1
|
Facchin A, Filipe J, Mauri I, Tagliasacchi F, Grilli G, Vitiello T, Ratti G, Musa L, Penati M, Scarpa P, Lauzi S. Antimicrobial Resistance and Biofilm-Forming Ability in ESBL-Producing and Non-ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Canine Urinary Samples from Italy. Antibiotics (Basel) 2025; 14:31. [PMID: 39858317 PMCID: PMC11760867 DOI: 10.3390/antibiotics14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/11/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background: In dogs, bacterial urinary tract infections are a frequent cause of antimicrobial prescription, increasing the risk of selecting antibiotic-resistant bacteria. This study analyzed resistance patterns, the presence of extended-spectrum β-lactamases (ESBLs) and biofilm-forming capacity in E. coli and K. pneumoniae previously isolated from urine samples collected from 133 selected dogs admitted to the Veterinary Teaching Hospital of Milan, Italy, in 2021 and 2023. Methods: The E. coli and K. pneumoniae isolates were bacteriologically and genetically analyzed. Results: Overall, 53/133 (39.8%) samples had a positive microbiological culture. Thirty-four E. coli/K. pneumoniae isolates were detected, accounting for 26.5% of the examined samples. The 34 isolates included 28 E. coli and 6 K. pneumoniae. Four (11.8%) were ESBL-producing bacteria, all supported by blaCTX-M gene belonging to group 1. The K. pneumoniae isolates were significantly associated with ESBL production (p < 0.05). MIC analysis showed 11 (32.4%) multidrug-resistant isolates. Biofilm-forming capacity was observed in 23 (67.6%) isolates, regardless of bacterial species, including 20 weakly and 3 moderately adherent bacteria. All moderate biofilm producers were K. pneumoniae. Multidrug resistance (MDR) was significantly more present in strains with moderate biofilm-forming ability compared to strains with weak ability to form biofilm (p < 0.05). E. coli was confirmed as the most commonly identified urinary isolate in dogs. Conclusions: The high presence of ESBL producers and MDR in K. pneumoniae suggests mandatory in vitro susceptibility testing in the presence of this bacterium in dogs with UTI. The association of moderate biofilm production with MDR highlights the need for monitoring and surveillance of bacterial prevalence and resistance patterns of urinary isolates in dogs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (A.F.); (G.G.); (L.M.); (P.S.)
| |
Collapse
|
2
|
Morgan G, Pinchbeck G, Haldenby S, Schmidt V, Williams N. Raw meat diets are a major risk factor for carriage of third-generation cephalosporin-resistant and multidrug-resistant E. coli by dogs in the UK. Front Microbiol 2024; 15:1460143. [PMID: 39314877 PMCID: PMC11417003 DOI: 10.3389/fmicb.2024.1460143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Raw-meat diets (RMD) for dogs, comprising unprocessed or non-heat-treated animal material, are increasingly popular. However, RMDs have been demonstrated to be contaminated with antimicrobial resistant (AMR) bacteria, and there is concern that such diets may pose a zoonotic disease risk. Additionally, dogs fed RMD may shed more AMR- fecal bacteria compared to those fed conventional cooked diets. Data from the UK remain limited; the present study investigated the presence of AMR-Escherichia coli in the feces of RMD and non-RMD (NRMD)-fed dogs in the UK, the E. coli AMR gene complement, and the lifestyle risk factors associated with AMR- E. coli carriage. Methods Fecal samples from UK-owned dogs (N = 193 RMD, N = 239 NRMD) and questionnaires discussing lifestyle factors, were obtained between October 2020-August 2021. Samples underwent culture and antimicrobial susceptibility testing to determine the presence of AMR-E. coli. Whole genome sequencing determined AMR gene carriage. Risk factors for the presence of AMR-E. coli were determined by multivariable modeling. Results RMD dogs carried significantly more fecal AMR E. coli (p < 0.001), including third-generation cephalosporin resistant, extended-spectrum beta-lactamase (ESBL) producing, and multidrug resistant isolates and multivariable modeling confirmed raw-meat diets to be a significant risk factor. The bla CTX-M-15 gene was the most frequently identified bla ESBL gene. The bla CTX-M-55 and bla SHV-66 genes were also prevalent and were only found in RMD dogs. The mobile colistin resistance gene, mcr-4 was identified in one ESBL-producing E. coli isolate from a NRMD-fed dog. Conclusion This study has shown that dogs fed RMD in the UK are significantly more likely to shed E. coli which is resistant to highest priority critically important antibiotics, and multidrug resistant E. coli, than dogs fed NRMD. Additionally, AMR-E. coli isolates from RMD-fed dogs harbor multiple, diverse, and novel AMR genes. Therefore, provision of RMD to dogs could pose an important potential threat to human and animal health, especially given the close nature of the relationship many owners share with their pets. Awareness of these findings should be shared with pet owners, veterinary and medical professionals, pet food manufacturers and public health to mitigate potential risks.
Collapse
Affiliation(s)
- Genever Morgan
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Gina Pinchbeck
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Schmidt
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
3
|
Zelaya C, Arriagada G, Galarce N, Sanchez F, Escobar B, Miranda M, Vilches R, Varela C, Ríos MP, Matus S, Sáenz L, Cornejo J, Lapierre L. A preliminary report on critical antimicrobial resistance in Escherichia coli, Enterococcus faecalis, and Enterococcus faecium strains isolated from healthy dogs in Chile during 2021-2022. Prev Vet Med 2024; 224:106139. [PMID: 38341943 DOI: 10.1016/j.prevetmed.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Antimicrobial Resistance (AMR) represents one of the main current threats to global public health; where production animals, companion animals, humans, and the environment play a significant role in its dissemination. However, little attention has been given to companion animals as reservoirs and disseminators of relevant antimicrobial resistant bacteria, especially in South American countries such as Chile. For this reason, this research aimed to estimate the prevalence of AMR to different critical antibiotics at a screening level in commensal bacteria such as E. coli and Enterococcus spp., isolated from healthy pet dogs in the Metropolitan Region of Chile, studying their geographical distribution and evaluating associations of phenotypic resistance to different antibiotics. Thus, in E. coli we detected AMR to all critical drugs assessed, including 34.1% to amoxicillin, 20.1% to colistin, 15.7% to enrofloxacin, and 9.2% to cefotaxime. On the other hand, AMR prevalence in E. faecalis was 8.1% for ampicillin and 3.4% for vancomycin; while for E. faecium the AMR prevalence was 19.1% for ampicillin and 10.2% for vancomycin. Additionally, significant differences in prevalence of the different possible AMR were detected according to their geographical distribution, suggesting the existence of various risk factors and stressing the need to establish mitigation measures specific to the differences identified.
Collapse
Affiliation(s)
- Carlos Zelaya
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Gabriel Arriagada
- Institute of Agri-food, Animal and Environmental Sciences, Universidad de O'Higgins, Chile
| | - Nicolás Galarce
- School of Veterinary Medicine, Faculty of Life Sciences, Andrés Bello University, Chile
| | - Fernando Sanchez
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Beatriz Escobar
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Mauricio Miranda
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Rocío Vilches
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Camila Varela
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - María Paz Ríos
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Sofia Matus
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Leonardo Sáenz
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Javiera Cornejo
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile.
| | - Lisette Lapierre
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile.
| |
Collapse
|
4
|
Maroto-Tello A, Ayllón T, Aguinaga-Casañas MA, Ariza JJ, Penelo S, Baños A, Ortiz-Díez G. In Vitro Activity of Allium cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus spp. and Enterobacteriaceae. Vet Sci 2024; 11:26. [PMID: 38250932 PMCID: PMC10820550 DOI: 10.3390/vetsci11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The increase of multi-resistant bacteria, especially Staphylococcus spp. and Enterobacteriaceae, constitutes a challenge in veterinary medicine. The rapid growth of resistance is outpacing antibiotic discovery. Innovative strategies are needed, including the use of natural products like Allium species (Allium sativum L. and Allium cepa L.), which have been used empirically for centuries to treat infectious diseases in humans and farm and aquaculture animals due to their antibacterial properties. METHODS This study aimed to evaluate the in vitro activity of two Allium-derived compounds, propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO), against multi-resistant Staphylococcus spp. (n = 30) and Enterobacteriaceae (n = 26) isolated from dogs referred to a veterinary teaching hospital in Madrid. RESULTS AND DISCUSSION The results indicated the in vitro efficacy of PTSO/PTS against the tested bacterial strains, and 56.7% of Staphylococcus pseudintermedius and 53.8% of Enterobacteriaceae showed sensitivity to PTS and PTSO compared with classic antibiotics. In addition, 50% of S. pseudintermedius strains resistant to erythromycin, ibofloxacin, difloxacin and orbifloxacin and 50% of Enterobacteriaceae strains resistant to tetracycline and doxycycline were sensitive to PTS and PTSO. Although studies are needed to verify their efficacy in vivo, the combined use of PTS and PTSO exhibits promise in enhancing bacterial sensitivity against S. pseudintermedius and Enterobacteriaceae infections, providing a first insight into the potential of both compounds in veterinary practice.
Collapse
Affiliation(s)
- Alba Maroto-Tello
- Departamento de Microbiología, DMC Research Center, 18620 Granada, Spain; (A.M.-T.); (M.A.A.-C.); (A.B.)
| | - Tania Ayllón
- Facultad de Ciencias de la Salud, Universidad Alfonso X el Sabio, 28691 Madrid, Spain
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense, 28040 Madrid, Spain
| | | | - Juan José Ariza
- Departamento de Microbiología, Campus Fuente Nueva, Universidad de Granada, 18001 Granada, Spain;
| | - Silvia Penelo
- Servicio de Urgencias, Hospitalización y UCI, Hospital Clínico Veterinario Complutense, Universidad Complutense, 28040 Madrid, Spain
| | - Alberto Baños
- Departamento de Microbiología, DMC Research Center, 18620 Granada, Spain; (A.M.-T.); (M.A.A.-C.); (A.B.)
- Departamento de Microbiología, Campus Fuente Nueva, Universidad de Granada, 18001 Granada, Spain;
| | - Gustavo Ortiz-Díez
- Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Aghamohammad S, Shahcheraghi F. The notable relatedness between ESBL producing Enterobacteriaceae isolated from clinical samples and asymptomatic fecal carriers. BMC Infect Dis 2023; 23:775. [PMID: 37940865 PMCID: PMC10634096 DOI: 10.1186/s12879-023-08746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The investigation of the presence of extended-spectrum beta-lactamase (ESBL) within Enterobacteriaceae in both fecal carriers and patients is an essential matter. Furthermore, the assessment of distinct characteristics exhibited by resistant bacteria obtained from fecal carriers and patients, as well as the comparison of these characteristics between the two groups, could provide a deeper understanding of how the resistant isolates can remain concealed within a dormant reservoir and intensify antimicrobial resistance. The aim of the present study was to concentrate on the comparison of the antimicrobial resistance pattern and molecular features between strains obtained from clinical and carrier sources. MATERIAL AND METHODS A total of 142 clinical samples and 120 rectal swabs were collected from June to October 2016. ESBL screening was performed using the double-disk synergy test. PCR was done for the detection of ESBL genes. Assessment of biofilm formation, virulence factor genes, and MLVA was performed for K. pneumonae isolates. Phylogroup typing was performed for E. coli isolates. RESULTS Of 146 samples, 67.6% were E. coli, and 32.4% were K. pneumoniae. The rate of blaCTXM-15 was 89.4%. In K. pneumoniae type D, ompk35 and fimH were the highest. All the K. pneumoniae isolates were classified into 12 mini clusters and the clinical isolates were characterized into 7 mini clusters. The phylogroup B2 in ESBL-EC was the highest (56.2%). DISCUSSION Comparison of molecular characteristics and clonal relatedness between fecal carriers and patients showed noticeable relatedness and similarity which may indicate that ESBL-KP can be colonized with the same profiles in different settings and, therefore, may be widely distributed in both community and hospital settings. Therefore, implementation of control protocols, including surveillance of the fecal carriers, could impressively reduce silent reservoirs without clinical symptoms as well as patient rates.
Collapse
|
6
|
Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. Int J Food Microbiol 2023; 389:110086. [PMID: 36738714 DOI: 10.1016/j.ijfoodmicro.2023.110086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
The paucity of information on the genomic diversity of drug-resistant bacteria in most food-producing animals, including poultry in Nigeria, has led to poor hazard characterization and the lack of critical control points to safeguard public health. Hence, this study used whole genome sequencing (WGS) to assess the presence and the diversity of antibiotic resistance genes, mobile genetic elements, virulence genes, and phages in Extended Spectrum Beta Lactamase producing Escherichia coli (ESBL - E. coli) isolates obtained from poultry via the EURL guideline of 2017 in Ilorin, Nigeria. The prevalence of ESBL - E. coli in poultry was 10.5 % (n = 37/354). The phenotypic antibiotic susceptibility testing showed that all the ESBL- E. coli isolates were multi-drug resistant (MDR). The in-silico analysis of the WGS raw-read data from 11 purposively selected isolates showed that the isolates had a wide array of ARGs that conferred resistance to beta-lactam antibiotics, and 8 other classes of antibiotics (fluoroquinolones, foliate pathway antagonists, aminoglycoside, phenicol, tetracycline, epoxide, macrolides, and rifamycin). All the ARGs were in the bacterial chromosome except in two isolates where plasmid-mediated quinolone resistance (PMQR) was detected. Two isolates carried the gyrAp.S83L mutation which confers resistance to certain fluoroquinolones. The mobilome consisted of several Col-plasmids and the predominant IncF plasmids belonged to the IncF64:A-:B27 sequence type. The virulome consisted of genes that function as adhesins, iron acquisition genes, toxins, and protectins. Intact phages were found in 8 of the 11 isolates and the phageome consisted of representatives of four families of viruses: Myoviridae (62.5 %, n = 5/8), Siphoviridae (37.5 %, n = 3/8), Inoviridae (12.5 %, n = 1), and Podoviridae (12.5 %, n = 1/8). ESBL - E. coli isolates harboured 1-5 intact phages and no ARGs were identified on any of the phages. Although five of the isolates belonged to phylogroup A, the isolates were diverse as they belonged to different serotype and sequence types. Our findings demonstrate the high genomic diversity of ESBL - E. coli of poultry origin in Ilorin, Nigeria. These diverse isolates harbor clinically relevant ARGs, mobile elements, virulence genes, and phages that may have detrimental zoonotic potentials on human health.
Collapse
|
7
|
Characteristics of Extended-Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011–2021. Vet Sci 2023; 10:vetsci10030178. [PMID: 36977217 PMCID: PMC10058205 DOI: 10.3390/vetsci10030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The rising prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales is a significant threat to animal and human health. This study aims to describe the clinical features, antimicrobial susceptibility patterns, and genotypic features of infections associated with ESBL-producing Enterobacterales in dogs and cats seen at a tertiary referral veterinary teaching hospital. Enterobacterales isolated from dogs and cats that underwent ESBL testing during the study period were identified using a search of the hospital antimicrobial susceptibility test software database. Medical records of confirmed ESBL isolates were reviewed, and the source of infection, clinical findings, and antimicrobial susceptibility were recorded. Genomic DNA from bacterial isolates was evaluated for antimicrobial resistance genes with whole genome sequencing. Thirty ESBL-producing isolates were identified based on phenotypic testing (twenty-nine from dogs, one from a cat); twenty-six were Escherichia coli and the remainder were Klebsiella spp. Bacterial cystitis was the most commonly identified (8/30, 27%) clinical problem associated with infection. Resistance to three or more antimicrobial classes was identified in 90% (27/30) of isolates, and all isolates were susceptible to imipenem. Over 70% of isolates were susceptible to piperacillin-tazobactam, amikacin, and cefoxitin. BlaCTX-M-15 was the most common ESBL gene identified, present in 13/22 (59%) isolate genomes. A wide range of clinical infections were identified. Piperacillin-tazobactam and amikacin may be alternatives to carbapenem therapy. Further, larger-scale studies are needed.
Collapse
|
8
|
Ortiz-Díez G, Mengíbar RL, Turrientes MC, Artigao MRB, Gallifa RL, Tello AM, Pérez CF, Santiago TA. Prevalence, incidence and risk factors for acquisition and colonization of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae from dogs attended at a veterinary hospital in Spain. Comp Immunol Microbiol Infect Dis 2023; 92:101922. [PMID: 36509030 DOI: 10.1016/j.cimid.2022.101922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The last 10 years have seen a progressive increase in antibiotic resistance rates in bacteria isolated from companion animals. Exposure of individuals to resistant bacteria from companion animals, such as extended-spectrum beta-lactamase- (ESBL) and carbapenemase- (CPE) producing Enterobacteriaceae, can be propitiated. Few studies evaluate the incidence and risk factors associated with colonization by multidrug-resistant bacteria in dogs. This work aims to estimate the prevalence, incidence and risk factors associated with colonization of ESBL-E and CPE-E in 44 canine patients hospitalized in a veterinary hospital. The antimicrobial susceptibility of Enterobacteriaceae strains was analyzed and the molecular detection of resistant genes was performed. A prevalence of 25.0% and an incidence of ESBL-E of 45.5% were observed in dogs colonized by Enterobacteriaceae at hospital admission and release, respectively. Escherichia coli, Klebsiella pneumoniae, Citrobacter koseri and Morganella morganii were identified as ESBL-producing bacterial species. Resistance genes were detected for ESBL-producing strains. No CPE isolates were obtained on the CPE-selective medium. The administration of corticosteroids prior to hospitalization and the presence of concomitant diseases were associated with colonization by these bacteria in dogs. Considering that one-quarter of the patients evaluated were colonized by ESBL-E, companion animals should be considered as potential transmission vehicles and ESBL-E reservoirs for humans. Special care should be taken in animals attended at veterinary hospitals, as the length of stay in the hospital could increase the risks.
Collapse
Affiliation(s)
- Gustavo Ortiz-Díez
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | - Ruth Luque Mengíbar
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | - María-Carmen Turrientes
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal -IRYCIS-, Madrid, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública -CIBERESP-, Madrid, Spain.
| | | | - Raúl López Gallifa
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | | | - Cristina Fernández Pérez
- Fundación Instituto para la Mejora de la Asistencia Sanitaria, Madrid, Spain; Servicio de Medicina Preventiva y Salud Pública, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
9
|
Extended Spectrum β-Lactamase-Producing Escherichia coli from Poultry and Wild Birds (Sparrow) in Djelfa (Algeria), with Frequent Detection of CTX-M-14 in Sparrow. Antibiotics (Basel) 2022; 11:antibiotics11121814. [PMID: 36551471 PMCID: PMC9774291 DOI: 10.3390/antibiotics11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is a global threat that is spreading more and more in both human and animal niches. This study investigates the antimicrobial resistance and virulence threats of Escherichia coli isolates recovered from intestinal and fecal samples of 100 chickens, 60 turkeys, and 30 sparrows. Extended spectrum β-lactamase (ESBL) producing E. coli isolates were recovered in 12 of the animals tested, selecting one isolate per positive animal: sparrow (eight isolates, 26.7%), turkey (three isolates, 5%), and chicken (one isolate, 1%). The E. coli isolates were ascribed to B1 and D phylogenetic groups. The blaCTX-M-14 gene was detected in all ESBL-producing E. coli isolates from sparrow. The blaCTX-M-15 (two isolates) and blaCTX-M-14 genes (one isolate) were detected in the isolates of turkey, and the blaCTX-M-1 gene in one isolate from broiler. Three lineages were revealed among the tested isolates (ST/phylogenetic group/type of ESBL/origin): ST117/D/CTX-M-1/broiler, ST4492 (CC405)/D/CTX-M-15/turkey, and ST602/B1/CTX-M-14/sparrow. All isolates were negative for stx1, sxt2, and eae virulence genes. Our findings provide evidence that the sparrow could be a vector in the dissemination of ESBL-producing E. coli isolates to other environments. This study also reports, to our knowledge, the first detection of blaCTX-M-14 from sparrow at a global level and in turkey in Algeria.
Collapse
|
10
|
Osman M, Albarracin B, Altier C, Gröhn YT, Cazer C. Antimicrobial resistance trends among canine Escherichia coli isolated at a New York veterinary diagnostic laboratory between 2007 and 2020. Prev Vet Med 2022; 208:105767. [PMID: 36181749 PMCID: PMC9703301 DOI: 10.1016/j.prevetmed.2022.105767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/21/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Dogs are a potential source of drug-resistant Escherichia coli, but very few large-scale antimicrobial resistance surveillance studies have been conducted in the canine population. Here, we assess the antimicrobial susceptibility patterns, identify temporal resistance and minimum inhibitory concentration (MIC) trends, and describe associations between resistance phenotypes among canine clinical E. coli isolates in the northeastern United States. Through a retrospective study design, we collected MICs from 7709 E. coli isolates from canine infections at the Cornell University Animal Health Diagnostic Center between 2007 and 2020. The available clinical data were limited to body site. Isolates were classified as resistant or susceptible to six (urinary) and 22 (non-urinary) antimicrobials based on Clinical and Laboratory Standards Institute breakpoints. We used the Mann-Kendall test (MKT) and Sen's slope to identify the presence of a significant trend in the percent of resistant isolates over the study period. Multivariable logistic regression (MLR) models were built with ceftiofur, enrofloxacin, or trimethoprim-sulfamethoxazole resistance as the outcome and either body site and isolation date, or resistance to other antimicrobials as predictors. MIC trends were characterized with survival analysis models, controlling for body site and year of isolation. Overall, 16.4% of isolates were resistant to enrofloxacin, 14.3% to ceftiofur, and 14% to trimethoprim-sulfamethoxazole. The MKT and Sen's slope revealed a significant decreasing temporal trend for gentamicin and trimethoprim-sulfamethoxazole resistance among non-urinary isolates. No significant temporal resistance trends were detected by MKT for other antimicrobials. However, controlling for body-site in MLR models identified a decrease in resistance rates to enrofloxacin and trimethoprim-sulfamethoxazole after 2010. Similarly, survival analysis data confirmed these findings and showed a decrease in MIC values after 2010 for gentamicin and trimethoprim-sulfamethoxazole, but an increase in cephalosporin MICs. MLR showed that non-urinary isolates were significantly more likely than urinary isolates to demonstrate in vitro resistance to ceftiofur, enrofloxacin, and trimethoprim-sulfamethoxazole after controlling for year of isolation. We identified a higher level of ceftiofur resistance among enrofloxacin resistant isolates from urinary and non-urinary origins. Our findings confirmed that dogs are still a non-negligeable reservoir of drug-resistant E. coli in the northeastern United States. The increase in extended-spectrum cephalosporin MIC values in 2018-2020 compared to 2007-2010 constitutes a particularly worrying issue; the relationship between ceftiofur and enrofloxacin resistance suggests that the use of fluoroquinolones could contribute to this trend. Trimethoprim-sulfamethoxazole may be a good first-line choice for empiric treatment of E. coli infections; it is already recommended for canine urinary tract infections.
Collapse
Affiliation(s)
- Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Belen Albarracin
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yrjö T Gröhn
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Casey Cazer
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Gruel G, Couvin D, Guyomard-Rabenirina S, Arlet G, Bambou JC, Pot M, Roy X, Talarmin A, Tressieres B, Ferdinand S, Breurec S. High Prevalence of bla CTXM-1/IncI1-Iγ/ST3 Plasmids in Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Collected From Domestic Animals in Guadeloupe (French West Indies). Front Microbiol 2022; 13:882422. [PMID: 35651489 PMCID: PMC9149308 DOI: 10.3389/fmicb.2022.882422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) have been classified in the group of resistant bacteria of highest priority. We determined the prevalence of ESBL-E collected in feces from household and shelter pets in Guadeloupe (French West Indies). A single rectal swab was taken from 125 dogs and 60 cats between June and September 2019. The prevalence of fecal carriage of ESBL-E was 7.6% (14/185, 95% CI: 4.2-12.4), within the range observed worldwide. The only risk factor associated with a higher prevalence of ESBL-E rectal carriage was a stay in a shelter, suggesting that refuges could be hotspots for their acquisition. All but one (Klebsiella pneumoniae from a cat) were Escherichia coli. We noted the presence of a bla CTX-M-1/IncI1-Iγ/sequence type (ST3) plasmid in 11 ESBL-producing E. coli isolates belonging to ST328 (n = 6), ST155 (n = 4) and ST953 (n = 1). A bla CTX-M-15 gene was identified in the three remaining ESBL-E isolates. The bla CTX-M-1 and most of the antimicrobial resistance genes were present in a well-conserved large conjugative IncI1-Iγ/ST3 plasmid characterized by two accessory regions containing antibiotic resistance genes. The plasmid has been detected worldwide in E. coli isolates from humans and several animal species, such as food-producing animals, wild birds and pets, and from the environment. This study shows the potential role of pets as a reservoir of antimicrobial-resistant bacteria or genes for humans and underlines the importance of basic hygiene measures by owners of companion animals.
Collapse
Affiliation(s)
- Gaëlle Gruel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | | | | | - Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Benoit Tressieres
- INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France.,INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France.,Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, Pointe-à-Pitre, France
| |
Collapse
|
12
|
Vassallo A, Kett S, Purchase D, Marvasi M. The Bacterial Urban Resistome: Recent Advances. Antibiotics (Basel) 2022; 11:512. [PMID: 35453263 PMCID: PMC9030810 DOI: 10.3390/antibiotics11040512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Steve Kett
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | | |
Collapse
|
13
|
Multidrug-resistant bacteria isolated from surgical site of dogs, surgeon's hands and operating room in a veterinary teaching hospital in Brazil. Top Companion Anim Med 2022; 49:100638. [PMID: 35101615 DOI: 10.1016/j.tcam.2022.100638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Surgical environment can play as a source of multidrug-resistance organism, what can pose as a big threat to the patients and health care professionals. This study aimed to evaluate the prevalence and antimicrobial resistance profile of Gram-positive cocci (GPC) and Gram-negative bacilli (GNB) isolated from the surgical environment. All samples were collected during the intraoperative period of clean/clean-contaminated (G1) and contaminated (G2) surgery. A total of 150 samples were collected from the superficial surgical site in the beginning (n=30) and the end (n=30) of the procedure, surgeon's hands before (n=30) and after (n=30) antisepsis, and the surgical environment (n=30). MALDI-TOF MS and antimicrobial susceptibility testing by disk diffusion method were performed for species identification, and determination of the resistance profile. Sixty-eight isolates of GPC and 15 of GNB were obtained. Staphylococcus spp. were the most frequent species isolated from surgical site (55.26% [21/38]), surgeon's hands (46.15% [6/13]), and environment (56.67% [17/30]). GPC were mostly resistance to penicillin (85.71% [54/63]), and erythromycin (77.78% [49/63]), and GNB were mostly resistance to cefazolin (58.33% [7/12]), and azithromycin (58.33% [7/12]). High incidence of multidrug resistance was observed in coagulase-negative staphylococci (86.21% [25/29]), coagulase-positive staphylococci (86.67% [13/15]), Enterococcus spp. (68.42% [13/19]) and Gram-negative bacilli (60% [9/15]). The high rate of resistance of commensal bacteria found in our study is worrying. Coagulase-negative staphylococci are community pathogens related to nosocomial infections in human and veterinary hospitals, their presence in healthy patients and in veterinary professionals represent an important source of infection in the one health context. Continuous surveillance and application of antimicrobial stewardship programs are essential in the fight against this threat.
Collapse
Key Words
- C1, Surgeon's hands before antisepsis
- C2, Surgeon's hands after antisepsis
- CoNS, Coagulase-negative Staphylococci
- CoPS, Coagulase-positive Staphylococci
- ESBL, Extended-Spectrum β-lactamases
- Enterococcus spp
- GNB, Gram-negative bacilli
- GPC, Gram-positive cocci
- MDR, Multiple drug resistance
- MRS, methicillin-resistant Staphylococcus
- SSS, Superficial surgical site
- antimicrobial resistance
- community pathogen
- enterobacteria
- methicillin-resistant Staphylococcus
- surgical environment
Collapse
|
14
|
Carvalho I, Cunha R, Martins C, Martínez-Álvarez S, Safia Chenouf N, Pimenta P, Pereira AR, Ramos S, Sadi M, Martins Â, Façanha J, Rabbi F, Capita R, Alonso-Calleja C, de Lurdes Nunes Enes Dapkevicius M, Igrejas G, Torres C, Poeta P. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10081013. [PMID: 34439063 PMCID: PMC8388948 DOI: 10.3390/antibiotics10081013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to analyse the prevalence and genetic characteristics of ESBL and acquired-AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick dogs in Portugal. Three hundred and sixty-one faecal samples from sick and healthy dogs were seeded on MacConkey agar supplemented with cefotaxime (2 µg/mL) for cefotaxime-resistant (CTXR) E. coli recovery. Antimicrobial susceptibility testing for 15 antibiotics was performed and the ESBL-phenotype of the E. coli isolates was screened. Detection of antimicrobial resistance and virulence genes, and molecular typing of the isolates (phylogroups, multilocus-sequence-typing, and specific-ST131) were performed by PCR (and sequencing when required). CTXRE. coli isolates were obtained in 51/361 faecal samples analysed (14.1%), originating from 36/234 sick dogs and 15/127 healthy dogs. Forty-seven ESBL-producing E. coli isolates were recovered from 32 sick (13.7%) and 15 healthy animals (11.8%). Different variants of blaCTX-M genes were detected among 45/47 ESBL-producers: blaCTX-M-15 (n = 26), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3), blaCTX-M-55 (n = 3), blaCTX-M-14 (n = 2), and blaCTX-M-variant (n = 1); one ESBL-positive isolate co-produced CTX-M-15 and CMY-2 enzymes. Moreover, two additional CTXR ESBL-negative E. coli isolates were CMY-2-producers (qAmpC). Ten different sequence types were identified (ST/phylogenetic-group/β-lactamase): ST131/B2/CTX-M-15, ST617/A/CTX-M-55, ST3078/B1/CTX-M-32, ST542/A/CTX-M-14, ST57/D/CTX-M-1, ST12/B2/CTX-M-15, ST6448/B1/CTX-M-15 + CMY-2, ST5766/A/CTX-M-32, ST115/D/CMY-2 and a new-ST/D/CMY-2. Five variants of CTX-M enzymes (CTX-M-15 and CTX-M-1 predominant) and eight different clonal complexes were detected from canine ESBL-producing E. coli isolates. Although at a lower rate, CMY-2 β-lactamase was also found. Dogs remain frequent carriers of ESBL and/or qAmpC-producing E. coli with a potential zoonotic role.
Collapse
Affiliation(s)
- Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Rita Cunha
- Hospital Veterinário Cascais da Onevet, 2775-352 Parede, Lisbon, Portugal;
| | - Carla Martins
- Clínica Veterinária do Vouga, 3740-253 Sever do Vouga, Portugal;
| | - Sandra Martínez-Álvarez
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Nadia Safia Chenouf
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Exploration and Valuation of the Steppe Ecosystem, University of Djelfa, Djelfa 17000, Algeria
| | - Paulo Pimenta
- Hospital Veterinário de Trás-os-Montes, 5000-056 Vila Real, Portugal;
| | - Ana Raquel Pereira
- Centro Veterinário de Macedo de Cavaleiros, 5340-202 Bragança, Portugal;
| | - Sónia Ramos
- VetRedondo, Consultório Veterinário de Monte Redondo Unipessoal Lda, Monte Redondo, 2425-618 Leiria, Portugal;
| | - Madjid Sadi
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Biotechnology Related to Animals Reproduction, Université Saad Dahlab de Blida, Blida 09000, Algeria
| | - Ângela Martins
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Jorge Façanha
- Centro Veterinário Jorge Façanha, 5140-060 Carrazeda de Ansiães, Portugal;
| | - Fazle Rabbi
- Australian Computer Society, Docklands, Melbourne, VIC 3008, Australia;
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Maria de Lurdes Nunes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Correspondence: ; Tel.: +351-25935-0466; Fax: +351-25935-0629
| |
Collapse
|
15
|
Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms 2021; 9:microorganisms9061308. [PMID: 34208509 PMCID: PMC8233838 DOI: 10.3390/microorganisms9061308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Fluoroquinolones are the highest priority, critically important antimicrobial agents. Resistance development can occur via different mechanisms, with plasmid-mediated quinolone resistance (PMQR) being prevalent in the livestock and food area. Especially, qnr genes, commonly located on mobile genetic elements, are major drivers for the spread of resistance determinants against fluoroquinolones. We investigated the prevalence and characteristics of qnr-positive Escherichia (E.) coli obtained from different monitoring programs in Germany in 2017. Furthermore, we aimed to evaluate commonalities of qnr-carrying plasmids in E. coli. We found qnr to be broadly spread over different livestock and food matrices, and to be present in various sequence types. The qnr-positive isolates were predominantly detected within selectively isolated ESBL (extended spectrum beta-lactamase)-producing E. coli, leading to a frequent association with other resistance genes, especially cephalosporin determinants. Furthermore, we found that qnr correlates with the presence of genes involved in resistance development against quaternary ammonium compounds (qac). The detection of additional point mutations in many isolates within the chromosomal QRDR region led to even higher MIC values against fluoroquinolones for the investigated E. coli. All of these attributes should be carefully taken into account in the risk assessment of qnr-carrying E. coli from livestock and food.
Collapse
|
16
|
Salgado-Caxito M, Benavides JA, Adell AD, Paes AC, Moreno-Switt AI. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing- Escherichia coli in dogs and cats - A scoping review and meta-analysis. One Health 2021; 12:100236. [PMID: 33889706 PMCID: PMC8050393 DOI: 10.1016/j.onehlt.2021.100236] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a major threat to human and animal health. Part of the AMR dimension is the circulation of extended-spectrum β-lactamases producing-Escherichia coli (ESBL-E. coli), which is now commonly reported among companion animals. However, the global perspective of the prevalence and population structure of ESBL-E. coli circulating in dogs and cats has not been estimated limiting our understanding of their role in the dissemination of ESBL-E. coli. The aim of this study was to compare the prevalence of ESBL-E. coli between dogs and cats and across countries through meta-analysis. We also performed a scoping review to summarize the current knowledge on ESBL genes and E. coli clones circulating among companion animals. A total of 128 studies published in PubMed, Web of Science, and Scopus up to April 2020 were selected and contained information on prevalence and/or molecular characterization of ESBL genes and ESBL-E. coli clones. Our review shows an increase in the number of publications between 2000 and 2019, concentrated mainly in Europe. Prevalence varied across continents, ranging from 0.63% (Oceania) to 16.56% (Africa) in dogs and from 0% (Oceania) to 16.82% (Asia) in cats. Although there were twice as many studies reporting prevalence on dogs (n = 61) than on cats (n = 32), and only 9 studies focused exclusively on cats, our meta-analysis showed no difference in the global prevalence of ESBL-E. coli between dogs (6.87% [95% CI: 4.46-10.45%]) and cats (5.04% [95% CI: 2.42-10.22%]). A considerable diversity of ESBL genes (n = 60) and sequence types (ST) (n = 171) were recovered from companion animals. ESBL-E. coli encoded by CTX-M-15 (67.5%, 77/114) and SHV-12 (21.9%, 25/114), along with resistant strains of ST38 (22.7%, 15/66) and ST131 (50%, 33/66) were widespread and detected in all continents. While presence of ESBL-E. coli is widespread, the drivers influencing the observed ESBL-E. coli prevalence and the clinical relevance in veterinary medicine and public health along with economic impact of ESBL-E. coli infections among companion animals need to be further investigated.
Collapse
Affiliation(s)
- Marília Salgado-Caxito
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Julio A. Benavides
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Aiko D. Adell
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Antonio Carlos Paes
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Andrea I. Moreno-Switt
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics (Basel) 2021; 10:antibiotics10050510. [PMID: 33946277 PMCID: PMC8145412 DOI: 10.3390/antibiotics10050510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-resistant bacteria of critical importance for global health such as extended-spectrum beta-lactamases-producing (ESBL)-Escherichia coli have been detected in livestock, dogs, and wildlife worldwide. However, the dynamics of ESBL-E. coli between these animals remains poorly understood, particularly in small-scale farms of low and middle-income countries where contact between species can be frequent. We compared the prevalence of fecal carriage of ESBL-E. coli among 332 livestock (207 cows, 15 pigs, 60 horses, 40 sheep, 6 goats, 4 chickens), 82 dogs, and wildlife including 131 European rabbits, 30 rodents, and 12 Andean foxes sharing territory in peri-urban localities of central Chile. The prevalence was lower in livestock (3.0%) and wildlife (0.5%) compared to dogs (24%). Among 47 ESBL-E. coli isolates recovered, CTX-M-group 1 was the main ESBL genotype identified, followed by CTX-M-groups 2, 9, 8, and 25. ERIC-PCR showed no cluster of E. coli clones by either host species nor locality. To our knowledge, this is the first report of ESBL-E. coli among sheep, cattle, dogs, and rodents of Chile, confirming their fecal carriage among domestic and wild animals in small-scale farms. The high prevalence of ESBL-E. coli in dogs encourages further investigation on their role as potential reservoirs of this bacteria in agricultural settings.
Collapse
|
18
|
Pérez-Valdespino A, Pircher R, Pérez-Domínguez CY, Mendoza-Sanchez I. Impact of flooding on urban soils: Changes in antibiotic resistance and bacterial community after Hurricane Harvey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142643. [PMID: 33077230 DOI: 10.1016/j.scitotenv.2020.142643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Major perturbations in soil and water quality are factors that can negatively impact human health. In soil environments of urban areas, changes in antibiotic-resistance profiles may represent an increased risk of exposure to antibiotic-resistant bacteria via oral, dermal, or inhalation routes. We studied the perturbation of antibiotic-resistance profiles and microbial communities in soils following a major flooding event in Houston, Texas, caused by Hurricane Harvey. The main objective of this study was to examine the presence of targeted antibiotic-resistance genes and changes in the diversity of microbial communities in soils a short time (3-5 months) and a long time (18 months) after the catastrophic flooding event. Using polymerase chain reaction, we surveyed fourteen antibiotic-resistance elements: intI1, intI2, sul1, sul2, tet(A) to (E), tet(M), tet(O), tet(W), tet(X), and blaCMY-2. The number of antibiotic-resistance genes detected were higher in short-time samples compared to samples taken a long time after flooding. From all the genes surveyed, only tet(E), blaCMY-2, and intI1 were prevalent in short-time samples but not observed in long-time samples; thus, we propose these genes as indicators of exogenous antibiotic resistance in the soils. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene was used to find that flooding may have affected bacterial community diversity, enhanced differences among bacterial lineages profiles, and affected the relative abundance of Actinobacteria, Verrucomicrobia, and Gemmatimonadetes. A major conclusion of this study is that antibiotic resistance profiles of soil bacteria are impacted by urban flooding events such that they may pose an enhanced risk of exposure for up to three to five months following the hurricane. The occurrence of targeted antibiotic-resistance elements decreased eighteen months after the hurricane indicating a reduction of the risk of exposure long time after Harvey.
Collapse
Affiliation(s)
- Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ryan Pircher
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, United States of America
| | - Citlali Y Pérez-Domínguez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itza Mendoza-Sanchez
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, United States of America.
| |
Collapse
|
19
|
Juraschek K, Borowiak M, Tausch SH, Malorny B, Käsbohrer A, Otani S, Schwarz S, Meemken D, Deneke C, Hammerl JA. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli. Microorganisms 2021; 9:microorganisms9030598. [PMID: 33799479 PMCID: PMC8000739 DOI: 10.3390/microorganisms9030598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to public health worldwide. Currently, AMR typing changes from phenotypic testing to whole-genome sequence (WGS)-based detection of resistance determinants for a better understanding of the isolate diversity and elements involved in gene transmission (e.g., plasmids, bacteriophages, transposons). However, the use of WGS data in monitoring purposes requires suitable techniques, standardized parameters and approved guidelines for reliable AMR gene detection and prediction of their association with mobile genetic elements (plasmids). In this study, different sequencing and assembly strategies were tested for their suitability in AMR monitoring in Escherichia coli in the routines of the German National Reference Laboratory for Antimicrobial Resistances. To assess the outcomes of the different approaches, results from in silico predictions were compared with conventional phenotypic- and genotypic-typing data. With the focus on (fluoro)quinolone-resistant E.coli, five qnrS-positive isolates with multiple extrachromosomal elements were subjected to WGS with NextSeq (Illumina), PacBio (Pacific BioSciences) and ONT (Oxford Nanopore) for in depth characterization of the qnrS1-carrying plasmids. Raw reads from short- and long-read sequencing were assembled individually by Unicycler or Flye or a combination of both (hybrid assembly). The generated contigs were subjected to bioinformatics analysis. Based on the generated data, assembly of long-read sequences are error prone and can yield in a loss of small plasmid genomes. In contrast, short-read sequencing was shown to be insufficient for the prediction of a linkage of AMR genes (e.g., qnrS1) to specific plasmid sequences. Furthermore, short-read sequencing failed to detect certain duplications and was unsuitable for genome finishing. Overall, the hybrid assembly led to the most comprehensive typing results, especially in predicting associations of AMR genes and mobile genetic elements. Thus, the use of different sequencing technologies and hybrid assemblies currently represents the best approach for reliable AMR typing and risk assessment.
Collapse
Affiliation(s)
- Katharina Juraschek
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| | - Maria Borowiak
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Simon H. Tausch
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Burkhard Malorny
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Annemarie Käsbohrer
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Saria Otani
- DTU Food, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800 Kgs Lyngby, Denmark;
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Carlus Deneke
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Jens Andre Hammerl
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| |
Collapse
|
20
|
Salgado-Caxito M, Benavides JA, Munita JM, Rivas L, García P, Listoni FJP, Moreno-Switt AI, Paes AC. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev Vet Med 2021; 190:105316. [PMID: 33725561 DOI: 10.1016/j.prevetmed.2021.105316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
Abstract
Faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R E. coli) in dogs has been reported worldwide and can reduce the effectiveness of treatments against bacterial infections. However, the drivers that influence faecal carriage of ESC-R E. coli in dogs are poorly understood. The aims of this study were to estimate the prevalence of ESC-R E. coli among dogs prior to their admission to a veterinary teaching hospital and to identify risk factors associated with the faecal carriage of ESC-R E. coli. Rectal swabs (n = 130) were collected from dogs and screened for ESC-R E. coli using MacConkey agar supplemented with cefotaxime (2 μg/mL). E. coli species was confirmed by MALDI-TOF and screening of extended-spectrum beta-lactamase (ESBL) genes was conducted by multiplex PCR. Questionnaires were completed by each dog's owner to test several human and dog characteristics associated with ESC-R E. coli. The prevalence of faecal carriage of ESC-R E. coli was 9.2 % and 67 % of ESC-R E. coli isolates harboured ESBL genes including CTX-M alone or in combination with TEM. All ESC-R E. coli isolates were resistant to ceftriaxone, cefpodoxime, and cefotaxime and were susceptible to cefoxitin and carbapenems. The likelihood of carrying ESC-R E. coli was 15 times higher (OR = 14.41 [95 % CI: 1.80-38.02], p < 0.01) if the dog was treated with antibiotics 3-12 months prior to sampling and 8 times higher (OR = 7.96 [95 % CI: 2.96-92.07], p < 0.01) if the dog had direct contact with livestock, but 15 times lower (OR = 0.07 [95 % CI: 0.01-0.32], p < 0.01) if the dog was dewormed during the previous year. Our findings confirm the faecal carriage of ESC-R E. coli in subclinical dogs and call for further investigation regarding the impact of deworming on antibiotic-resistant bacteria in companion animals.
Collapse
Affiliation(s)
- Marília Salgado-Caxito
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil; Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.
| | - Julio A Benavides
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jose M Munita
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Lina Rivas
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando J P Listoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Andrea I Moreno-Switt
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio C Paes
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
21
|
High β-lactam resistance in Gram-negative bacteria associated with kennel cough and cat flu in Egypt. Sci Rep 2021; 11:3347. [PMID: 33558604 PMCID: PMC7870956 DOI: 10.1038/s41598-021-82061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance within pets has gained worldwide attention due to pets close contact with humans. This report examined at the molecular level, the antimicrobial resistance mechanisms associated with kennel cough and cat flu. 1378 pets in total were assessed for signs of respiratory infection, and nasal and conjunctival swabs were collected across 76 diseased animals. Phenotypically, 27% of the isolates were characterized by multidrug resistance and possessed high levels of resistance rates to β-lactams. Phenotypic ESBLs/AmpCs production were identified within 40.5% and 24.3% of the isolates, respectively. Genotypically, ESBL- and AmpC-encoding genes were detected in 33.8% and 10.8% of the isolates, respectively, with blaSHV comprising the most identified ESBL, and blaCMY and blaACT present as the AmpC with the highest levels. qnr genes were identified in 64.9% of the isolates, with qnrS being the most prevalent (44.6%). Several antimicrobial resistance determinants were detected for the first time within pets from Africa, including blaCTX-M-37, blaCTX-M-156, blaSHV-11, blaACT-23, blaACT25/31, blaDHA-1, and blaCMY-169. Our results revealed that pets displaying symptoms of respiratory illness are potential sources for pathogenic microbes possessing unique resistance mechanisms which could be disseminated to humans, thus leading to the development of severe untreatable infections in these hosts.
Collapse
|
22
|
Third Generation Cephalosporin Resistant Enterobacterales Infections in Hospitalized Horses and Donkeys: A Case-Case-Control Analysis. Antibiotics (Basel) 2021; 10:antibiotics10020155. [PMID: 33557061 PMCID: PMC7913880 DOI: 10.3390/antibiotics10020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
In human medicine, infections caused by third-generation cephalosporin-resistant Enterobacterales (3GCRE) are associated with detrimental outcomes. In veterinary medicine, controlled epidemiological analyses are lacking. A matched case–case–control investigation (1:1:1 ratio) was conducted in a large veterinary hospital (2017–2019). In total, 29 infected horses and donkeys were matched to 29 animals with third-generation cephalosporin-susceptible Enterobacterales (3GCSE) infections, and 29 uninfected controls (overall n = 87). Despite multiple significant associations per bivariable analyses, the only independent predictor for 3GCRE infection was recent exposure to antibiotics (adjusted odds ratio (aOR) = 104, p < 0.001), but this was also an independent predictor for 3GCSE infection (aOR = 22, p < 0.001), though the correlation with 3GCRE was significantly stronger (aOR = 9.3, p = 0.04). In separated multivariable outcome models, 3GCRE infections were independently associated with reduced clinical cure rates (aOR = 6.84, p = 0.003) and with 90 days mortality (aOR = 3.6, p = 0.003). Klebsiella spp. were the most common 3GCRE (36%), and blaCTX-M-1 was the major β-lactamase (79%). Polyclonality and multiple sequence types were evident among all Enterobacterales (e.g., Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae). The study substantiates the significance of 3GCRE infections in equine medicine, and their independent detrimental impact on cure rates and mortality. Multiple Enterobacterales genera, subtypes, clones and mechanisms of resistance are prevalent among horses and donkeys with 3GCRE infections.
Collapse
|
23
|
Salgado-Caxito M, Moreno-Switt AI, Paes AC, Shiva C, Munita JM, Rivas L, Benavides JA. Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics (Basel) 2021; 10:antibiotics10020122. [PMID: 33525466 PMCID: PMC7912125 DOI: 10.3390/antibiotics10020122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
The extensive use of antibiotics is a leading cause for the emergence and spread of antimicrobial resistance (AMR) among dogs. However, the impact of using antibiotics to treat viral infections on AMR remains unknown. In this study, we compared the prevalence of extended-spectrum cephalosporin-resistant Enterobacterales (ESCR-E) between dogs with a suspected infection of canine parvovirus (CPV) and canine distemper (CDV) before and after treatment with third-generation cephalosporins. We found a higher prevalence of ESCR-E faecal carriage in dogs suspected of CPV (37%) and CDV (15%) compared to dogs with noninfectious pathologies (9%) even prior to the start of their treatment. A 7-day course of ceftriaxone or ceftiofur administrated to CPV and CDV-suspected dogs substantially increased their ESCR-E faecal carriage during treatment (85% for CPV and 57% for CDV), and 4 weeks after the treatment ended (89% for CPV and 60% for CDV) when dogs were back in their households. Most of the observed resistance was carried by ESCR-E. coli carrying blaCTX-M genes. Our results suggest the need to optimize prophylactic antibiotic therapy in dogs treated for a suspected viral infection to prevent ESCR-E emergence and spread in the community.
Collapse
Affiliation(s)
- Marília Salgado-Caxito
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu 18618000, Brazil;
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile; (A.I.M.-S.); (J.M.M.); (L.R.)
- Correspondence: (M.S.-C.); (J.A.B.)
| | - Andrea I. Moreno-Switt
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile; (A.I.M.-S.); (J.M.M.); (L.R.)
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago 8940000, Chile
| | - Antonio Carlos Paes
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu 18618000, Brazil;
| | - Carlos Shiva
- Faculty of Veterinary Medicine and Zootechnics, Universidad Cayetano Heredia of Peru, Lima 15102, Peru;
| | - Jose M. Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile; (A.I.M.-S.); (J.M.M.); (L.R.)
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
| | - Lina Rivas
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile; (A.I.M.-S.); (J.M.M.); (L.R.)
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
| | - Julio A. Benavides
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile; (A.I.M.-S.); (J.M.M.); (L.R.)
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
- Correspondence: (M.S.-C.); (J.A.B.)
| |
Collapse
|
24
|
Gwenzi W, Chaukura N, Muisa-Zikali N, Teta C, Musvuugwa T, Rzymski P, Abia ALK. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010068. [PMID: 33445633 PMCID: PMC7826649 DOI: 10.3390/antibiotics10010068] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount. Pleasant, Harare P.O. Box MP167, Zimbabwe
- Correspondence: or (W.G.); or (A.L.K.A.)
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Norah Muisa-Zikali
- Department of Environmental Sciences and Technology, School of Agricultural Sciences and Technology, Chinhoyi University of Technology, Private Bag, Chinhoyi 7724, Zimbabwe; or
| | - Charles Teta
- Future Water Institute, Faculty of Engineering & Built Environment, University of Cape Town, Cape Town 7700, South Africa;
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Correspondence: or (W.G.); or (A.L.K.A.)
| |
Collapse
|
25
|
Poudel A, Kang Y, Mandal RK, Kalalah A, Butaye P, Hathcock T, Kelly P, Walz P, Macklin K, Cattley R, Price S, Adekanmbi F, Zhang L, Kitchens S, Kaltenboeck B, Wang C. Comparison of microbiota, antimicrobial resistance genes and mobile genetic elements in flies and the feces of sympatric animals. FEMS Microbiol Ecol 2020; 96:5762668. [PMID: 32105329 DOI: 10.1093/femsec/fiaa027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Flies are well-known vectors of bacterial pathogens, but there are little data on their role in spreading microbial community and antimicrobial resistance. In this study, we compared the bacterial community, antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in flies with those in the feces of sympatric animals. A 16S rRNA-based microbial analysis identified 23 bacterial phyla in fecal samples and 25 phyla in flies; all the phyla identified in the fecal samples were also found in the flies. Bray-Curtis dissimilarity analysis showed that the microbiota of the flies were more similar to the microbiota of the feces of their sympatric animals than those of the feces from the three other animal species studied. The qPCR array amplified 276 ARGs/MGEs in fecal samples, and 216 ARGs/MGEs in the flies, while 198 of these genes were identified in both flies and feces. Long-term studies with larger sample numbers from more geospatially distinct populations and infection trials are indicated to further evaluate the possibility of flies as sentinels for antimicrobial resistance.
Collapse
Affiliation(s)
- Anil Poudel
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Yuan Kang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Rabindra K Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anwar Kalalah
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Patrick Butaye
- Department of Biosciences, Ross University School of Veterinary Medicine; 00265, Basseterre, St Kitts, West Indies.,Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University; B-9000 Ghent, Ghent, Belgium
| | - Terri Hathcock
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Patrick Kelly
- Department of Biosciences, Ross University School of Veterinary Medicine; 00265, Basseterre, St Kitts, West Indies
| | - Paul Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Kenneth Macklin
- Department of Poultry Science, College of Agriculture, Auburn University; AL, 36830, Auburn, AL, USA
| | - Russell Cattley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Stuart Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Folasade Adekanmbi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Steven Kitchens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL36849, Auburn, AL, USA
| |
Collapse
|
26
|
de Menezes MP, Facin AC, Cardozo MV, Costa MT, Moraes PC. Evaluation of the Resistance Profile of Bacteria Obtained From Infected Sites of Dogs in a Veterinary Teaching Hospital in Brazil: A Retrospective Study. Top Companion Anim Med 2020; 42:100489. [PMID: 33144265 DOI: 10.1016/j.tcam.2020.100489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the prevalence and antimicrobial resistance profile of bacterial species isolated from infected sites of canines. All samples were collected from canine patients who received clinical or surgical care at the veterinary teaching hospital between March 2016 and November 2017. The samples were analyzed in a private pathology laboratory. A descriptive analysis of 295 antimicrobial susceptibility test reports was performed. Staphylococcus spp. (104/295 [35.25%]), Escherichia coli (100/295 [33.90%]), Proteus spp. (44/295 [14.92%]), Pseudomonas spp. (25/295 [8.47%]), and Klebsiella spp. (20/295 [6.78%]) were more frequently isolated, and a high incidence of multidrug resistance was observed (69,83% [206/295]). Methicillin-resistant Staphylococcus spp. accounted for 33% (33/100) of the Staphylococcus strains. Enterobacteriaceae cefotaxime resistance constituted 22.82 ± 4.49% and Enterobacteriaceae imipenem resistance constituted 5% (1/20) for Klebsiella spp., 5% (5/100) for E coli, and 6.82% (3/44) for Proteus spp. Pseudomonas spp. strains accounted for 8% (2/25) of imipenem resistance and 45.45% (10/22) of polymyxin B resistance. Our findings revealed a high rate of multidrug-resistant bacteria involvement in the infectious process of dogs. From the perspective of the One Health scenario, our results showed alarming data, given the high risk of resistant-strain dissemination between animals, owners, and healthcare professionals. There is an urgent need for strategies to control and prevent the evolution of new multidrug-resistant bacteria in veterinary hospitals. It is also crucial to understand and emphasize the role of veterinary professionals in this public health battle.
Collapse
Affiliation(s)
- Mareliza Possa de Menezes
- Departament of Veterinary Clinic and Surgery, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Jaboticabal, SP, Brazil
| | - Andréia Coutinho Facin
- Departament of Veterinary Clinic and Surgery, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Jaboticabal, SP, Brazil.
| | - Marita Vedovelli Cardozo
- Department of Veterinary Pathology, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Jaboticabal, SP, Brazil
| | - Mirela Tinucci Costa
- Departament of Veterinary Clinic and Surgery, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Jaboticabal, SP, Brazil
| | - Paola Castro Moraes
- Departament of Veterinary Clinic and Surgery, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP/FCAV), Jaboticabal, SP, Brazil
| |
Collapse
|
27
|
Flament-Simon SC, de Toro M, García V, Blanco JE, Blanco M, Alonso MP, Goicoa A, Díaz-González J, Nicolas-Chanoine MH, Blanco J. Molecular Characteristics of Extraintestinal Pathogenic E. coli (ExPEC), Uropathogenic E. coli (UPEC), and Multidrug Resistant E. coli Isolated from Healthy Dogs in Spain. Whole Genome Sequencing of Canine ST372 Isolates and Comparison with Human Isolates Causing Extraintestinal Infections. Microorganisms 2020; 8:microorganisms8111712. [PMID: 33142871 PMCID: PMC7716232 DOI: 10.3390/microorganisms8111712] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
Under a one health perspective and the worldwide antimicrobial resistance concern, we investigated extraintestinal pathogenic Escherichia coli (ExPEC), uropathogenic E. coli (UPEC), and multidrug resistant (MDR) E. coli from 197 isolates recovered from healthy dogs in Spain between 2013 and 2017. A total of 91 (46.2%) isolates were molecularly classified as ExPEC and/or UPEC, including 50 clones, among which (i) four clones were dominant (B2-CH14-180-ST127, B2-CH52-14-ST141, B2-CH103-9-ST372 and F-CH4-58-ST648) and (ii) 15 had been identified among isolates causing extraintestinal infections in Spanish and French humans in 2015 and 2016. A total of 28 (14.2%) isolates were classified as MDR, associated with B1, D, and E phylogroups, and included 24 clones, of which eight had also been identified among the human clinical isolates. We selected 23 ST372 strains, 21 from healthy dogs, and two from human clinical isolates for whole genome sequencing and built an SNP-tree with these 23 genomes and 174 genomes (128 from canine strains and 46 from human strains) obtained from public databases. These 197 genomes were segregated into six clusters. Cluster 1 comprised 74.6% of the strain genomes, mostly composed of canine strain genomes (p < 0.00001). Clusters 4 and 6 also included canine strain genomes, while clusters 2, 3, and 5 were significantly associated with human strain genomes. Finding several common clones and clone-related serotypes in dogs and humans suggests a potentially bidirectional clone transfer that argues for the one health perspective.
Collapse
Affiliation(s)
- Saskia-Camille Flament-Simon
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Vanesa García
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Jesús E. Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pilar Alonso
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain
| | - Ana Goicoa
- Servicio de Medicina Interna, Hospital Veterinario Universitario Rof Codina, USC, 27002 Lugo, Spain;
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, USC, 27002 Lugo, Spain
| | - Juan Díaz-González
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
| | | | - Jorge Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence:
| |
Collapse
|
28
|
Rodríguez-González MJ, Jiménez-Pearson MA, Duarte F, Poklepovich T, Campos J, Araya-Sánchez LN, Chirino-Trejo M, Barquero-Calvo E. Multidrug-Resistant CTX-M and CMY-2 Producing Escherichia coli Isolated from Healthy Household Dogs from the Great Metropolitan Area, Costa Rica. Microb Drug Resist 2020; 26:1421-1428. [PMID: 33085572 PMCID: PMC7698996 DOI: 10.1089/mdr.2020.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Objective: This study aimed to determine the prevalence of fecal carriage of antibiotic-resistant Escherichia coli of healthy household dogs with an emphasis on extended-spectrum β-lactamases (ESBL), AmpC-type β-lactamases and resistance to quinolones. Materials and Methods: Rectal swabs were collected from 74 dogs without any clinical evidence of gastrointestinal disease. Samples were cultured on MacConkey agar plates and MacConkey supplemented with 2 μg/mL cefotaxime or 5 μg/mL ciprofloxacin. Isolates were identified with Vitek 2 Compact and susceptibility testing performed by Kirby Bauer disk diffusion method. Minimal inhibitory concentration (MIC) was done on isolates resistant to cefotaxime, ciprofloxacin, and nalidixic acid. PCR amplification was performed to detect CTX-M and CMY-2. Isolates positive for CTX-M and/or CMY-2 were selected for whole-genome sequencing. Results: Multiresistance was detected in 56% of the isolates. A high percentage of resistance was detected for cefazolin (63%), ampicillin (54%), streptomycin (49%), nalidixic acid (42%) and tetracycline (38%). The MIC50 and MIC90 for isolates resistant to cefotaxime (24%) was determined as 16 and >250 μg/mL, respectively; for ciprofloxacin (18%), 125 and 250 μg/mL, respectively. ESBL (CTX-M type) and AmpC (CMY-2 type) were detected in 6 (7.1%) and 14 (19%) of the isolates, respectively. Whole-genome sequence analysis showed high genetic diversity in most of the isolates and a large variety of resistance mechanisms, including mobile genetic elements. Conclusion: The frequency of multidrug-resistant E. coli is worrying, mainly because of the presence of many isolates producing ESBL and AmpC β-lactamases. Based on the “One Health” concept, considering the relationships between animals, humans, and the environment, these data support the notion that companion animals are important reservoirs of multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | | | - Francisco Duarte
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, San José, Costa Rica
| | - Tomás Poklepovich
- Plataforma Genómica y Bioinformática-Genomic and Bioinformatics Platform INEI-ANLIS "Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Josefina Campos
- Plataforma Genómica y Bioinformática-Genomic and Bioinformatics Platform INEI-ANLIS "Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Manuel Chirino-Trejo
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, UNA, Heredia, Costa Rica
| |
Collapse
|
29
|
Antibiotic-Resistant Escherichia coli and Sequence Type 131 in Fecal Colonization in Dogs in Taiwan. Microorganisms 2020; 8:microorganisms8091439. [PMID: 32962221 PMCID: PMC7565575 DOI: 10.3390/microorganisms8091439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Most drug-resistant Escherichia coli isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant E. coli and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. Methods: Rectal swabs were used for E. coli isolation from 299 non-infectious dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of E. coli for major STs were performed. Result: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing E. coli in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (p < 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and FimH22. Conclusion: Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.
Collapse
|
30
|
High Prevalence and Diversity of Cephalosporin-Resistant Enterobacteriaceae Including Extraintestinal Pathogenic E. coli CC648 Lineage in Rural and Urban Dogs in Northwest Spain. Antibiotics (Basel) 2020; 9:antibiotics9080468. [PMID: 32752283 PMCID: PMC7460362 DOI: 10.3390/antibiotics9080468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to assess the prevalence of extended spectrum-β-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in fecal samples recovered from rural and urban healthy dogs in Northwest Spain (Galicia) to identify potential high-risk clones and to molecularly characterize positive isolates regarding the genes coding for ESBL/pAmpC resistance and virulence. Thirty-five (19.6%) out of 179 dogs were positive for cephalosporin-resistant Enterobacteriaceae, including Escherichiacoli and Klebsiella pneumoniae (39 and three isolates, respectively). All the isolates were multidrug resistant, with high rates of resistance to different drugs, including ciprofloxacin (71.4%). A wide diversity of ESBL/pAmpC enzymes, as well as E. coli phylogroups (A, B1, C, D, E, F and clade I) were found. The eight isolates (20.5%) found to conform to the ExPEC status, belonged to clones O1:H45-clade I-ST770 (CH11-552), O18:H11-A-ST93-CC168 (CH11-neg), O23:H16-B1-ST453-CC86 (CH6-31), and O83:H42-F-ST1485-CC648 (CH231-58), with the latter also complying the uropathogenic (UPEC) status. The three K. pneumoniae recovered produced CTX-M-15 and belonged to the ST307, a clone previously reported in human clinical isolates. Our study highlights the potential role of both rural and urban dogs as a reservoir of high-risk Enterobacteriaceae clones, such as the CC648 of E. coli and antimicrobial resistance traits. Within a One-Health approach, their surveillance should be a priority in the fight against antimicrobial resistance.
Collapse
|
31
|
Loncaric I, Misic D, Szostak MP, Künzel F, Schäfer-Somi S, Spergser J. Broad-Spectrum Cephalosporin-Resistant and/or Fluoroquinolone-Resistant Enterobacterales Associated with Canine and Feline Urogenital Infections. Antibiotics (Basel) 2020; 9:E387. [PMID: 32645942 PMCID: PMC7399855 DOI: 10.3390/antibiotics9070387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to characterize Enterobacterales resistant to 3rd and 4th generation cephalosporins, carbapenems and/or fluoroquinolones, isolated from dogs and cats with urogenital infections. In total, 36 strains (Escherichia coli (n = 28), Klebsiella pneumoniae (n = 3), Serratia marcescens, Raoultella ornithinolytica, Proteus mirabilis, Citrobacter portucalensis and Enterobacter cloacae (each n = 1)) were included in the present study, 28 from Austria and 8 from Serbia. Isolates were characterized by a polyphasic approach including susceptibility pheno- and genotyping and microarray-based assays. Escherichia (E.) coli isolates were additionally characterized by two-locus (fumC and fimH) sequence phylotyping and multi-locus sequence typing (MLST) of selected isolates. MLST of carbapenem-resistant Enterobacter cloacae isolates was also performed. Among E. coli, the most dominant phylogenetic group was B1 (27.8%), followed by C, (16.6%), A and Clade II (5.5% each), B2 and F (2.77% each). The most predominant β-lactam resistance genes were blaTEM (70%) and blaCTX-M (38.8%), blaCMY (25%). blaNDM was detected in one carbapenem-resistant Enterobacter cloacae ST114. The most common ST among selected E. coli was 744 (10.7% isolates). The pandemic clones ST131 and ST648 carrying CTX-M-15 were also detected. Remaining STs belonged to 469, 1287, 1463 and 1642. E. coli clonotyping revealed 20 CH types. Based on the presence of certain virulence genes, three isolates were categorized as ExPEC/UPEC. The most prevalent virulence factors were fimH detected in 61%, iucD and iss both in 55%, iroN in 27.8%, papC in 13.8% and sat in 8.3% isolates.
Collapse
Affiliation(s)
- Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.P.S.); (J.S.)
| | - Dusan Misic
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Michael P. Szostak
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.P.S.); (J.S.)
| | - Frank Künzel
- Clinic for Small Animals, Internal Medicine Unit, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Sabine Schäfer-Somi
- Department for Small Animals and Horses, Platform for AI and ET, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.P.S.); (J.S.)
| |
Collapse
|
32
|
Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.02064-19. [PMID: 32122890 DOI: 10.1128/aac.02064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/24/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, the plasmid content of clinical and commensal strains was analyzed and compared. The replicon profile was similar in both populations, except for L, M, A/C, and N (detected only in clinical strains) and HI1 (only in commensal strains). Although I1 and F were the most frequent replicons, only IncI1, sequence type 12 (ST12) was associated with bla CMY-2 in both populations. In contrast, the widespread resistant IncF plasmids were not linked to a single epidemic plasmid.
Collapse
|