1
|
Ács V, Szeli N, Nagy J, Áprily S, Tischler A, Csötönyi O, Jócsák I, Benedek I, Petneházy Ö, Turbók J, Enyezdi J, Halas V. Effects of early feeding technologies providing methionine supplementation on performance, lipid oxidation, and some immune-related gene expression in broiler chicken. Poult Sci 2025; 104:105335. [PMID: 40449108 DOI: 10.1016/j.psj.2025.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/21/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025] Open
Abstract
In ovo administration of DL-methionine and post-hatch Hydrogel® supplements were tested to examine the impact of early feeding on performance and immune-related traits in a commercial broiler stock. One thousand one hundred and twenty Ross 308 eggs were incubated and assigned to seven treatment groups: intact (no in ovo administration) and immediate feed access (C1), in ovo saline treatment and immediate feed access (C2), intact and delayed feeding (ID), in ovo saline treatment and delayed feeding (IoS), in ovo DL-Methionine treatment and delayed feeding (IoM), intact and delayed access to feed, but immediate access to commercial Hydrogel® without (Hyd) or with 5mg/kg (HydM) DL-methionine post-hatch. The results showed, that the in-ovo methionine may have positive effects on the weight gain of the birds (p < 0.001) compared to the commercial Hydrogel® however, it cannot compete with the immediate feeding. The number of heterophils decreased significantly (p < 0.001) by day 21 in ID and IoS compared to the immediately fed control (C1). The number of lymphocytes, monocytes, and eosinophils, increased in treatments supplemented with methionine (p < 0.05) (IoM,HydM) indicating enhanced immune protection. There were no differences in the total antioxidant capacity (FRAP) and malonaldehyde concentration (MDA) (p = 0.07) in the examined groups. The Cytochrome P450 H1 (CYP2H1) gene was downregulated in all treatment groups (on days 21 and 35) indicating a slower metabolism, particularly in the ID group compared to C1 and C2 (p < 0.001). The HydM treatment could upregulate the IL2 expression as the immediate feeding, while only IoM treatment resulted in significant downregulation by day 35 (p < 0.001). IL6 was upregulated in all treatment groups (p < 0.001) except for HydM, where the gene expression did not differ from the housekeeping gene. Early administration of dietary methionine has a positive effect on performance and the immune system, however, none of the early feeding methods can compete with immediate feed access. The possible positive effects of early nutrition and its epigenetic impact should be examined in further studies.
Collapse
Affiliation(s)
- Virág Ács
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Guba Sándor Street, Kaposvár H-7400, Hungary; Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary.
| | - Nóra Szeli
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | | | - Szilvia Áprily
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Annamária Tischler
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Orsolya Csötönyi
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Ildikó Jócsák
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Ildikó Benedek
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| | - Örs Petneházy
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary; Medicopus Nonprofit Ltd., Kaposvár H-7400, Hungary
| | - Janka Turbók
- Animal Health Diagnostic Department, National Food Chain Safety Office, Animal Health Diagnostic Directorate, Kaposvár H-7400, Hungary
| | | | - Veronika Halas
- Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár H-7400, Hungary
| |
Collapse
|
2
|
Mangan M, Połtowicz K, Metges CC, Siwek M. Modulatory effects of in ovo delivery of galactooligosaccharide and Lactiplantibacillus plantarum on antioxidant capacity, gene expression, and selected plasma metabolite parameters of broiler chickens. J Appl Genet 2025; 66:421-434. [PMID: 39666172 PMCID: PMC12000254 DOI: 10.1007/s13353-024-00931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
A stable gut microbiota promotes a healthy gut and enhances immune function, antioxidant status, and metabolic activities in chickens. The present research work aimed to investigate the modulatory impacts of in ovo delivery of prebiotic and probiotic on oxidative stress, the intestinal transcriptome, and various plasma metabolites in chickens. Fertilized Ross 308 eggs were administered in ovo either with galactooligosaccharide (GOS) (3.5 mg/egg or Lactiplantibacillus plantarum (LP) 1 × 106/egg on the 12th day of egg incubation. Three hundred viable Ross 308 broiler hatching eggs in total were randomly assigned to four groups, namely, the negative control not injected group, the group receiving physiological saline injections as the positive control, GOS, and LP. The analysis of genes associated with immune functions, antioxidants, barrier functions, and free fatty acid receptors were determined via qPCR. The analysis of the selected plasma blood metabolites was performed automatically with Pentra C 400. The antioxidant capacity of the chickens' liver, breast muscle, and spleen was enhanced by the in ovo injection of GOS and LP. The immune-related gene expression levels were upregulated after in ovo stimulation with either GOS or LP which improved the gut health of broiler chickens. In addition, several genes related to gut barrier functions were upregulated, thus ensuring epithelial integrity. As for blood plasma metabolites, no adverse effects were observed. In summary, we report that in ovo stimulation with either GOS or LP stimulates the immune system and improves the antioxidant status and gut health of chickens with no negative impact on plasma blood metabolite indices.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakow-Ska 1, 32-083, Balice, Poland
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
3
|
Sonálio KC, Malcorra de Almeida L, Bassi LS, Kuritza LN, Dias IDC, da Rocha C, Maiorka A. Effect of Putrescine Inoculation In Ovo on Hatchability, Hepatic and Muscular Glycogen Reserve, Intestinal Morphology, and Performance of Broilers. Animals (Basel) 2025; 15:1259. [PMID: 40362073 PMCID: PMC12070924 DOI: 10.3390/ani15091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
The objective of this study was to evaluate the inoculation of nutrient solutions with increasing levels of putrescine on the hatchability, physiology, and performance of broilers during the initial phase. The study is composed of four treatments with increasing doses of putrescine (0.015; 0.030; 0.060, and 0.090%) and a control group. At hatch, hatchability rate; ratio between egg weight and chick weight; ratio between yolk sac, liver, breast and intestine weight, and chick weight; glycogen concentration in the liver and breast; and morphometric characteristics of the jejunum and ileum were evaluated. After hatch, 400 birds were housed in metabolic cages according to the treatments received, and feed intake, body weight gain, and feed conversion ratio were assessed at specific time points. Hatchability, chick performance at hatch, and organ weight were not affected by the inoculation of increasing levels of putrescine. Intestinal villi at hatch were higher in groups supplemented with putrescine (p < 0.001). The amounts of hepatic glycogen per gram of tissue at hatch were higher in groups with the lowest levels of putrescine and decreased with increasing doses (p = 0.017). Growth performance from 1 to 21 days was not influenced by the inoculation of putrescine.
Collapse
Affiliation(s)
- Katiucia Cristine Sonálio
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Leopoldo Malcorra de Almeida
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Lucas Schmidt Bassi
- Department of Animal Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil (C.d.R.)
| | - Leandro Nagae Kuritza
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Isabela de Camargo Dias
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| | - Chayane da Rocha
- Department of Animal Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil (C.d.R.)
| | - Alex Maiorka
- Department of Veterinary Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil; (L.M.d.A.); (L.N.K.); (I.d.C.D.); (A.M.)
| |
Collapse
|
4
|
Ayalew H, Xu C, Adane A, Sanchez ALB, Li S, Wang J, Wu S, Qiu K, Qi G, Zhang H. Ontogeny and function of the intestinal epithelial and innate immune cells during early development of chicks: to explore in ovo immunomodulatory nutrition. Poult Sci 2025; 104:104607. [PMID: 39693955 PMCID: PMC11720616 DOI: 10.1016/j.psj.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Intestinal epithelial cells (IECs) and innate immune cells in the gastrointestinal tract (GIT) of chickens play crucial roles in pathogens defense and maintaining gut health. However, their effectiveness influenced with their developmental and functional stages during pre and post hatch periods of chick. During embryonic development, differentiation and migration of these innate immune systems are tightly regulated by diverse cellular and molecular factors. The maturation and functionality of IECs are histologically evident starting embryonic day (ED) 14. Moreover, the innate immun cells, such as dendritic cells (DCs), macrophages, natural killer (NK) cells, and gamma-delta (γδ) T cells have showed developmental expression varation, while most identified by the 3rd days of incubation and capable of responsing to their cognate ligands of pathogens by ED 17, it may not efficient during posthatch period. In modern poultry production, in ovo feeding of bioactive substances is a topic of interest to maximize the protection capability of hatched chicks by enhancing improvement on the development of innate immune systems. However, their actions and effects on each distinct innate immune involved response are inconsistent and not clearly understood. Thus, summarizing the ontogeny and function of IECs, innate immunity systems, and interaction mechanisms of in ovo feeding of bioactive substances could provide baseline information for designing targeted in ovo feeding interventions to modulate cell waise specific innate immune systems.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Assefa Adane
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Astrid Lissette Barreto Sanchez
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siman Li
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Kuka TT, Bakoma B, Hamidu J, Onagbesan O, Tona K. Evaluation of d 18 in ovo administration of soursop (Annona muricata) leaf extract into the air space on hatch performance and physiology of Noiler chicks. Poult Sci 2024; 103:104220. [PMID: 39265514 PMCID: PMC11416592 DOI: 10.1016/j.psj.2024.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024] Open
Abstract
Efficient poultry production can be accomplished using combined technologies. A combination of in ovo and ethno-veterinary technologies can deliver significant benefits, including reduced labour and production costs. This study evaluated the effect of in ovo administration of soursop leaf extract (SLE) on the hatching performance and physiology of Noiler chicks. A total of 550 eggs were incubated, and 460 fertile eggs were randomly distributed into 4 groups with 3 replicates on the 18th d of incubation. The eggs were then injected with 0.75 µg SLE, 1.5 µg SLE, and saline solution (negative control) at a rate of 0.2 ml in the air space. The noninjected group served as the positive control. At the end of the hatching period, the various groups were evaluated for embryo mortality, hatchability, hatch duration, organ weight, serum biochemistry, and chick quality. The results showed no significant differences (P > 0.05) in embryonic mortality, hatchability, organ weight, total protein, albumin, globulin, aspartate aminotransferase, alanine aminotransferase, and glucose among the treatment groups. However, chick weight, chick quality, and serum triglyceride levels were significantly (P < 0.05) higher in the extract-injected group. Additionally, incubation and hatch times were significantly lower (P < 0.05) in the SLE group compared to the other groups. In ovo administration of soursop leaf extract resulted in reduced incubation duration, hatch time, and embryo mortality. In conclusion, the in ovo injection of SLE improved hatch performance and chick quality.
Collapse
Affiliation(s)
- Timothy T Kuka
- Regional Center of Excellence in Poultry Science, University of Lome, P.B. 1515, Lome, Togo; Department of Animal Nutrition, Joseph Sarwuan Tarka University, P.M.B. 2373, Makurdi, Nigeria.
| | - Batomayena Bakoma
- Pharmaceutical Sciences Research Laboratory, Department of Pharmacy, University of Lome, P.B. 1515, Lome, Togo
| | - Jacob Hamidu
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, P. O. Box Up 1279, Kumasi, Ghana
| | - Okanlawon Onagbesan
- Regional Center of Excellence in Poultry Science, University of Lome, P.B. 1515, Lome, Togo
| | - Kokou Tona
- Regional Center of Excellence in Poultry Science, University of Lome, P.B. 1515, Lome, Togo
| |
Collapse
|
6
|
Shehata AM, Seddek NH, Khamis T, Elnesr SS, Nouri HR, Albasri HM, Paswan VK. In-ovo injection of Bacillus subtilis, raffinose, and their combinations enhances hatchability, gut health, nutrient transport- and intestinal function-related genes, and early development of broiler chicks. Poult Sci 2024; 103:104134. [PMID: 39154607 PMCID: PMC11471093 DOI: 10.1016/j.psj.2024.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
An experiment was conducted to assess the response of chicks to in-ovo injection of Bacillus subtilis (probiotic), raffinose (prebiotic), and their combinations. The study used 1,500 embryonated eggs allotted to 10 groups/ 6 replicates (150 eggs/group). The experimental treatments were: 1) un-injected control (NC); 2) sham (sterile distilled water) (PC); 3) probiotic 4 × 105CFU/egg (LBS); 4) probiotic 4 × 106CFU/egg (HBS); 5) prebiotic 2 mg/egg (LR); (6 prebiotic 3 mg/egg (HR); 7) probiotic 4 × 105CFU + prebiotic 2 mg/egg (LBS+LR); 8) probiotic 4 × 105CFU + prebiotic 3 mg/egg (LBS+HR); 9) probiotic 4 × 106CFU + prebiotic 2 mg/egg (HBS+LR); and 10) probiotic 4 × 106CFU + prebiotic 3 mg/egg (HBS+HR). Results showed that in-ovo inclusion of Bacillus subtilis, prebiotic, and their combinations improved hatchability, yolk-free chick weight, and chick weight compared to the control group. Moreover, the in-ovo treatment reduced residual yolk weight on the day of hatch compared to the control group. Different levels of in-ovo B. subtilis alone or combined with raffinose significantly (P ≤ 0.001) reduced total bacterial count and total yeast and mold count compared to the negative control group. Total coliform and E. coli decreased significantly (P ≤ 0.001) in groups treated with probiotics, prebiotics, and synbiotics with different doses during incubation compared to those in the control. Clostridium spp. was not detected in the groups injected with B. subtilis alone or combined with raffinose. In-ovo probiotics and synbiotics (LBS+LR & LBS+HR) significantly (P ≤ 0.001) increased ileal villus length compared to other groups. In-ovo treatment increased mRNA expression of JAM-2 compared to the control group. The fold change significantly increased in group LBS+HR for genes MUC-2, OCLN, VEGF, SGLT-1, and EAAT-3 compared to the negative control. In conclusion, in-ovo injection of a low dose of B. subtilis plus a high or low dose of raffinose can positively affect hatching traits, cecal microbial populations, intestinal histomorphometry, nutrient transport- and intestinal function-related genes, and chick quality of newly hatched broiler chicks.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
| | - Nermien Helmy Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hela Rached Nouri
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Chen Z, Zheng X, Shu X, Hua G, Zhu R, Sun L, Chen J. Supplemental L-arginine promotes hepatocyte proliferation and alters liver fatty acid metabolism in the late embryonic phase: an RNA-seq analysis. Poult Sci 2024; 103:104175. [PMID: 39216267 PMCID: PMC11402549 DOI: 10.1016/j.psj.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The in ovo feeding (IOF) of L-arginine (L-Arg) to chick embryos is a viable method for improving early intestinal development, subsequently leading to an acceleration in growth rate during the posthatch stage. However, the liver, being the pivotal organ for energy metabolism in poultry, the precise effects and mechanisms of L-Arg on the liver development and metabolism remain unclear. To elucidate these, the present study injected 2 doses of L-Arg (10 mg/egg and 15 mg/egg) into the embryos of Hongyao chickens at 17.5 d of incubation, subsequently incubating them until d 19 for further analysis. IOF of 15 mg L-Arg/egg significantly increased the organ indices of liver and small intestine, as well as the duodenal villus height/crypt depth. RNA-Seq analysis of liver tissues showed that the metabolism of xenobiotics, amino acid metabolism, and the fatty acid metabolism were significantly enriched in L-Arg injection group. The core differentially expressed genes (DEGs) were primarily involved in cell proliferation and fatty acid metabolism. The CCK8 assays revealed that supplemental L-Arg significantly enhanced the proliferation of primary embryo hepatocytes and leghorn male hepatoma (LMH) cells. Upregulation of core DEGs, including HBEGF, HES4, NEK3, EGR1, and USP2, significantly promoted the proliferation of liver cells. Additionally, analysis of triglyceride and total cholesterol content, as well as oil red O staining, indicated that supplemental L-Arg effectively reduced lipid accumulation. Overall, L-Arg supplementation in late chick embryos may promote early liver and small intestine development by reducing liver lipid deposition and enhancing energy efficiency, necessitating further experimental validation. This study provides profound insights into the molecular regulatory network of L-Arg in promoting the development of chicken embryos. The identified DEGs that promote cell proliferation and lipid metabolism can serve as novel targets for further developing methods to enhance early development of chicken embryos.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
8
|
Dunisławska A, Biesek J, Adamski M. Growth performance, carcass composition, and qualitative meat features of broiler chickens after galactooligosaccharides and sodium butyrate in ovo administration. Poult Sci 2024; 103:104094. [PMID: 39096828 PMCID: PMC11345557 DOI: 10.1016/j.psj.2024.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
The study aimed to analyze the growth performance, feed indicators, and quantitative and qualitative physicochemical features of carcass and meat from broiler chickens after rearing, stimulated in ovo on d 12 of incubation with various substances. In the experiment, 1,200 hatching eggs from meat-type hen Ross 308 parental flock were incubated. On d 12, the injection was performed. Group CON-0 was noninjected. Group CON-S was injected with saline. In the GOS group, the procedure was performed in ovo with galactooligosaccharides (dissolved 3.5 mg of GOS in 0.2 mL of NaCl). In the SB group, butyric acid sodium salt was administered in a 0.3% SB dissolved in 0.2 mL NaCl. After hatching, 336, 1-day-old chicks per group were transferred to the broiler house and kept in 7 pens with 12 chickens per group for 42 d. The body weight and feed intake indicators were calculated. Next, 40 birds were selected (n = 10 per group) and taken to analyze carcass composition and meat quality (pH, color, WHC, drip loss, chemical composition). Compared to the experimental groups, the highest body weight indicators were found in groups CON-0 and CON-S. The feed conversion ratio was the lowest in the SB group on d 36 to 42 (P < 0.05). The European Efficiency Production Factor in groups GOS and SB was lower than in group CON-S (P = 0.005). The GOS group showed higher pH24hours in the pectoral muscles than the CON-S group (P = 0.011). The leg muscles showed better WHC in the CON-S, GOS, and SB groups than in the CON-0 group (P < 0.001). A lower intramuscular fat of the pectoral and leg muscle content was demonstrated, especially in the SB group. Injection of galactooligosaccharides and sodium butyrate in ovo adversely affected broiler production but did not alter carcass composition. It varied pectoral muscles' pH and chemical composition and improved water holding capacity and chemical composition in leg muscles.
Collapse
Affiliation(s)
- Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
9
|
Li H, Zhang X, Wang X, Wu Q, Zheng W, Liu C, Wei S, Zuo X, Xiao W, Ye H, Wang W, Yang L, Zhu Y. The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck. Poult Sci 2024; 103:103929. [PMID: 38943802 PMCID: PMC11261488 DOI: 10.1016/j.psj.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiufen Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiaowen Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Shi Wei
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | | | - Hui Ye
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China; Woman Biotechnology Co, Ltd, Guangzhou, 510000 China.
| |
Collapse
|
10
|
Shiraishi JI, Shimakura N, Kimura K, Egusa AS, Ohta Y. Embryonic Cadaverine Signaling: Implications for Plasma Free Amino Acid and Skeletal Muscle Energy Metabolism in Newly Hatched Chicks. J Poult Sci 2024; 61:2024017. [PMID: 38846485 PMCID: PMC11150007 DOI: 10.2141/jpsa.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
Cadaverine is a bioactive substance derived from lysine degradation by lysine decarboxylase and has gained attention for its physiological effects. Studies in rodents have revealed its role as a cell growth regulator, particularly intestinal bacterial-produced cadaverine. However, the nutritional and physiological roles of cadaverine during the embryonic period remain unclear, especially considering the immature state of the gut microbiota and digestive functions during this stage. This study explored the potential functions of cadaverine as a nutritional and metabolic signal during chicken embryonic development. Experiments were conducted using an in ovo administration method to evaluate the effects of nutritional bioactive substances on developing chicken embryos. Although there were no observable changes in body or organ weights of newly hatched chicks following in ovo cadaverine administration to day 18 chick embryos, plasma tryptophan, Nτ-methylhistidine, and Nπ-methylhistidine concentrations decreased and the gene expression of insulin/insulin-like growth factor 1 signaling in skeletal muscle was upregulated. These findings imply that cadaverine influences tryptophan metabolism and skeletal muscle catabolism during the embryonic period, suggesting its role as a bioactive factor contributing to energy metabolism signaling in skeletal muscle.
Collapse
Affiliation(s)
- Jun-ichi Shiraishi
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Naoko Shimakura
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Kazuki Kimura
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Ai-Saiga Egusa
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Yoshiyuki Ohta
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| |
Collapse
|
11
|
Petit A, Tesseraud S, Collin A, Couroussé N, Berri C, Bihan-Duval EL, Métayer-Coustard S. Ontogeny of hepatic metabolism in two broiler lines divergently selected for the ultimate pH of the Pectoralis major muscle. BMC Genomics 2024; 25:438. [PMID: 38698322 PMCID: PMC11067279 DOI: 10.1186/s12864-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid β-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.
Collapse
Affiliation(s)
| | | | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | - Cécile Berri
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | | |
Collapse
|
12
|
Kinstler SR, Cloft SE, Siegel PB, Honaker CF, Maurer JJ, Wong EA. Early intestinal development of chickens divergently selected for high or low 8-wk body weight and a commercial broiler. Poult Sci 2024; 103:103538. [PMID: 38387293 PMCID: PMC10900922 DOI: 10.1016/j.psj.2024.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.
Collapse
Affiliation(s)
| | - Sara E Cloft
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul B Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - John J Maurer
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric A Wong
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Lugata JK, Ndunguru SF, Reda GK, Ozsváth XE, Angyal E, Czeglédi L, Gulyás G, Knop R, Oláh J, Mészár Z, Varga R, Csernus B, Szabó C. Methionine sources and genotype affect embryonic intestinal development, antioxidants, tight junctions, and growth-related gene expression in chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:218-230. [PMID: 38362512 PMCID: PMC10867599 DOI: 10.1016/j.aninu.2023.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Methionine (Met) is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth. The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health. Fertilized eggs of the two genotypes, TETRA-SL layer hybrid (TSL) - commercial layer hybrid and Hungarian Partridge colored hen breed (HPC) - a native genotype, were randomly distributed into four treatments for each genotype. The treatment groups include the following: 1) control non-injected eggs (NoIn); 2) saline-injected (SaIn); 3) DL-Met injected (DLM); and 4) L-Met injected (LM). The in ovo injection was carried out on 17.5 d of embryonic development; after hatching, eight chicks per group were sacrificed, and the jejunum was extracted for analysis. The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width, villus height, and villus area (P < 0.05) compared to the control. The DLM group had significantly reduced crypt depth, glutathione content (GSH), glutathione S-transferase 3 alpha (GST3), occludin (OCLN) gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group (P < 0.05). The HPC genotype has overexpressed insulin-like growth factor 1 (IGF1) gene, tricellulin (MD2), occludin (OCLN), superoxide dismutase 1 (SOD1), and GST3 genes than the TSL genotype (P < 0.05). In conclusion, these findings showed that in ovo injection of Met enhanced intestinal development, and function, with genotypes responding differently under normal conditions. Genotypes also influenced the expression of intestinal antioxidants, tight junction, and growth-related genes.
Collapse
Affiliation(s)
- James K. Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
| | - Sawadi F. Ndunguru
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gebrehaweria K. Reda
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Faculty of Agriculture and Food Sciences and Environmental Management, Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Xénia E. Ozsváth
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Eszter Angyal
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rita Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Sharma S, Kulkarni RR, Sharif S, Hassan H, Alizadeh M, Pratt S, Abdelaziz K. In ovo feeding of probiotic lactobacilli differentially alters expression of genes involved in the development and immunological maturation of bursa of Fabricius in pre-hatched chicks. Poult Sci 2024; 103:103237. [PMID: 38011819 PMCID: PMC10801656 DOI: 10.1016/j.psj.2023.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence indicates that immunological maturation of the gut-associated lymphoid tissues, including the bursa of Fabricius, is dependent upon antigenic stimulation post-hatch. In view of these data, the present study investigated the impact of exposing the immune system of chick embryos to antigenic stimuli, via in ovo delivery of poultry-specific lactobacilli, on the expression of genes associated with early bursal development and maturation. Broiler line embryonated eggs were inoculated with 106 and 107 colony-forming units (CFUs) of an individual or a mixture of Lactobacillus species, including L. crispatus (C25), L. animalis (P38), L. acidophilus (P42), and L. reuteri (P43), at embryonic day 18 (ED18). The bursa of Fabricius was collected from pre-hatched chicks (ED20) to measure the expression levels of various immune system genes. The results revealed that L. acidophilus and the mixture of Lactobacillus species at the dose of 106 CFU consistently elicited higher expression of genes responsible for B cell development, differentiation, and survival (B cell activating factor (BAFF), BAFF-receptor (BAFF-R)), and antibody production (interleukin (IL)-10) and diversification (TGF-β). Similar expression patterns were also noted in T helper (Th) cell-associated cytokine genes, including Th1-type cytokines (interferon (IFN)-γ and IL-12p40), Th2-type cytokines (IL-4 and IL-13) and Th17 cytokine (IL-17). Overall, these results suggest that the supplementation of poultry-specific lactobacilli to chick embryos might be beneficial for accelerating the development and immunological maturation of the bursa of Fabricius. However, further studies are required to determine if the changes in gene expression are associated with the developmental trajectory and phenotypes of bursal cells.
Collapse
Affiliation(s)
- Shreeya Sharma
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Pratt
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
15
|
Szczypka M, Lis M, Kuczkowski M, Bobrek K, Pawlak A, Zambrowicz A, Gaweł A, Obmińska-Mrukowicz B. Yolkin, a Polypeptide Complex from Egg Yolk, Affects Cytokine Levels and Leukocyte Populations in Broiler Chicken Blood and Lymphoid Organs after In Ovo Administration. Int J Mol Sci 2023; 24:17494. [PMID: 38139323 PMCID: PMC10743580 DOI: 10.3390/ijms242417494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Yolkin is a polypeptide complex isolated from hen egg yolk that exhibits immunomodulating properties. The aim of the present study was to determine whether in-ovo-delivered yolkin affects leukocyte populations and cytokine levels in broiler chickens. The experiment was carried out on eggs from Ross 308 broiler breeder birds. Yolkin was administered in ovo on the 18th day of incubation, once, at the following three doses: 1, 10, or 100 µg/egg. The immunological parameters were assessed in 1-, 7-, 14-, 21-, 28-, 35-, and 42-day-old birds kept under farming conditions and routinely vaccinated. The leukocyte populations were determined in the thymus, spleen, and blood. The cytokine (IL-1β, IL-2, IL-6, and IL-10) levels were determined in the plasma of the broiler chickens. Each experimental group included eight birds. The most pronounced effect of yolkin was an increase in the population of T cells, both CD4+ and CD8+, mainly in the blood. This effect on the lymphocyte subsets may be valuable regarding chicken immune responses, mainly against T-dependent antigens, during infection or after vaccination.
Collapse
Affiliation(s)
- Marianna Szczypka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Magdalena Lis
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Kamila Bobrek
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-640 Wrocław, Poland;
| | - Andrzej Gaweł
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| |
Collapse
|