1
|
Sutter EN, Guerrero-Gonzalez J, Casey CP, Dean DC, de Abreu e Gouvea A, Peyton C, McAdams RM, Gillick BT. White-Matter Connectivity and General Movements in Infants with Perinatal Brain Injury. Brain Sci 2025; 15:341. [PMID: 40309803 PMCID: PMC12025426 DOI: 10.3390/brainsci15040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cerebral palsy (CP), often caused by early brain injury such as perinatal stroke or hemorrhage, is the most common lifelong motor disability. Early identification of at-risk infants and timely access to rehabilitation interventions are essential for improving long-term outcomes. The General Movements Assessment (GMA), performed in the first months of life, has high sensitivity and specificity to predict CP; however, the neurological correlates of general movements remain unclear. This analysis aimed to investigate the relationship between white matter integrity and general movements in infants with perinatal brain injury using advanced neuroimaging techniques. METHODS Diffusion-weighted MRI data were analyzed in 17 infants, 12 with perinatal brain injury and 5 typically developing infants. Tractography was used to identify the corticospinal tract, a key motor pathway often affected by perinatal brain injury, and tract-based spatial statistics (TBSS) were used to examine broader white matter networks. Diffusion parameters from the diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models were compared between infants with and without typical general movements. RESULTS Corticospinal tract integrity did not differ between groups when averaged across hemispheres. However, infants with asymmetric general movements exhibited greater corticospinal tract asymmetries. A subset of infants with atypical general movement trajectories at <6 weeks and 3-5 months of age showed reduced corticospinal tract integrity compared to those with typical general movements. TBSS revealed significant differences in white matter integrity between infants with typical and atypical general movements in several white matter pathways, including the corpus callosum, the right posterior corona radiata, bilateral posterior thalamic radiations, the left fornix/stria terminalis, and bilateral tapetum. CONCLUSIONS These findings support and expand upon previous research suggesting that white matter integrity across multiple brain regions plays a role in the formation of general movements. Corticospinal integrity alone was not strongly associated with general movements; interhemispheric and cortical-subcortical connectivity appear critical. These findings underscore the need for further research in larger, diverse populations to refine early biomarkers of neurodevelopmental impairment and guide targeted interventions.
Collapse
Affiliation(s)
- Ellen N. Sutter
- Department of Family Medicine and Community Health, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA;
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave. #1005, Madison, WI 53705, USA
| | - Cameron P. Casey
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave. #1005, Madison, WI 53705, USA
| | | | - Colleen Peyton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Ave. Suite 1100, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, 225 E. Chicago Ave., Chicago, IL 60611, USA
| | - Ryan M. McAdams
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
2
|
Kim SJ, Babola TA, Lee K, Matney CJ, Spiegel AC, Liew MH, Schulteis EM, Coye AE, Proskurin M, Kang H, Kim JA, Chevée M, Lee K, Kanold PO, Goff LA, Kim J, Brown SP. A consensus definition for deep layer 6 excitatory neurons in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621933. [PMID: 39574572 PMCID: PMC11580952 DOI: 10.1101/2024.11.04.621933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
To understand neocortical function, we must first define its cell types. Recent studies indicate that neurons in the deepest cortical layer play roles in mediating thalamocortical interactions and modulating brain state and are implicated in neuropsychiatric disease. However, understanding the functions of deep layer 6 (L6b) neurons has been hampered by the lack of agreed upon definitions for these cell types. We compared commonly used methods for defining L6b neurons, including molecular, transcriptional and morphological approaches as well as transgenic mouse lines, and identified a core population of L6b neurons. This population does not innervate sensory thalamus, unlike layer 6 corticothalamic neurons (L6CThNs) in more superficial layer 6. Rather, single L6b neurons project ipsilaterally between cortical areas. Although L6b neurons undergo early developmental changes, we found that their intrinsic electrophysiological properties were stable after the first postnatal week. Our results provide a consensus definition for L6b neurons, enabling comparisons across studies.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Travis A Babola
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kihwan Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Chanel J Matney
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Alina C Spiegel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Michael H Liew
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eva M Schulteis
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Austin E Coye
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Mikhail Proskurin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hyunwook Kang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Julia A Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kiwoong Lee
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Patrick O Kanold
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Juhyun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
3
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. Neurobiol Dis 2024; 200:106643. [PMID: 39173846 PMCID: PMC11452906 DOI: 10.1016/j.nbd.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Down syndrome (DS) is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n = 29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n = 29) and developmental-matched (n = 58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and developmental-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
Affiliation(s)
- McKena Geiger
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sophie R Hurewitz
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Katherine Pawlowski
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Oner M, Cheng PT, Wang HY, Chen MC, Lin H. Metformin alters dendrite development and synaptic plasticity in rat cortical neurons. Biochem Biophys Res Commun 2024; 710:149874. [PMID: 38581950 DOI: 10.1016/j.bbrc.2024.149874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Synaptic plasticity is crucial as it dynamically molds the strength and connectivity of neural circuits, influencing learning, memory, and the development of neurological disorders. Metformin, a widely prescribed anti-diabetic medication, has been shown to readily cross the blood-brain barrier (BBB) and the placenta. However, its prolonged impact on neuronal morphology and functions remains underexplored. In this study, we investigated the influence of metformin on dendrite development and synaptic plasticity in embryonic brains and primary rat cortical neurons. Our findings reveal a negative modulation of dendrite development by metformin, as evidenced by altered dendritic arborization, impaired dendritic spine morphology and disruptions in synaptic plasticity, suggesting a potential link between metformin exposure and aberrations in neuronal connectivity. In addition, we extend our insights to the impact of maternal metformin exposure on embryonic brains, revealing a significant inhibition of dendrite development in E18.5 rat brains. In conclusion, this study adds to the expanding knowledge base on the non-metabolic effects of metformin, emphasizing the significance of assessing its potential influence on both neuronal structure and function. There is an urgent need for further investigations into the enduring impact of prolonged metformin administration on the structural and functional aspects of neurons.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital Taichung, 40705, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
5
|
Murakami T, Ohki K. Thalamocortical circuits for the formation of hierarchical pathways in the mammalian visual cortex. Front Neural Circuits 2023; 17:1155195. [PMID: 37139079 PMCID: PMC10149680 DOI: 10.3389/fncir.2023.1155195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
External sensory inputs propagate from lower-order to higher-order brain areas, and the hierarchical neural network supporting this information flow is a fundamental structure of the mammalian brain. In the visual system, multiple hierarchical pathways process different features of the visual information in parallel. The brain can form this hierarchical structure during development with few individual differences. A complete understanding of this formation mechanism is one of the major goals of neuroscience. For this purpose, it is necessary to clarify the anatomical formation process of connections between individual brain regions and to elucidate the molecular and activity-dependent mechanisms that instruct these connections in each areal pair. Over the years, researchers have unveiled developmental mechanisms of the lower-order pathway from the retina to the primary visual cortex. The anatomical formation of the entire visual network from the retina to the higher visual cortex has recently been clarified, and higher-order thalamic nuclei are gaining attention as key players in this process. In this review, we summarize the network formation process in the mouse visual system, focusing on projections from the thalamic nuclei to the primary and higher visual cortices, which are formed during the early stages of development. Then, we discuss how spontaneous retinal activity that propagates through thalamocortical pathways is essential for the formation of corticocortical connections. Finally, we discuss the possible role of higher-order thalamocortical projections as template structures in the functional maturation of visual pathways that process different visual features in parallel.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center Initiative-International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Linke AC, Chen B, Olson L, Ibarra C, Fong C, Reynolds S, Apostol M, Kinnear M, Müller RA, Fishman I. Sleep Problems in Preschoolers With Autism Spectrum Disorder Are Associated With Sensory Sensitivities and Thalamocortical Overconnectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:21-31. [PMID: 34343726 PMCID: PMC9826645 DOI: 10.1016/j.bpsc.2021.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Projections between the thalamus and sensory cortices are established early in development and play an important role in regulating sleep as well as in relaying sensory information to the cortex. Atypical thalamocortical functional connectivity frequently observed in children with autism spectrum disorder (ASD) might therefore be linked to sensory and sleep problems common in ASD. METHODS Here, we investigated the relationship between auditory-thalamic functional connectivity measured during natural sleep functional magnetic resonance imaging, sleep problems, and sound sensitivities in 70 toddlers and preschoolers (1.5-5 years old) with ASD compared with a matched group of 46 typically developing children. RESULTS In children with ASD, sleep problems and sensory sensitivities were positively correlated, and increased sleep latency was associated with overconnectivity between the thalamus and auditory cortex in a subsample with high-quality magnetic resonance imaging data (n = 29). In addition, auditory cortex blood oxygen level-dependent signal amplitude was elevated in children with ASD, potentially reflecting reduced sensory gating or a lack of auditory habituation during natural sleep. CONCLUSIONS These findings indicate that atypical thalamocortical functional connectivity can be detected early in development and may play a crucial role in sleep problems and sensory sensitivities in ASD.
Collapse
Affiliation(s)
- Annika Carola Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.
| | - Bosi Chen
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Lindsay Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Cynthia Ibarra
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Chris Fong
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Sarah Reynolds
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Michael Apostol
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Mikaela Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; SDSU Center for Autism and Developmental Disorders, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; SDSU Center for Autism and Developmental Disorders, San Diego, California
| |
Collapse
|
7
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
8
|
Kang J, Jia T, Jiao Z, Shen C, Xie C, Cheng W, Sahakian BJ, Waxman D, Feng J. Increased brain volume from higher cereal and lower coffee intake: shared genetic determinants and impacts on cognition and metabolism. Cereb Cortex 2022; 32:5163-5174. [PMID: 35136970 PMCID: PMC9383440 DOI: 10.1093/cercor/bhac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022] Open
Abstract
It is unclear how different diets may affect human brain development and if genetic and environmental factors play a part. We investigated diet effects in the UK Biobank data from 18,879 healthy adults and discovered anticorrelated brain-wide gray matter volume (GMV)-association patterns between coffee and cereal intake, coincidence with their anticorrelated genetic constructs. The Mendelian randomization approach further indicated a causal effect of higher coffee intake on reduced total GMV, which is likely through regulating the expression of genes responsible for synaptic development in the brain. The identified genetic factors may further affect people's lifestyle habits and body/blood fat levels through the mediation of cereal/coffee intake, and the brain-wide expression pattern of gene CPLX3, a dedicated marker of subplate neurons that regulate cortical development and plasticity, may underlie the shared GMV-association patterns among the coffee/cereal intake and cognitive functions. All the main findings were successfully replicated. Our findings thus revealed that high-cereal and low-coffee diets shared similar brain and genetic constructs, leading to long-term beneficial associations regarding cognitive, body mass index (BMI), and other metabolic measures. This study has important implications for public health, especially during the pandemic, given the poorer outcomes of COVID-19 patients with greater BMIs.
Collapse
Affiliation(s)
| | - Tianye Jia
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | - Zeyu Jiao
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Barbara J Sahakian
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | - David Waxman
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Jianfeng Feng
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| |
Collapse
|
9
|
Breuer TM, Krieger P. Sensory deprivation leads to subpopulation-specific changes in layer 6 corticothalamic cells. Eur J Neurosci 2021; 55:566-588. [PMID: 34927292 DOI: 10.1111/ejn.15572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022]
Abstract
The effect of sensory deprivation on anatomical and physiological properties in two genetically defined types of layer 6 corticothalamic pyramidal cells in mouse somatosensory barrel cortex was investigated using in vitro electrophysiology. The two types analysed were the L6-Ntsr1 subtype, found preferentially in the upper region of layer 6 and projecting to both ventral posterior medial nucleus of the thalamus and posterior medial nucleus of the thalamus, and the L6-Drd1a subtype, located mostly in the lower regions of layer 6 and projecting to posterior medial nucleus. We found that the apical dendrite in L6-Ntsr1 cells is longer and more branched, compared to L6-Drd1a cells, and that the increase in firing frequency with increasing current stimulation is steeper in L6-Drd1a cells. Sensory deprivation was achieved clipping one row of whiskers from birth until the day of experiment (16 ± 2 days). Mice of this age are actively exploring. In L6-Ntsr1, but not in L6-Drd1a cells, sensory deprivation decreased apical and basal dendrite outgrowth, and calcium influx evoked by backpropagating action potentials. These results contribute to the ongoing functional characterisation of corticothalamic layer 6 cells and indicate differences in the postnatal cortical refinement of two distinct corticothalamic circuits.
Collapse
Affiliation(s)
| | - Patrik Krieger
- Department of Systems Neuroscience, Faculty of Medicine; Ruhr University Bochum, Germany
| |
Collapse
|
10
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
11
|
Sheikh A, Meng X, Kao JPY, Kanold PO. Neonatal Hypoxia-Ischemia Causes Persistent Intracortical Circuit Changes in Layer 4 of Rat Auditory Cortex. Cereb Cortex 2021; 32:2575-2589. [PMID: 34729599 DOI: 10.1093/cercor/bhab365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
The connection between early brain injury and subsequent development of disorders is unknown. Neonatal hypoxia-ischemia (HI) alters circuits associated with subplate neurons (SPNs). SPNs are among the first maturing cortical neurons, project to thalamorecipient layer 4 (L4), and are required for the development of thalamocortical connections. Thus, early HI might influence L4 and such influence might persist. We investigated functional circuits to L4 neurons in neonatal rat HI models of different severities (mild and moderate) shortly after injury and at adolescence. We used laser-scanning photostimulation in slices of auditory cortex during P5-10 and P18-23. Mild injuries did not initially (P6/P7) alter the convergence of excitatory inputs from L2/3, but hyperconnectivity emerged by P8-10. Inputs from L4 showed initial hypoconnectivity which resolved by P8-10. Moderate injuries resulted in initial hypoconnectivity from both layers which resolved by P8-10 and led to persistent strengthening of connections. Inhibitory inputs to L4 cells showed similar changes. Functional changes were mirrored by reduced dendritic complexity. We also observed a persistent increase in similarity of L4 circuits, suggesting that HI interferes with developmental circuit refinement and diversification. Altogether, our results show that neonatal HI injuries lead to persistent changes in intracortical connections.
Collapse
Affiliation(s)
- Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Meng X, Solarana K, Bowen Z, Liu J, Nagode DA, Sheikh A, Winkowski DE, Kao JPY, Kanold PO. Transient Subgranular Hyperconnectivity to L2/3 and Enhanced Pairwise Correlations During the Critical Period in the Mouse Auditory Cortex. Cereb Cortex 2021; 30:1914-1930. [PMID: 31667495 DOI: 10.1093/cercor/bhz213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
During the critical period, neuronal connections are shaped by sensory experience. While the basis for this temporarily heightened plasticity remains unclear, shared connections introducing activity correlations likely play a key role. Thus, we investigated the changing intracortical connectivity in primary auditory cortex (A1) over development. In adult, layer 2/3 (L2/3) neurons receive ascending inputs from layer 4 (L4) and also receive few inputs from subgranular layer 5/6 (L5/6). We measured the spatial pattern of intracortical excitatory and inhibitory connections to L2/3 neurons in slices of mouse A1 across development using laser-scanning photostimulation. Before P11, L2/3 cells receive most excitatory input from within L2/3. Excitatory inputs from L2/3 and L4 increase after P5 and peak during P9-16. L5/6 inputs increase after P5 and provide most input during P12-16, the peak of the critical period. Inhibitory inputs followed a similar pattern. Functional circuit diversity in L2/3 emerges after P16. In vivo two-photon imaging shows low pairwise signal correlations in neighboring neurons before P11, which peak at P15-16 and decline after. Our results suggest that the critical period is characterized by high pairwise activity correlations and that transient hyperconnectivity of specific circuits, in particular those originating in L5/6, might play a key role.
Collapse
Affiliation(s)
- Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Krystyna Solarana
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Zac Bowen
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel A Nagode
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Vasung L, Zhao C, Barkovich M, Rollins CK, Zhang J, Lepage C, Corcoran T, Velasco-Annis C, Yun HJ, Im K, Warfield SK, Evans AC, Huang H, Gholipour A, Grant PE. Association between Quantitative MR Markers of Cortical Evolving Organization and Gene Expression during Human Prenatal Brain Development. Cereb Cortex 2021; 31:3610-3621. [PMID: 33836056 PMCID: PMC8258434 DOI: 10.1093/cercor/bhab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.
Collapse
Affiliation(s)
- Lana Vasung
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chenying Zhao
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, San Francisco, CA 94158, USA.,Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94115, USA
| | - Caitlin K Rollins
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Claude Lepage
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Teddy Corcoran
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clemente Velasco-Annis
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Keith Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Alan Charles Evans
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Gholipour
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ellen Grant
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
15
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F. Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS One 2020; 15:e0228092. [PMID: 31978108 PMCID: PMC6980590 DOI: 10.1371/journal.pone.0228092] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain.
Collapse
|
17
|
Hartley C, Farmer S, Berthouze L. Temporal ordering of input modulates connectivity formation in a developmental neuronal network model of the cortex. PLoS One 2020; 15:e0226772. [PMID: 31923200 PMCID: PMC6953763 DOI: 10.1371/journal.pone.0226772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Preterm infant brain activity is discontinuous; bursts of activity recorded using EEG (electroencephalography), thought to be driven by subcortical regions, display scale free properties and exhibit a complex temporal ordering known as long-range temporal correlations (LRTCs). During brain development, activity-dependent mechanisms are essential for synaptic connectivity formation, and abolishing burst activity in animal models leads to weak disorganised synaptic connectivity. Moreover, synaptic pruning shares similar mechanisms to spike-timing dependent plasticity (STDP), suggesting that the timing of activity may play a critical role in connectivity formation. We investigated, in a computational model of leaky integrate-and-fire neurones, whether the temporal ordering of burst activity within an external driving input could modulate connectivity formation in the network. Connectivity evolved across the course of simulations using an approach analogous to STDP, from networks with initial random connectivity. Small-world connectivity and hub neurones emerged in the network structure—characteristic properties of mature brain networks. Notably, driving the network with an external input which exhibited LRTCs in the temporal ordering of burst activity facilitated the emergence of these network properties, increasing the speed with which they emerged compared with when the network was driven by the same input with the bursts randomly ordered in time. Moreover, the emergence of small-world properties was dependent on the strength of the LRTCs. These results suggest that the temporal ordering of burst activity could play an important role in synaptic connectivity formation and the emergence of small-world topology in the developing brain.
Collapse
Affiliation(s)
- Caroline Hartley
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Simon Farmer
- Institute of Neurology, University College London, London, United Kingdom
| | - Luc Berthouze
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
18
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
19
|
Tiong SYX, Oka Y, Sasaki T, Taniguchi M, Doi M, Akiyama H, Sato M. Kcnab1 Is Expressed in Subplate Neurons With Unilateral Long-Range Inter-Areal Projections. Front Neuroanat 2019; 13:39. [PMID: 31130851 PMCID: PMC6509479 DOI: 10.3389/fnana.2019.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Subplate (SP) neurons are among the earliest-born neurons in the cerebral cortex and heterogeneous in terms of gene expression. SP neurons consist mainly of projection neurons, which begin to extend their axons to specific target areas very early during development. However, the relationships between axon projection and gene expression patterns of the SP neurons, and their remnant layer 6b (L6b) neurons, are largely unknown. In this study, we analyzed the corticocortical projections of L6b/SP neurons in the mouse cortex and searched for a marker gene expressed in L6b/SP neurons that have ipsilateral inter-areal projections. Retrograde tracing experiments demonstrated that L6b/SP neurons in the primary somatosensory cortex (S1) projected to the primary motor cortex (M1) within the same cortical hemisphere at postnatal day (PD) 2 but did not show any callosal projection. This unilateral projection pattern persisted into adulthood. Our microarray analysis identified the gene encoding a β subunit of voltage-gated potassium channel (Kcnab1) as being expressed in L6b/SP. Double labeling with retrograde tracing and in situ hybridization demonstrated that Kcnab1 was expressed in the unilaterally-projecting neurons in L6b/SP. Embryonic expression was specifically detected in the SP as early as embryonic day (E) 14.5, shortly after the emergence of SP. Double immunostaining experiments revealed different degrees of co-expression of the protein product Kvβ1 with L6b/SP markers Ctgf (88%), Cplx3 (79%), and Nurr1 (58%), suggesting molecular subdivision of unilaterally-projecting L6b/SP neurons. In addition to expression in L6b/SP, scattered expression of Kcnab1 was observed during postnatal stages without layer specificity. Among splicing variants with three alternative first exons, the variant 1.1 explained all the cortical expression mentioned in this study. Together, our data suggest that L6b/SP neurons have corticocortical projections and Kcnab1 expression defines a subpopulation of L6b/SP neurons with a unilateral inter-areal projection.
Collapse
Affiliation(s)
- Sheena Yin Xin Tiong
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Tatsuya Sasaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Miyuki Doi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisanori Akiyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| |
Collapse
|
20
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
21
|
Slater BJ, Sons SK, Yudintsev G, Lee CM, Llano DA. Thalamocortical and Intracortical Inputs Differentiate Layer-Specific Mouse Auditory Corticocollicular Neurons. J Neurosci 2019; 39:256-270. [PMID: 30361396 PMCID: PMC6325253 DOI: 10.1523/jneurosci.3352-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Long-range descending projections from the auditory cortex play key roles in shaping response properties in the inferior colliculus. The auditory corticocollicular projection is massive and heterogeneous, with axons emanating from cortical layers 5 and 6, and plays a key role in directing plastic changes in the inferior colliculus. However, little is known about the cortical and thalamic networks within which corticocollicular neurons are embedded. Here, laser scanning photostimulation glutamate uncaging and photoactivation of channelrhodopsin-2 were used to probe the local and long-range network differences between preidentified layer 5 and layer 6 auditory corticocollicular neurons from male and female mice in vitro Layer 5 corticocollicular neurons were found to vertically integrate supragranular excitatory and inhibitory input to a substantially greater degree than their layer 6 counterparts. In addition, all layer 5 corticocollicular neurons received direct and large thalamic inputs from channelrhodopsin-2-labeled thalamocortical fibers, whereas such inputs were less common in layer 6 corticocollicular neurons. Finally, a new low-calcium/synaptic blockade approach to separate direct from indirect inputs using laser photostimulation was validated. These data demonstrate that layer 5 and 6 corticocollicular neurons receive distinct sets of cortical and thalamic inputs, supporting the hypothesis that they have divergent roles in modulating the inferior colliculus. Furthermore, the direct connection between the auditory thalamus and layer 5 corticocollicular neurons reveals a novel and rapid link connecting ascending and descending pathways.SIGNIFICANCE STATEMENT Descending projections from the cortex play a critical role in shaping the response properties of sensory neurons. The projection from the auditory cortex to the inferior colliculus is a massive, yet poorly understood, pathway emanating from two distinct cortical layers. Here we show, using a range of optical techniques, that mouse auditory corticocollicular neurons from different layers are embedded into different cortical and thalamic networks. Specifically, we observed that layer 5 corticocollicular neurons integrate information across cortical lamina and receive direct thalamic input. The latter connection provides a hyperdirect link between acoustic sensation and descending control, thus demonstrating a novel mechanism for rapid "online" modulation of sensory perception.
Collapse
Affiliation(s)
- Bernard J Slater
- Neuroscience Program and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Stacy K Sons
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Georgiy Yudintsev
- Neuroscience Program and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Christopher M Lee
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Daniel A Llano
- Neuroscience Program and
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| |
Collapse
|
22
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
23
|
Whitehead K, Meek J, Fabrizi L. Developmental trajectory of movement-related cortical oscillations during active sleep in a cross-sectional cohort of pre-term and full-term human infants. Sci Rep 2018; 8:17516. [PMID: 30504857 PMCID: PMC6269518 DOI: 10.1038/s41598-018-35850-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
In neonatal animal models, isolated limb movements during active sleep provide input to immature somatomotor cortex necessary for its development and are somatotopically encoded by alpha-beta oscillations as late as the equivalent of human full-term. Limb movements elicit similar neural patterns in very pre-term human infants (average 30 corrected gestational weeks), suggesting an analogous role in humans, but it is unknown until when they subserve this function. In a cohort of 19 neonates (31-42 corrected gestational weeks) we showed that isolated hand movements during active sleep continue to induce these same somatotopically distributed oscillations well into the perinatal period, but that these oscillations decline towards full-term and fully disappear at 41 corrected gestational weeks (equivalent to the end of gestation). We also showed that these highly localised alpha-beta oscillations are associated with an increase in delta oscillations which extends to the frontal area and does not decline with age. These results suggest that isolated limb movements during active sleep could have an important role in experience-dependent somatomotor development up until normal birth in humans.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom.
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London, WC1E 6BD, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
24
|
Wolff JJ, Jacob S, Elison JT. The journey to autism: Insights from neuroimaging studies of infants and toddlers. Dev Psychopathol 2018; 30:479-495. [PMID: 28631578 PMCID: PMC5834406 DOI: 10.1017/s0954579417000980] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
By definition, autism spectrum disorder (ASD) is a neurodevelopmental disorder that emerges during early childhood. It is during this time that infants and toddlers transition from appearing typical across multiple domains to exhibiting the behavioral phenotype of ASD. Neuroimaging studies focused on this period of development have provided crucial knowledge pertaining to this process, including possible mechanisms underlying pathogenesis of the disorder and offering the possibility of prodromal or presymptomatic prediction of risk. In this paper, we review findings from structural and functional brain imaging studies of ASD focused on the first years of life and discuss implications for next steps in research and clinical applications.
Collapse
|
25
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
26
|
Niculae AŞ, Pavăl D. From molecules to behavior: An integrative theory of autism spectrum disorder. Med Hypotheses 2016; 97:74-84. [PMID: 27876135 DOI: 10.1016/j.mehy.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/02/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders for which various theories have been proposed. Each theory brings valuable insights and has experimental evidence backing it, yet none provides an overarching explanation for each of the pathological aspects involved in ASD. Here we present an integrative theory of ASD, centered on a sequence of events spanning from the molecular to the behavioral level. We propose that an abnormality in the interplay between retinoic acid and sex hormones predisposes an individual to specific molecular malfunctions. In turn, this molecular syndrome generates an altered brain connectivity between the cerebellum, the midbrain dopaminergic areas, and the prefrontal cortex. Lastly, this disconnection would generate specific behavioral traits traditionally involved in ASD. Therefore, this paper represents a step forward in unifying different levels of pathological features into novel integrated testable hypotheses.
Collapse
Affiliation(s)
- Alexandru-Ştefan Niculae
- The Department of Molecular Sciences, Faculty of Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Denis Pavăl
- The Department of Molecular Sciences, Faculty of Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania.
| |
Collapse
|
27
|
Maccari S, Polese D, Reynaert ML, Amici T, Morley-Fletcher S, Fagioli F. Early-life experiences and the development of adult diseases with a focus on mental illness: The Human Birth Theory. Neuroscience 2016; 342:232-251. [PMID: 27235745 DOI: 10.1016/j.neuroscience.2016.05.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022]
Abstract
In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life.
Collapse
Affiliation(s)
- Stefania Maccari
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; IRCCS Neuromed, 86077, Italy; Sapienza University of Rome, 00185 Rome, Italy.
| | - Daniela Polese
- NESMOS Department, Sant'Andrea Hospital, Sapienza University of Rome, Italy; Unit of Psychiatry, Federico II University of Naples, Italy
| | - Marie-Line Reynaert
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | | | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Francesca Fagioli
- Prevention and early Intervention Mental Health (PIPSM) ASL Rome 1, Italy
| |
Collapse
|
28
|
Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016:4901014. [PMID: 27047695 PMCID: PMC4800097 DOI: 10.1155/2016/4901014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Collapse
|
29
|
Postnatal development of GABAergic interneurons in the neocortical subplate of mice. Neuroscience 2016; 322:78-93. [PMID: 26892297 DOI: 10.1016/j.neuroscience.2016.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022]
Abstract
The subplate (SP) plays important roles in developmental and functional events in the neocortex, such as thalamocortical and corticofugal projection, cortical oscillation generation and corticocortical connectivity. Although accumulated evidence indicates that SP interneurons are crucial for SP function, the molecular composition of SP interneurons as well as their developmental profile and distribution remain largely unclear. In this study, we systematically investigated dynamic development of SP thickness and chemical marker expression in SP interneurons in distinct cortical regions during the first postnatal month. We found that, although the relative area of the SP in the cerebral cortex significantly declined with postnatal development, the absolute thickness did not change markedly. We also found that somatostatin (SOM), the ionotropic serotonin receptor 3A (5HT3AR), and parvalbumin (PV) reliably identify three distinct non-overlapping subpopulations of SP interneurons. The SOM group, which represents ~30% of total SP interneurons, expresses neuronal nitric oxide synthase (nNOS) and calbindin (CB) and colocalizes entirely with neuropeptide Y (NPY). The 5HT3AR group, which accounts for ~60% of the total interneuronal population, expresses calretinin (CR) and GABA-A receptor subunit delta (GABAARδ). The PV group accounts for ~10% of total SP interneurons and coexpressed GABAARδ. Moreover, distinct interneuron subtypes show characteristic temporal and spatial distribution in the SP. nNOS(+) interneurons in the SP increase from the anterior motor cortex to posterior visual cortex, while CR(+) and CB(+) interneurons the opposite. Interestedly, the majority of GABAARδ(+) neurons in SP are non-GABAergic neurons in contrast to other cortical layers. These findings clarify and extend our understanding of SP interneurons in the developing cerebral cortex and will underpin further study of SP function.
Collapse
|
30
|
Jantzie LL, Corbett CJ, Firl DJ, Robinson S. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cereb Cortex 2015; 25:2683-95. [PMID: 24722771 PMCID: PMC4537428 DOI: 10.1093/cercor/bhu066] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Brain Injuries/drug therapy
- Brain Injuries/etiology
- Cell Death/drug effects
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/pathology
- Disease Models, Animal
- Embryo, Mammalian
- Erythropoietin/therapeutic use
- Fetal Diseases/drug therapy
- Fetal Diseases/physiopathology
- Gene Expression Regulation, Developmental/drug effects
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/pathology
- In Vitro Techniques
- Motor Activity/drug effects
- Motor Activity/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/metabolism
- Symporters/metabolism
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher J Corbett
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Firl
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Decreased postural control in adolescents born with extremely low birth weight. Exp Brain Res 2015; 233:1651-62. [DOI: 10.1007/s00221-015-4239-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
32
|
Jakab A, Schwartz E, Kasprian G, Gruber GM, Prayer D, Schöpf V, Langs G. Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front Hum Neurosci 2014; 8:852. [PMID: 25374531 PMCID: PMC4205819 DOI: 10.3389/fnhum.2014.00852] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023] Open
Abstract
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.
Collapse
Affiliation(s)
- András Jakab
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gregor Kasprian
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Gerlinde M Gruber
- Department of Systematic Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna Vienna, Austria
| | - Daniela Prayer
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Veronika Schöpf
- Division for Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna Vienna, Austria ; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The aim is to review mechanisms that are central to the formation of proper cortical circuitry and relevant to perinatal brain injury and premature birth. RECENT FINDINGS Clinical investigations using noninvasive imaging techniques suggest that impaired connectivity of cortical circuitry is associated with perinatal adverse conditions. Recent experimental and translational studies revealed developmental mechanisms that are critical for circuit formation and potentially at risk in the perinatal period. These include existence of last wave genesis, migration and integration of gamma-aminobutyric acid (GABA) interneurons in the perinatal period; maturation of GABA interneuron networks that are central to critical period plasticity; transient connections by subplate neurons that guide thalamocortical connectivity, and a perineuronal microglia network that maintains axonal growth and neuronal survival as well as executing synaptic pruning. In addition, recent work has demonstrated that birth plays a key role in triggering the maturation cascade of cortical circuits. SUMMARY Altered maturation of cortical circuits is an increasingly recognized aspect of perinatal injury and premature birth. Potential mechanisms are revealed but further translational studies are required to associate fine changes at the cellular and molecular level with imaging data in experimental models.
Collapse
|
34
|
Nevalainen P, Lauronen L, Pihko E. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review. Front Hum Neurosci 2014; 8:158. [PMID: 24672468 PMCID: PMC3955943 DOI: 10.3389/fnhum.2014.00158] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn’s primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.
Collapse
Affiliation(s)
- Päivi Nevalainen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Leena Lauronen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Elina Pihko
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science , Espoo , Finland
| |
Collapse
|
35
|
Luhmann HJ, Kirischuk S, Sinning A, Kilb W. Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol 2014; 26:72-8. [PMID: 24434608 DOI: 10.1016/j.conb.2013.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/25/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
36
|
Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, Verchinski BA, Barnett AS, Dickinson D, Apud JA, Callicott JH, Meyer-Lindenberg A, Weinberger DR. Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 2012; 37:499-507. [PMID: 21956440 PMCID: PMC3242311 DOI: 10.1038/npp.2011.215] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to examine measures of anatomical connectivity between the thalamus and lateral prefrontal cortex (LPFC) in schizophrenia and to assess their functional implications. We measured thalamocortical connectivity with diffusion tensor imaging (DTI) and probabilistic tractography in 15 patients with schizophrenia and 22 age- and sex-matched controls. The relationship between thalamocortical connectivity and prefrontal cortical blood-oxygenation-level-dependent (BOLD) functional activity as well as behavioral performance during working memory was examined in a subsample of 9 patients and 18 controls. Compared with controls, schizophrenia patients showed reduced total connectivity of the thalamus to only one of six cortical regions, the LPFC. The size of the thalamic region with at least 25% of model fibers reaching the LPFC was also reduced in patients compared with controls. The total thalamocortical connectivity to the LPFC predicted working memory task performance and also correlated with LPFC BOLD activation. Notably, the correlation with BOLD activation was accentuated in patients as compared with controls in the ventral LPFC. These results suggest that thalamocortical connectivity to the LPFC is altered in schizophrenia with functional consequences on working memory processing in LPFC.
Collapse
Affiliation(s)
- Stefano Marenco
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Jason L Stein
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Antonina A Savostyanova
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Fabio Sambataro
- Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Hao-Yang Tan
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Aaron L Goldman
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Beth A Verchinski
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Alan S Barnett
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Dwight Dickinson
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Joseph H Callicott
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Daniel R Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
37
|
Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci 2011; 34:1677-86. [DOI: 10.1111/j.1460-9568.2011.07878.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Jabaudon D, Shnider SJ, Tischfield DJ, Galazo MJ, Macklis JD. RORβ induces barrel-like neuronal clusters in the developing neocortex. ACTA ACUST UNITED AC 2011; 22:996-1006. [PMID: 21799210 DOI: 10.1093/cercor/bhr182] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurons in layer IV of the rodent whisker somatosensory cortex are tangentially organized in periodic clusters called barrels, each of which is innervated by thalamocortical axons transmitting sensory information from a single principal whisker, together forming a somatotopic map of the whisker pad. Proper thalamocortical innervation is critical for barrel formation during development, but the molecular mechanisms controlling layer IV neuron clustering are unknown. Here, we investigate the role in this mapping of the nuclear orphan receptor RORβ, which is expressed in neurons in layer IV during corticogenesis. We find that RORβ protein expression specifically increases in the whisker barrel cortex during barrel formation and that in vivo overexpression of RORβ is sufficient to induce periodic barrel-like clustering of cortical neurons. Remarkably, this clustering can be induced as early as E18, prior to innervation by thalamocortical afferents and whisker derived-input. At later developmental stages, these ectopic neuronal clusters are specifically innervated by thalamocortical axons, demonstrated by anterograde labeling from the thalamus and by expression of thalamocortical-specific synaptic markers. Together, these data indicate that RORβ expression levels control cytoarchitectural patterning of neocortical neurons during development, a critical process for the topographical mapping of whisker input onto the cortical surface.
Collapse
Affiliation(s)
- Denis Jabaudon
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
39
|
Marcano-Reik AJ, Prasad T, Weiner JA, Blumberg MS. An abrupt developmental shift in callosal modulation of sleep-related spindle bursts coincides with the emergence of excitatory-inhibitory balance and a reduction of somatosensory cortical plasticity. Behav Neurosci 2010; 124:600-11. [PMID: 20939660 PMCID: PMC2955326 DOI: 10.1037/a0020774] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transecting the corpus callosum of postnatal day (P)1-6 rats disinhibits the production of spindle bursts (SBs) within primary somatosensory cortex (S1), most notably during periods of sleep-related myoclonic twitching. Here we investigated developmental changes in this callosally mediated disinhibition and its association with cortical plasticity. Recordings in P2-15 subjects revealed that callosotomy-induced disinhibition is a transient feature of early development that disappears abruptly after P6. This abrupt switch was accompanied by sharp decreases in myoclonic twitching and equally sharp increases in spontaneous SBs and in the number of GABAergic and glutamatergic presynaptic terminals in S1. Expression of the K+Cl- cotransporter 2 (KCC2) also increased across these ages. To determine whether these developmental changes are associated with alterations in cortical plasticity, pups were callosotomized at P1, P6, or P8, and tested over the subsequent week. Regardless of age, callosotomy immediately disrupted SBs evoked by forepaw stimulation. Over the next week, the P1 and P6 callosotomy groups exhibited full recovery of function; in contrast, the P8 group did not exhibit recovery of function, thus indicating an abrupt decrease in cortical plasticity between P6 and P8. Together, our data demonstrate that callosotomy-induced disinhibition is a transient phenomenon whose disappearance coincides with the onset of increased intrinsic connectivity, establishment of excitatory-inhibitory balance, and diminished plasticity in S1. Accordingly, our findings indicate that callosotomy-induced disinhibition of twitch-related SBs is a bioassay of somatosensory cortical plasticity and, in addition, support the hypothesis that myoclonic twitches, like retinal waves, actively contribute to cortical development and plasticity.
Collapse
Affiliation(s)
- Amy Jo Marcano-Reik
- Department of Psychology and Delta Center, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Tuhina Prasad
- Department of Biology, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Mark S. Blumberg
- Department of Psychology and Delta Center, The University of Iowa, Iowa City, Iowa, 52242, USA
| |
Collapse
|
40
|
Sillitoe RV, Vogel MW, Joyner AL. Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 2010; 30:10015-24. [PMID: 20668186 PMCID: PMC2921890 DOI: 10.1523/jneurosci.0653-10.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/24/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022] Open
Abstract
The spatial organization of the cerebellar afferent map has remarkable correspondence to two aspects of intrinsic patterning within the cerebellum embodied by a series of lobules and Purkinje cell (PC)-striped gene expression. Using male and female mice, we tested whether the Engrailed (En) homeobox genes are a common genetic substrate regulating all three systems, since they are expressed in spatially restricted domains within the cerebellum and are critical for patterning PC gene expression and foliation. Indeed, we discovered that En1/2 are necessary for the precise targeting of mossy fibers to distinct lobules, as well as their subsequent resolution into discrete parasagittal bands. Moreover, each En gene coordinately regulates afferent targeting and the striped pattern of PC protein expression (e.g., ZebrinII/AldolaseC) independent of regulating foliation. We further found that En1/2, rather than the presence of a full complement of lobules, are critical for generating PC protein stripes and mossy fiber bands, and that PC striped gene expression is determined before afferent banding. Thus, the En transcription factors not only regulate cerebellum circuit topography, but they also link afferent and efferent neurons precisely enough that alterations in PC protein expression can be used as a read out for underlying defects in circuitry. In summary, our data suggest that En1/2 are master regulators of three-dimensional organization of the cerebellum and coordinately regulate morphology, patterned gene expression, and afferent topography.
Collapse
Affiliation(s)
- Roy V. Sillitoe
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Michael W. Vogel
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021
| |
Collapse
|
41
|
Butts DA, Kanold PO. The applicability of spike time dependent plasticity to development. Front Synaptic Neurosci 2010; 2:30. [PMID: 21423516 PMCID: PMC3059702 DOI: 10.3389/fnsyn.2010.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/27/2010] [Indexed: 11/22/2022] Open
Abstract
Spike time dependent plasticity (STDP) has been observed in both developing and adult animals. Theoretical studies suggest that it implicitly leads to both competition and homeostasis in addition to correlation-based plasticity, making it a good candidate to explain developmental refinement and plasticity in a number of systems. However, it has only been observed to play a clear role in development in a small number of cases. Because the fast time scales necessary to elicit STDP, it would likely be inefficient in governing synaptic modifications in the absence of fast correlations in neural activity. In contrast, later stages of development often depend on sensory inputs that can drive activity on much faster time scales, suggesting a role in STDP in many sensory systems after opening of the eyes and ear canals. Correlations on fast time scales can be also be present earlier in developing microcircuits, such as those produced by specific transient "teacher" circuits in the cerebral cortex. By reviewing examples of each case, we suggest that STDP is not a universal rule, but rather might be masked or phased in, depending on the information available to instruct refinement in different developing circuits. Thus, this review describes selected cases where STDP has been studied in developmental contexts, and uses these examples to suggest a more general framework for understanding where it could be playing a role in development.
Collapse
Affiliation(s)
- Daniel A. Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of MarylandCollege Park, MD, USA
| | - Patrick O. Kanold
- Department of Biology and Program in Neuroscience and Cognitive Science, University of MarylandCollege Park, MD, USA
- Institute for Systems Research, University of MarylandCollege Park, MD, USA
| |
Collapse
|
42
|
Abstract
The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in visual cortex prevents the maturation of thalamocortical synapses, the maturation of inhibition in layer 4, the development of orientation selective responses and the formation of ocular dominance columns. SPn removal also alters ocular dominance plasticity during the critical period. Therefore, SPns are a key regulator of cortical development and plasticity. SPns are vulnerable to injury during prenatal stages and might provide a crucial link between brain injury in development and later cognitive malfunction.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
43
|
Zhao C, Kao JPY, Kanold PO. Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J Neurosci 2009; 29:15479-88. [PMID: 20007472 PMCID: PMC3539415 DOI: 10.1523/jneurosci.4471-09.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/22/2009] [Accepted: 10/31/2009] [Indexed: 11/21/2022] Open
Abstract
The functional connectivity of the cerebral cortex is shaped by experience during development, especially during a critical period early in life. In the prenatal and neonatal cortex, transient neuronal circuits are formed by a population of subplate neurons (SPNs). However, SPNs are absent in the adult cortex. While SPNs are crucial for normal development of the cerebral cortex and of thalamocortical synapses, little is known about how they are integrated in the developing thalamocortical circuit. We therefore investigated SPNs in vitro in thalamocortical slices of A1 and medial geniculate nucleus (MGN) in mouse from postnatal day 1 (P1) to P13. We found that SPNs can fire action potentials at P1 and that their intrinsic membrane properties are mature after P5. We find that SPNs receive functional excitatory inputs from the MGN as early as P2. The MGN projections to SPNs strengthen between P2 and P13 and are capable of inducing action potentials in SPNs. Selective activation of SPNs by photostimulation produced EPSCs in layer 4 neurons, demonstrating a functional excitatory connection. Thus, SPNs are tightly integrated into the developing thalamocortical circuit and would be a reliable relay of early spontaneous and sound-evoked activity. The role of SPNs in development likely results from their strong excitatory projection to layer 4, which might function to regulate activity-dependent processes that enable mechanisms required for the functional maturation and plasticity of the developing cortex and thereby contribute to the development of normal cortical organization.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Biology, Institute for Systems Research, and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, and
| | - Joseph P. Y. Kao
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O. Kanold
- Department of Biology, Institute for Systems Research, and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
44
|
Vanhatalo S, Jousmäki V, Andersson S, Metsäranta M. An easy and practical method for routine, bedside testing of somatosensory systems in extremely low birth weight infants. Pediatr Res 2009; 66:710-3. [PMID: 19730159 DOI: 10.1203/pdr.0b013e3181be9d66] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study was set out to develop and describe a novel, simple, and safe method for routine bedside testing of somatosensory system in very early preterm infants. We recorded electroencephalogram (EEG) activity after tactile stimulation of hand (palm) and foot (sole) by a soft hairbrush stimulator in extremely low birth weight infants (n = 10; GA, 24-28, recording at conceptional age 30-32 wk) and compared with the raw EEG responses to those seen by one- or two-channel brain monitors. In every subject, single tactile stimuli produced prominent (100-350 microV) somatosensory evoked responses (SERs) that were readily identified in the ongoing EEG signal. The maximal SER was in the contralateral hemisphere at around the corresponding somatosensory representation areas. Conventional EEG filtering did significantly reduce the SERs, but they could still be identified in the routine brain monitor setting widely available in NICUs. The method described here is directly applicable to assessment of integrity of somatosensory system in the early preterm period. It needs minimal training and requires an EEG system or a brain monitor device that is available in most units. Thus, the technique is likely to open a novel window to neurologic assessment of these babies.
Collapse
Affiliation(s)
- Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Helsinki University Central Hospital, P.O. Box 280, FIN-00029 HUS, Finland.
| | | | | | | |
Collapse
|