1
|
Lopes CF, Laurent E, Caul-Futy M, Dubois J, Mialon C, Chojnacki C, Sage E, Boda B, Huang S, Rosa-Calatrava M, Constant S. A Novel In Vitro Primary Human Alveolar Model (AlveolAir™) for H1N1 and SARS-CoV-2 Infection and Antiviral Screening. Microorganisms 2025; 13:572. [PMID: 40142465 PMCID: PMC11944821 DOI: 10.3390/microorganisms13030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Lower respiratory infections, mostly caused by viral or bacterial pathogens, remain a leading global cause of mortality. The differences between animal models and humans contribute to inefficiencies in drug development, highlighting the need for more relevant and predictive, non-animal models. In this context, AlveolAir™, a fully primary in vitro 3D human alveolar model, was characterized and demonstrated the sustained presence of alveolar type I (ATI) and type II (ATII) cells. This model exhibited a functional barrier over a 30-day period, evidenced by high transepithelial electrical resistance (TEER). These findings were further validated by tight junctions' confocal microscopy and low permeability to Lucifer yellow, confirming AlveolAir™ as robust platform for drug transport assays. Additionally, successful infections with H1N1 and SARS-CoV-2 viruses were achieved, and antiviral treatments with Baloxavir and Remdesivir, respectively, effectively reduced viral replication. Interestingly, both viruses infected only the epithelial layer without replicating in endothelial cells. These findings indicate AlveolAir™ as a relevant model for assessing the toxicity and permeability of xenobiotics and evaluating the efficacy of novel antiviral therapies.
Collapse
Affiliation(s)
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Inserm, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (E.L.); (J.D.); (C.M.); (M.R.-C.)
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Research Laboratory RespiVir France-Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec Université Claude Bernard Lyon 1, INSERM, CNRS, ENS de Lyon, 69008 Lyon, France
| | - Mireille Caul-Futy
- Epithelix,1228 Geneva, Switzerland; (C.F.L.); (M.C.-F.); (C.C.); (B.B.); (S.H.)
| | - Julia Dubois
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Inserm, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (E.L.); (J.D.); (C.M.); (M.R.-C.)
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Research Laboratory RespiVir France-Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec Université Claude Bernard Lyon 1, INSERM, CNRS, ENS de Lyon, 69008 Lyon, France
| | - Chloé Mialon
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Inserm, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (E.L.); (J.D.); (C.M.); (M.R.-C.)
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Research Laboratory RespiVir France-Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec Université Claude Bernard Lyon 1, INSERM, CNRS, ENS de Lyon, 69008 Lyon, France
| | - Caroline Chojnacki
- Epithelix,1228 Geneva, Switzerland; (C.F.L.); (M.C.-F.); (C.C.); (B.B.); (S.H.)
| | | | - Bernadett Boda
- Epithelix,1228 Geneva, Switzerland; (C.F.L.); (M.C.-F.); (C.C.); (B.B.); (S.H.)
| | - Song Huang
- Epithelix,1228 Geneva, Switzerland; (C.F.L.); (M.C.-F.); (C.C.); (B.B.); (S.H.)
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Inserm, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France; (E.L.); (J.D.); (C.M.); (M.R.-C.)
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Research Laboratory RespiVir France-Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec Université Claude Bernard Lyon 1, INSERM, CNRS, ENS de Lyon, 69008 Lyon, France
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Samuel Constant
- Epithelix,1228 Geneva, Switzerland; (C.F.L.); (M.C.-F.); (C.C.); (B.B.); (S.H.)
| |
Collapse
|
2
|
Morichon L, Assou S, Bourdin A, Muriaux D, De Vos J. [In vitro preclinical models reproducing the respiratory epithelium: Application to the study of SARS-CoV-2 virus infection]. Rev Mal Respir 2025; 42:153-158. [PMID: 40023713 DOI: 10.1016/j.rmr.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Highlighted by the COVID-19 pandemic, the study of respiratory infections is a global health priority. To this end, many preclinical in vitro study models have been developed to reproduce nasal, bronchial or alveolar respiratory epithelium. These models can be established from immortalised cell lines, primary culture or induced pluripotent stem cells (iPSC). They can also be constructed in various three-dimensional structures that are more or less physiological and easy to use. This synthetic review puts into perspective the advantages and limitations of these models, while highlighting their relevance for the study of the mechanisms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- L Morichon
- Centre d'étude des maladies infectieuses et pharmacologie anti-infectieuses (CEMIPAI), CNRS UAR3725, Montpellier, France; Institute of Regenerative Medecine and Biotherapy (IRMB), CHU de Montpellier, Inserm U1183, université de Montpellier, Montpellier, France.
| | - S Assou
- Institute of Regenerative Medecine and Biotherapy (IRMB), CHU de Montpellier, Inserm U1183, université de Montpellier, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, Inserm, Arnaud-de-Villeneuve Hospital, CHU de Montpellier, Montpellier, France; PhyMedExp, Inserm U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - D Muriaux
- Centre d'étude des maladies infectieuses et pharmacologie anti-infectieuses (CEMIPAI), CNRS UAR3725, Montpellier, France; Institut de recherche en infectiologie à Montpellier (IRIM), UMR 9004, CNRS & université de Montpellier, Montpellier, France
| | - J De Vos
- Institute of Regenerative Medecine and Biotherapy (IRMB), CHU de Montpellier, Inserm U1183, université de Montpellier, Montpellier, France; Department of Cell and Tissue Engineering, CHU de Montpellier, University Montpellier, Montpellier, France
| |
Collapse
|
3
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
An L, Liu Y, Liu Y. Organ-on-a-Chip Applications in Microfluidic Platforms. MICROMACHINES 2025; 16:201. [PMID: 40047688 PMCID: PMC11857120 DOI: 10.3390/mi16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology plays a crucial role in organ-on-a-chip (OoC) systems by replicating human physiological processes and disease states, significantly advancing biomedical research and drug discovery. This article reviews the design and fabrication processes of microfluidic devices. It also explores how these technologies are integrated into OoC platforms to simulate human physiological environments, highlighting key principles, technological advances, and diverse applications. Through case studies involving the simulation of multiple organs such as the heart, liver, and lungs, the article evaluates the impact of OoC systems' integrated microfluidic technology on drug screening, toxicity assessment, and personalized medicine. In addition, this article considers technical challenges, ethical issues, and future directions, and looks ahead to further optimizing the functionality and biomimetic precision of OoCs through innovation, emphasizing its critical role in promoting personalized medicine and precision treatment strategies.
Collapse
Affiliation(s)
- Ling An
- School of Engineering, Dali University, Dali 671003, China;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671003, China;
| | - Yaling Liu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
5
|
Wallace J, McElroy MC, Klausner M, Corley R, Ayehunie S. Two- and Three-Dimensional Culture Systems: Respiratory In Vitro Tissue Models for Chemical Screening and Risk-Based Decision Making. Pharmaceuticals (Basel) 2025; 18:113. [PMID: 39861174 PMCID: PMC11768377 DOI: 10.3390/ph18010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Risk of lung damage from inhaled chemicals or substances has long been assessed using animal models. However, New Approach Methodologies (NAMs) that replace, reduce, and/or refine the use of animals in safety testing such as 2D and 3D cultures are increasingly being used to understand human-relevant toxicity responses and for the assessment of hazard identification. Here we review 2D and 3D lung models in terms of their application for inhalation toxicity assessment. We highlight a key case study for the Organization for Economic Cooperation and Development (OECD), in which a 3D model was used to assess human toxicity and replace the requirement for a 90-day inhalation toxicity study in rats. Finally, we consider the regulatory guidelines for the application of NAMs and potential use of different lung models for aerosol toxicity studies depending on the regulatory requirement/context of use.
Collapse
Affiliation(s)
| | | | | | - Richard Corley
- Greek Creek Toxicokinetics Consulting LLC, Boise, ID 83714, USA;
| | | |
Collapse
|
6
|
Richter C, Latta L, Harig D, Carius P, Stucki JD, Hobi N, Hugi A, Schumacher P, Krebs T, Gamrekeli A, Stöckle F, Urbschat K, Montalvo G, Lautenschläger F, Loretz B, Hidalgo A, Schneider‐Daum N, Lehr C. A stretchable human lung-on-chip model of alveolar inflammation for evaluating anti-inflammatory drug response. Bioeng Transl Med 2025; 10:e10715. [PMID: 39801748 PMCID: PMC11711225 DOI: 10.1002/btm2.10715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 01/16/2025] Open
Abstract
This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip. For validating the in vitro model, three different protocols have been developed to demonstrate the clinically established anti-inflammatory effect of glucocorticoids to reduce certain inflammatory markers after different pro-inflammatory stimuli: (1) an inflammation caused by bacterial LPS (lipopolysaccharides) to simulate an LPS-induced acute lung injury measured best with cytokine IL-6 release; (2) an inflammation caused by LPS at ALI (air-liquid interface) to investigate aerosolized anti-inflammatory treatment, measured with chemokine IL-8 release; and (3) an inflammation with a combination of human inflammatory cytokines TNFα and IFNγ to simulate a critical cytokine storm leading to epithelial barrier disruption, where the eventual weakening or protection of the epithelial barrier can be measured. In all cases, the presence of macrophages appeared to be crucial to mediating inflammatory changes in the alveolar epithelium. LPS induction led to inflammatory changes independently of stretch conditions. Dynamic stretch, emulating breathing-like mechanics, was essential for in vitro modeling of the clinically relevant outcome of epithelial barrier disruption upon TNFα/IFNγ-induced inflammation.
Collapse
Affiliation(s)
- Clémentine Richter
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Daria Harig
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Patrick Carius
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Janick D. Stucki
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
- ARTORG Center for Biomedical Engineering Research, Organs‐on‐Chip Technologies, University of BernBernSwitzerland
| | - Nina Hobi
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
- ARTORG Center for Biomedical Engineering Research, Organs‐on‐Chip Technologies, University of BernBernSwitzerland
| | - Andreas Hugi
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
| | | | | | | | - Felix Stöckle
- Center for Thorax Medicine, Clinic SaarbrückenSaarbrückenGermany
| | - Klaus Urbschat
- Section of Thoracic Surgery of the Saar Lung Center, SHG ClinicsVölklingenGermany
| | - Galia Montalvo
- Department of Experimental PhysicsSaarland UniversitySaarbrückenGermany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland UniversityHomburgGermany
| | - Franziska Lautenschläger
- Department of Experimental PhysicsSaarland UniversitySaarbrückenGermany
- Center for Biophysics, Saarland UniversitySaarbrückenGermany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Alberto Hidalgo
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | | | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| |
Collapse
|
7
|
Zhukova OA, Ozerskaya IV, Basmanov DV, Stolyarov VY, Bogush VG, Kolesov VV, Zykov KA, Yusubalieva GM, Baklaushev VP. “Lung-on-a-chip” as an instrument for studying the pathophysiology of human respiration. КЛИНИЧЕСКАЯ ПРАКТИКА 2024; 15:70-88. [DOI: 10.17816/clinpract637140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
“Lung-on-a-chip” (LoC) is a microfluidic device, imitating the gas-fluid interface of the pulmonary alveole in the human lung and intended for pathophysiological, pharmacological and molecular-biological studies of the air-blood barrier in vitro. The LoC device itself contains a system of fluid and gas microchannels, separated with a semipermeable elastic membrane, containing a polymer base and the alveolar cell elements. Depending on the type of LoC (single-, double- and three-channel), the membrane may contain only alveolocytes or alveolocytes combined with other cells — endotheliocytes, fibroblasts, alveolar macrophages or tumor cells. Some LoC models also include proteinic or hydrogel stroma, imitating the pulmonary interstitium. The first double-channel LoC variant, in which one side of the membrane contained an alveolocytic monolayer and the other side — a monolayer of endotheliocytes, was developed in 2010 by a group of scientists from the Harvard University for maximally precise in vitro reproduction of the micro-environment and biomechanics operations of the alveoli. Modern LoC modifications include the same elements and differ only by the construction of the microfluidic system, by the biomaterial of semipermeable membrane, by the composition of cellular and stromal elements and by specific tasks to be solved. Besides the LoC imitating the hematoalveolar barrier, there are modifications for studying the specific pathophysiological processes, for the screening of medicinal products, for modeling specific diseases, for example, lung cancer, chronic obstructive pulmonary disease or asthma. In the present review, we have analyzed the existing types of LoC, the biomaterials used, the methods of detecting molecular processes within the microfluidic devices and the main directions of research to be conducted using the “lung-on-a-chip”.
Collapse
Affiliation(s)
- Oksana A. Zhukova
- Pulmonology Scientific Research Institute
- Federal Center of Brain Research and Neurotechnologies
| | | | - Dmitry V. Basmanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine
| | | | | | | | - Kirill A. Zykov
- Pulmonology Scientific Research Institute
- Russian University of Medicine
| | - Gaukhar M. Yusubalieva
- Federal Center of Brain Research and Neurotechnologies
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- Engelhardt Institute of Molecular Biology
| | - Vladimir P. Baklaushev
- Pulmonology Scientific Research Institute
- Federal Center of Brain Research and Neurotechnologies
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- Engelhardt Institute of Molecular Biology
| |
Collapse
|
8
|
Datsyuk JK, De Rubis G, Paudel KR, Kokkinis S, Oliver BGG, Dua K. Cellular probing using phytoceuticals encapsulated advanced delivery systems in ameliorating lung diseases: Current trends and future prospects. Int Immunopharmacol 2024; 141:112913. [PMID: 39137633 DOI: 10.1016/j.intimp.2024.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chronic respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma have posed a significant healthcare and economic cost over a prolonged duration worldwide. At present, available treatments are limited to a range of preventive medicines, such as mono- or multiple-drug therapy, which necessitates daily use and are not considered as viable treatments to reverse the inflammatory processes of airway remodelling which is inclusive of the alteration of intra and extracellular matrix of the airway tract, death of epithelial cells, the increase in smooth muscle cell and the activation of fibroblasts. Hence, with the problem in mind a considerable body of study has been dedicated to comprehending the underlying factors that contribute to inflammation within the framework of these disorders. Hence, adequate literature that has unveiled the necessary cellular probing to reduce inflammation in the respiratory tract by improving the selectivity and precision of a novel treatment. However, through cellular probing cellular mechanisms such as the downregulation of various markers, interleukin 8, (IL-8), Interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) have been uncovered. Hence, to target such cellular probes implementation of phytoceuticals encapsulated in an advanced drug delivery system has shown potential to be a solution with in vitro and in vivo studies highlighting their anti-inflammatory and antioxidant effects. However, the high costs associated with advanced drug delivery systems and the limited literature focused exclusively on nanoparticles pose significant challenges. Additionally, the biochemical characteristics of phytoceuticals due to poor solubility, limited bioavailability, and difficulties in mass production makes it difficult to implement this product as a treatment for COPD and asthma. This study aims to examine the integration of many critical features in the context of their application for the treatment of chronic inflammation in respiratory disorders.
Collapse
Affiliation(s)
- Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Awad N, Weidinger D, Greune L, Kronsbein J, Heinen N, Westhoven S, Pfaender S, Taube C, Reuter S, Peters M, Hatt H, Fender A, Knobloch J. Functional characterization of OR51B5 and OR1G1 in human lung epithelial cells as potential drug targets for non-type 2 lung diseases. Cell Biol Toxicol 2024; 40:96. [PMID: 39538061 PMCID: PMC11561009 DOI: 10.1007/s10565-024-09935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hypersensitivity to odorants like perfumes can induce or promote asthma with non-type 2 inflammation for which therapeutic options are limited. Cell death of primary bronchial epithelial cells (PBECs) and the release of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-8 are key in the pathogenesis. Extra-nasal olfactory receptors (ORs) can influence cellular processes involved in asthma. This study investigated the utility of ORs in epithelial cells as potential drug targets in this context. METHODS We used the A549 cell line and primary bronchial epithelial cells using air-liquid interface culture system (ALI-PBECs). OR expression was investigated by RT-PCR, Western blot, and Immunofluorescence. Effects of OR activation by specific ligands on intracellular calcium concentration, cAMP, Phospholipase C (PLC), cell viability, and IL-6 and IL-8 secretion were analyzed by calcium imaging, enzyme immunoassays, Annexin V/ propidium iodide -based fluorescence-activated cell staining or by ELISA, respectively. RESULTS By screening A549 cells, the OR51B5 agonists Farnesol and Isononyl Alcohol and the OR1G1 agonist Nonanal increased intracellular Ca2 + . OR51B5 and OR1G1 mRNAs and proteins were detected. Both receptors showed a preferential intracellular localization. OR51B5- but not OR1G1-induced Ca2 + dependent on both cAMP and PLC signaling. Farnesol, Isononyl Alcohol, and Nonanal, all reduced cell viability and induced IL-8 and IL-6 release. The data were verified in ALI-PBECs. CONCLUSION ORs in the lung epithelium might be involved in airway-sensitivity to odorants. Their antagonism could represent a promising strategy in treatment of odorant-induced asthma with non-type 2 inflammation.
Collapse
Affiliation(s)
- Noha Awad
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Daniel Weidinger
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Lea Greune
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Saskia Westhoven
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Research Unit: Emerging Viruses, Leibniz Institute of Virology (N63), Martinistraße 52, 20251, Hamburg, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Research Unit: Emerging Viruses, Leibniz Institute of Virology (N63), Martinistraße 52, 20251, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
- Department of Pneumology, Mainz University Medical Center and Mainz Center for Pulmonary Medicine, Mainz, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology ND4/35, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstraße 150, 44801, Bochum, Germany
| | - Anke Fender
- Institute of Pharmacology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany.
| |
Collapse
|
10
|
Corona C, Man K, Newton CA, Nguyen KT, Yang Y. In Vitro Modeling of Idiopathic Pulmonary Fibrosis: Lung-on-a-Chip Systems and Other 3D Cultures. Int J Mol Sci 2024; 25:11751. [PMID: 39519302 PMCID: PMC11546860 DOI: 10.3390/ijms252111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disorder characterized by relentless progression of lung fibrosis that causes respiratory failure and early death. Currently, no curative treatments are available, and existing therapies include a limited selection of antifibrotic agents that only slow disease progression. The development of novel therapeutics has been hindered by a limited understanding of the disease's etiology and pathogenesis. A significant challenge in developing new treatments and understanding IPF is the lack of in vitro models that accurately replicate crucial microenvironments. In response, three-dimensional (3D) in vitro models have emerged as powerful tools for replicating organ-level microenvironments seen in vivo. This review summarizes the state of the art in advanced 3D lung models that mimic many physiological and pathological processes observed in IPF. We begin with a brief overview of conventional models, such as 2D cell cultures and animal models, and then explore more advanced 3D models, focusing on lung-on-a-chip systems. We discuss the current challenges and future research opportunities in this field, aiming to advance the understanding of the disease and the development of novel devices to assess the effectiveness of new IPF treatments.
Collapse
Affiliation(s)
- Christopher Corona
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA;
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA;
| | - Chad A. Newton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA;
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA;
| |
Collapse
|
11
|
Poh WT, Stanslas J. The new paradigm in animal testing - "3Rs alternatives". Regul Toxicol Pharmacol 2024; 153:105705. [PMID: 39299677 DOI: 10.1016/j.yrtph.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Regulatory studies have revolutionised over time. Today, the focus has shifted from animal toxicity testing to non-animal for regulatory safety testing. This move is in line with the international 3Rs (Replacement, Reduction, and Refinement) principle and has also changed the regulator's perspective. The 3R principle has stimulated changes in policy, regulations, and new approaches to safety assessment in drug development in many countries. The 3Rs approach has led to the discovery and application of new technologies and more human-relevant in vitro approaches that minimise the use of animals including non-human primates, in research and improve animal welfare. In 2016, the European Medicines Agency published the Guidelines on the principles of regulatory acceptance of 3Rs testing approaches, followed by a conceptual paper in 2023 to align with current 3R standards. Additionally, the United States Food and Drug Administration passed new legislation in 2023 that no longer requires all new human drugs to be tested on animals, which will change the current testing paradigm. This review paper provides the adoption of the 3Rs and the current regulatory perspective regarding their implementation.
Collapse
Affiliation(s)
- Wen Tsin Poh
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Fitzpatrick PA, Johansson J, Maglennon G, Wallace I, Hendrickx R, Stamou M, Balogh Sivars K, Busch S, Johansson L, Van Zuydam N, Patten K, Åberg PM, Ollerstam A, Hornberg JJ. A novel in vitro high-content imaging assay for the prediction of drug-induced lung toxicity. Arch Toxicol 2024; 98:2985-2998. [PMID: 38806719 PMCID: PMC11324770 DOI: 10.1007/s00204-024-03800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The development of inhaled drugs for respiratory diseases is frequently impacted by lung pathology in non-clinical safety studies. To enable design of novel candidate drugs with the right safety profile, predictive in vitro lung toxicity assays are required that can be applied during drug discovery for early hazard identification and mitigation. Here, we describe a novel high-content imaging-based screening assay that allows for quantification of the tight junction protein occludin in A549 cells, as a model for lung epithelial barrier integrity. We assessed a set of compounds with a known lung safety profile, defined by clinical safety or non-clinical in vivo toxicology data, and were able to correctly identify 9 of 10 compounds with a respiratory safety risk and 9 of 9 compounds without a respiratory safety risk (90% sensitivity, 100% specificity). The assay was sensitive at relevant compound concentrations to influence medicinal chemistry optimization programs and, with an accessible cell model in a 96-well plate format, short protocol and application of automated imaging analysis algorithms, this assay can be readily integrated in routine discovery safety screening to identify and mitigate respiratory toxicity early during drug discovery. Interestingly, when we applied physiologically-based pharmacokinetic (PBPK) modelling to predict epithelial lining fluid exposures of the respiratory tract after inhalation, we found a robust correlation between in vitro occludin assay data and lung pathology in vivo, suggesting the assay can inform translational risk assessment for inhaled small molecules.
Collapse
Affiliation(s)
- Paul A Fitzpatrick
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden.
| | - Julia Johansson
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Gareth Maglennon
- AstraZeneca Pathology, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Cambridge, UK
| | - Ian Wallace
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Ramon Hendrickx
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R and I), R and D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Susann Busch
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Linnea Johansson
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Natalie Van Zuydam
- Data Sciences and Quantitative Biology, Discovery Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Kelley Patten
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Per M Åberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
13
|
Wu YC, Yang JY, Hsu CH. Tape-assisted fabrication method for constructing PDMS membrane-containing culture devices with cyclic radial stretching stimulation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240284. [PMID: 39144495 PMCID: PMC11321861 DOI: 10.1098/rsos.240284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Advanced in vitro culture systems have emerged as alternatives to animal testing and traditional cell culture methods in biomedical research. Polydimethylsiloxane (PDMS) is frequently used in creating sophisticated culture devices owing to its elastomeric properties, which allow mechanical stretching to simulate physiological movements in cell experiments. We introduce a straightforward method that uses three types of commercial tape-generic, magic and masking-to fabricate PDMS membranes with microscale thicknesses (47.2 µm for generic, 58.1 µm for magic and 89.37 µm for masking) in these devices. These membranes are shaped as the bases of culture wells and can perform cyclic radial movements controlled via a vacuum system. In experiments with A549 cells under three mechanical stimulation conditions, we analysed transcriptional regulators responsive to external mechanical stimuli. Results indicated increased nuclear yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) activity in both confluent and densely packed cells under cyclically mechanical strains (Pearson's coefficient (PC) of 0.59 in confluent and 0.24 in dense cells) compared with static (PC = 0.47 in confluent and 0.13 in dense) and stretched conditions (PC = 0.55 in confluent and 0.20 in dense). This technique offers laboratories without microfabrication capabilities a viable option for exploring cellular behaviour under dynamic mechanical stimulation using PDMS membrane-equipped devices.
Collapse
Affiliation(s)
- Yun-Chen Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jing-Yi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu30013, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung40227, Taiwan
| |
Collapse
|
14
|
Marrer-Berger E, Nicastri A, Augustin A, Kramar V, Liao H, Hanisch LJ, Carpy A, Weinzierl T, Durr E, Schaub N, Nudischer R, Ortiz-Franyuti D, Breous-Nystrom E, Stucki J, Hobi N, Raggi G, Cabon L, Lezan E, Umaña P, Woodhouse I, Bujotzek A, Klein C, Ternette N. The physiological interactome of TCR-like antibody therapeutics in human tissues. Nat Commun 2024; 15:3271. [PMID: 38627373 PMCID: PMC11021511 DOI: 10.1038/s41467-024-47062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Selective binding of TCR-like antibodies that target a single tumour-specific peptide antigen presented by human leukocyte antigens (HLA) is the absolute prerequisite for their therapeutic suitability and patient safety. To date, selectivity assessment has been limited to peptide library screening and predictive modeling. We developed an experimental platform to de novo identify interactomes of TCR-like antibodies directly in human tissues using mass spectrometry. As proof of concept, we confirm the target epitope of a MAGE-A4-specific TCR-like antibody. We further determine cross-reactive peptide sequences for ESK1, a TCR-like antibody with known off-target activity, in human liver tissue. We confirm off-target-induced T cell activation and ESK1-mediated liver spheroid killing. Off-target sequences feature an amino acid motif that allows a structural groove-coordination mimicking that of the target peptide, therefore allowing the interaction with the engager molecule. We conclude that our strategy offers an accurate, scalable route for evaluating the non-clinical safety profile of TCR-like antibody therapeutics prior to first-in-human clinical application.
Collapse
Affiliation(s)
- Estelle Marrer-Berger
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Annalisa Nicastri
- The Jenner Institute, Old Road Campus Research Building, Oxford, OX37DQ, UK
- Centre for Immuno-Oncology, Old Road Campus Research Building, Oxford, OX37DQ, UK
| | - Angelique Augustin
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Vesna Kramar
- Roche Innovation Center Zürich, 8952, Schlieren, Switzerland
| | - Hanqing Liao
- The Jenner Institute, Old Road Campus Research Building, Oxford, OX37DQ, UK
- Centre for Immuno-Oncology, Old Road Campus Research Building, Oxford, OX37DQ, UK
| | | | - Alejandro Carpy
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Tina Weinzierl
- Roche Innovation Center Zürich, 8952, Schlieren, Switzerland
| | - Evelyne Durr
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Nathalie Schaub
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Ramona Nudischer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Daniela Ortiz-Franyuti
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Ekaterina Breous-Nystrom
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Janick Stucki
- Alveolix AG, Swiss Organs-on-Chip Innovation, 3010, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, 3010, Bern, Switzerland
| | - Giulia Raggi
- Alveolix AG, Swiss Organs-on-Chip Innovation, 3010, Bern, Switzerland
| | - Lauriane Cabon
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Emmanuelle Lezan
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zürich, 8952, Schlieren, Switzerland
| | - Isaac Woodhouse
- The Jenner Institute, Old Road Campus Research Building, Oxford, OX37DQ, UK
- Centre for Immuno-Oncology, Old Road Campus Research Building, Oxford, OX37DQ, UK
| | - Alexander Bujotzek
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Christian Klein
- Roche Innovation Center Zürich, 8952, Schlieren, Switzerland.
| | - Nicola Ternette
- The Jenner Institute, Old Road Campus Research Building, Oxford, OX37DQ, UK.
- Centre for Immuno-Oncology, Old Road Campus Research Building, Oxford, OX37DQ, UK.
- Department of Pharmaceutical Sciences, University of Utrecht, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Küstner MJ, Eckstein D, Brauer D, Mai P, Hampl J, Weise F, Schuhmann B, Hause G, Glahn F, Foth H, Schober A. Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro. Arch Toxicol 2024; 98:1061-1080. [PMID: 38340173 PMCID: PMC10944414 DOI: 10.1007/s00204-023-03673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 105 (BaSO4) and 1.49 × 106 (TiO2) particles/cm3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm2 resulted in mild, reversible damage (~ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.
Collapse
Affiliation(s)
- M J Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - D Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - D Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany.
| | - P Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - J Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - F Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - B Schuhmann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - G Hause
- Biocenter, Department of Electron Microscopy, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - F Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - H Foth
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - A Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| |
Collapse
|
16
|
Alonso-Roman R, Mosig AS, Figge MT, Papenfort K, Eggeling C, Schacher FH, Hube B, Gresnigt MS. Organ-on-chip models for infectious disease research. Nat Microbiol 2024; 9:891-904. [PMID: 38528150 DOI: 10.1038/s41564-024-01645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Research on microbial pathogens has traditionally relied on animal and cell culture models to mimic infection processes in the host. Over recent years, developments in microfluidics and bioengineering have led to organ-on-chip (OoC) technologies. These microfluidic systems create conditions that are more physiologically relevant and can be considered humanized in vitro models. Here we review various OoC models and how they have been applied for infectious disease research. We outline the properties that make them valuable tools in microbiology, such as dynamic microenvironments, vascularization, near-physiological tissue constitutions and partial integration of functional immune cells, as well as their limitations. Finally, we discuss the prospects for OoCs and their potential role in future infectious disease research.
Collapse
Affiliation(s)
- Raquel Alonso-Roman
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander S Mosig
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Applied Systems Biology Group, Leibniz-HKI, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Kai Papenfort
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Leibniz Center for Photonics in Infection Research e.V., Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Felix H Schacher
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz-HKI, Jena, Germany
| |
Collapse
|
17
|
Tanabe I, Ishimori K, Ishikawa S. Development of an in vitro human alveolar epithelial air-liquid interface model using a small molecule inhibitor cocktail. BMC Mol Cell Biol 2024; 25:9. [PMID: 38500038 PMCID: PMC10946194 DOI: 10.1186/s12860-024-00507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The alveolar epithelium is exposed to numerous stimuli, such as chemicals, viruses, and bacteria that cause a variety of pulmonary diseases through inhalation. Alveolar epithelial cells (AECs) cultured in vitro are a valuable tool for studying the impacts of these stimuli and developing therapies for associated diseases. However, maintaining the proliferative capacity of AECs in vitro is challenging. In this study, we used a cocktail of three small molecule inhibitors to cultivate AECs: Y-27632, A-83-01, and CHIR99021 (YAC). These inhibitors reportedly maintain the proliferative capacity of several types of stem/progenitor cells. RESULTS Primary human AECs cultured in medium containing YAC proliferated for more than 50 days (over nine passages) under submerged conditions. YAC-treated AECs were subsequently cultured at the air-liquid interface (ALI) to promote differentiation. YAC-treated AECs on ALI day 7 formed a monolayer of epithelial tissue with strong expression of the surfactant protein-encoding genes SFTPA1, SFTPB, SFTPC, and SFTPD, which are markers for type II AECs (AECIIs). Immunohistochemical analysis revealed that paraffin sections of YAC-treated AECs on ALI day 7 were mainly composed of cells expressing surfactant protein B and prosurfactant protein C. CONCLUSIONS Our results indicate that YAC-containing medium could be useful for expansion of AECIIs, which are recognized as local stem/progenitor cells, in the alveoli.
Collapse
Affiliation(s)
- Ikuya Tanabe
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| |
Collapse
|
18
|
Jaber N, Billet S. How to use an in vitro approach to characterize the toxicity of airborne compounds. Toxicol In Vitro 2024; 94:105718. [PMID: 37871865 DOI: 10.1016/j.tiv.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
As part of the development of new approach methodologies (NAMs), numerous in vitro methods are being developed to characterize the potential toxicity of inhalable xenobiotics (gases, volatile organic compounds, polycyclic aromatic hydrocarbons, particulate matter, nanoparticles). However, the materials and methods employed are extremely diverse, and no single method is currently in use. Method standardization and validation would raise trust in the results and enable them to be compared. This four-part review lists and compares biological models and exposure methodologies before describing measurable biomarkers of exposure or effect. The first section emphasizes the importance of developing alternative methods to reduce, if not replace, animal testing (3R principle). The biological models presented are mostly to cultures of epithelial cells from the respiratory system, as the lungs are the first organ to come into contact with air pollutants. Monocultures or cocultures of primary cells or cell lines, as well as 3D organotypic cultures such as organoids, spheroids and reconstituted tissues, but also the organ(s) model on a chip are examples. The exposure methods for these biological models applicable to airborne compounds are submerged, intermittent, continuous either static or dynamic. Finally, within the restrictions of these models (i.e. relative tiny quantities, adhering cells), the mechanisms of toxicity and the phenotypic markers most commonly examined in models exposed at the air-liquid interface (ALI) are outlined.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
19
|
Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro Model: A Transformative Model in Drug Development and Precision Medicine. Clin Transl Sci 2023; 17:e13695. [PMID: 38062923 PMCID: PMC10828975 DOI: 10.1111/cts.13695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 02/02/2024] Open
Abstract
In vitro and in vivo models play integral roles in preclinical drug research, evaluation, and precision medicine. In vitro models primarily involve research platforms based on cultured cells, typically in the form of two-dimensional (2D) cell models. However, notable disparities exist between 2D cultured cells and in vivo cells across various aspects, rendering the former inadequate for replicating the physiologically relevant functions of human or animal organs and tissues. Consequently, these models failed to accurately reflect real-life scenarios post-drug administration. Complex in vitro models (CIVMs) refer to in vitro models that integrate a multicellular environment and a three-dimensional (3D) structure using bio-polymer or tissue-derived matrices. These models seek to reconstruct the organ- or tissue-specific characteristics of the extracellular microenvironment. The utilization of CIVMs allows for enhanced physiological correlation of cultured cells, thereby better mimicking in vivo conditions without ethical concerns associated with animal experimentation. Consequently, CIVMs have gained prominence in disease research and drug development. This review aimed to comprehensively examine and analyze the various types, manufacturing techniques, and applications of CIVM in the domains of drug discovery, drug development, and precision medicine. The objective of this study was to provide a comprehensive understanding of the progress made in CIVMs and their potential future use in these fields.
Collapse
Affiliation(s)
- Luming Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Danping Hu
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| | - Jinming Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Yifei Wang
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| |
Collapse
|
20
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
21
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
22
|
Abstracts from The International Society for Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37906031 DOI: 10.1089/jamp.2023.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
|
23
|
Roman V, Mihaila M, Radu N, Marineata S, Diaconu CC, Bostan M. Cell Culture Model Evolution and Its Impact on Improving Therapy Efficiency in Lung Cancer. Cancers (Basel) 2023; 15:4996. [PMID: 37894363 PMCID: PMC10605536 DOI: 10.3390/cancers15204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Optimizing cell culture conditions is essential to ensure experimental reproducibility. To improve the accuracy of preclinical predictions about the response of tumor cells to different classes of drugs, researchers have used 2D or 3D cell cultures in vitro to mimic the cellular processes occurring in vivo. While 2D cell culture provides valuable information on how therapeutic agents act on tumor cells, it cannot quantify how the tumor microenvironment influences the response to therapy. This review presents the necessary strategies for transitioning from 2D to 3D cell cultures, which have facilitated the rapid evolution of bioengineering techniques, leading to the development of microfluidic technology, including organ-on-chip and tumor-on-chip devices. Additionally, the study aims to highlight the impact of the advent of 3D bioprinting and microfluidic technology and their implications for improving cancer treatment and approaching personalized therapy, especially for lung cancer. Furthermore, implementing microfluidic technology in cancer studies can generate a series of challenges and future perspectives that lead to the discovery of new predictive markers or targets for antitumor treatment.
Collapse
Affiliation(s)
- Viviana Roman
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Stefania Marineata
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania;
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
24
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
25
|
van Os L, Yeoh J, Witz G, Ferrari D, Krebs P, Chandorkar Y, Zeinali S, Sengupta A, Guenat O. Immune cell extravasation in an organ-on-chip to model lung imflammation. Eur J Pharm Sci 2023:106485. [PMID: 37270149 DOI: 10.1016/j.ejps.2023.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition with high mortality and various causes, including lung infection. No specific treatment is currently available and more research aimed at better understanding the pathophysiology of ARDS is needed. Most lung-on-chip models that aim at mimicking the air-blood barrier are designed with a horizontal barrier through which immune cells can migrate vertically, making it challenging to visualize and investigate their migration. In addition, these models often lack a barrier of natural protein-derived extracellular matrix (ECM) suitable for live cell imaging to investigate ECM-dependent migration of immune cells as seen in ARDS. This study reports a novel inflammation-on-chip model with live cell imaging of immune cell extravasation and migration during lung inflammation. The three-channel perfusable inflammation-on-chip system mimics the lung endothelial barrier, the ECM environment and the (inflamed) lung epithelial barrier. A chemotactic gradient was established across the ECM hydrogel, leading to the migration of immune cells through the endothelial barrier. We found that immune cell extravasation depends on the presence of an endothelial barrier, on the ECM density and stiffness, and on the flow profile. In particular, bidirectional flow, broadly used in association with rocking platforms, was found to importantly delay extravasation of immune cells in contrast to unidirectional flow. Extravasation was increased in the presence of lung epithelial tissue. This model is currently used to study inflammation-induced immune cell migration but can be used to study infection-induced immune cell migration under different conditions, such as ECM composition, density and stiffness, type of infectious agents used, and the presence of organ-specific cell types.
Collapse
Affiliation(s)
- Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jeremy Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Institute of Pathology, University of Bern, Bern, Switzerland
| | - Guillaume Witz
- Microscopy Imaging Center (MIC) & Data Science Lab (DSL), University of Bern, Bern, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Yashoda Chandorkar
- Laboratory for Biointerfaces, EMPA Empa Swiss Federal Laboratories for Material Science and Technology, St Gallen, Switzerland
| | - Soheila Zeinali
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Olivier Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Van Os L, Engelhardt B, Guenat OT. Integration of immune cells in organs-on-chips: a tutorial. Front Bioeng Biotechnol 2023; 11:1191104. [PMID: 37324438 PMCID: PMC10267470 DOI: 10.3389/fbioe.2023.1191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Viral and bacterial infections continue to pose significant challenges for numerous individuals globally. To develop novel therapies to combat infections, more insight into the actions of the human innate and adaptive immune system during infection is necessary. Human in vitro models, such as organs-on-chip (OOC) models, have proven to be a valuable addition to the tissue modeling toolbox. The incorporation of an immune component is needed to bring OOC models to the next level and enable them to mimic complex biological responses. The immune system affects many (patho)physiological processes in the human body, such as those taking place during an infection. This tutorial review introduces the reader to the building blocks of an OOC model of acute infection to investigate recruitment of circulating immune cells into the infected tissue. The multi-step extravasation cascade in vivo is described, followed by an in-depth guide on how to model this process on a chip. Next to chip design, creation of a chemotactic gradient and incorporation of endothelial, epithelial, and immune cells, the review focuses on the hydrogel extracellular matrix (ECM) to accurately model the interstitial space through which extravasated immune cells migrate towards the site of infection. Overall, this tutorial review is a practical guide for developing an OOC model of immune cell migration from the blood into the interstitial space during infection.
Collapse
Affiliation(s)
- Lisette Van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
27
|
DiGuilio KM, Rybakovsky E, Baek Y, Valenzano MC, Mullin JM. The multiphasic TNF-α-induced compromise of Calu-3 airway epithelial barrier function. Exp Lung Res 2023; 49:72-85. [PMID: 37000123 DOI: 10.1080/01902148.2023.2193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Purpose: Airway epithelial barrier leak and the involvement of proinflammatory cytokines play a key role in a variety of diseases. This study evaluates barrier compromise by the inflammatory mediator Tumor Necrosis Factor-α (TNF-α) in the human airway epithelial Calu-3 model. Methods: We examined the effects of TNF-α on barrier function in Calu-3 cell layers using Transepithelial Electrical Resistance (TER) and transepithelial diffusion of radiolabeled probe molecules. Western immunoblot analyses of tight junctional (TJ) proteins in detergent soluble fractions were performed. Results: TNF-α dramatically reduced TER and increased paracellular permeability of both 14C-D-mannitol and the larger 5 kDa probe, 14C-inulin. A time course of the effects shows two separate actions on barrier function. An initial compromise of barrier function occurs 2-4 hours after TNF-α exposure, followed by complete recovery of barrier function by 24 hrs. Beginning 48 hrs. post-exposure, a second more sustained barrier compromise ensues, in which leakiness persists through 144 hrs. There were no changes in TJ proteins observed at 3 hrs. post exposure, but significant increases in claudins-2, -3, -4, and -5, as well as a decrease in occludin were seen at 72 hrs. post TNF-α exposure. Both the 2-4 hr. and the 72 hr. TNF-α induced leaks are shown to be mediated by the ERK signaling pathway. Conclusion: TNF-α induced a multiphasic transepithelial leak in Calu-3 cell layers that was shown to be ERK mediated, as well as involve changes in the TJ complex. The micronutrients, retinoic acid and calcitriol, were effective at reducing this barrier compromise caused by TNF-α. The significance of these results for airway disease and for COVID-19 specifically are discussed.
Collapse
Affiliation(s)
| | | | - Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| | | | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
28
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
29
|
Ramamurthy RM, Atala A, Porada CD, Almeida-Porada G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front Immunol 2022; 13:1011143. [PMID: 36225917 PMCID: PMC9549755 DOI: 10.3389/fimmu.2022.1011143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA’s approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.
Collapse
|