: 10.3390/plants11243563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
It is predicted that drought will be more frequent and sustained in the future, which may affect the decline of rubber tree production. Therefore, it is critical to research some of the variables related to the drought-resistance mechanism of the rubber tree. As a result, it can be used to guide the selection of new rubber drought-resistance clones. The goal of this study was to identify drought-resistance mechanisms in rubber clones from the high drought factor index (DFI) group using ecophysiological and biochemical variables. The treatments consist of two factors, namely water deficit and contrasting clones based on the DFI variable. The first factor consisted of three levels, namely normal (fraction of transpirable soil water (FTSW) > 0.75), severe water deficit (0.1 < FTSW < 0.20), and recovery condition (FTSW > 0.75 after rewatering). The second factor consisted of seven clones, namely clones G239, GT1 (low DFI), G127, SP 217, PB 260 (moderate DFI), as well as G206 and RRIM 600 (high DFI). RRIM 600 had the highest DFI among the other clones as a drought-tolerance mechanism characteristic. Furthermore, clones RRIM 600, GT1, and G127 had lower stomatal conductance and transpiration rate than drought-sensitive clone PB 260. As a result, as drought avoidance mechanisms, clones RRIM 600, GT1, and G127 consume less water than clone PB 260. These findings indicated that clone RRIM 600 was a drought-resistant clone with drought tolerance and avoidance mechanisms.
Collapse
Affiliation(s)
- Andi Nur Cahyo
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rudi Hari Murti
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Eka Tarwaca Susila Putra
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fetrina Oktavia
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
| | - Sigit Ismawanto
- Indonesian Rubber Research Institute, Sembawa, Banyuasin 30953, Indonesia
| | - Pascal Montoro
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- CIRAD, INRAE, UMR AGAP Institut, Institut Agro, University Montpellier, F-34398 Montpellier, France
| |
Collapse
|
21
|
Islam W, Idrees A, Waheed A, Zeng F. Plant responses to drought stress: microRNAs in action. ENVIRONMENTAL RESEARCH 2022; 215:114282. [PMID: 36122702 DOI: 10.1016/j.envres.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Abdul Waheed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|
23
|
Song Q, Kong L, Yang X, Jiao B, Hu J, Zhang Z, Xu C, Luo K. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. TREE PHYSIOLOGY 2022; 42:2133-2147. [PMID: 35640137 DOI: 10.1093/treephys/tpac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the main environmental factors that limit plant development and growth. Accordingly, plants have evolved strategies to prevent water loss under drought stress, such as stomatal closure, maintenance of root water uptake, enhancement of stem water transport, and synthesis and deposition of cuticular wax. However, the molecular evidence of cuticular wax biosynthesis regulation in response to drought is limited in woody plants. Here, we identified an MYB transcription factor, Populus tomentosa Carr. MYB transcription factor (PtoMYB142), in response to drought stress from P. tomentosa. Over-expression of PtoMYB142 (PtoMYB142-OE) resulted in increased wax accumulation in poplar leaves, and significantly enhanced drought resistance. We found that the expression of wax biosynthesis genes CER4 and 3-ketoacyl CoA synthase (KCS) were markedly induced under drought stress, and significantly up-regulated in PtoMYB142-OE lines. Biochemical analysis confirmed that PtoMYB142 could directly bind to the promoter of CER4 and KCS6, and regulate their expression in P. tomentosa. Taken together, this study reveals that PtoMYB142 regulates cuticular wax biosynthesis to adapt to water-deficient conditions.
Collapse
Affiliation(s)
- Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuerui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhichao Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
CRISPR-Based Genome Editing and Its Applications in Woody Plants. Int J Mol Sci 2022; 23:ijms231710175. [PMID: 36077571 PMCID: PMC9456532 DOI: 10.3390/ijms231710175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.
Collapse
|
25
|
Grünhofer P, Stöcker T, Guo Y, Li R, Lin J, Ranathunge K, Schoof H, Schreiber L. Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region. PHYSIOLOGIA PLANTARUM 2022; 174:e13765. [PMID: 36281836 DOI: 10.1111/ppl.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Kosala Ranathunge
- UWA School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
27
|
Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field. Transgenic Res 2022; 31:579-591. [PMID: 35997870 DOI: 10.1007/s11248-022-00321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Drought is an abiotic stress that limits plant growth and productivity, and the development of trees with improved drought tolerance is expected to expand potential plantation areas and to promote sustainable development. Previously we reported that transgenic poplars (Populus tremula × P. tremuloides, T89) harboring the stress-responsive galactinol synthase gene, AtGolS2, derived from Arabidopsis thaliana were developed and showed improved drought stress tolerance in laboratory conditions. Herein we report a field trial evaluation of the AtGolS2-transgenic poplars. The rainfall-restricted treatments on the poplars started in late May 2020, 18 months after transplanting to the field, and were performed for 100 days. During these treatments, the leaf injury levels were observed by measuring photosynthetic quantum yields twice a week. Observed leaf injury levels varied in response to soil moisture fluctuation and showed a large difference between transgenic and non-transgenic poplars during the last month. Comparison of the leaf injury levels against three stress classes clustered by the machine learning approach revealed that the transgenic poplars exhibited significant alleviation of leaf injuries in the most severe stress class. The transgenes and transcript levels were stable in the transgenic poplars cultivated in the field conditions. These results indicated that the overexpression of AtGolS2 significantly improved the drought stress tolerance of transgenic poplars not only in the laboratory but also in the field. In future studies, molecular breeding using AtGolS2 will be an effective method for developing practical drought-tolerant forest trees.
Collapse
|
28
|
Eckert C, Wildhagen H, Paulo MJ, Scalabrin S, Ballauff J, Schnabel SK, Vendramin V, Keurentjes JJB, Bogeat-Triboulot MB, Taylor G, Polle A. Genotypic and tissue-specific variation of Populus nigra transcriptome profiles in response to drought. Sci Data 2022; 9:297. [PMID: 35701429 PMCID: PMC9197931 DOI: 10.1038/s41597-022-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is one of the most important challenges for mankind in the far and near future. In this regard, sustainable production of woody crops on marginal land with low water availability is a major challenge to tackle. This dataset is part of an experiment, in which we exposed three genetically differentiated genotypes of Populus nigra originating from contrasting natural habitats to gradually increasing moderate drought. RNA sequencing was performed on fine roots, developing xylem and leaves of those three genotypes under control and moderate drought conditions in order to get a comprehensive dataset on the transcriptional changes at the whole plant level under water limiting conditions. This dataset has already provided insight in the transcriptional control of saccharification potential of the three Populus genotypes under drought conditions and we suggest that our data will be valuable for further in-depth analysis regarding candidate gene identification or, on a bigger scale, for meta-transcriptome analysis. Measurement(s) | transcriptome | Technology Type(s) | illumina sequencing | Factor Type(s) | treatment | Sample Characteristic - Organism | Populus nigra | Sample Characteristic - Environment | greenhouse experiment |
Collapse
Affiliation(s)
- Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Henning Wildhagen
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077, Göttingen, Germany.
| | - Maria João Paulo
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Sabine K Schnabel
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, Udine, Italy
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Gail Taylor
- Department of Plant Sciences, University of California, One Shields Ave, Davis, CA, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| |
Collapse
|
29
|
Zhao R, Yin K, Chen S. Hydrogen sulphide signalling in plant response to abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:523-531. [PMID: 34837449 DOI: 10.1111/plb.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Throughout their whole life cycle, higher plants are often exposed to diverse environmental stresses, such as drought, salinity, heavy metals and extreme temperatures. In response to such stress, plant cells initiate signalling transduction, resulting in downstream responses, such as specific gene transcription and protein expression. Accumulating evidence has revealed that hydrogen sulphide (H2 S) serves as a signalling molecule in plant acclimation to stressful conditions. More important, H2 S interacts with other signalling molecules and phytohormones, contributing to transcriptional regulation and post-translational modification. Overall, the H2 S-mediated signalling pathway and its interaction with other signals remains elusive. Here, we describe the role of the H2 S signalling network in regulating physiological and molecular processes under various abiotic stresses.
Collapse
Affiliation(s)
- R Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - K Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - S Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
30
|
Zhao Y, Zhang Y, Zhang W, Shi Y, Jiang C, Song X, Tuskan GA, Zeng W, Zhang J, Lu M. The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. Int J Mol Sci 2022; 23:ijms23105581. [PMID: 35628391 PMCID: PMC9145908 DOI: 10.3390/ijms23105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a (BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element "CTCTT". Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by affecting axial development, which provides insights aimed at leaf shape modification for further improving the drought tolerance of woody plants.
Collapse
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Yifan Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Yangxin Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Gerald A. Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
- Correspondence: (J.Z.); (M.L.)
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.Z.); (M.L.)
| |
Collapse
|
31
|
DeRose RJ, Gardner RS, Lindroth RL, Mock KE. Polyploidy and growth-defense tradeoffs in natural populations of western quaking Aspen. J Chem Ecol 2022; 48:431-440. [PMID: 35416535 DOI: 10.1007/s10886-022-01355-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
Polyploidy, the expression of more than two sets of chromosomes, is common in plants, and is thought to influence plant trait expression and drive plant species evolution. The degree to which polyploidy influences interactions among physiological processes such as growth and defense in natural populations through its effect on phenotypic variability is poorly understood. We link broad plant genotypic features (including polyploidy) to phenotypic expression of growth and chemical defense in natural populations of quaking aspen (Populus tremuloides) to examine patterns in resource allocation that might drive growth-defense tradeoffs. Quaking aspen are capable of rapid growth, and are also a primary food plant for a large range of herbivores, including insects and ungulates. While often diploid, aspen can exhibit polyploidy as triploid clones. We tested for the effect of genotype, cytotype (ploidy level, divided between diploids and triploids), and ramet age on relationships between growth and leaf chemistry across natural aspen clones in northern Utah. Substantial genotype variability in growth and leaf chemistry occurred across both cytotypes. Phenolic glycosides, but not condensed tannins, were negatively related to growth. Ramet age was also negatively related to growth. Phenolic glycosides were negatively related to condensed tannins, but only for the diploid clones. Triploid clones exhibited ~ 20% higher levels of phenolic glycosides than diploids. Growth in quaking aspen was likely sacrificed for the production of phenolic glycosides. Our study underscores the importance of considering polyploidy, genetic variability, and ramet age in understanding growth-defense tradeoffs in natural populations of clonal organisms, such as quaking aspen.
Collapse
Affiliation(s)
- R Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, 5230, Old Main, USA.
| | - Richard S Gardner
- Department of Wildland Resources and Ecology Center, Utah State University, 5230, Old Main, USA.,USDA Forest Service, Umatilla National Forest, 72510 Coyote Road, 97801, Pendleton, OR, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, Utah State University, 5230, Old Main, USA
| |
Collapse
|
32
|
Alves da Silva A, Oliveira Silva C, do Rosario Rosa V, Silva Santos MF, Naomi Kuki K, Dal-Bianco M, Delmond Bueno R, Alves de Oliveira J, Santos Brito D, Costa AC, Ribeiro C. Metabolic adjustment and regulation of gene expression are essential for increased resistance to severe water deficit and resilience post-stress in soybean. PeerJ 2022; 10:e13118. [PMID: 35321407 PMCID: PMC8935993 DOI: 10.7717/peerj.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background Soybean is the main oilseed crop grown in the world; however, drought stress affects its growth and physiology, reducing its yield. The objective of this study was to characterize the physiological, metabolic, and genetic aspects that determine differential resistance to water deficit in soybean genotypes. Methods Three soybean genotypes were used in this study, two lineages (L11644 and L13241), and one cultivar (EMBRAPA 48-C48). Plants were grown in pots containing 8 kg of a mixture of soil and sand (2:1) in a greenhouse under sunlight. Soil moisture in the pots was maintained at field capacity until the plants reached the stage of development V4 (third fully expanded leaf). At this time, plants were subjected to three water treatments: Well-Watered (WW) (plants kept under daily irrigation); Water Deficit (WD) (withholding irrigation until plants reached the leaf water potential at predawn of -1.5 ± 0.2 MPa); Rewatered (RW) (plants rehydrated for three days after reached the water deficit). The WW and WD water treatments were evaluated on the eighth day for genotypes L11644 and C48, and on the tenth day for L13241, after interruption of irrigation. For the three genotypes, the treatment RW was evaluated after three days of resumption of irrigation. Physiological, metabolic and gene expression analyses were performed. Results Water deficit inhibited growth and gas exchange in all genotypes. The accumulation of osmolytes and the concentrations of chlorophylls and abscisic acid (ABA) were higher in L13241 under stress. The metabolic adjustment of lineages in response to WD occurred in order to accumulate amino acids, carbohydrates, and polyamines in leaves. The expression of genes involved in drought resistance responses was more strongly induced in L13241. In general, rehydration provided recovery of plants to similar conditions of control treatment. Although the C48 and L11644 genotypes have shown some tolerance and resilience responses to severe water deficit, greater efficiency was observed in the L13241 genotype through adjustments in morphological, physiological, genetic and metabolic characteristics that are combined in the same plant. This study contributes to the advancement in the knowledge about the resistance to drought in cultivated plants and provides bases for the genetic improvement of the soybean culture.
Collapse
Affiliation(s)
- Adinan Alves da Silva
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Cíntia Oliveira Silva
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Kacilda Naomi Kuki
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maximiller Dal-Bianco
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rafael Delmond Bueno
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Danielle Santos Brito
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Instituto Federal Goiano-Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Cleberson Ribeiro
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
33
|
Wang HL, Yang Q, Tan S, Wang T, Zhang Y, Yang Y, Yin W, Xia X, Guo H, Li Z. Regulation of cytokinin biosynthesis using PtRD26 pro -IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:771-786. [PMID: 34990062 DOI: 10.1111/jipb.13218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Drought is a critical environmental factor which constrains plant survival and growth. Genetic engineering provides a credible strategy to improve drought tolerance of plants. Here, we generated transgenic poplar lines expressing the isopentenyl transferase gene (IPT) under the driver of PtRD26 promoter (PtRD26pro -IPT). PtRD26 is a senescence and drought-inducible NAC transcription factor. PtRD26pro -IPT plants displayed multiple phenotypes, including improved growth and drought tolerance. Transcriptome analysis revealed that auxin biosynthesis pathway was activated in the PtRD26pro -IPT plants, leading to an increase in auxin contents. Biochemical analysis revealed that ARABIDOPSIS RESPONSE REGULATOR10 (PtARR10), one of the type-B ARR transcription factors in the cytokinin pathway, was induced in PtRD26pro -IPT plants and directly regulated the transcripts of YUCCA4 (PtYUC4) and YUCCA5 (PtYUC5), two enzymes in the auxin biosynthesis pathway. Overexpression of PtYUC4 enhanced drought tolerance, while simultaneous silencing of PtYUC4/5 evidently attenuated the drought tolerance of PtRD26pro -IPT plants. Intriguingly, PtYUC4/5 displayed a conserved thioredoxin reductase activity that is required for drought tolerance by deterring reactive oxygen species accumulation. Our work reveals the molecular basis of cytokinin and auxin interactions in response to environmental stresses, and shed light on the improvement of drought tolerance without a growth penalty in trees by molecular breeding.
Collapse
Affiliation(s)
- Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zhang
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yanli Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
34
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
35
|
Nakano Y, Endo H, Gerber L, Hori C, Ihara A, Sekimoto M, Matsumoto T, Kikuchi J, Ohtani M, Demura T. Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of Secondary Cell Wall-Related Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:819360. [PMID: 35371169 PMCID: PMC8967175 DOI: 10.3389/fpls.2022.819360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/17/2022] [Indexed: 05/06/2023]
Abstract
The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula × tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin β-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hitoshi Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Lorenz Gerber
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Chiaki Hori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ayumi Ihara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Masayo Sekimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- *Correspondence: Misato Ohtani,
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Taku Demura,
| |
Collapse
|
36
|
Zhang M, Lu N, Zhu T, Yang G, Qu G, Shi C, Fei Y, Liu B, Ma W, Wang J. A Bivariate Mapping Model Identifies Major Covariation QTLs for Biomass Allocation Between Leaf and Stem Growth of Catalpa bungei. Front Genet 2021; 12:758209. [PMID: 34868235 PMCID: PMC8637733 DOI: 10.3389/fgene.2021.758209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Biomass allocation plays a critical role in plant morphological formation and phenotypic plasticity, which greatly impact plant adaptability and competitiveness. While empirical studies on plant biomass allocation have focused on molecular biology and ecology approaches, detailed insight into the genetic basis of biomass allocation between leaf and stem growth is still lacking. Herein, we constructed a bivariate mapping model to identify covariation QTLs governing carbon (C) allocation between the leaves and stem as well as the covariation of traits within and between organs in a full-sib mapping population of C. bungei. A total of 123 covQTLs were detected for 23 trait pairs, including six leaf traits (leaf length, width, area, perimeter, length/width ratio and petiole length) and five stem traits (height, diameter at breast height, wood density, stemwood volume and stemwood biomass). The candidate genes were further identified in tissue-specific gene expression data, which provided insights into the genetic architecture underlying C allocation for traits or organs. The key QTLs related to growth and biomass allocation, which included UVH1, CLPT2, GAD/SPL, COG1 and MTERF4, were characterised and verified via gene function annotation and expression profiling. The integration of a bivariate Quantitative trait locus mapping model and gene expression profiling will enable the elucidation of genetic architecture underlying biomass allocation and covariation growth, in turn providing a theoretical basis for forest molecular marker-assisted breeding with specific C allocation strategies for adaptation to heterogeneous environments.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
37
|
Transcriptomic Analysis Reveals Regulatory Networks for Osmotic Water Stress and Rewatering Response in the Leaves of Ginkgo biloba. FORESTS 2021. [DOI: 10.3390/f12121705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To elucidate the transcriptomic regulation mechanisms that underlie the response of Ginkgo biloba to dehydration and rehydration, we used ginkgo saplings exposed to osmotically driven water stress and subsequent rewatering. When compared with a control group, 137, 1453, 1148, and 679 genes were differentially expressed in ginkgo leaves responding to 2, 6, 12, and 24 h of water deficit, and 796 and 1530 genes were differentially expressed responding to 24 and 48 h of rewatering. Upregulated genes participated in the biosynthesis of abscisic acid, eliminating reactive oxygen species (ROS), and biosynthesis of flavonoids and bilobalide, and downregulated genes were involved in water transport and cell wall enlargement in water stress-treated ginkgo leaves. Under rehydration conditions, the genes associated with water transport and cell wall enlargement were upregulated, and the genes that participated in eliminating ROS and the biosynthesis of flavonoids and bilobalide were downregulated in the leaves of G. biloba. Furthermore, the weighted gene coexpression networks were established and correlated with distinct water stress and rewatering time-point samples. Hub genes that act as key players in the networks were identified. Overall, these results indicate that the gene coexpression networks play essential roles in the transcriptional reconfiguration of ginkgo leaves in response to water stress and rewatering.
Collapse
|
38
|
Yu D, Janz D, Zienkiewicz K, Herrfurth C, Feussner I, Chen S, Polle A. Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. Int J Mol Sci 2021; 22:9899. [PMID: 34576062 PMCID: PMC8493802 DOI: 10.3390/ijms22189899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Drought is a severe environmental stress that exerts negative effects on plant growth. In trees, drought leads to reduced secondary growth and altered wood anatomy. The mechanisms underlying wood stress adaptation are not well understood. Here, we investigated the physiological, anatomical, hormonal, and transcriptional responses of poplar to strong drought. Drought-stressed xylem was characterized by higher vessel frequencies, smaller vessel lumina, and thicker secondary fiber cell walls. These changes were accompanied by strong increases in abscisic acid (ABA) and antagonistic changes in salicylic acid in wood. Transcriptional evidence supported ABA biosynthesis and signaling in wood. Since ABA signaling activates the fiber-thickening factor NST1, we expected upregulation of the secondary cell wall (SCW) cascade under stress. By contrast, transcription factors and biosynthesis genes for SCW formation were down-regulated, whereas a small set of cellulose synthase-like genes and a huge array of genes involved in cell wall modification were up-regulated in drought-stressed wood. Therefore, we suggest that ABA signaling monitors normal SCW biosynthesis and that drought causes a switch from normal to "stress wood" formation recruiting a dedicated set of genes for cell wall biosynthesis and remodeling. This proposition implies that drought-induced changes in cell wall properties underlie regulatory mechanisms distinct from those of normal wood.
Collapse
Affiliation(s)
- Dade Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Zhang Y, Sun Y, Liu X, Deng J, Yao J, Zhang Y, Deng S, Zhang H, Zhao N, Li J, Zhou X, Zhao R, Chen S. Populus euphratica Apyrases Increase Drought Tolerance by Modulating Stomatal Aperture in Arabidopsis. Int J Mol Sci 2021; 22:ijms22189892. [PMID: 34576057 PMCID: PMC8468604 DOI: 10.3390/ijms22189892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Stomatal regulation is crucial to reduce water consumption under drought conditions. Extracellular ATP (eATP) serves as a signaling agent in stomatal regulation; however, it is less known whether the eATP mediation of stomatal aperture is linked to apyrases (APYs), the principal enzymes that control the concentration of eATP. To clarify the role of APYs in stomatal control, PeAPY1 and PeAPY2 were isolated from Populus euphratica and transferred into Arabidopsis. Compared with the wild-type Arabidopsis and loss-of-function mutants (Atapy1 and Atapy2), PeAPY1- and PeAPY2-transgenic plants decreased stomatal aperture under mannitol treatment (200 mM, 2 h) and reduced water loss during air exposure (90 min). The role of apyrase in stomatal regulation resulted from its control in eATP-regulated stomatal movements and increased stomatal sensitivity to ABA. The bi-phasic dose-responses to applied nucleotides, i.e., the low ATP (0.3-1.0 mM)-promoted opening and high ATP (>2.0 mM)-promoted closure, were both restricted by P. euphratica apyrases. It is noteworthy that eATP at a low concentration (0.3 mM) counteracted ABA action in the regulation of stomatal aperture, while overexpression of PeAPY1 or PeAPY2 effectively diminished eATP promotion in opening, and consequently enhanced ABA action in closure. We postulate a speculative model of apyrase signaling in eATP- and ABA-regulated stomatal movements under drought.
Collapse
Affiliation(s)
- Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Yuanling Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Xiaojing Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Yinan Zhang
- Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China;
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Huilong Zhang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Jinke Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Xiaoyang Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
- Correspondence: ; Tel.: +86-10-6233-8129
| |
Collapse
|
40
|
Pervaiz T, Liu SW, Uddin S, Amjid MW, Niu SH, Wu HX. The Transcriptional Landscape and Hub Genes Associated with Physiological Responses to Drought Stress in Pinus tabuliformis. Int J Mol Sci 2021; 22:9604. [PMID: 34502511 PMCID: PMC8431770 DOI: 10.3390/ijms22179604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Drought stress has an extensive impact on regulating various physiological, metabolic, and molecular responses. In the present study, the Pinus tabuliformis transcriptome was studied to evaluate the drought-responsive genes using RNA- Sequencing approache. The results depicted that photosynthetic rate and H2O conductance started to decline under drought but recovered 24 h after re-watering; however, the intercellular CO2 concentration (Ci) increased with the onset of drought. We identified 84 drought-responsive transcription factors, 62 protein kinases, 17 transcriptional regulators, and 10 network hub genes. Additionally, we observed the expression patterns of several important gene families, including 2192 genes positively expressed in all 48 samples, and 40 genes were commonly co-expressed in all drought and recovery stages compared with the control samples. The drought-responsive transcriptome was conserved mainly between P. tabuliformis and A. thaliana, as 70% (6163) genes had a homologous in arabidopsis, out of which 52% homologous (3178 genes corresponding to 2086 genes in Arabidopsis) were also drought response genes in arabidopsis. The collaborative network exhibited 10 core hub genes integrating with ABA-dependent and independent pathways closely conserved with the ABA signaling pathway in the transcription factors module. PtNCED3 from the ABA family genes had shown significantly different expression patterns under control, mild, prolonged drought, and recovery stages. We found the expression pattern was considerably increased with the prolonged drought condition. PtNCED3 highly expressed in all drought-tested samples; more interestingly, expression pattern was higher under mild and prolonged drought. PtNCED3 is reported as one of the important regulating enzymes in ABA synthesis. The continuous accumulation of ABA in leaves increased resistance against drought was due to accumulation of PtNCED3 under drought stress in the pine needles.
Collapse
Affiliation(s)
- Tariq Pervaiz
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Shuang-Wei Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Saleem Uddin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Muhammad Waqas Amjid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China;
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
- Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus vag 6, SE-901 83 Umea, Sweden
- CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Depardieu C, Gérardi S, Nadeau S, Parent GJ, Mackay J, Lenz P, Lamothe M, Girardin MP, Bousquet J, Isabel N. Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Mol Ecol 2021; 30:3898-3917. [PMID: 33586257 PMCID: PMC8451828 DOI: 10.1111/mec.15846] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
As boreal forests face significant threats from climate change, understanding evolutionary trajectories of coniferous species has become fundamental to adapting management and conservation to a drying climate. We examined the genomic architecture underlying adaptive variation related to drought tolerance in 43 populations of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by combining genotype-environment associations, genotype-phenotype associations, and transcriptomics. Adaptive genetic variation was identified by correlating allele frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes with temperature, precipitation and aridity gradients, and testing for significant associations between genotypes and 11 dendrometric and drought-related traits (i.e., anatomical, growth response and climate-sensitivity traits) using a polygenic model. We identified a set of 285 genes significantly associated with a climatic factor or a phenotypic trait, including 110 that were differentially expressed in response to drought under greenhouse-controlled conditions. The interlinked phenotype-genotype-environment network revealed eight high-confidence genes involved in white spruce adaptation to drought, of which four were drought-responsive in the expression analysis. Our findings represent a significant step toward the characterization of the genomic basis of drought tolerance and adaptation to climate in conifers, which is essential to enable the establishment of resilient forests in view of new climate conditions.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
| | - Sébastien Gérardi
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CenterQuébecQCCanada
| | - Geneviève J. Parent
- Laboratory of GenomicsMaurice‐Lamontagne Institute, Fisheries and Oceans CanadaMont‐JoliQCCanada
| | - John Mackay
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CenterQuébecQCCanada
| | - Manuel Lamothe
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
| | - Nathalie Isabel
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCCanada
- Centre for Forest ResearchDépartement des sciences du bois et de la forêtUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CenterQuébecQCCanada
| |
Collapse
|
42
|
Song X, Zhao Y, Wang J, Lu MZ. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5625-5637. [PMID: 33987654 DOI: 10.1093/jxb/erab201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 05/11/2023]
Abstract
Plant architecture is genetically controlled, but is influenced by environmental factors. Plants have evolved adaptive mechanisms that allow changes in their architecture under stress, in which phytohormones play a central role. However, the gene regulators that connect growth and stress signals are rarely reported. Here, we report that a class I KNOX gene, PagKNAT2/6b, can directly inhibit the synthesis of gibberellin (GA), altering plant architecture and improving drought resistance in Populus. Expression of PagKNAT2/6b was significantly induced under drought conditions, and transgenic poplars overexpressing PagKNAT2/6b exhibited shorter internode length and smaller leaf size with short or even absent petioles. Interestingly, these transgenic plants showed improved drought resistance under both short- and long-term drought stress. Histological observations indicated that decreased internode length and leaf size were mainly caused by the inhibition of cell elongation and expansion. GA content was reduced, and the GA20-oxidase gene PagGA20ox1 was down-regulated in overexpressing plants. Expression of PagGA20ox1 was negatively related to that of PagKNAT2/6b under drought stress. ChIP and transient transcription activity assays revealed that PagGA20ox1 was directly targeted by PagKNAT2/6b. Therefore, this study provides evidence that PagKNAT2/6b mediates stress signals and changes in plant architecture via GA signaling by down-regulating PagGA20ox1.
Collapse
Affiliation(s)
- Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, China
| | - Yanqiu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jinnan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
43
|
Sharmin S, Lipka U, Polle A, Eckert C. The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens). PLoS One 2021; 16:e0253228. [PMID: 34166404 PMCID: PMC8224899 DOI: 10.1371/journal.pone.0253228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing salinity is one of the major drawbacks for plant growth. Besides the ion itself being toxic to plant cells, it greatly interferes with the supply of other macronutrients like potassium, calcium and magnesium. However, little is known about how sodium affects the translocation of these nutrients from the root to the shoot. The major driving force of this translocation process is thought to be the water flow through the xylem driven by transpiration. To dissect the effects of transpiration from those of salinity we compared salt stressed, ABA treated and combined salt- and ABA treated poplars with untreated controls. Salinity reduced the root content of major nutrients like K+, Ca2+ and Mg2+. Less Ca2+ and Mg2+ in the roots resulted in reduced leaf Ca2+ and leaf Mg2+ levels due to reduced stomatal conductance and reduced transpiration. Interestingly, leaf K+ levels were positively affected in leaves under salt stress although there was less K+ in the roots under salt. In response to ABA, transpiration was also decreased and Mg2+ and Ca2+ levels decreased comparably to the salt stress treatment, while K+ levels were not affected. Thus, our results suggest that loading and retention of leaf K+ is enhanced under salt stress compared to merely transpiration driven cation supply.
Collapse
Affiliation(s)
- Shayla Sharmin
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
44
|
Euring D, Janz D, Polle A. Wood properties and transcriptional responses of poplar hybrids in mixed cropping with the nitrogen-fixing species Robinia pseudoacacia. TREE PHYSIOLOGY 2021; 41:865-881. [PMID: 33147604 DOI: 10.1093/treephys/tpaa144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of fast-growing tree species is often confined to marginal land. Mixed cropping with Robinia pseudoacacia, a legume tree species that forms a symbiosis with N2-fixing bacteria, has been proposed to be a measure to improve soil fertility and to achieve beneficial effects on the cocultivated tree species. The goal of our study was to examine the influence of a Robinia mixture on wood chemistry, anatomy and gene expression in poplar. We hypothesized that annual wood growth is stimulated in species mixtures due to the positive effects of Robinia on nitrogen availability and complementary resource use. Alternatively, we hypothesized that competition, especially for water, has negative effects on the wood growth of poplar. We used two commercial biomass clones, Hybride 275 (H275, Populus trichocarpa × Populus maximowiczii) and Max1 (Populus nigra × P. maximowiczii), which were planted at two locations with contrasting soil fertility in monoculture or mixed plots with Robinia to investigate the annual wood increment, wood nitrogen and δ13C, wood anatomy (length, cell wall thickness, lumina and frequencies of fibers and vessels) and transcriptional profiles in the developing xylem of 4-year-old stems. In a mixture with Robinia, the annual stem increment was reduced, nitrogen in wood was enhanced, δ13C in wood was decreased, vessel and fiber frequencies were increased and fiber lengths and fiber lumina were decreased. Transcriptional profiles showed stronger differences between the genotypes and sites than between mono and mixed cultivation. The transcriptional abundances of only one gene (the putative nitrate transporter, NRT1.2) and one gene ontology term ('immune system process') were significantly enriched in wood-forming tissues in response to the mixture, irrespective of the poplar genotype and growth location. Weighted gene coexpression network analyses extracted gene modules that linked wood nitrogen mainly to vessel traits and wood δ13C with fiber traits. Collectively, molecular and anatomical changes in poplar wood suggest beneficial effects on the water and N supply in response to the mixture with Robinia. These alterations may render poplars less drought-susceptible. However, these benefits are accompanied by a reduced wood increment, emphasizing that other critical factors, presumably light competition or allelopathic effects, overrule a potential growth stimulation.
Collapse
Affiliation(s)
- Dejuan Euring
- Abteilung für Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität, Büsgenweg 2, Göttingen 37077, Germany
- Zentrum für Biodiversität und Nachhaltige Landnutzung (CBL), Georg-August Universität, Büsgenweg 2, Göttingen 37077, Germany
| | - Dennis Janz
- Abteilung für Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität, Büsgenweg 2, Göttingen 37077, Germany
| | - Andrea Polle
- Abteilung für Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität, Büsgenweg 2, Göttingen 37077, Germany
- Zentrum für Biodiversität und Nachhaltige Landnutzung (CBL), Georg-August Universität, Büsgenweg 2, Göttingen 37077, Germany
| |
Collapse
|
45
|
Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. Breeding for Climate Change Resilience: A Case Study of Loblolly Pine ( Pinus taeda L.) in North America. FRONTIERS IN PLANT SCIENCE 2021; 12:606908. [PMID: 33995428 PMCID: PMC8119900 DOI: 10.3389/fpls.2021.606908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 05/25/2023]
Abstract
Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems. Changes in temperature and water availability impose multidimensional environmental constraints that trigger changes from the molecular to the forest stand level. These can represent a threat for the normal development of the tree from early seedling recruitment to adulthood both through direct mortality, and by increasing susceptibility to pathogens, insect attack, and fire damage. This review summarizes the strengths and shortcomings of previous work in the areas of genetic variation related to cold and drought stress in forest species with particular emphasis on loblolly pine (Pinus taeda L.), the most-planted tree species in North America. We describe and discuss the implementation of management and breeding strategies to increase resilience and adaptation, and discuss how new technologies in the areas of engineering and genomics are shaping the future of phenotype-genotype studies. Lessons learned from the study of species important in intensively-managed forest ecosystems may also prove to be of value in helping less-intensively managed forest ecosystems adapt to climate change, thereby increasing the sustainability and resilience of forestlands for the future.
Collapse
Affiliation(s)
- Lilian P. Matallana-Ramirez
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Georgina M. Sanchez
- Center for Geospatial Analytics, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Kitt G. Payn
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| |
Collapse
|
46
|
Yao T, Zhang J, Xie M, Yuan G, Tschaplinski TJ, Muchero W, Chen JG. Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:572137. [PMID: 33488639 PMCID: PMC7820124 DOI: 10.3389/fpls.2020.572137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 05/24/2023]
Abstract
Within the context of global warming, long-living plants such as perennial woody species endure adverse conditions. Among all of the abiotic stresses, drought stress is one of the most detrimental stresses that inhibit plant growth and productivity. Plants have evolved multiple mechanisms to respond to drought stress, among which transcriptional regulation is one of the key mechanisms. In this review, we summarize recent progress on the regulation of drought response by transcription factor (TF) families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also review what is known in woody species, particularly Populus, due to its importance and relevance in economic and ecological processes. We discuss opportunities for a deeper understanding of drought response in woody plants with the development of high-throughput omics analyses and advanced genome editing techniques.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
47
|
Hung TH, Gooda R, Rizzuto G, So T, Thammavong B, Tran HT, Jalonen R, Boshier DH, MacKay JJ. Physiological responses of rosewoods Dalbergia cochinchinensis and D. oliveri under drought and heat stresses. Ecol Evol 2020; 10:10872-10885. [PMID: 33072302 PMCID: PMC7548189 DOI: 10.1002/ece3.6744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dalbergia cochinchinensis and D. oliveri are classified as vulnerable and endangered, respectively, in the IUCN Red List and under continued threat from deforestation and illegal harvesting for rosewood. Despite emerging efforts to conserve and restore these species, little is known of their responses to drought and heat stress, which are expected to increase in the Greater Mekong Subregion where the species co‐occur and are endemic. In this study of isolated and combined drought and heat effects, we found that D. oliveri had an earlier stomatal closure and more constant midday water potential in response to increasing drought level, suggesting that D. oliveri is relatively isohydric while D. cochinchinensis is relatively anisohydric. Heat shock and drought had synergistic effects on stomatal closure. Our results indicate contrasting relationships in water relations, photosynthetic pigment levels, and total soluble sugars. An increase in chlorophyll a was observed in D. cochinchinensis during drought, and a concomitant increase in carotenoid content likely afforded protection against photo‐oxidation. These physiological changes correlated with higher total soluble sugars in D. cochinchinensis. By contrast, D. oliveri avoided drought by reducing chlorophyll content and compromising productivity. Anisohydry and drought tolerance in D. cochinchinensis are adaptations which fit well with its ecological niche as a pioneering species with faster growth in young trees. We believe this understanding of the stress responses of both species will be crucial to their effective regeneration and conservation in degraded habitats and in the face of climate change.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Plant Sciences University of Oxford Oxford UK
| | - Rosemary Gooda
- Department of Plant Sciences University of Oxford Oxford UK
| | | | - Thea So
- Institute of Forest and Wildlife Research and Development Phnom Penh Cambodia
| | - Bansa Thammavong
- National Agriculture and Forestry Research Institute Forestry Research Center Vientiane Lao PDR
| | - Hoa Thi Tran
- Forest Genetics and Conservation Center for Biodiversity and Biosafety Institute of Agricultural Genetics Vietnam Academy of Agricultural Sciences Hanoi Vietnam
| | - Riina Jalonen
- Bioversity International, Malaysia Office c/o TNCPI, University Putra Malaysia, off Lebuh Silikon Serdang Malaysia
| | | | - John J MacKay
- Department of Plant Sciences University of Oxford Oxford UK
| |
Collapse
|
48
|
Hori C, Yu X, Mortimer JC, Sano R, Matsumoto T, Kikuchi J, Demura T, Ohtani M. Impact of abiotic stress on the regulation of cell wall biosynthesis in Populus trichocarpa. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:273-283. [PMID: 33088190 PMCID: PMC7557660 DOI: 10.5511/plantbiotechnology.20.0326a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
Growth of biomass for lignocellulosic biofuels and biomaterials may take place on land unsuitable for foods, meaning the biomass plants are exposed to increased abiotic stresses. Thus, the understanding how this affects biomass composition and quality is important for downstream bioprocessing. Here, we analyzed the effect of drought and salt stress on cell wall biosynthesis in young shoots and xylem tissues of Populus trichocarpa using transcriptomic and biochemical methods. Following exposure to abiotic stress, stem tissues reduced vessel sizes, and young shoots increased xylem formation. Compositional analyses revealed a reduction in the total amount of cell wall polysaccharides. In contrast, the total lignin amount was unchanged, while the ratio of S/G lignin was significantly decreased in young shoots. Consistent with these observations, transcriptome analyses show that the expression of a subset of cell wall-related genes is tightly regulated by drought and salt stresses. In particular, the expression of a part of genes encoding key enzymes for S-lignin biosynthesis, caffeic acid O-methyltransferase and ferulate 5-hydroxylase, was decreased, suggesting the lower S/G ratio could be partly attributed to the down-regulation of these genes. Together, our data identifies a transcriptional abiotic stress response strategy in poplar, which results in adaptive changes to the plant cell wall.
Collapse
Affiliation(s)
- Chiaki Hori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Research Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido 060-8628, Japan
| | - Xiang Yu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jenny C. Mortimer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Joint BioEnergy Institute, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- E-mail: Tel: +81-743-72-5460 Fax: +81-743-72-5469
| | - Misato Ohtani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- E-mail: Tel: +81-4-7136-3673 Fax: +81-4-7136-3674
| |
Collapse
|
49
|
de María N, Guevara MÁ, Perdiguero P, Vélez MD, Cabezas JA, López‐Hinojosa M, Li Z, Díaz LM, Pizarro A, Mancha JA, Sterck L, Sánchez‐Gómez D, Miguel C, Collada C, Díaz‐Sala MC, Cervera MT. Molecular study of drought response in the Mediterranean conifer Pinus pinaster Ait.: Differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms. Ecol Evol 2020; 10:9788-9807. [PMID: 33005345 PMCID: PMC7520194 DOI: 10.1002/ece3.6613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.
Collapse
Affiliation(s)
- Nuria de María
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| | - María Ángeles Guevara
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Pedro Perdiguero
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
- Departamento de Cultivos HerbáceosCentro de Investigación Agroforestal de AlbaladejitoCuencaSpain
| | - María Dolores Vélez
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| | - José Antonio Cabezas
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Miriam López‐Hinojosa
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Zhen Li
- Ghent University Department of Plant Biotechnology and BioinformaticsGhentBelgium
- VIB‐UGent Center for Plant Systems BiologyGhentBelgium
- Bioinformatics Institute GhentGhent UniversityGhentBelgium
| | - Luís Manuel Díaz
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Alberto Pizarro
- Departamento de Ciencias de la VidaUniversidad de AlcaláAlcalá de HenaresSpain
| | - José Antonio Mancha
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Lieven Sterck
- Ghent University Department of Plant Biotechnology and BioinformaticsGhentBelgium
- VIB‐UGent Center for Plant Systems BiologyGhentBelgium
- Bioinformatics Institute GhentGhent UniversityGhentBelgium
| | - David Sánchez‐Gómez
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
- Departamento de Cultivos HerbáceosCentro de Investigación Agroforestal de AlbaladejitoCuencaSpain
| | - Célia Miguel
- BioISI‐Biosystems & Integrative Sciences InstituteFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
- Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Carmen Collada
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
- Grupo de investigación Sistemas Naturales e Historia ForestalUPMMadridSpain
| | | | - María Teresa Cervera
- Departamento de Ecología y Genética ForestalCentro de Investigación Forestal (CIFOR)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
- Unidad Mixta de Genómica y Ecofisiología ForestalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM)MadridSpain
| |
Collapse
|
50
|
Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W, Xia X. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. THE NEW PHYTOLOGIST 2020; 227:407-426. [PMID: 32145071 DOI: 10.1111/nph.16524] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 05/21/2023]
Abstract
Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.
Collapse
Affiliation(s)
- Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shiwei Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - JiaLong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|