1
|
Tresas T, Isaioglou I, Roussis A, Haralampidis K. A Brief Overview of the Epigenetic Regulatory Mechanisms in Plants. Int J Mol Sci 2025; 26:4700. [PMID: 40429841 PMCID: PMC12112303 DOI: 10.3390/ijms26104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Plants continuously adapt to their environments by responding to various intrinsic and extrinsic signals. They face numerous biotic and abiotic stresses such as extreme temperatures, drought, or pathogens, requiring complex regulatory mechanisms to control gene activity and adapt their proteome for survival. Epigenetic regulation plays a crucial role in these adaptations, potentially leading to both heritable and non-heritable changes across generations. This process enables plants to adjust their gene expression profiles and acclimate effectively. It is also vital for plant development and productivity, affecting growth, yield, and seed quality, and enabling plants to "remember" environmental stimuli and adapt accordingly. Key epigenetic mechanisms that play significant roles include DNA methylation, histone modification, and ubiquitin ligase complex activity. These processes, which have been extensively studied in the last two decades, have led to a better understanding of the underlying mechanisms and expanded the potential for improving agriculturally and economically important plant traits. DNA methylation is a fundamental process that regulates gene expression by altering chromatin structure. The addition of methyl groups to cytosines by DNA methylases leads to gene suppression, whereas DNA demethylases reverse this effect. Histone modifications, on the other hand, collectively referred to as the "histone code", influence chromatin structure and gene activity by promoting either gene transcription or gene silencing. These modifications are either recognized, added, or removed by a variety of enzymes that act practically as an environmental memory, having a significant impact on plant development and the responses of plants to environmental stimuli. Finally, ubiquitin ligase complexes, which tag specific histones or regulatory proteins with ubiquitin, are also crucial in plant epigenetic regulation. These complexes are involved in protein degradation and play important roles in regulating various cellular activities. The intricate interplay between DNA methylation, histone modifications, and ubiquitin ligases adds complexity to our understanding of epigenetic regulation. These mechanisms collectively control gene expression, generating a complex and branching network of interdependent regulatory pathways. A deeper understanding of this complex network that helps plants adapt to environmental changes and stressful conditions will provide valuable insights into the regulatory mechanisms involved. This knowledge could pave the way for new biotechnological approaches and plant breeding strategies aimed at enhancing crop resilience, productivity, and sustainable agriculture.
Collapse
Affiliation(s)
- Theodoros Tresas
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.T.); (A.R.)
| | - Ioannis Isaioglou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.T.); (A.R.)
| | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.T.); (A.R.)
| |
Collapse
|
2
|
Su J, Tian Y, Hao S, Jin X, He Z, An L, Song Y. The AtHDA6-AtSK2 module promotes cold tolerance by enhancing shikimate metabolism and antioxidant activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70197. [PMID: 40317790 DOI: 10.1111/tpj.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Low temperature is an environmental factor that significantly impairs the normal development of plants by limiting yield and quality. Although histone deacetylase HDA6 is involved in various biological processes, the specific molecular mechanisms underlying its response to low temperatures remain unexplored in Arabidopsis. In this study, we investigated the HDA6 expression pattern at low temperatures and discovered that cold stress-induced transcriptional activity increased the HDA6 protein level. Freezing experiments demonstrated that HDA6 functions as a positive regulator in response to low temperatures. The point mutant axe1-5 and the HDA6 CRISPR-edited knockout mutants hda6CR-1 and hda6CR-2 exhibited significantly increased sensitivity to low temperature, while the HDA6-GFP/axe1-5 complementation line successfully restored the cold-sensitive phenotype of the axe1-5 mutant. HDA6 interacted with and deacetylated shikimate kinase SK2. Furthermore, HDA6 enhanced SK2 protein stability under cold stress. The SK2-mediated shikimate metabolic pathway is crucial for the synthesis of aromatic amino acids, which are essential antioxidant precursors. Metabolomics analysis showed that the hda6 mutant metabolites that decreased significantly under cold stress were primarily concentrated in the amino acid synthetic pathway. Additionally, the hda6 and sk2 mutants accumulated higher levels of superoxide anion but lower levels of antioxidant substances under cold stress, suggesting that HDA6 may enhance shikimate metabolism, downstream amino acid synthesis, and antioxidant accumulation by stabilizing SK2, thereby improving cold tolerance. This study elucidated the molecular mechanism by which HDA6 positively responds to low-temperature stress and identified the antifreeze genes HDA6 and SK2. This study offers valuable genetic resources and theoretical support for breeding cold-resistant varieties and improving crop yield.
Collapse
Affiliation(s)
- Jianxun Su
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongke Tian
- Department of Chemistry, The University of Chicago, Chicago, USA
| | - Shuyi Hao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xing Jin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhihao He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| |
Collapse
|
3
|
Gandhivel VHS, Sotelo-Parrilla P, Raju S, Jha S, Gireesh A, Harshith CY, Gut F, Vinothkumar KR, Berger F, Jeyaprakash AA, Shivaprasad P. An Oryza-specific histone H4 variant predisposes H4 lysine 5 acetylation to modulate salt stress responses. NATURE PLANTS 2025; 11:790-807. [PMID: 40200022 PMCID: PMC7617672 DOI: 10.1038/s41477-025-01974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Paralogous variants of canonical histones guide accessibility to DNA and function as additional layers of genome regulation. Across eukaryotes, the mechanism of action and functional significance of several variants of core histones are well known except those of histone H4. Here we show that a variant of H4 (H4.V) expressing tissue-specifically among Oryza members mediated specific epigenetic changes contributing to salt tolerance. H4.V was incorporated into specific heterochromatic sites, where it blocked the deposition of active histone marks. Stress-dependent redistribution of H4.V enabled the incorporation of acetylated H4 lysine 5 (H4K5ac) in the gene bodies. The misexpression of H4.V led to defects in reproductive development and in mounting salt stress responses. H4.V formed homotypic nucleosomes and mediated these alterations by conferring distinct molecular properties to the nucleosomes, as seen with cryo electron microscopy structures and biochemical assays. These results reveal not only an H4 variant among plants but also a chromatin regulation that might have contributed to the adaptation of semi-aquatic Oryza members.
Collapse
Affiliation(s)
| | - Paula Sotelo-Parrilla
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, München, Feodor-Lynen Straße 25, 81377Munich, Germany
| | - Steffi Raju
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur613 401, India
| | - Shaileshanand Jha
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore560065, India
| | - Anjitha Gireesh
- Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 BFUK
| | | | - Fabian Gut
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, München, Feodor-Lynen Straße 25, 81377Munich, Germany
| | - Kutti R. Vinothkumar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore560065, India
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 31030, Vienna, Austria
| | - A. Arockia Jeyaprakash
- Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 BFUK
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, München, Feodor-Lynen Straße 25, 81377Munich, Germany
| | - P.V. Shivaprasad
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore560065, India
| |
Collapse
|
4
|
Bashir K, Todaka D, Sako K, Ueda M, Aziz F, Seki M. Chemical application improves stress resilience in plants. PLANT MOLECULAR BIOLOGY 2025; 115:47. [PMID: 40105987 PMCID: PMC11922999 DOI: 10.1007/s11103-025-01566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
In recent years, abiotic stresses, including droughts, floods, high temperatures, and salinity, have become increasingly frequent and severe. These stresses significantly hinder crop yields and product quality, posing substantial challenges to sustainable agriculture and global food security. Simultaneously, the rapidly growing global population exacerbates the need to enhance crop production under worsening environmental conditions. Consequently, the development of effective strategies to strengthen the resilience of crop plants against high temperatures, water scarcity, and extreme environmental conditions is critical for mitigating the impacts of abiotic stress. Plants respond to these environmental challenges by reprogramming their transcriptome and metabolome. Common strategies for developing stress-tolerant plants include screening germplasm, generating transgenic crop plants, and employing genome editing techniques. Recently, chemical treatment has emerged as a promising approach to enhance abiotic stress tolerance in crops. This technique involves the application of exogenous chemical compounds that induce molecular and physiological changes, thereby providing a protective shield against abiotic stress. Forward and reverse genetic approaches have facilitated the identification of chemicals capable of modulating plant responses to abiotic stresses. These priming agents function as epigenetic regulators, agonists, or antagonists, playing essential roles in regulating stomatal closure to conserve water, managing cellular signaling through reactive oxygen species and metabolites to sustain plant growth, and activating gluconeogenesis to enhance cellular metabolism. This review summarizes recent advancements in the field of chemical priming and explores strategies to improve stress tolerance and crop productivity, thereby contributing to the enhancement of global food security.
Collapse
Grants
- 18H04791 Ministry of Education, Culture, Sports, Science and Technology
- 18H04705 Ministry of Education, Culture, Sports, Science and Technology
- 23119522 Ministry of Education, Culture, Sports, Science and Technology
- 25119724 Ministry of Education, Culture, Sports, Science and Technology
- CREST (JPMJCR13B4) the Japan Science and Technology Agency (JST)
- A-STEP (JPMJTM19BS) the Japan Science and Technology Agency (JST)
- GteX (JPMJGX23B0) the Japan Science and Technology Agency (JST)
- ASPIRE (JPMJAP24A3) Japan Society for Technology of Plasticity
Collapse
Affiliation(s)
- Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Life Sciences, SBA School of Science and Engineering, , Lahore University of Management Sciences, DHA Phase 5, Lahore, Pakistan.
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 3327-204, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Farhan Aziz
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Life Sciences, SBA School of Science and Engineering, , Lahore University of Management Sciences, DHA Phase 5, Lahore, Pakistan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan.
| |
Collapse
|
5
|
Zhou L, Ullah F, Zou J, Zeng X. Molecular and Physiological Responses of Plants that Enhance Cold Tolerance. Int J Mol Sci 2025; 26:1157. [PMID: 39940925 PMCID: PMC11818088 DOI: 10.3390/ijms26031157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Low-temperature stress, including chilling and freezing injuries, significantly impacts plant growth in tropical and temperate regions. Plants respond to cold stress by activating mechanisms that enhance freezing tolerance, such as regulating photosynthesis, metabolism, and protein pathways and producing osmotic regulators and antioxidants. Membrane stability is crucial, with cold-resistant plants exhibiting higher lipid unsaturation to maintain fluidity and normal metabolism. Low temperatures disrupt reactive oxygen species (ROS) metabolism, leading to oxidative damage, which is mitigated by antioxidant defenses. Hormonal regulation, involving ABA, auxin, gibberellins, and others, further supports cold adaptation. Plants also manage osmotic balance by accumulating osmotic regulators like proline and sugars. Through complex regulatory pathways, including the ICE1-CBF-COR cascade, plants optimize gene expression to survive cold stress, ensuring adaptability to freezing conditions. This study reviews the recent advancements in genetic engineering technologies aimed at enhancing the cold resistance of agricultural crops. The goal is to provide insights for further improving plant cold tolerance and developing new cold-tolerant varieties.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Fazal Ullah
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China;
| | - Jixin Zou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
6
|
Geshkovski V, Hijazi H, Manessier J, Brugière S, Courçon M, Vachon G, Pflieger D, Carles CC. Quantitative Profiling of Histone Variants and Posttranslational Modifications by Tandem Mass Spectrometry in Arabidopsis. Methods Mol Biol 2025; 2873:19-38. [PMID: 39576594 DOI: 10.1007/978-1-0716-4228-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Histone dynamics constitute an important layer of gene regulations associated with development and growth in multicellular eukaryotes. They also stand as key determinants of plant responses to environmental changes. Histone dynamics include the exchange of histone variants as well as post-translational modifications of their amino acid residues (such as acetylation and mono/di/trimethylation), commonly referred to as histone marks. Investigating histone dynamics with a focus on combinatorial changes occurring at their residues will greatly help unravel how plants achieve phenotypic plasticity.Mass spectrometry (MS) analysis offers unequaled resolution of the abundance of histone variants and of their marks. Indeed, relative to other techniques such as western blot or genome-wide profiling, this powerful technique allows quantifying the relative abundances of histone forms, as well as revealing coexisting marks on the same histone molecule. Yet, while MS-based histone analysis has proven efficient in several animals and other model organisms, this method stands out as more challenging in plants. One major challenge is the isolation of sufficient amounts of pure, high-quality histones, likely rendered difficult by the presence of the cell wall, for sufficiently deep and resolutive identification of histone species.In this chapter, we describe a straightforward MS-based proteomic method, implemented to characterize histone marks from Arabidopsis thaliana seedling tissues and cell culture suspensions. After acid extraction of histones, in vitro propionylation of free lysine residues, and digestion with trypsin, a treatment at highly basic pH allows obtaining sharp spectral signals of biologically relevant histone peptide forms.The method workflow described here shall be used to measure changes in histone marks between Arabidopsis thaliana genotypes, along developmental time-courses, or upon various stresses and treatments.
Collapse
Affiliation(s)
- Vangeli Geshkovski
- Grenoble Alpes University-CNRS-INRAE-CEA, Plant and Cell Physiology Lab (LPCV), IRIG-DBSCI, Grenoble, France
| | - Hassan Hijazi
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Julie Manessier
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Marie Courçon
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Gilles Vachon
- Grenoble Alpes University-CNRS-INRAE-CEA, Plant and Cell Physiology Lab (LPCV), IRIG-DBSCI, Grenoble, France
| | - Delphine Pflieger
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France.
| | - Cristel C Carles
- Grenoble Alpes University-CNRS-INRAE-CEA, Plant and Cell Physiology Lab (LPCV), IRIG-DBSCI, Grenoble, France.
| |
Collapse
|
7
|
Zhang D, Zhang D, Zhang Y, Li G, Sun D, Zhou B, Li J. Insights into the Epigenetic Basis of Plant Salt Tolerance. Int J Mol Sci 2024; 25:11698. [PMID: 39519250 PMCID: PMC11547110 DOI: 10.3390/ijms252111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing salinity of agricultural lands highlights the urgent need to improve salt tolerance in crops, a critical factor for ensuring food security. Epigenetic mechanisms are pivotal in plant adaptation to salt stress. This review elucidates the complex roles of DNA methylation, histone modifications, histone variants, and non-coding RNAs in the fine-tuning of gene expression in response to salt stress. It emphasizes how heritable changes, which do not alter the DNA sequence but significantly impact plant phenotype, contribute to this adaptation. DNA methylation is notably prevalent under high-salinity conditions and is associated with changes in gene expression that enhance plant resilience to salt. Modifications in histones, including both methylation and acetylation, are directly linked to the regulation of salt-tolerance genes. The presence of histone variants, such as H2A.Z, is altered under salt stress, promoting plant adaptation to high-salinity environments. Additionally, non-coding RNAs, such as miRNAs and lncRNAs, contribute to the intricate gene regulatory network under salt stress. This review also underscores the importance of understanding these epigenetic changes in developing plant stress memory and enhancing stress tolerance.
Collapse
Affiliation(s)
- Dongyu Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Duoqian Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaobin Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanlin Li
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dehao Sun
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Hsieh CH, Chang YTS, Yen MR, Hsieh JWA, Chen PY. Predicting protein synergistic effect in Arabidopsis using epigenome profiling. Nat Commun 2024; 15:9160. [PMID: 39448614 PMCID: PMC11502919 DOI: 10.1038/s41467-024-53565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Histone modifications can regulate transcription epigenetically by marking specific genomic loci, which can be mapped using chromatin immunoprecipitation sequencing (ChIP-seq). Here we present QHistone, a predictive database of 1534 ChIP-seqs from 27 histone modifications in Arabidopsis, offering three key functionalities. Firstly, QHistone employs machine learning to predict the epigenomic profile of a query protein, characterized by its most associated histone modifications, and uses these modifications to infer the protein's role in transcriptional regulation. Secondly, it predicts synergistic regulatory activities between two proteins by comparing their profiles. Lastly, it detects previously unexplored co-regulating protein pairs by screening all known proteins. QHistone accurately identifies histone modifications associated with specific known proteins, and allows users to computationally validate their results using gene expression data from various plant tissues. These functions demonstrate an useful approach to utilizing epigenome data for gene regulation analysis, making QHistone a valuable resource for the scientific community ( https://qhistone.paoyang.ipmb.sinica.edu.tw ).
Collapse
Affiliation(s)
- Chih-Hung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | | | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
9
|
Ren F, Huang J, Yang Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116490. [PMID: 38795417 DOI: 10.1016/j.ecoenv.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.
Collapse
Affiliation(s)
- Fugang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China
| | - Jing Huang
- Department of Vocal Performance, Sichuan Conservatory of Music, Chengdu 610021, China
| | - Yongqing Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
10
|
Torres JR, Sanchez DH. Emerging roles of plant transcriptional gene silencing under heat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864847 DOI: 10.1111/tpj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.
Collapse
Affiliation(s)
- José Roberto Torres
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Diego H Sanchez
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
11
|
Xu D, Leister D, Kleine T. Identification of a highly drought-resistant pp7l hda6 mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1341576. [PMID: 38887464 PMCID: PMC11180769 DOI: 10.3389/fpls.2024.1341576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Plants have developed efficient strategies to counteract drought stress, including stomata closure, significant changes in nuclear gene expression, and epigenetic mechanisms. Previously, we identified Arabidopsis thaliana PROTEIN PHOSPHATASE7-LIKE (PP7L) as an extrachloroplastic protein that promotes chloroplast development. In addition, it was shown that PP7L is involved in high light and salt tolerance. Here, we demonstrate that the pp7l mutant can withstand prolonged periods of drought stress. Interestingly, despite impaired growth under standard growth conditions, photosynthetic efficiency recovers in pp7l mutant plants experiencing drought conditions. To assess the (post)transcriptional changes occurring in the pp7l mutant under different durations of drought exposure, we used an RNA-sequencing technique that allows the simultaneous detection of organellar and nuclear transcripts. Compared with the previously reported drought-responsive changes in the wild type, the drought-responsive changes in organellar and nuclear transcripts detected in the pp7l mutant were negligible. Our analysis of the data generated in this study and review and analysis of previous literature motivated us to create a pp7l hda6 (histone deacetylase 6) mutant, which exhibits remarkable drought resistance. Notably, the growth penalty associated with pp7l was alleviated in the double mutant, ruling out a dwarf effect on the drought-tolerant trait of this genotype. Future studies may consider that multiple loci and factors are involved in stress resistance and explore combinations of these factors to create even more resilient plants.
Collapse
Affiliation(s)
| | | | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Monterisi S, Zhang L, Garcia-Perez P, Alzate Zuluaga MY, Ciriello M, El-Nakhel C, Buffagni V, Cardarelli M, Colla G, Rouphael Y, Cesco S, Lucini L, Pii Y. Integrated multi-omic approach reveals the effect of a Graminaceae-derived biostimulant and its lighter fraction on salt-stressed lettuce plants. Sci Rep 2024; 14:10710. [PMID: 38729985 PMCID: PMC11087557 DOI: 10.1038/s41598-024-61576-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.
Collapse
Affiliation(s)
- Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, 39100, Bolzano, Italy.
| |
Collapse
|
13
|
Nishanth MJ. Transcriptome meta-analysis-based identification of hub transcription factors and RNA-binding proteins potentially orchestrating gene regulatory cascades and crosstalk in response to abiotic stresses in Arabidopsis thaliana. J Appl Genet 2024; 65:255-269. [PMID: 38337133 DOI: 10.1007/s13353-024-00837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Deteriorating climatic conditions and increasing human population necessitate the development of robust plant varieties resistant to harsh environments. Manipulation of regulatory proteins such as transcription factors (TFs) and RNA-binding proteins (RBPs) would be a beneficial strategy in this regard. Further, understanding the complex interconnections between different classes of regulatory molecules would be essential for the identification of candidate genes/proteins for trait improvement. Most studies to date have analysed the roles of TFs or RBPs individually, in conferring stress resilience. However, it would be important to identify dominant/upstream TFs and RBPs inducing widespread transcriptomic alterations through other regulators (i.e., other TFs/RBPs targeted by the upstream regulators). To this end, the present study employed a transcriptome meta-analysis and computational approaches to obtain a comprehensive overview of regulatory interactions. This work identified dominant TFs and RBPs potentially influencing stress-mediated differential expression of other regulators, which could in turn influence gene expression, and consequently, physiological responses. Twenty transcriptomic studies [related to (i) UV radiation, (ii) wounding, (iii) salinity, (iv) cold, and (v) drought stresses in Arabidopsis thaliana] were analysed for differential gene expression, followed by the identification of differentially expressed TFs and RBPs. Subsequently, other TFs and RBPs which could be influencing these regulators were identified, and their interaction networks and hub nodes were analysed. As a result, an interacting module of Basic Leucine Zipper (bZIP) family TFs as well as Heterogeneous nuclear ribonucleoproteins (hnRNP) and Glycine-rich protein (GRP) family RBPs (among other TFs and RBPs) were shown to potentially influence the stress-induced differential expression of other TFs and RBPs under all the considered stress conditions. Some of the identified hub TFs and RBPs are known to be of major importance in orchestrating stress-induced transcriptomic changes influencing a variety of physiological processes from seed germination to senescence. This study highlighted the gene/protein candidates that could be considered for multiplexed genetic manipulation - a promising approach to develop robust, multi-stress-resilient plant varieties.
Collapse
Affiliation(s)
- M J Nishanth
- Deptartment of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, India, 560027.
| |
Collapse
|
14
|
Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:163. [PMID: 38256717 PMCID: PMC10820249 DOI: 10.3390/plants13020163] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to stress. Several studies have investigated the role of DNA methylation (DM), non-coding RNAs, and histone modifications in plant stress responses. However, there are various limitations or challenges in translating the research findings into practical applications. Hence, this review delves into the recent recovery, implications, and applications of epigenetic regulation in response to plant stress. To better understand plant epigenetic regulation under stress, we reviewed recent studies published in the last 5-10 years that made significant contributions, and we analyzed the novel techniques and technologies that have advanced the field, such as next-generation sequencing and genome-wide profiling of epigenetic modifications. We emphasized the breakthrough findings that have uncovered specific genes or pathways and the potential implications of understanding plant epigenetic regulation in response to stress for agriculture, crop improvement, and environmental sustainability. Finally, we concluded that plant epigenetic regulation in response to stress holds immense significance in agriculture, and understanding its mechanisms in stress tolerance can revolutionize crop breeding and genetic engineering strategies, leading to the evolution of stress-tolerant crops and ensuring sustainable food production in the face of climate change and other environmental challenges. Future research in this field will continue to unveil the intricacies of epigenetic regulation and its potential applications in crop improvement.
Collapse
Affiliation(s)
- Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Yani Xiong
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Abiodun Yusuff Moshood
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Mexico;
| | - Hao Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| |
Collapse
|
15
|
Rodrigues M, Ordoñez-Trejo EJ, Rasori A, Varotto S, Ruperti B, Bonghi C. Dissecting postharvest chilling injuries in pome and stone fruit through integrated omics. FRONTIERS IN PLANT SCIENCE 2024; 14:1272986. [PMID: 38235207 PMCID: PMC10791837 DOI: 10.3389/fpls.2023.1272986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Lowering the storage temperature is an effective method to extend the postharvest and shelf life of fruits. Nevertheless, this technique often leads to physiological disorders, commonly known as chilling injuries. Apples and pears are susceptible to chilling injuries, among which superficial scald is the most economically relevant. Superficial scald is due to necrotic lesions of the first layers of hypodermis manifested through skin browning. In peaches and nectarines, chilling injuries are characterized by internal symptoms, such as mealiness. Fruits with these aesthetic or compositional/structural defects are not suitable for fresh consumption. Genetic variation is a key factor in determining fruit susceptibility to chilling injuries; however, physiological, or technical aspects such as harvest maturity and storage conditions also play a role. Multi-omics approaches have been used to provide an integrated explanation of chilling injury development. Metabolomics in pome fruits specifically targets the identification of ethylene, phenols, lipids, and oxidation products. Genomics and transcriptomics have revealed interesting connections with metabolomic datasets, pinpointing specific genes linked to cold stress, wax synthesis, farnesene metabolism, and the metabolic pathways of ascorbate and glutathione. When applied to Prunus species, these cutting-edge approaches have uncovered that the development of mealiness symptoms is linked to ethylene signaling, cell wall synthesis, lipid metabolism, cold stress genes, and increased DNA methylation levels. Emphasizing the findings from multi-omics studies, this review reports how the integration of omics datasets can provide new insights into understanding of chilling injury development. This new information is essential for successfully creating more resilient fruit varieties and developing novel postharvest strategies.
Collapse
Affiliation(s)
| | | | | | | | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
16
|
Ye L, Li W, Tang X, Xu T, Wang G. Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management. Curr Neuropharmacol 2024; 22:2298-2313. [PMID: 38288835 PMCID: PMC11451322 DOI: 10.2174/1570159x22666240128002056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 10/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Wenfeng Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Xiaoyan Tang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Ting Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| |
Collapse
|
17
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
18
|
Wu X, Zhang X, Huang B, Han J, Fang H. Advances in biological functions and mechanisms of histone variants in plants. Front Genet 2023; 14:1229782. [PMID: 37588047 PMCID: PMC10426802 DOI: 10.3389/fgene.2023.1229782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities. Histone variants, encoded by separate genes and characterized by only a few amino acids differences, can affect nucleosome packaging and stability, and then modify the chromatin properties. Serving as carriers of pivotal genetic and epigenetic information, histone variants have profound significance in regulating plant growth and development, response to both biotic and abiotic stresses. At present, the biological functions of histone variants in plant have become a research hotspot. Here, we summarize recent researches on the biological functions, molecular chaperons and regulatory mechanisms of histone variants in plant, and propose some novel research directions for further study of plant histone variants research field. Our study will provide some enlightens for studying and understanding the epigenetic regulation and chromatin specialization mediated by histone variant in plant.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Borong Huang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huihui Fang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
19
|
Han J, Yu G, Zhang X, Dai Y, Zhang H, Zhang B, Wang K. Histone Maps in Gossypium darwinii Reveal Epigenetic Regulation Drives Subgenome Divergence and Cotton Domestication. Int J Mol Sci 2023; 24:10607. [PMID: 37445787 DOI: 10.3390/ijms241310607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The functional annotation of genomes, including chromatin modifications, is essential to understand the intricate architecture of chromatin and the consequential gene regulation. However, such an annotation remains limited for cotton genomes. Here, we conducted chromatin profiling in a wild allotetraploid cotton Gossypium darwinii (AD genome) by integrating the data of histone modification, transcriptome, and chromatin accessibility. We revealed that the A subgenome showed a higher level of active histone marks and lower level of repressive histone marks than the D subgenome, which was consistent with the expression bias between the two subgenomes. We show that the bias in transcription and histone modification between the A and D subgenomes may be caused by genes unique to the subgenome but not by homoeologous genes. Moreover, we integrate histone marks and open chromatin to define six chromatin states (S1-S6) across the cotton genome, which index different genomic elements including genes, promoters, and transposons, implying distinct biological functions. In comparison to the domesticated cotton species, we observed that 23.2% of genes in the genome exhibit a transition from one chromatin state to another at their promoter. Strikingly, the S2 (devoid of epigenetic marks) to S3 (enriched for the mark of open chromatin) was the largest transition group. These transitions occurred simultaneously with changes in gene expression, which were significantly associated with several domesticated traits in cotton. Collectively, our study provides a useful epigenetic resource for research on allopolyploid plants. The domestication-induced chromatin dynamics and associated genes identified here will aid epigenetic engineering, improving polyploid crops.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|