1
|
Kschonek J, Twele L, Deters K, Miller M, Reinmold J, Emmerich I, Hennig-Pauka I, Kemper N, Kreienbrock L, Wendt M, Kästner S, Grosse Beilage E. Part I: understanding pain in pigs-basic knowledge about pain assessment, measures and therapy. Porcine Health Manag 2025; 11:12. [PMID: 40069905 PMCID: PMC11895375 DOI: 10.1186/s40813-025-00421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Pigs can suffer from pain due to spontaneously occurring diseases, wounds, injuries, trauma, and physiological conditions such as the farrowing process; however, this pain is often neglected. To increase knowledge and awareness about this phenomenon, the current article presents a scoping review of basic and new approaches for identifying, evaluating, and treating pain in pigs. METHODS A scoping review was conducted with results from a search of the electronic database VetSearch and CABI. With regard to eligibility criteria, 49 out of 725 publications between 2015 and the end of March 2023 were included. The findings are narratively synthesized and reported orienting on the PRISMA ScR guideline. RESULTS The results of this review showed that practitioners need to consider pain not only as a sign of a disease but also as a critical aspect of welfare. If both the symptoms of pain and the underlying reasons remain unassessed, the longevity and prosperity of pigs may be at risk. In this respect, veterinarians are obliged to know about intricacies of pain and pain mechanisms and to provide adequate treatment for their patients. CONCLUSION It is pivotal to increase knowledge about pain mechanisms, the reasons for heterogeneity in behavioural signs of pain, and methods for evaluating whether a pig is experiencing pain. This article will help practitioners update their knowledge of this topic and discuss the implications for everyday practice.
Collapse
Affiliation(s)
- Julia Kschonek
- Institute for Biometry, Epidemiology and Information Processing (IBEI), University of Veterinary Medicine, Foundation, Hannover, Bünteweg 2, 30559, Hannover, Germany.
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine, Foundation, Hannover, Bünteweg 9, 30559, Hannover, Germany
| | - Kathrin Deters
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| | - Moana Miller
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Foundation, Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Jennifer Reinmold
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| | - Ilka Emmerich
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 39, 04103, Leipzig, Germany
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Foundation, Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Lothar Kreienbrock
- Institute for Biometry, Epidemiology and Information Processing (IBEI), University of Veterinary Medicine, Foundation, Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, Foundation, Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Sabine Kästner
- Clinic for Small Animals, University of Veterinary Medicine, Foundation, Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine, Foundation, Hannover, Büscheler Str. 9, 49456, Bakum, Germany
| |
Collapse
|
2
|
Shin M, Jung SH, Kim K, Hahn TW. Evaluation of formulation and immunogenicity of porcine circovirus type 2d (PCV2d) vaccine for needle-free intradermal route injection. J Vet Sci 2025; 26:e24. [PMID: 40183910 PMCID: PMC11972937 DOI: 10.4142/jvs.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Porcine circovirus type 2 (PCV2) is a major pathogen responsible for the porcine circovirus-associated disease, causing significant economic losses in the swine industry worldwide. PCV2d has become the dominant, following a sequential shift from the previously predominant PCV2a and PCV2b genotypes. Although an effective vaccine based on virus-like particles (VLPs) of recombinant PCV2d-based capsid protein has been developed, intramuscular inoculation of the vaccine still induces a wide variety of side effects. In contrast, intradermal vaccination offers benefits, including enhanced immune activation due to the abundance of dendritic cells in the dermal layer, while also reducing side effects. OBJECTIVE Developing a novel vaccine combined with a needle-free inoculation technique is required to elicit protection against PCV2d infection with fewer side effects and higher effectiveness. This study aimed to develop a VLP-based vaccine targeting PCV2d and assess its efficacy when administered intradermally using a needle-free system. METHODS To optimize the intradermal vaccine formulation, we evaluated humoral immunity and neutralizing activity following intradermal administration of test vaccines prepared with varying adjuvant types, adjuvant ratios, and antigen doses. RESULTS IMS1313 adjuvant provided the best induction of total IgG and neutralizing antibody titers. A dose-dependent evaluation indicated that 20 μg of antigen combined with 40% IMS1313 achieved optimal immune responses. Compared to intramuscular injection, intradermal injection using this formulation induced 1.3-fold higher neutralizing antibody titers, demonstrating higher efficacy. CONCLUSIONS AND RELEVANCE Intradermal vaccination using a PCV2d VLP-based vaccine improves immunogenicity and cost-effectiveness, providing a promising strategy for controlling PCV2d infections in swine.
Collapse
Affiliation(s)
| | | | | | - Tae-Wook Hahn
- Innovac, Chuncheon 24341, Korea
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
3
|
Chiu HJ, Chang SW, Lin H, Chuang YC, Kuo KL, Lin CH, Chiou MT, Lin CN. Lineage 7 Porcine Reproductive and Respiratory Syndrome Vaccine Demonstrates Cross-Protection Against Lineage 1 and Lineage 3 Strains. Vaccines (Basel) 2025; 13:102. [PMID: 40006649 PMCID: PMC11861173 DOI: 10.3390/vaccines13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Porcine reproductive and respiratory syndrome virus (PRRSV) has a major impact on swine productivity. Modified-live vaccines (MLVs) are used to aid in control. We investigated the cross-protection provided by a lineage 7 PRRSV MLV against a lineage 1 isolate under laboratory conditions and a lineage 3 challenge under field conditions in Taiwan. Methods: In the first study, thirty PRRS antibody-negative conventional piglets were vaccinated via the intramuscular (IM) or the intradermal (ID) route, with the control group receiving a placebo. Four weeks after immunization, all groups were challenged with a Taiwanese lineage 1 strain. The standard protocol for detection of reversion to virulence was applied to the vaccine strain in the second study, using sixteen specific pathogen-free piglets. In the third study, on an infected pig farm in Taiwan (lineage 3 strain), three hundred piglets were randomly selected and divided into three groups, each injected with either the PrimePac® PRRS vaccine via the IM or the ID route, or a placebo. Results: In the first study, both vaccinated groups demonstrated reduced viraemia compared to the control group. The second study demonstrated that the MLV strain was stable. In the third study, piglet mortality, average daily weight gain, and pig stunting rate were significantly improved in the vaccinated groups compared to the control group. Conclusions: PrimePac® PRRS is safe to use in the field in the face of a heterologous challenge, successfully providing cross-protection against contemporary lineage 1 and lineage 3 PRRSV strains from Taiwan.
Collapse
Affiliation(s)
- Hsien-Jen Chiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Shu-Wei Chang
- Intervet Animal Health Taiwan Ltd., Taipei 11047, Taiwan;
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore;
| | - Yi-Chun Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Kun-Lin Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Chia-Hung Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (H.-J.C.); (Y.-C.C.); (K.-L.K.); (C.-H.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
4
|
Sommer KM, Sutkus L, Senthil P, Dilger RN. Feeding style alters the growth and behavior of artificially-reared pigs. J Anim Sci 2025; 103:skaf098. [PMID: 40152488 PMCID: PMC12056935 DOI: 10.1093/jas/skaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025] Open
Abstract
Early-life pig growth is influenced by protein synthesis facilitated by sow milk intake. However, factors such as teat disorders, timing of milk letdown, and seasonal fluctuations can limit milk intake, leading to slower growth and higher mortality rates. Artificial rearing systems allow precise regulation of milk intake, providing a valuable platform for researchers to investigate various feeding strategies, such as ad libitum or weight-based feeding and their impacts on behavior, growth, and health. In our study on feeding style in an artificial rearing system, pigs (85 boars) were removed from the sow on postnatal day (PND) 2 and allotted to treatment based on litter of origin and body weight (BW). Pigs were reared in 4 cohorts across 2 trials over a 15-d feeding period. Experimental treatments included: AD, nutritionally adequate milk replacer provided ad libitum or PRE, nutritionally adequate milk replacer delivered at a prescribed basis according to individual pig BW, which was provided once per hour throughout a 20 h daily feeding cycle. Home-cage tracking and growth performance were measured throughout the study. On PND 6 and 14 an ethogram-based video analysis was performed, spanning the 20-h feeding cycle, to assess home-cage behavioral outcomes. Insulin responsivity was measured near the study conclusion utilizing a feeding-stimulated method and static blood collection time-points. In the study conclusion, pigs were euthanized and underwent body composition analysis. Data were analyzed via a repeated measures or 1-way analysis of variance (ANOVA), with significance accepted at an alpha level of 0.05. Pigs in the AD group exhibited increased (P < 0.05) intake and BW gain but decreased feed efficiency when compared with the PRE group. Additionally, feeding style increased (P < 0.05) serum insulin concentrations 0.5 h after the first feeding in AD pigs when compared with PRE pigs. Feeding style altered (P < 0.05) spatial preference in trial 1 with PRE pigs spending relatively more time in the home-cage quadrant that housed the milk bowl compared with AD pigs. Moreover, PRE pigs spent more (P < 0.05) time visiting the feeding bowl and performing milk consumption behaviors at the bowl than AD pigs. Lastly, the relative proportion of water within soft tissue was increased (P < 0.05) in PRE pigs compared with AD pigs. In conclusion, feeding style impacted growth performance, insulin concentrations, spatial preference, and behavior of artificially-reared pigs.
Collapse
Affiliation(s)
- Kaitlyn M Sommer
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Loretta Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | - Pradeep Senthil
- Department of Computer Science, University of Illinois, Urbana, IL 61801, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
5
|
King-Podzaline EE, Stephen GL, Bokhart A, Trindade PHE, Merenda VR, Pairis-Garcia MD. Effects of a Multimodal Pain Control Protocol Using 2% Lidocaine Intradermal and Meloxicam Intramuscular on Mitigating Behavioral Castration Pain in Piglets Using a Needleless System. J APPL ANIM WELF SCI 2024:1-12. [PMID: 39693216 DOI: 10.1080/10888705.2024.2440894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Mitigating piglet castration pain is critical to minimize negative experiences and contribute to a positive affective state. A multimodal pain control protocol (needleless 2% lidocaine intradermal/0.4 mg/kg meloxicam intramuscular) was evaluated. Males were administered one of four treatments: (1) needleless lidocaine/meloxicam intramuscular (LM), (2) needleless lidocaine/saline intramuscular (LS), (3) needleless saline/meloxicam intramuscular (SM), and (4) needleless saline/saline intramuscular (SS). Females were sham castrated (SH). Piglets were recorded 24h pre-castration (M1) and 15min (M2), 3h (M3), and 24h post-castration (M4). The Unesp-Botucatu Composite Acute Pain Scale (UPAPS) was used to assess pain behavior. From a treatment standpoint, scores did not differ at M1 (P = 1.00) or M4 (P ≥ 0.36). However, at M2, LS piglets had (P < 0.01) higher scores (3.4) than LM piglets (1.6) and SH piglets had (P ≤ 0.01) the lowest scores (0.02). From a timepoint standpoint, piglets in the LS, LM, SM, and SS groups had (P ≤ 0.05) higher scores at M2 compared with their baseline scores at M1. These results indicate that needleless lidocaine and intramuscular meloxicam offered no analgesic benefit.
Collapse
Affiliation(s)
- Erin Elizabeth King-Podzaline
- Department of Ambulatory Medicine and Theriogenology, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Gabriella-Louise Stephen
- Department of Ambulatory Medicine and Theriogenology, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Alexandria Bokhart
- Department of Ambulatory Medicine and Theriogenology, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | | |
Collapse
|
6
|
Criado M, Silva M, Arteche-Villasol N, Zapico D, Elguezabal N, Molina E, Espinosa J, Ferreras MDC, Benavides J, Pérez V, Gutiérrez-Expósito D. Evaluation of alternative vaccination routes against paratuberculosis in goats. Front Vet Sci 2024; 11:1457849. [PMID: 39664904 PMCID: PMC11631874 DOI: 10.3389/fvets.2024.1457849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis, caused by Mycobacterium avium subspecies paratuberculosis (Map), that affects ruminants worldwide. Vaccination has been considered the most cost-effective method for the control of this disease in infected dairy herds. However, currently available vaccines do not provide complete protection and interfere with the diagnosis of both paratuberculosis and bovine tuberculosis, limiting its use. Because of that, efforts are being made for the development of new vaccines. The primary objective of this study was to evaluate the efficacy of two whole-cell inactivated experimental vaccines against paratuberculosis in goats, administered through the oral (OV) and intradermal (IDV) routes, and compare them with that of the commercial subcutaneous vaccine Gudair® (SCV). Over an 11-month period, the effect of vaccination and a subsequent Map challenge on the specific peripheral immune responses and Map-DNA fecal shedding were recorded. At the end of the experiment, tissue bacterial load and lesion severity were assessed. The experimental vaccines did not induce specific humoral immune responses and only elicited mild and delayed cellular immune responses. Although the OV reduced lesion severity, neither this vaccine nor the IDV prototype was able to reduce fecal shedding or tissue bacterial load. Moreover, although the SCV did not confer sterile immunity, it outperformed both experimental vaccines in all these parameters.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Marta Silva
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Noive Arteche-Villasol
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - David Zapico
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - María del Carmen Ferreras
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| |
Collapse
|
7
|
Lewis I, Wishart H, Breeze E, Setter P, Amory J. Needle-free intradermal vaccination, an opportunity to improve commercial pig welfare. Anim Welf 2024; 33:e48. [PMID: 39703218 PMCID: PMC11655266 DOI: 10.1017/awf.2024.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 12/21/2024]
Abstract
In-farm livestock production vaccinations are commonly delivered intramuscularly using needles. While there are alternative strategies these have been subject to little attention and limited commercialisation. One such alternative is needle-free vaccines and studies have focused on the immune response few have addressed the welfare implications. This study aims to compare the impact of intradermal needle-free vaccination and intramuscular injection in terms of the welfare of the piglets. A total of 179 piglets were divided into two treatments: intradermal needle-free delivery and intramuscular delivery of a vaccine. Measures of health and welfare included, vocalisations, behavioural observations, papule formation, and weight. Piglets vaccinated via the needle-free intradermal route vocalised less and displayed no significant behavioural differences but showed increased weight compared to piglets vaccinated intramuscularly. The use of a needle-free device to deliver a vaccine through an intradermal route revealed no adverse effects on piglet welfare and supports the use of alternative strategies to vaccinate livestock.
Collapse
Affiliation(s)
- Isabel Lewis
- Anglia Ruskin University, Chelmsford Campus, Lordship Road, Chelmsford, EssexCM1 3RR, UK
- Hartpury University, Hartpury, Gloucester GL19 3BE, UK
| | - Harriet Wishart
- Anglia Ruskin University, Chelmsford Campus, Lordship Road, Chelmsford, EssexCM1 3RR, UK
| | - Ellie Breeze
- Anglia Ruskin University, Chelmsford Campus, Lordship Road, Chelmsford, EssexCM1 3RR, UK
| | - Poppy Setter
- Anglia Ruskin University, Chelmsford Campus, Lordship Road, Chelmsford, EssexCM1 3RR, UK
| | - Jonathan Amory
- Anglia Ruskin University, Chelmsford Campus, Lordship Road, Chelmsford, EssexCM1 3RR, UK
| |
Collapse
|
8
|
Silva CA, Callegari MA, Dias CP, de Souza KL, Romano GS, Hernig LF, Lippke RT, Jansen R, Leite FL, Filipe F, de Carvalho RH. Well-Being and Performance of Nursery Pigs Subjected to Different Commercial Vaccines Against Porcine Circovirus Type 2, Mycoplasma hyopneumoniae and Lawsonia intracellularis. Vaccines (Basel) 2024; 12:1242. [PMID: 39591145 PMCID: PMC11598480 DOI: 10.3390/vaccines12111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Vaccination is a strategy in pig farming for the control of several pathogens, but commercial vaccines may have detrimental side effects. This study aimed to evaluate the effects of commercial vaccines on the control of porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (Mhp), and Lawsonia intracellularis (L. intracellularis) and their potential side effects on welfare, behavior, acute inflammation biomarkers (C-reactive protein and haptoglobin), and the performance of piglets during the nursery phase. Methods: A total of 240 piglets, both female and castrated males, with an average weight of 6.3 ± 0.9 kg were subjected to four treatments: T1-FLEXcombo® (Ingelvac®CircoFLEX and Ingelvac®MycoFLEX) + Enterisol® Ileitis; T2-FLEXCombo® + Porcilis® Ileitis; T3-Porcilis® PCV M HYO + Porcilis® Ileitis; and T4-FLEXCombo® + 0.9% saline solution. This study measured therapeutic interventions, body condition score, behavioral changes, rectal temperature, and inflammation biomarkers post-vaccination. Results: The T3 group required more therapeutic interventions and exhibited a 23.1% higher incidence of thin body condition (p < 0.05) and 10 times more animals with depressed behavior than T1 (p < 0.05). The piglets vaccinated for L. intracellularis (T2 and T3) had rectal temperatures exceeding 39.7 °C post-vaccination, significantly higher than in T1 (p < 0.05). The T1 animals showed five times more positive behavior traits 24 h after vaccination (p < 0.05). Touch response was 29% lower in the T2 and T3 groups, and the lying down behavior was higher in these groups compared to T1. Additionally, 41.7% of the T3 animals exhibited a sitting posture 48 h after vaccination. Higher serum C-reactive protein and haptoglobin levels were observed in T3 (p < 0.05) at 24 and 48 h post-vaccination. Feed intake was higher in T1 compared to T3 between 29 and 35 days of age. It is important to note that this study did not measure immune responses to the pathogens and did not include challenge tests, and therefore, it does not assess which vaccine is superior in pathogen control. Conclusions: The vaccine programs resulted in similar zootechnical performance. However, T1, T2, and T4 showed better effects on piglet welfare and behavior compared to T3.
Collapse
Affiliation(s)
- Caio Abércio Silva
- Department of Animal Science, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, Brazil;
| | | | - Cleandro Pazinato Dias
- Akei Animal Research, Fartura 18870-970, Brazil; (M.A.C.); (C.P.D.); (K.L.d.S.); (G.S.R.)
| | - Kelly Lais de Souza
- Akei Animal Research, Fartura 18870-970, Brazil; (M.A.C.); (C.P.D.); (K.L.d.S.); (G.S.R.)
| | - Gabrieli Souza Romano
- Akei Animal Research, Fartura 18870-970, Brazil; (M.A.C.); (C.P.D.); (K.L.d.S.); (G.S.R.)
| | - Luciana Fiorin Hernig
- Boehringer Ingelheim do Brasil, Sao Paulo 04795-100, Brazil; (L.F.H.); (R.T.L.); (F.F.)
| | - Ricardo Tesche Lippke
- Boehringer Ingelheim do Brasil, Sao Paulo 04795-100, Brazil; (L.F.H.); (R.T.L.); (F.F.)
| | - Rutger Jansen
- Boehringer Ingelheim Vetmedica GmbH, Bingerstrasse 173, 55216 Ingelheim am Rhein, Germany;
| | | | - Fernando Filipe
- Boehringer Ingelheim do Brasil, Sao Paulo 04795-100, Brazil; (L.F.H.); (R.T.L.); (F.F.)
| | - Rafael Humberto de Carvalho
- Department of Animal Science, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, Brazil;
- Akei Animal Research, Fartura 18870-970, Brazil; (M.A.C.); (C.P.D.); (K.L.d.S.); (G.S.R.)
| |
Collapse
|
9
|
Mallioris P, Luiken REC, Tobias T, Vonk J, Wagenaar JA, Stegeman A, Mughini-Gras L. Risk factors for antimicrobial use in Dutch pig farms: A cross-sectional study. Res Vet Sci 2024; 174:105307. [PMID: 38781817 DOI: 10.1016/j.rvsc.2024.105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Antimicrobial use (AMU) has decreased significantly in Dutch pig farms since 2009. However, this decrease has stagnated recently, with relatively high AMU levels persisting mainly among weaners. The aim of this study was to identify farm-level characteristics associated with: i) total AMU and ii) use of specific antimicrobial classes. METHODS In 2020, cross-sectional data from 154 Dutch pig farms were collected, including information on AMU and farm characteristics. A mixed-effects conditional Random Forest analysis was applied to select the subset of features that was best associated with AMU. RESULTS The main risk factors for total AMU in weaners were vaccination for PRRS in sucklings, being a conventional farm (vs. not), high within-farm density, and early weaning. The main protective factors for total AMU in sows/sucklings were E. coli vaccination in sows and having boars for estrus detection from own production. Regarding antimicrobial class-specific outcomes, several risk factors overlapped for weaners and sows/sucklings, such as farmer's non-tertiary education, not having free-sow systems during lactation, and conventional farming. An additional risk factor for weaners was having fully slatted floors. For fatteners, the main risk factor for total AMU was PRRS vaccination in sucklings. CONCLUSIONS Several factors found here to be associated with AMU. Some were known but others were novel, such as farmer's tertiary education, low pig aggression and free-sow systems which were all associated with lower AMU. These factors provide targets for developing tailor-made interventions, as well as an evidence-based selection of features for further causal assessment and mediation analysis.
Collapse
Affiliation(s)
- Panagiotis Mallioris
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Roosmarijn E C Luiken
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tijs Tobias
- Department of Population Health Sciences, Farm Animal Health unit, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Swine Health Department, Royal GD, Deventer, the Netherlands
| | - John Vonk
- John Vonk DVM, BSc Agriculture, De Varkenspraktijk, Obrechtstraat 2, 5344 AT, Oss, the Netherlands
| | - Jaap A Wagenaar
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Arjan Stegeman
- Department of Population Health Sciences, Farm Animal Health unit, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lapo Mughini-Gras
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, the Netherlands
| |
Collapse
|
10
|
Renson P, Mahé S, Andraud M, Le Dimna M, Paboeuf F, Rose N, Bourry O. Effect of vaccination route (intradermal vs. intramuscular) against porcine reproductive and respiratory syndrome using a modified live vaccine on systemic and mucosal immune response and virus transmission in pigs. BMC Vet Res 2024; 20:5. [PMID: 38172908 PMCID: PMC10763156 DOI: 10.1186/s12917-023-03853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.
Collapse
Affiliation(s)
- Patricia Renson
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France.
| | - Sophie Mahé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France
| | - Mathieu Andraud
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, 22440, France
| | - Mireille Le Dimna
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, 22440, France
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, 22440, France
| | - Olivier Bourry
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, 22440, France
| |
Collapse
|
11
|
Hernandez-Franco JF, Yadagiri G, Patil V, Bugybayeva D, Dolatyabi S, Dumkliang E, Singh M, Suresh R, Akter F, Schrock J, Renukaradhya GJ, HogenEsch H. Intradermal Vaccination against Influenza with a STING-Targeted Nanoparticle Combination Adjuvant Induces Superior Cross-Protective Humoral Immunity in Swine Compared with Intranasal and Intramuscular Immunization. Vaccines (Basel) 2023; 11:1699. [PMID: 38006031 PMCID: PMC10675188 DOI: 10.3390/vaccines11111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The development of cross-protective vaccines against the zoonotic swine influenza A virus (swIAV), a potential pandemic-causing agent, continues to be an urgent global health concern. Commercially available vaccines provide suboptimal cross-protection against circulating subtypes of swIAV, which can lead to worldwide economic losses and poor zoonosis deterrence. The limited efficacy of current swIAV vaccines demands innovative strategies for the development of next-generation vaccines. Considering that intramuscular injection is the standard route of vaccine administration in both human and veterinary medicine, the exploration of alternative strategies, such as intradermal vaccination, presents a promising avenue for vaccinology. This investigation demonstrates the first evaluation of a direct comparison between a commercially available multivalent swIAV vaccine and monovalent whole inactivated H1N2 swine influenza vaccine, delivered by intradermal, intranasal, and intramuscular routes. The monovalent vaccines were adjuvanted with NanoST, a cationic phytoglycogen-based nanoparticle that is combined with the STING agonist ADU-S100. Upon heterologous challenge, intradermal vaccination generated a stronger cross-reactive nasal and serum antibody response in pigs compared with intranasal and intramuscular vaccination. Antibodies induced by intradermal immunization also had higher avidity compared with the other routes of vaccination. Bone marrow from intradermally and intramuscularly immunized pigs had both IgG and IgA virus-specific antibody-secreting cells. These studies reveal that NanoST is a promising adjuvant system for the intradermal administration of STING-targeted influenza vaccines.
Collapse
Affiliation(s)
- Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Ekachai Dumkliang
- Drug Delivery System Excellence Center (DDSEC), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Mithilesh Singh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Fatema Akter
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Gavaud S, Haurogné K, Buchet A, Garcia Vinado I, Allard M, Lehébel A, Leblanc-Maridor M, Bach JM, Belloc C, Lieubeau B, Hervé J. Effects of improved early-life conditions on health, welfare, and performance of pigs raised on a conventional farm. Animal 2023; 17:100810. [PMID: 37172358 DOI: 10.1016/j.animal.2023.100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023] Open
Abstract
Nowadays, most pigs are raised indoors, on intensive farms providing a poor environment. In these conditions, the risk of the occurrence of damaging behaviours is high, with dramatic consequences for animal health and welfare as well as economic losses for farmers. Early-life conditions may predispose individuals to develop damaging behaviours later in life. In contrast, reinforcing affiliative behaviours between piglets before weaning might help to prevent tail-biting episodes. In this field study, we aimed at improving early-life conditions of piglets on a commercial farm by completely suppressing painful procedures and staggering their exposure to weaning stress factors. The alternative early-life management strategy combined housing in free-farrowing pens with temporary crating of the sow, socialisation during the lactation period with whole-life maintenance of the hierarchical groups, and delayed transfer to the postweaning room after sow removal. Control conditions included birth in farrowing crates, tail docking, absence of socialisation during the lactation period, abrupt weaning with immediate transfer to the postweaning room and mixing with non-littermates. We evaluated the health, welfare, and performance of alternatively raised pigs (n = 80) as compared to controls (n = 75). Visits were made throughout the lifespan of individuals to evaluate their growth and health status. Body and tail lesions were scored as proxy measures of aggressiveness and impaired welfare. Blood and bristle samples were periodically collected to evaluate stress, inflammation and immune competence. While the whole-life performance of pigs was similar among groups, the alternative early-life conditions prevented the growth slowdown usually observed after weaning. In addition, alternatively raised pigs displayed more neutrophils, eosinophils and monocytes the day after weaning, as well as higher C-Reactive Protein levels. One week later, their monocytes displayed greater phagocytic capacity. Altogether, these data suggest an enhanced innate immune competence for alternatively raised pigs around weaning. Piglets reared under alternative conditions also exhibited fewer and less severe body lesions than standard pigs, one week after weaning. In contrast, they showed more tail lesions on days 36 and 66 associated with greater levels of acute phase proteins (C-Reactive Protein and haptoglobin). To conclude, alternative early-life management better prepared piglets for weaning. However, the whole-life maintenance of early-established social groups was not sufficient to prevent the occurrence of damaging behaviours in undocked pigs.
Collapse
Affiliation(s)
- S Gavaud
- Oniris, INRAE, IECM, Nantes, France
| | | | - A Buchet
- Cooperl Innovation, Lamballe, France
| | | | - M Allard
- Oniris, INRAE, IECM, Nantes, France
| | - A Lehébel
- Oniris, INRAE, BIOEPAR, Nantes, France
| | | | - J M Bach
- Oniris, INRAE, IECM, Nantes, France
| | - C Belloc
- Oniris, INRAE, BIOEPAR, Nantes, France
| | | | - J Hervé
- Oniris, INRAE, IECM, Nantes, France.
| |
Collapse
|
13
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
14
|
Hayhurst E, Rose E, Pedrera M, Edwards JC, Kotynska N, Grainger D, Sadigh Y, Flannery J, Bonnet L, Ritwik R, Dulal P, Howard MK, Graham SP. Evaluation of the Delivery of a Live Attenuated Porcine Reproductive and Respiratory Syndrome Virus as a Unit Solid Dose Injectable Vaccine. Vaccines (Basel) 2022; 10:vaccines10111836. [PMID: 36366345 PMCID: PMC9696641 DOI: 10.3390/vaccines10111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/01/2022] Open
Abstract
Solid dose vaccine formulation and delivery systems offer potential advantages over traditional liquid vaccine formulations. In addition to enhanced thermostability, needle-free delivery of unit solid dose injectable (USDI) vaccines offers safe, rapid, and error-free administration, with applicability to both human and animal health. Solid dose formulation technologies can be adapted for delivery of different vaccine formats including live attenuated vaccines, which remain the ‘gold standard’ for many disease targets. Porcine reproductive and respiratory syndrome viruses (PRRSV) cause one of the most economically important diseases affecting the global pig industry. Despite several shortcomings, live attenuated vaccines are widely used to control PRRSV. We optimised a freeze-dried USDI formulation of live attenuated PRRSV-1, which fully retained infectious titre, and evaluated its immunogenicity in comparison to virus delivered in liquid suspension via intramuscular and subcutaneous needle inoculation. Pigs vaccinated with the USDI formulation displayed vaccine viraemia, and PRRSV-specific antibody and T cell responses comparable to animals immunised with the liquid vaccine. The USDI vaccine formulation was stable for at least 6 months when stored refrigerated. These data demonstrate the potential for a solid dose vaccine delivery system as an alternative to conventional needle-syringe delivery of live attenuated PRRSV vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Pawan Dulal
- Enesi Pharma, Abingdon OX14 4SA, UK
- Correspondence: (P.D.); (S.P.G.)
| | | | - Simon P. Graham
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Correspondence: (P.D.); (S.P.G.)
| |
Collapse
|
15
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
16
|
Angiotensin II Blood Serum Levels in Piglets, after Intra-Dermal or Intra-Muscular Vaccination against PRRSV. Vet Sci 2022; 9:vetsci9090496. [PMID: 36136712 PMCID: PMC9503611 DOI: 10.3390/vetsci9090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes massive financial losses in pig production worldwide. Vaccination is still the most cost-effective tool to handle PRRSV infection. PRRSV induces apoptosis in different organs. Angiotensin II (Ang II) participates in the inflammatory response, cell proliferation, migration, and apoptosis. The objective of the current study was to assess the concentration of Ang II in the serum of piglets following immunization against PRRSV through intradermal (ID) or intramuscular (IM) vaccination with a commercial PRRS modified live virus (MLV) vaccine. The results indicated differences in viremia of tested piglets at 7 weeks of age, while piglets at 10 weeks of age were all found qRT-PCR positive for PRRSV. Moreover, significant differences were noticed in Ang II in 7-week-old piglets. In conclusion, our study provides evidence that ID vaccination induces less tissue damage, based on the lower measurements of Ang II in the serum of ID vaccinated piglets. Abstract The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces apoptosis in different organs. Angiotensin II (Ang II) is the main effector of the renin-angiotensin system and participates in apoptosis. Thus, this study aimed to investigate changes in piglet serum Ang II levels following intradermal (ID) and intramuscular (IM) vaccination with a commercial PRRS modified live virus (MLV) vaccine. The trial was conducted in a commercial pig farm, including 104 piglets which were randomly allocated to four groups: Group A—Porcilis PRRS ID, Group B—Porcilis PRRS IM, Group C—Diluvac ID and Group D—Diluvac IM. The study piglets were either vaccinated or injected at 2 weeks of age and they were tested by qRT-PCR for PRRSV and by ELISA for Ang II. The results indicated differences in viremia of tested piglets at 7 weeks of age, while piglets at 10 weeks of age were all found qRT-PCR positive for PRRSV. In addition, significant differences were noticed in Ang II in 7-week-old piglets. In conclusion, the present study provides evidence that ID vaccination induces less tissue damage, based on the lower measurements of Ang II in the serum of ID vaccinated piglets.
Collapse
|
17
|
Comparison of effects of a single dose of MHYOSPHERE® PCV ID with three commercial porcine vaccine associations against Mycoplasma hyopneumoniae (Mhyo) and porcine circovirus type 2 (PCV2) on piglet growth during the nursery period under field conditions. Vet Res Commun 2022; 46:1167-1173. [PMID: 35829861 DOI: 10.1007/s11259-022-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Pigs routinely undergo stressful vaccination procedures, which are often unavoidable given the unavailability of safer alternatives, challenging animal welfare. The available vaccines for Mycoplasma hyopneumoniae (Mhyo) or Porcine circovirus type 2 (PCV2) are mostly administered intramuscularly in association to prevent Porcine respiratory disease complex (PRDC). MHYOSPHERE® PCV ID is the first vaccine protecting from both agents by intradermal route. This randomized, blind-field trial aimed to compare the effects of MHYOSPHERE® PCV ID with those of three different intramuscular associations of commercially available vaccines. A total of 7072 21-day-old piglets from 12 consecutive batches in one farm were randomly vaccinated with MHYOSPHERE® PCV ID (G1) or Ingelvac CircoFLEX® + Hyogen® (G2), Porcilis® PCV + M + PAC® (G3), and Porcilis® PCV + Hyogen® (G4). Growth performance during the nursery period and adverse reactions (ARs) after vaccine administration were monitored. Average Daily Weight Gain (ADWG) during the first 7 days post-weaning in G1 was 10.92, 3.03, and 20.08 g/day higher than in G2, G3, and G4, respectively, and 0.65, 4.06, and 9.58 g/day higher than in G2, G3, and G4 during the entire nursery period, respectively. G1 ADWG was significantly higher than G4 during both periods and significantly higher than G2 during the first 7 days post-weaning. Incidence of systemic ARs in G2 and G4 was 0.03% and 0.32%, respectively; none were recorded in G1 and G3. Replacing the usual intramuscular vaccination with MHYOSPHERE® PCV ID results in higher growth performance during the first weeks after weaning with no systemic ARs.
Collapse
|
18
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial‐resistant Escherichia coli in dogs and cats, horses, swine, poultry, cattle, sheep and goats. EFSA J 2022; 20:e07311. [PMID: 35582363 PMCID: PMC9087955 DOI: 10.2903/j.efsa.2022.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Escherichia coli (E. coli) was identified among the most relevant antimicrobial‐resistant (AMR) bacteria in the EU for dogs and cats, horses, swine, poultry, cattle, sheep and goats in previous scientific opinions. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR E. coli can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33–66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2, 3 and 4 (Categories A, B, C and D; 0–5%, 5–10%, 10–33% and 10–33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Section 5 (Category E, 33–66% probability of meeting the criteria). The animal species to be listed for AMR E. coli according to Article 8 criteria include mammals, birds, reptiles and fish.
Collapse
|
19
|
Maragkakis G, Korou LM, Chaintoutis SC, Christodoulopoulos G, Dovas CI, Perrea D, Athansiou LV, Konstantopoulos P, Maes D, Papatsiros VG. Investigation of Fas (APO-1)-Related Apoptosis in Piglets Intradermally or Intramuscularly Vaccinated with a Commercial PRRSV MLV. Viral Immunol 2022; 35:129-137. [PMID: 35196156 DOI: 10.1089/vim.2021.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces apoptosis through the activation of death receptors, including cell-surface Fas receptor. The aim of this study was to investigate the impact of intradermal (ID) and intramuscular (IM) vaccination with a commercial PRRSV-modified live vaccine in piglets on Fas-related apoptosis. The study included 104 suckling piglets from a commercial farrow-to-finish pig farm, suffering from positive unstable PRRSV status. Animals were assigned in four groups: group A-Porcilis PRRS ID-vaccinated pigs, group B-Porcilis PRRS IM-vaccinated pigs, group C-Diluvac ID adjuvant-administered pigs, and group D-Diluvac IM adjuvant-administered pigs. Vaccines were administered at 2 weeks of age. Blood samples were collected from the same pigs at 4, 7, and 10 weeks of age. Sera were examined by quantitative real-time reverse transcription-PCR (qRT-PCR) for PRRSV and by ELISA for soluble Fas (sFas). At 4 weeks of age, all groups were negative qRT-PCR for PRRSV; at 7 weeks only group A was negative; and at 10 weeks all groups were positive. sFas was significantly increased in groups C (4 vs. 7, 4 vs. 10, and 7 vs. 10 weeks) and D (7 vs. 10 weeks). Significant differences among groups were noticed only at 10 weeks (A vs. C, A vs. D, B vs. C, B vs. D). A significant positive and moderate correlation between PRRSV viral load and Fas level was observed. In unvaccinated piglets, increased serum sFas levels reveal apoptotic suppression compared with vaccinated piglets. In the latter, vaccine-derived antibodies limit the infection and may attribute to the reduced Fas expression, suggesting a weak induction of lymphocyte-mediated cytotoxicity.
Collapse
Affiliation(s)
- Georgios Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Laskarina-Maria Korou
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Labrini V Athansiou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Panagiotis Konstantopoulos
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominiek Maes
- Department of Obstetrics-Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| |
Collapse
|
20
|
The Effect of Needle Reuse on Piglet Skin Puncture Force. Vet Sci 2022; 9:vetsci9020090. [PMID: 35202343 PMCID: PMC8876719 DOI: 10.3390/vetsci9020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
The study investigated whether the repeat use of needles used to inject piglets with iron, influences the force required to puncture into piglet cadaver skin. Pig units (n = 31) were surveyed on needle reuse and injection practices, and these findings informed subsequent laboratory-based experiments on needle puncture force into piglet cadaver tissues. A 21 G 5/8” needle was reported as the most used needle type (67.7%), with 80.6% reporting needle reuse; 38.7% changed the needle between litters or earlier if damaged, 16.1% every three litters and 22.5% when it felt blunt or damaged, after each injection session or when changing the bottle of iron solution. There was a significant difference in puncture force between the 1st and 36th use (p < 0.05), and between the 1st and 100th use (p = 0.0015), but not between the 1st and 12th or 36th use (p > 0.999 and p = 0.8313, respectively). Scanning electron microscopy (SEM) imaging showed appreciable damage to the needle tip after 12 uses. The repeat use of needles in piglet cadavers increased the force of needle puncture compared to first-time use. When extrapolated to live animals, the use of blunt needles has the potential to cause pain and distress.
Collapse
|
21
|
Dalmau A, Sánchez-Matamoros A, Molina JM, Xercavins A, Varvaró-Porter A, Muñoz I, Moles X, Baulida B, Fàbrega E, Velarde A, Pallisera J, Puigredon A, Contreras-Jodar A. Intramuscular vs. Intradermic Needle-Free Vaccination in Piglets: Relevance for Animal Welfare Based on an Aversion Learning Test and Vocalizations. Front Vet Sci 2021; 8:715260. [PMID: 34458358 PMCID: PMC8385536 DOI: 10.3389/fvets.2021.715260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to compare intramuscular injection with a needle and intradermic needle-free vaccinations against porcine reproductive and respiratory syndrome (PRRS) in piglets at 28 days old by studying behavioral and physiological reactions. A total of 72 piglets divided into 2 sex-balanced batches were assessed. Within each batch, the piglets were divided into three treatments, which were Hipradermic (0.2 ml of UNISTRAIN® PRRS vaccine administered with an intradermic needle-free device), Intramuscular (IM, 2.0 ml of vaccine), and Control (not vaccinated). Before the vaccination, the piglets were trained to cross a 4-m-long raceway to perform an aversion learning test. The day of vaccination, the time taken to cross the raceway was registered for each piglet at different times: prior to the vaccination and 10 min, 2, 24, 48, and 72 h after the vaccination, to measure variations in these times as signs of aversion to the vaccination process. Vocalizations, as potential signs of pain, were recorded as well at the end of this raceway to analyze their frequency (Hz), duration, and level of pressure (dB) at the moment of vaccination. Salivary cortisol, as a sign of the HPA-axis activity, was assessed 10 min after the vaccination. In addition, activity budgets, local reaction to the vaccine, and serological titer were also considered in the study. Ten minutes after the vaccination, the IM piglets took longer (p < 0.001) to cross the raceway than did the Hipradermic and Control piglets. Vocalizations were significantly different between the three treatments: the Control piglets produced vocalizations with the lowest frequency (p < 0.001) and level of pressure (p < 0.001), and IM with the highest, with Hipradermic in a significant intermediate position (p < 0.001). Accordingly, the day of the vaccination, IM and Hipradermic animals were lying on the side of the vaccine administration a greater proportion of time than were the Control piglets (10, 11, and 6%, respectively; p = 0.027). Salivary cortisol was not significantly different between treatments. The serum titer of antibodies against the PRRS was higher (p < 0.001) in both vaccinated treatments in comparison to the Control piglets. It is concluded that the Hipradermic needle-free vaccination may result in a less aversive experience in piglets than did intramuscular vaccination.
Collapse
Affiliation(s)
- Antoni Dalmau
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | | | | | - Aida Xercavins
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | | | - Israel Muñoz
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | - Xènia Moles
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | - Berta Baulida
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | - Emma Fàbrega
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | - Antonio Velarde
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | - Joaquim Pallisera
- Animal Welfare Program, Institute of Agrifood Research and Technology, Barcelona, Spain
| | | | | |
Collapse
|