1
|
Biancani B, Carosi M, Capasso M, Rossi G, Tafuri S, Ciani F, Cotignoli C, Zinno F, Venturelli E, Galliani M, Spani F. Assessment of Oxidative Stress and Biometric Data in a Captive Colony of Hamadryas Baboons ( Papio hamadryas Linnaeus, 1758) at the Ravenna Zoo Safari (Italy). Vet Sci 2025; 12:466. [PMID: 40431559 PMCID: PMC12115884 DOI: 10.3390/vetsci12050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
This study evaluates the health of a captive colony of Hamadryas baboons at Ravenna Zoo Safari (Italy), focusing on oxidative stress markers and biometric data. Forty-eight individuals were assessed during routine veterinary procedures: males underwent vasectomy, and females were checked for pregnancy. Biometric data collected included body weight, body length, and genital measurements in males, while females were evaluated for reproductive status. Oxidative stress was measured using two tests that assess both harmful pro-oxidant levels and the body's antioxidant defenses. Results showed no significant differences in oxidative stress levels between sexes, although males and females differed in body weight. Pregnant and postpartum females exhibited higher oxidative stress, likely due to the metabolic and hormonal demands of reproduction. This supports the idea that reproductive activity increases the production of reactive oxygen species, requiring stronger antioxidant responses. In males, correlations between body weight and genital measurements suggest these could help estimate age in the absence of birth records. No link was found between oxidative stress and body weight, indicating limited age-related effects on these markers. Overall, the study highlights the importance of monitoring oxidative stress in captive primates to better understand the effects of reproduction and aging, and to improve welfare and management practices.
Collapse
Affiliation(s)
- Barbara Biancani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy; (M.C.); (S.T.); (F.C.); (F.Z.)
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Monica Carosi
- Department of Science, Roma Tre University, 00146 Rome, Italy;
| | - Michele Capasso
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy; (M.C.); (S.T.); (F.C.); (F.Z.)
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy; (M.C.); (S.T.); (F.C.); (F.Z.)
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy; (M.C.); (S.T.); (F.C.); (F.Z.)
| | - Chiara Cotignoli
- Zoo Safari Ravenna, 48125 Ravenna, Italy; (C.C.); (E.V.); (M.G.)
| | - Francesco Zinno
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy; (M.C.); (S.T.); (F.C.); (F.Z.)
| | - Elena Venturelli
- Zoo Safari Ravenna, 48125 Ravenna, Italy; (C.C.); (E.V.); (M.G.)
| | - Matteo Galliani
- Zoo Safari Ravenna, 48125 Ravenna, Italy; (C.C.); (E.V.); (M.G.)
| | - Federica Spani
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
2
|
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Maciejczyk M. The antioxidant barrier, oxidative/nitrosative stress, and protein glycation in allergy: from basic research to clinical practice. Front Immunol 2024; 15:1440313. [PMID: 39703514 PMCID: PMC11655330 DOI: 10.3389/fimmu.2024.1440313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Recent studies indicate that oxidative/nitrosative stress is involved in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, and urticaria. The article aimed to review the latest literature on disruptions in redox homeostasis and protein glycation in allergy patients. It has been shown that enzymatic and non-enzymatic antioxidant systems are impaired in allergic conditions, which increases cell susceptibility to oxidative damage. Reactive oxygen/nitrogen species exacerbate the severity of asthma symptoms by activating inflammatory mediators that cause airway smooth muscle contraction, promote mucus hypersecretion, increase the permeability of lung capillaries, and damage cell membranes. Redox biomarkers could have considerable diagnostic potential in allergy patients. There is no compelling evidence to indicate that antioxidants reduce allergy symptoms' severity or slow disease progression.
Collapse
Affiliation(s)
| | - Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Stanisz M, Stanisz BJ, Cielecka-Piontek J. A Comprehensive Review on Deep Eutectic Solvents: Their Current Status and Potential for Extracting Active Compounds from Adaptogenic Plants. Molecules 2024; 29:4767. [PMID: 39407698 PMCID: PMC11478271 DOI: 10.3390/molecules29194767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Deep eutectic solvents (DESs) have attracted attention from researchers as novel compounds for extracting active substances because of their negligible toxicity, polarity, and ability to be tailored depending on the experiment. In this review, we discuss deep eutectic solvents as a promising medium for the extraction of adaptogenic compounds. In comparison to traditional methods, extraction with the use of DESs is a great alternative to the excessive usage of harmful organic solvents. It can be conducted in mild conditions, and DESs can be designed with different precursors, enhancing their versatility. Adaptogenic herbs have a long medicinal history, especially in Eastern Asia. They exhibit unique properties through the active compounds in their structures, including saponins, flavonoids, polysaccharides, and alkaloids. Therefore, they demonstrate a wide range of pharmaceutical effects, such as anti-inflammatory, antibacterial, and anticancer abilities. Since ancient times, many different adaptogenic herbs have been discovered and are well known, including Panax ginseng, Scutellaria baicalensis, and Schisandra chinensis. Active compounds can be extracted using standard methods, such as hydrolyzation, maceration, and conventional reflux extraction. However, due to the limitations of classical processing technologies, there has been a need to develop new and eco-friendly methods. We focus on the types of solvents, extraction efficiency, properties, and applications of the obtained active compounds. This review highlights the potential of DESs as eco-friendly alternatives for extracting bioactive compounds.
Collapse
Affiliation(s)
- Malgorzata Stanisz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, PL, 62-064 Poznan, Poland
| | - Beata J. Stanisz
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, PL, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, PL, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Wei SM, Huang YM. Effect of sulforaphane on testicular ischemia-reperfusion injury induced by testicular torsion-detorsion in rats. Sci Rep 2024; 14:23420. [PMID: 39379457 PMCID: PMC11461801 DOI: 10.1038/s41598-024-74756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular ischemia-reperfusion induces enhanced concentration of reactive oxygen species. The increased reactive oxygen species harm cellular lipids, nucleic acids, proteins, and carbohydrates, and ultimately cause testicular injury. Sulforaphane, a kind of natural dietary isothiocyanate, exists predominantly in some cruciferous vegetables, like broccoli and cabbage. It can protect tissues from oxidative stress-induced damage. Herein, we analyzed the effectiveness of sulforaphane in treating ischemia-reperfusion injury occurring after testicular torsion-detorsion. Male rats (n = 60) were grouped as follows: sham-operated group, unilateral testicular ischemia-reperfusion group, and unilateral testicular ischemia-reperfusion group receiving sulforaphane treatment at 5 mg/kg. No testicular torsion-detorsion was performed in the sham group. Unilateral testicular ischemia-reperfusion model was created by detorsion after 2 h of left testicular torsion. In the sulforaphane-treated group, intraperitoneal sulforaphane (5 mg/kg) was administered at left testicular detorsion. Biochemical assay, Western blot, and hematoxylin and eosin staining were used to evaluate testicular malondialdehyde content (an important marker of reactive oxygen species), protein levels of superoxide dismutase and catalase (intracellular antioxidant defense mechanism), and testicular reproductive function, respectively. In testicular tissues, malondialdehyde content was significantly promoted, while protein levels of superoxide dismutase and catalase, and testicular reproductive function were significantly reduced in ipsilateral testes by testicular ischemia-reperfusion. Nevertheless, sulforaphane administration partially reversed the effect of testicular ischemia-reperfusion on these indexes. It can be concluded that sulforaphane elevates protein levels of superoxide dismutase and catalase, and suppresses reactive oxygen species content, thereby preventing ischemia-reperfusion injury in testis.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, 310015, Zhejiang Province, China.
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, 310053, Zhejiang Province, China.
| | - Yu-Min Huang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou City, 310058, Zhejiang Province, China
| |
Collapse
|
5
|
Chen W, Zhang W. Association between oxidative balance score and chronic obstructive pulmonary disease: A cross-sectional study. Medicine (Baltimore) 2024; 103:e39883. [PMID: 39465700 PMCID: PMC11460906 DOI: 10.1097/md.0000000000039883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 10/29/2024] Open
Abstract
Oxidative stress is an essential contributor to the progression of chronic obstructive pulmonary disease (COPD). A systematic assessment of diet patterns and lifestyle with the oxidative balance score (OBS) to reflect oxidative stress levels will help predict the risk of COPD. This study conducted a cross-sectional analysis to assess the link between OBS and COPD. 5162 participants were collected from 2013 to 2018 from the National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression models were applied to assess the relationship between OBS and COPD prevalence. The linearity of the association was explored using smoothed curve fitting. In addition, further subgroup analysis and interaction tests were conducted to ascertain the consistency of the relationship across diverse populations. Results of the multivariate logistic regression models indicated a negative association between OBS and the odds of COPD prevalence. Each incremental unit in OBS correlated with a 3% reduction in the odds of COPD in the fully adjusted model (OR 0.97, 95% CI 0.95-0.99). Further analysis by OBS tertiles indicated that individuals in the highest OBS tertile (T3) had a 17% lower probability of COPD compared to those in the lowest tertile (T1) in the fully adjusted model (OR 0.83, 95% CI 0.64-0.97). The smoothed curve fitting supported the negative association between OBS and COPD. Subgroup analyses revealed that the protective effect of OBS was notably pronounced among the non-hypertensive and non-diabetic populations. These findings suggest a negative link between OBS and COPD, underscoring the importance of antioxidant-rich diets and lifestyles in preventing COPD.
Collapse
Affiliation(s)
- Weiyan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Aiello A, Medoro A, Accardi G, Calabrò A, Carru C, Cannavo A, Caruso C, Candore G, Scapagnini G, Corbi G, Ali S, Davinelli S. Polyunsaturated fatty acid status and markers of oxidative stress and inflammation across the lifespan: A cross-sectional study in a cohort with long-lived individuals. Exp Gerontol 2024; 195:112531. [PMID: 39079651 DOI: 10.1016/j.exger.2024.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Polyunsaturated fatty acids (PUFA) are known to have a regulatory effect on oxidative and inflammatory processes. This study aimed to identify the relationship between blood PUFA status and circulatory markers of oxidative stress and inflammation in a cohort of 172 subjects. The population was divided by sex and into three age groups: adults (18-64 years old, n = 69), older adults (65-89 years old, n = 54), and long-lived individuals (LLIs, 90-111 years old, n = 49). Whole blood PUFA content was quantified using gas chromatography. Additionally, serum levels of C-reactive protein (CRP), paraoxonase (PON), Trolox equivalent antioxidant capacity (TEAC), and malondialdehyde (MDA) were measured. Our results showed that a higher omega-3 (n-3) index in adult females was a predictor of lower MDA concentrations (p = 0.038). Conversely, total n-3 PUFA and total n-6 PUFA were positively related to MDA values among older adult females and LLI men (p < 0.05), while total n-6 PUFA was inversely correlated with MDA levels in LLI females (p < 0.05). Interestingly, increased concentrations of total n-3 PUFA and n-3 index were positively correlated with higher TEAC values in LLI men (p = 0.007), while the arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio was inversely correlated with TEAC values among LLI females (p = 0.006). These findings suggest that cellular antioxidant capacity is inversely correlated with changes in the AA/EPA ratio in long-lived females, whereas n-3 PUFA may enhance blood antioxidant capacity in long-lived men. Overall, our study highlights the complex, sex-specific interactions between PUFA profiles and oxidative stress and inflammatory markers across different age groups.
Collapse
Affiliation(s)
- Anna Aiello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulia Accardi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Calabrò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Calogero Caruso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
7
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
8
|
Grossini E, Venkatesan S, Pour MMO, Conti A, Concina D, Opizzi A, Sanguedolce A, Rinaldi C, Russotto S, Gramaglia CM, Zeppegno P, Panella M. Beneficial effects of a combined lifestyle intervention for older people in a long-term-care facility on redox balance and endothelial function. Heliyon 2024; 10:e35850. [PMID: 39220897 PMCID: PMC11363854 DOI: 10.1016/j.heliyon.2024.e35850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective It has recently been highlighted how a short healthy life-style program (LSP) can improve the functional outcomes of older people admitted to a Long-Term Care (LTC) facility. Although it is known that life-style medicine-based interventions can exert anti-aging effects through the modulation of oxidative stress and mitochondrial function, the mechanisms underlying the aforementioned effects have not been clarified, yet. For this reason, in this study, the outcomes were focused on the investigation of the possible mechanisms underlying the benefits of a short LSP in older people. This was achieved by examining circulating markers of oxidative stress and immunosenescence, such as Tymosin β (Tβ4), before and after LSP and the effects of plasma of older people undergone or not LSP on endothelial cells. Methods Fifty-four older people were divided into two groups (n = 27 each): subjects undergoing LSP and subjects not undergoing LSP (control). The LSP consisted of a combination of caloric restriction, physical activity, and psychological intervention and lasted 3 months. Plasma samples were taken before (T0) and after LSP (T1) and were used to measure thiobarbituric acid reactive substances (TBARS), 8-hydroxy-2-deoxyguanosine (8OHdG), 8-Isoprostanes (IsoP), glutathione (GSH), superoxide dismutase (SOD) activity and Tβ4. In addition, plasma was used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) and mitochondrial ROS (MitoROS) release. Results At T1, in LSP group we did not detect the increase of plasma TBARS and IsoP, which was observed in control. Also, plasma levels of 8OHdG were lower in LSP group vs control. In addition, LSP group only showed an increase of plasma GSH and SOD activity. Moreover, plasma levels of Tβ4 were more preserved in LSP group. Finally, at T1, in HUVEC treated with plasma from LSP group only we found an increase of the mitochondrial membrane potential and a reduction of ROS and MitoROS release in comparison with T0. Conclusions The results of this study showed that a short LSP in older persons exerts antiaging effects by modulating oxidative stress also at cellular levels. Implications of those findings could be related to both prognostic and therapeutic strategies, which could be pursued as antiaging methods.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sakthipryian Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Conti
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Diego Concina
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
- Anteo Impresa Sociale, 13900 Biella, Italy
| | - Annalisa Opizzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
- Anteo Impresa Sociale, 13900 Biella, Italy
| | - Agatino Sanguedolce
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carmela Rinaldi
- Education and Research area, Health Professions' Direction, Maggiore Della Carità Hospital, Novara, Italy
| | - Sophia Russotto
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Sports and Health - Patient Safety line, Universitas Miguel Hernandez, Alicante, Spain
- Residency Program of Psychiatry, Università del Piemonte Orientale, Novara, Italy
| | - Carla Maria Gramaglia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Meng Q, Su CH. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants (Basel) 2024; 13:573. [PMID: 38790678 PMCID: PMC11118032 DOI: 10.3390/antiox13050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
This review comprehensively evaluates the effects of physical exercise on oxidative and nitrosative stress, mainly focusing on the role of antioxidants. Using a narrative synthesis approach, data from empirical studies, reviews, systematic reviews, and meta-analyses published between 2004 and 2024 were collated from databases like PubMed, EBSCO (EDS), and Google Scholar, culminating in the inclusion of 41 studies. The quality of these studies was rigorously assessed to ensure the clarity of objectives, coherence in arguments, comprehensive literature coverage, and depth of critical analysis. Findings revealed that moderate exercise enhances antioxidant defenses through hormesis, while excessive exercise may exacerbate oxidative stress. The review also highlights that while natural dietary antioxidants are beneficial, high-dose supplements could impede the positive adaptations to exercise. In conclusion, the review calls for more focused research on tailored exercise and nutrition plans to further understand these complex interactions and optimize the health outcomes for athletes and the general population.
Collapse
Affiliation(s)
- Qing Meng
- School of Physical Education, Huaqiao University, Xiamen 361021, China;
- Sport and Health Research Center, Huaqiao University, Xiamen 361021, China
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, Chinese Culture University, Taipei 111369, Taiwan
- College of Kinesiology and Health, Chinese Culture University, Taipei 111369, Taiwan
| |
Collapse
|
10
|
Santos Musachio EA, da Silva Andrade S, Meichtry LB, Fernandes EJ, de Almeida PP, Janner DE, Dahleh MMM, Guerra GP, Prigol M. Exposure to Bisphenol F and Bisphenol S during development induces autism-like endophenotypes in adult Drosophila melanogaster. Neurotoxicol Teratol 2024; 103:107348. [PMID: 38554851 DOI: 10.1016/j.ntt.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Bisphenol F (BPF) and Bisphenol S (BPS) are being widely used by the industry with the claim of "safer substances", even with the scarcity of toxicological studies. Given the etiological gap of autism spectrum disorder (ASD), the environment may be a causal factor, so we investigated whether exposure to BPF and BPS during the developmental period can induce ASD-like modeling in adult flies. Drosophila melanogaster flies were exposed during development (embryonic and larval period) to concentrations of 0.25, 0.5, and 1 mM of BPF and BPS, separately inserted into the food. When they transformed into pupae were transferred to a standard diet, ensuring that the flies (adult stage) did not have contact with bisphenols. Thus, after hatching, consolidated behavioral tests were carried out for studies with ASD-type models in flies. It was observed that 1 mM BPF and BPS caused hyperactivity (evidenced by open-field test, negative geotaxis, increased aggressiveness and reproduction of repetitive behaviors). The flies belonging to the 1 mM groups of BPF and BPS also showed reduced cognitive capacity, elucidated by the learning behavior through aversive stimulus. Within the population dynamics that flies exposed to 1 mM BPF and 0.5 and 1 mM BPS showed a change in social interaction, remaining more distant from each other. Exposure to 1 mM BPF, 0.5 and 1 mM BPS increased brain size and reduced Shank immunoreactivity of adult flies. These findings complement each other and show that exposure to BPF and BPS during the development period can elucidate a model with endophenotypes similar to ASD in adult flies. Furthermore, when analyzing comparatively, BPS demonstrated a greater potential for damage when compared to BPF. Therefore, in general these data sets contradict the idea that these substances can be used freely.
Collapse
Affiliation(s)
- Elize A Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Stefani da Silva Andrade
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Pamela Piardi de Almeida
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil; Department of Food Science and Technology, Federal University of Pampa, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
11
|
Grossini E, Aquino CI, Venkatesan S, Troìa L, Tizzoni E, Fumagalli F, Ferrante D, Vaschetto R, Remorgida V, Surico D. Plasma Redox Balance in Advanced-Maternal-Age Pregnant Women and Effects of Plasma on Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:4869. [PMID: 38732088 PMCID: PMC11084157 DOI: 10.3390/ijms25094869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Carmen Imma Aquino
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy; (C.I.A.); (E.T.); (F.F.); (V.R.); (D.S.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Libera Troìa
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy; (C.I.A.); (E.T.); (F.F.); (V.R.); (D.S.)
| | - Eleonora Tizzoni
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy; (C.I.A.); (E.T.); (F.F.); (V.R.); (D.S.)
| | - Federica Fumagalli
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy; (C.I.A.); (E.T.); (F.F.); (V.R.); (D.S.)
| | - Daniela Ferrante
- Medical Statistics, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Rosanna Vaschetto
- Anesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Valentino Remorgida
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy; (C.I.A.); (E.T.); (F.F.); (V.R.); (D.S.)
| | - Daniela Surico
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy; (C.I.A.); (E.T.); (F.F.); (V.R.); (D.S.)
| |
Collapse
|
12
|
Yadav A, Tiwari P, Dada R. Yoga and Lifestyle Changes: A Path to Improved Fertility - A Narrative Review. Int J Yoga 2024; 17:10-19. [PMID: 38899142 PMCID: PMC11185437 DOI: 10.4103/ijoy.ijoy_211_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 06/21/2024] Open
Abstract
Infertility, a widespread medical condition affecting numerous couples globally, persists as a challenge despite advances in assisted reproductive technologies (ARTs), often burdened by financial, physical, and emotional strains. Complementary and alternative approaches, notably yoga, have garnered attention for potentially enhancing fertility outcomes. Studies reveal yoga's influence on factors contributing to infertility, including reduced oxidative stress (OS) and oxidative DNA damage (ODD). OS, linked to mutagenic base formation, higher malondialdehyde levels, abnormal methylation, and altered gene expression, can impair sperm genome integrity. Yoga's efficacy is evident in lowering OS, positively affecting signal transmission, gene expression, and physiological systems. Furthermore, yoga has a positive impact on addressing the dysregulation of apoptosis, resulting in improved processes such as spermatogenesis, sperm maturation, and motility, while also reducing DNA fragmentation. OS correlates with genome-wide hypomethylation, telomere shortening, and mitochondrial dysfunction, contributing to genome instability. Yoga and meditation significantly reduce OS and ODD, ensuring proper reactive oxygen levels and preserving physiological systems. The review explores potential mechanisms underlying yoga's positive impact on infertility, including enhanced blood flow, reduced inflammation, relaxation response, and modulation of the hypothalamic-pituitary-adrenal axis. Furthermore, a comprehensive review of the literature reveals substantial evidence supporting the positive effects of yoga on infertility factors. These include oxidative stress (OS), oxidative DNA damage (ODD), epigenetic changes, hormonal balance, ovarian function, menstrual irregularities, and stress reduction. In summary, yoga emerges as a promising adjunctive therapy for infertility, demonstrating the potential to mitigate key factors influencing reproductive success. Although preliminary evidence indicates the positive effects of yoga on infertility, further clinical research is imperative to define specific benefits, molecular mechanisms associated, optimal protocols, and long-term effects in infertility treatment plans.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhakar Tiwari
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Wu A, Zhao Y, Yu R, Zhou J, Tuo Y. Untargeted metabolomics analysis reveals the metabolic disturbances and exacerbation of oxidative stress in recurrent spontaneous abortion. PLoS One 2023; 18:e0296122. [PMID: 38127925 PMCID: PMC10735046 DOI: 10.1371/journal.pone.0296122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is characterized by the occurrence of two or more consecutive spontaneous abortions, with a rising prevalence among pregnant women and significant implications for their physical and mental well-being. The multifaceted etiology of RSA has posed challenges in unraveling the molecular mechanisms underlying that underlie its pathogenesis. Oxidative stress and immune response have been identified as pivotal factors in the development of its condition. METHODS Eleven serum samples from healthy pregnant women and 17 from RSA were subjected to liquid chromatography/mass spectrometry (LC-MS) analysis. Multivariate statistical analysis was employed to excavate system-level characterization of the serum metabolome. The measurement of seven oxidative stress products, namely superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), glutathione (GPx), glutathione peroxidase (GSH), oxidized glutathione (GSSG), heme oxygenase (HO-1), was carried out using ELISA. RESULTS Through the monitoring of metabolic and lipid alternations during RSA events, we have identified 816 biomarkers that were implicated in various metabolic pathways, including glutathione metabolism, phosphonate and phosphinate metabolism, nucleotide metabolism, sphingolipid metabolism, lysine degradation and purine metabolism, etc. These pathways have been found to be closely associated with the progression of the disease. Our finding indicated that the levels of MDA and HO-1 were elevated in the RSA group compared to the control group, whereas SOD, CAT and GPx exhibited a contrary pattern. However, no slight difference was observed in GSH and GSSG levels between the RSA group and the control group. CONCLUSION The manifestation of RSA elicited discernible temporal alternations in the serum metabolome and biochemical markers linked to the metabolic pathways of oxidative stress and immune response. Our investigation furnished a more comprehensive analytical framework encompassing metabolites and enzymes associated with oxidative stress. This inquiry furnished a more nuanced comprehension of the pathogenesis of RSA and established the ground work for prognostication and prophylaxis.
Collapse
Affiliation(s)
- AiNing Wu
- Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - YanHui Zhao
- Obstetrics department, Chifeng Municipal Hospital, Chifeng, China
| | - RongXin Yu
- Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - JianXing Zhou
- Department of Reproductive Medicine Centre, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Ya Tuo
- Department of Reproductive Medicine Centre, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
14
|
Rusu AG, Niță LE, Roșca I, Croitoriu A, Ghilan A, Mititelu-Tarțău L, Grigoraș AV, Crețu BEB, Chiriac AP. Alginate-Based Hydrogels Enriched with Lavender Essential Oil: Evaluation of Physicochemical Properties, Antimicrobial Activity, and In Vivo Biocompatibility. Pharmaceutics 2023; 15:2608. [PMID: 38004586 PMCID: PMC10675056 DOI: 10.3390/pharmaceutics15112608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Owing to its antibacterial, anti-inflammatory, and antioxidant activities, in the last few years, lavender essential oil (LVO) has been used in medical applications as a promising approach for treating infected wounds. However, the practical applicability of LVO is limited by its high volatility and storage stability. This study aimed to develop a novel hybrid hydrogel by combining phytic acid (PA)-crosslinked sodium alginate (SA) and poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5] undecane (PITAU) and evaluate its potential effectiveness as an antibacterial wound dressing after incorporating LVO. The influence of the mass ratio between SA and PITAU on the properties and stability of hydrogels was investigated. After LVO loading, the effect of oil addition to hydrogels on their functional properties and associated structural changes was studied. FTIR analysis revealed that hydrogen bonding is the primary interaction mechanism between components in the hybrid hydrogels. The morphology was analyzed using SEM, evidencing a porosity dependent on the ratio between SA and PITAU, while LVO droplets were well dispersed in the polymer blend. The release of LVO from the hydrogels was determined using UV-VIS spectroscopy, indicating a sustained release over time, independent of the LVO concentration. In addition, the hybrid hydrogels were tested for their antioxidant properties and antimicrobial activity against Gram-positive and Gram-negative bacteria. Very good antimicrobial activity was obtained in the case of sample SA_PITAU3+LVO10% against S. aureus and C. albicans. Moreover, in vivo tests showed an increased antioxidant effect of the SA_PITAU3+LVO10% hydrogel compared to the oil-free scaffold that may aid in accelerating the healing process of wounds.
Collapse
Affiliation(s)
- Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Loredana Elena Niță
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Irina Roșca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Alexandra Croitoriu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Liliana Mititelu-Tarțău
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Universitǎţii Street 16, 700115 Iasi, Romania;
| | - Aurica Valentin Grigoraș
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Alexandru cel Bun Street, 6, 610004 Piatra Neamț, Romania;
| | - Bianca-Elena-Beatrice Crețu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Aurica P. Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| |
Collapse
|
15
|
Caiati C, Stanca A, Lepera ME. Free Radicals and Obesity-Related Chronic Inflammation Contrasted by Antioxidants: A New Perspective in Coronary Artery Disease. Metabolites 2023; 13:712. [PMID: 37367870 PMCID: PMC10302379 DOI: 10.3390/metabo13060712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
We are surrounded by factors called free radicals (FR), which attach to the molecules our body is made of, first among them the endothelium. Even though FR are to a certain extent a normal factor, nowadays we face an escalating increase in these biologically aggressive molecules. The escalating formation of FR is linked to the increased usage of man-made chemicals for personal care (toothpaste, shampoo, bubble bath, etc.), domestic laundry and dish-washer detergents, and also an ever wider usage of drugs (both prescription and over the counter), especially if they are to be used long-term (years). In addition, tobacco smoking, processed foods, pesticides, various chronic infectious microbes, nutritional deficiencies, lack of sun exposure, and, finally, with a markedly increasing impact, electromagnetic pollution (a terribly destructive factor), can increase the risk of cancer, as well as endothelial dysfunction, owing to the increased production of FR that they cause. All these factors create endothelial damage, but the organism may be able to repair such damage thanks to the intervention of the immune system supported by antioxidants. However, one other factor can perpetuate the state of inflammation, namely obesity and metabolic syndrome with associated hyperinsulinemia. In this review, the role of FR, with a special emphasis on their origin, and of antioxidants, is explored from the perspective of their role in causing atherosclerosis, in particular at the coronary level.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (M.E.L.)
| | | | | |
Collapse
|