1
|
Xu Q, Xue L, Wu Z, Kang S, Li J, Wu Y, Wu Y, Zhao J, Wu R, Lv H, Wang J, Han D. Dietary Qiwenghuangbo powder-enriched Limosilactobacillus reuteri protects the intestinal epithelium and alleviates inflammation via a strain-specific mechanism. Animal Model Exp Med 2025. [PMID: 40109036 DOI: 10.1002/ame2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Qiwenghuangbo powder (QP), composed of Astragalus, Phellodendron chinensis, and Radix pulsatilla, is a traditional Chinese herbal formula, but its effects on weaned piglets remained unclear. METHODS Weaned piglets fed with 0.5 kg/t QP (QP1), 1 kg/t QP (QP2), low-zinc oxide (ZnO; negative control), and high-ZnO (positive control) diets in two phases, respectively, and the growth performance, intestinal morphology, cytokines, and microbial communities were profiled. The mouse models of colitis induced by Citrobacter rodentium and dextran sulfate sodium (DSS) were employed to elucidate the potential role of QP-fed enriched key species. RESULTS Dietary 1.0 kg/t QP alleviated diarrhea and inflammation and improved intestinal development and growth performance of weaned piglets. Moreover, this dietary intervention notably altered microbiota composition, characterized by the enrichment of Limosilactobacillus reuteri. Furthermore, out of three isolated L. reuteri, two strains could alleviate pathogen infection and intestinal inflammation, respectively. Specifically, the anti-inflammatory effect of one strain was achieved by promoting the colonization resistance of C. rodentium as significantly reduced pathogen loads. The other strain mitigated DSS-induced colitis by enhancing the goblet cell function and inhibiting the secretion of pro-inflammatory cytokines, particularly interleukin-1β (IL-1ß) and tumor necrosis factor-α (TNF-α). CONCLUSIONS Dietary QP improved the growth performance and intestinal health of weaned piglets by promoting the colonization of L. reuteri. The isolated commensal L. reuteri control colitis in a strain-specific mechanism, highlighting the potential of QP and L. reuteri in providing evidence for gut health promotion.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Xue
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuaishuai Kang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rujuan Wu
- Peking Centre Technology Co., Ltd., Beijing, China
| | - Huiyuan Lv
- Peking Centre Technology Co., Ltd., Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Zhang Y, Liu J, Li M, Dong Y, Li Z, Yi D, Wu T, Wang L, Zhao D, Hou Y. Zinc Oxide Administration Relieves the Diarrhea of ETEC K88-Infected Piglets by Reducing Ileal Apoptosis and Maintaining Gut Microbial Balance. Vet Sci 2025; 12:115. [PMID: 40005874 PMCID: PMC11861302 DOI: 10.3390/vetsci12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, including a reduction in villus height in the jejunum, duodenum, and ileum, and a decrease in total superoxide dismutase activity in the jejunum and catalase activity in the ileum and jejunum. Compared to control group, ETEC K88 infection significantly elevated the mRNA level of gene IL-1β and the level of ileal epithelial cell apoptosis. ZnO administration significantly alleviated these negative effects and improved the antioxidative capability of the ileum. Moreover, ZnO supplementation alleviated the imbalance of gut microbiota by restoring the reduced amount of Enterococcus and Lactobacillus in the jejunum, Clostridium in the ileum, and Lactobacillus in the cecum, as well as the increased amount of total eubacteria in the ileum and Enterococcus in the cecum induced by the ETEC K88 infection. In conclusion, ZnO administration can reduce the diarrhea of piglets infected with ETEC K88 by reducing the structural damage of the intestine, attenuating intestinal oxidative stress and epithelial cell apoptosis, and modulating the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430024, China
| |
Collapse
|
3
|
Hu D, Li X, Duan X, Yang L, Luo B, Wang L, Hu Z, Zhou Y, Qian P. Recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG: a candidate for an oral subunit vaccine against F4+ ETEC infection. Appl Environ Microbiol 2025; 91:e0181724. [PMID: 39601541 PMCID: PMC11784076 DOI: 10.1128/aem.01817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Diarrheal diseases attributable to multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) are escalating in severity, posing significant risks to the health and safety of both humans and animals. This study used Saccharomyces cerevisiae EBY100 to display the FaeG subunit of F4 colonizing factor as an oral vaccine against F4+ ETEC infection. Mice were orally immunized twice with 108 CFU of EBY100/pYD1-FaeG, followed by a challenge with F4+ ETEC EC6 on day 7 post-immunization. The results showed that the recombinant strain EBY100/pYD1-FaeG orally enhanced the growth of the small intestine villi, significantly boosted the expression of tight junction proteins (ZO-1, Occludin, MUC2, and Claudin) (P < 0.05), and modulated the gut microbiota composition. Additionally, immunization with EBY100/pYD1-FaeG also upregulated the levels of IL-2, IL-4, and IFN-γ in the intestines of mice (P < 0.01), while serum IgG and fecal sIgA titer significantly increased (P < 0.05). These immune responses enhanced the capacity to fight against ETEC, leading to an increased survival rate of mice and relieved damage to tissues and organs of mice infection. In summary, the study suggested that the recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG could effectively stimulate the immune response and generate specific antibodies against F4+ ETEC, showing its potential to serve as a subunit oral vaccine candidate for preventing F4+ ETEC infection.IMPORTANCEThe multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) strains are the primary clinical pathogens responsible for post-weaning diarrhea in piglets, resulting in substantial economic losses in the pig farming industry. In the study, we developed an oral vaccine candidate, Saccharomyces cerevisiae EBY100/pYD1-FaeG, to prevent diarrhea caused by multidrug-resistant F4+ ETEC. Oral administration of EBY100/pYD1-FaeG significantly enhanced immune responses, improved intestinal health, and provided protection against F4+ ETEC infection in mice. This approach offers a potential application prospect for preventing F4+ ETEC infections that lead to post-weaning diarrhea in clinical settings and provides a promising solution for addressing the growing threat of antibiotic resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baizhi Luo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zihui Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Marchetti L, Rebucci R, Lanzoni D, Giromini C, Aidos L, Di Giancamillo A, Cremonesi P, Biscarini F, Castiglioni B, Bontempo V. Dietary supplementation with a blend composed of carvacrol, tannic acid derived from Castanea sativa and Glycyrrhiza glabra, and glycerides of medium chain fatty acids for weanling piglets raised in commercial farm. Vet Res Commun 2024; 48:3773-3791. [PMID: 39269670 PMCID: PMC11538194 DOI: 10.1007/s11259-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study aimed to evaluate the dietary administration of a blend composed of carvacrol, tannic acid derived from Castanea sativa mill and Glycyrrhiza glabra, medium chain fatty acids (MCFAs) glycerides for weanling piglets. An in vitro digestion followed by total phenolic content (TPC) and total antioxidant activity (TAC) assessment was performed before the in vivo application. At weaning, a total of 210 piglets were randomly allocated to two experimental treatments (7 replicates/15 piglets for each replicate). Control group (CTR) was fed a standard basal diet while the treated group (T) was fed the basal diet mixed with 1.500 mg/kg of blend. After in vitro digestion, TPC and TAC evidenced peaks at the end of oral and gastric phases in comparison to the intestinal one in line with the high content of phenolic compound (P < 0.05). Treatment conditioned body weight and average daily gain (P < 0.05), fecal score on 6, 7, and 8 d after weaning (P < 0.05). At 35d, the T group showed a decrease in salivary cortisol compared to CTR (P < 0.05). Duodenum and jejunum sections of T piglets revealed higher villi (P < 0.05), deeper crypts (P < 0.01), and increased V/C ratio (P < 0.01). CTR showed a higher expression of duodenal Occludin (P < 0.05). Jejunal E-cadherin and Occludin were more expressed in T jejunum sections (P < 0.05). Twelve differentially abundant genera were identified in T group caecal samples. Potentially harmful Clostridium sensu stricto 13 was reduced by the treatment (P < 0.05). In conclusion, the tested blend positively affected salivary stress markers and the gut health of weaned piglets.
Collapse
Affiliation(s)
- Luca Marchetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy.
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20100, Italy
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Filippo Biscarini
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Valentino Bontempo
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| |
Collapse
|
6
|
Storms SM, Leonardi-Cattolica A, Prezioso T, Varga C, Wang L, Lowe J. Influenza A virus shedding and reinfection during the post-weaning period in swine: longitudinal study of two nurseries. Front Vet Sci 2024; 11:1482225. [PMID: 39606665 PMCID: PMC11601151 DOI: 10.3389/fvets.2024.1482225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Influenza A virus in swine (IAV-S) is common in the United States commercial swine population and has the potential for zoonotic transmission. Objective To elucidate influenza shedding the domestic pig population, we evaluated two commercial swine farms in Illinois, United States, for 7 weeks. Farm 1 had a recent IAV-S outbreak. Farm 2 has had IAV-S circulating for several years. Methods Forty post-weaning pigs on Farm 1 and 51 pigs from Farm 2 were individually monitored and sampled by nasal swabs for 7 weeks. Results RT-PCR results over time showed most piglets shed in the first 2 weeks post weaning, with 91.2% shedding in week one, and 36.3% in week two. No difference in the number of pigs shedding was found between the two nurseries. Reinfection events did differ between the farms, with 30% of piglets on Farm 1 becoming reinfected, compared to 7.8% on Farm 2. In addition, whole genome sequencing of nasal swab samples from each farm showed identical viruses circulating between the initial infection and the reinfection periods. Sequencing also allowed for nucleic and amino acid mutation analysis in the circulating viruses, as well the identification of a potential reverse zoonosis event. We saw antigenic site mutations arising in some pigs and MxA resistance genes in almost all samples. Conclusion This study provided information on IAV-S circulation in nurseries to aid producers and veterinarians to screen appropriately for IAV-S, determine the duration of IAV-S shedding, and predict the occurrence of reinfection in the nursery period.
Collapse
Affiliation(s)
- Suzanna M. Storms
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Tara Prezioso
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Csaba Varga
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - James Lowe
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
7
|
Witjes VL, Veldkamp F, Velkers FC, de Jong IC, Meijer E, Rebel JMJ, Stegeman JA, Tobias TJ. Early behavioral indicators of aberrant feces in newly-weaned piglets. Porcine Health Manag 2024; 10:47. [PMID: 39501385 PMCID: PMC11536707 DOI: 10.1186/s40813-024-00396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/01/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Post-weaning diarrhea (PWD) is a frequently occurring health and welfare issue in weaned piglets. Behavioral changes indicating impaired health may be detectable before the onset of signs and could be useful to detect the development of PWD early, enabling targeted and timely interventions. Current algorithms enable automated behavioral classification on the group level, while PWD may not affect all piglets in one pen and individual level analysis may be required. Therefore, this study aimed to assess whether changes in pen activity or individual piglet behavior can be early indicators of the occurrence of PWD. During 3 replicated rounds, 72 piglets (Sus scrofa domestica, Landrace x Large White) weaned at 27 days of age, were housed in 4 pens with 6 piglets each. Individual fecal color and consistency were scored (0-5; ≥ 3 considered as aberrant feces) six times during the first two weeks post-weaning using rectal swabs. Additionally, using a similar scoring scale, feces on the pen floor were assessed daily. Two methods were applied for behavioral scoring. Individual behaviors (eating, drinking, standing, walking; n = 48) were scored manually and instantaneously with a five-minute interval from videos of the first two rounds, while pen activity (eating, drinking, moving; n = 12) was analyzed automatically and continuously using a commercially available algorithm from videos of all three rounds. RESULTS Piglets showing a relatively higher proportion of standing behavior one day before fecal scoring had increased odds of an aberrant fecal color score (odds ratio (OR): 4.8; 95% confidence interval (CI): 1.5-15.3). Furthermore, odds of aberrant colored feces increased in pens where piglets showed more moving activity two days before (OR: 6.14; 1.26 < 95%CI < 29.84), which was also found for fecal consistency (OR: 4.77; 95%CI: 1.1-21.6). CONCLUSIONS Our results indicate that increased standing in individual piglets and an increased moving activity on the pen level may be important behavioral indicators of PWD before the onset of diarrhea. Further development of current algorithms that can identify behavioral abnormalities in groups, from the pen to the individual level, may therefore be a promising avenue for improved and targeted health and welfare monitoring.
Collapse
Affiliation(s)
- Vivian L Witjes
- Department Population Health Sciences, Veterinary Medicine, Farm Animal Health, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.
| | - Fleur Veldkamp
- Department Animal Welfare and Health, Wageningen Livestock Research, Wageningen University and Research, De Elst 1, 6700 AH, Wageningen, The Netherlands
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, 6700 AH, The Netherlands
| | - Francisca C Velkers
- Department Population Health Sciences, Veterinary Medicine, Farm Animal Health, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | - Ingrid C de Jong
- Department Animal Welfare and Health, Wageningen Livestock Research, Wageningen University and Research, De Elst 1, 6700 AH, Wageningen, The Netherlands
| | - Ellen Meijer
- Behavior and Welfare Group, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 107, NL-3584 CL, Utrecht, The Netherlands.
| | - Johanna M J Rebel
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, 6700 AH, The Netherlands
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| | - Jan A Stegeman
- Department Population Health Sciences, Veterinary Medicine, Farm Animal Health, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | - Tijs J Tobias
- Department Population Health Sciences, Veterinary Medicine, Farm Animal Health, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
- Royal GD, Arnsbergstraat 7, 3718EZ, Deventer, The Netherlands
| |
Collapse
|
8
|
Chen B, Silvaraju S, Almunawar SNA, Heng YC, Lee JKY, Kittelmann S. Limosilactobacillus allomucosae sp. nov., a novel species isolated from wild boar faecal samples as a potential probiotic for domestic pigs. Syst Appl Microbiol 2024; 47:126556. [PMID: 39467427 DOI: 10.1016/j.syapm.2024.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Six strains, WILCCON 0050, WILCCON 0051, WILCCON 0052, WILCCON 0053, WILCCON 0054, WILCCON 0055T, were isolated from four different faecal samples of wild boars on Pulau Ubin, Singapore, Singapore. Based on core genome phylogenetic analysis, the six strains formed a distinct clade within the genus Limosilactobacillus (Lm.), with the most closely related type strain being Lm. mucosae DSM 13345T. The minimum ANI, dDDH, and AAI values within these six strains were 97.8%, 78.8%, and 98.6%, respectively. In contrast, the ANI, dDDH, and AAI values with Lm. mucosae DSM 13345T were lower, ranging between 94.8-95.1%, 57.1-59.0%, and 95.9-97.0%, respectively. While ANI and AAI were close to the thresholds of 95% and 97% for bacterial species delineation, respectively, dDDH was significantly lower than the threshold value of 70%. Based on our phylogenomic, phenotypic and chemotaxonomic analyses, we propose a novel species with the name Limosilactobacillus allomucosae sp. nov., with WILCCON 0055T (DSM 117632T = LMG 33563T) as the designated type strain. In vitro investigations revealed the strains' ability to break down raffinose-family oligosaccharides, and to utilize prebiotics such as xylo-oligosaccharides and galacturonic acid, thereby enhancing fibre digestion and nutrient absorption. Moreover, strong auto-aggregation properties, as well as resistance to low pH and porcine bile were observed, suggesting their potential survival and persistence during passage through the gut. The high bile tolerance of these strains appears to be attributed to their ability to deconjugate a wide range of conjugated bile compounds. In silico analysis indicated a strong potential for mucin-binding activity, which aids their colonization in the gut. These characteristics indicate the potential suitability of strains of Lm. allomucosae as probiotics for domestic pigs.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | | | | | - Yu Chyuan Heng
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore.
| |
Collapse
|
9
|
Monger XC, Saucier L, Gilbert AA, Gosselin S, Pouliot É, Fournaise S, Vincent AT. Resilience of Loin Meat Microbiota and of Resistance Genes to a Chlortetracycline Treatment in Weaned Piglets. Antibiotics (Basel) 2024; 13:997. [PMID: 39452263 PMCID: PMC11504350 DOI: 10.3390/antibiotics13100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES This project studied the impact of a chlortetracycline treatment in weaning piglets on the taxonomy and antibiotic resistance gene (ARG) content of the microbiomes on carcasses and loins. METHODS Two groups of piglets from two farrowing barns with either an average or a lower sanitary health status were used. Each group was divided in half: a control group and a treatment group receiving feed supplemented with 660 g of chlortetracycline per tonne for 21 days. The piglets then went through fattening and were sent to the abattoir when they reached the targeted slaughter weight. RESULTS The microbiomes of the pig carcasses and loins were sampled, and DNA was extracted and sequenced with a whole-genome approach. The microbiomes of the carcasses differed depending on the farrowing barn source in both taxonomical composition and ARG content; however, the microbiomes on the loins were similar, regardless of the farrowing barn source and the treatment group. CONCLUSIONS While there were differences in the carcass microbiomes between treatments after processing by the abattoir, the loin microbiomes were consistent and unaffected by treatment with chlortetracycline or the sanitary status of the farrowing barn.
Collapse
Affiliation(s)
- Xavier C. Monger
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada; (X.C.M.); (L.S.); (A.-A.G.); (S.G.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | - Linda Saucier
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada; (X.C.M.); (L.S.); (A.-A.G.); (S.G.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Alex-An Gilbert
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada; (X.C.M.); (L.S.); (A.-A.G.); (S.G.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Sophie Gosselin
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada; (X.C.M.); (L.S.); (A.-A.G.); (S.G.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Éric Pouliot
- Olymel S.E.C., Boucherville, QC J4B 5Y1, Canada; (É.P.); (S.F.)
| | | | - Antony T. Vincent
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada; (X.C.M.); (L.S.); (A.-A.G.); (S.G.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Zhou M, Wu Z, Deng D, Wang B, Zhou X, Zhou B, Wang C, Zeng Y. Effects of taurine on the growth performance, diarrhea, oxidative stress and intestinal barrier function of weanling piglets. Front Vet Sci 2024; 11:1436282. [PMID: 39170630 PMCID: PMC11336868 DOI: 10.3389/fvets.2024.1436282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative damage resulting from weaning stress significantly impacts the growth performance and health status of piglets. Taurine, a dietary antioxidant with diverse functions, was investigated in this study for its protective role against weaning stress-induced oxidative damage and its underlying mechanism. Forty 28-day-old male castrated weaned piglets were randomly assigned to four groups. The control group received the basal diet, while the experimental groups were fed the basal diet supplemented with 0.1, 0.2%, or 0.3% taurine over a 28-day period. In vitro, H2O2 was utilized to induce oxidative damage to the jejunal mucosa of piglets via IPEC-J2 cells. The results demonstrated that taurine supplementation reduced the incidence of diarrhea in piglets compared to that in the control group (p < 0.05); the addition of 0.2 and 0.3% taurine led to increased average daily gain and improved feed conversion efficiency in weaned piglets, showing a linear dose-response correlation (p < 0.05). Taurine supplementation at 0.2 and 0.3% enhanced the activities of serum CAT and GSH-Px while decreasing the levels of serum NO, XOD, GSSG, and MDA (p < 0.05). Moreover, it significantly elevated the levels of GSS, Trx, POD, complex I, mt-nd5, and mt-nd6, enhancing superoxide anion scavenging capacity and the hydroxyl-free scavenging rate in the livers of weaned piglets while reducing NO levels in the liver (p < 0.05). Additionally, 0.2 and 0.3% taurine supplementation decreased serum IL-6 levels and elevated the concentrations of IgA, IgG, and IL-10 in weaned piglets (p < 0.05). The levels of occludin, claudin, and ZO-1 in the jejunum mucosa of weaned piglets increased with 0.2 and 0.3% taurine supplementation (p < 0.05). In IPEC-J2 cells, pretreatment with 25 mM taurine for 24 h enhanced the activities of SOD and CAT; reduced the MDA content; upregulated the mRNA expression of various genes, including ZO-1, occludin, claudin-1, Nrf2, and HO-1; and reversed the oxidative damage induced by H2O2 exposure (p < 0.05). Overall, the findings suggest that the inclusion of 2 and 3% taurine in the diet can enhance growth performance, reduce diarrhea rates, ameliorate oxidative stress and inflammation, and promote intestinal barrier function in weaned piglets.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Donghua Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, China
| | | | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | | | - Yan Zeng
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
11
|
Wu Z, Zhang L, Li H, Li J, Zhang Z, Tan B, Wang J. Ningxiang Pig-Derived Parabacteroides distasonis HNAU0205 Alleviates ETEC-Induced Intestinal Apoptosis, Oxidative Damage, and Inflammation in Piglets. Animals (Basel) 2024; 14:2156. [PMID: 39123683 PMCID: PMC11310999 DOI: 10.3390/ani14152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Weaning is a critical stage in the growth and development of piglets, often inducing stress reactions. This study aims to investigate the effects of Parabacteroides distasonis (PBd) derived from Ningxiang pigs on growth performance, intestinal apoptosis, oxidative damage, and inflammation in ETEC-challenged weaned piglets. A total of 22 Duroc × Landrace × Yorkshire (DLY) piglets, 24 days old with similar body weights, were randomly divided into three groups: Control (n = 7), ETEC (n = 7), and PBd + ETEC (n = 8). The results show that, compared to the Control group, ETEC challenge led to decreased growth performance, reduced villus height in the duodenum and jejunum, increased crypt depth in the duodenum, a decreased villus-height-to-crypt-depth ratio, increased expression of apoptosis-related genes (Caspase-8 and Caspase-9), increased expression of oxidative damage-related genes (Nrf2, GSH-PX, mTOR, and Beclin1), increased expression of inflammation-related genes (Myd88, P65, TNF-α, and IL-6), and reduced the contents of SCFAs in the colonic chyme (acetate, propionate, butyrate, valerate, and total SCFAs). Compared to the ETEC group, the PBd + ETEC group alleviated the reduction in growth performance, mitigated intestinal morphological damage, and reduced the expression of the aforementioned apoptosis, oxidative damage, and inflammation-related genes with the increase in SCFAs. In conclusion, PBd derived from Ningxiang pigs effectively reduces ETEC-induced intestinal damage in weaned piglets, improves intestinal health, and increases the content of SCFAs in the colonic chyme, thereby enhancing growth performance.
Collapse
Affiliation(s)
- Zichen Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Longlin Zhang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hongkun Li
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Junyao Li
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
| | - Zihao Zhang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
| | - Bie Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
12
|
Gambino M, Kushwaha SK, Wu Y, van Haastrecht P, Klein-Sousa V, Lutz VT, Bejaoui S, Jensen CMC, Bojer MS, Song W, Xiao M, Taylor NMI, Nobrega FL, Brøndsted L. Diversity and phage sensitivity to phages of porcine enterotoxigenic Escherichia coli. Appl Environ Microbiol 2024; 90:e0080724. [PMID: 38940562 PMCID: PMC11267873 DOI: 10.1128/aem.00807-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Conservation, The Royal Danish Academy, Copenhagen, Denmark
| | - Simran Krishnakant Kushwaha
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Yi Wu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pauline van Haastrecht
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Victor Klein-Sousa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Veronika T. Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Semeh Bejaoui
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Franklin L. Nobrega
- School of Biological Sciences, Faculty of Environmental & Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
13
|
Xu L, Gao G, Zhou Z, Wei Z, Sun W, Li Y, Jiang X, Gu J, Li X, Pi Y. Fermented Purslane ( Portulaca oleracea L.) Supplementation Enhances Growth and Immune Function Parallel to the Regulation of Gut Microbial Butyrate Production in Weaned Piglets. Microorganisms 2024; 12:1403. [PMID: 39065171 PMCID: PMC11278901 DOI: 10.3390/microorganisms12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding fermented purslane (FP) on the growth performance, immune function, intestinal microbiota, and metabolic profiles of weaned piglets. Forty-eight weaned piglets were randomly divided into two groups, with eight pens in each group and three pigs in each pen: a control diet (CON group) and a diet supplemented with 0.20% FP (FP group). The experiment lasted 28 days. The results show that FP supplementation did not affect the average daily feed intake (ADFI) but significantly increased the average daily gain (ADG) during the initial 14 days post-weaning. FP supplementation decreased diarrhea occurrence, with a pronounced reduction from days 10 to 13 (p < 0.05). Immunologically, the FP group had a trend towards reduced serum IgA levels on day 14 (p < 0.10). Importantly, the serum concentrations of the pro-inflammatory cytokine IL-6 were significantly reduced on both days 14 and 28 post-weaning. The antioxidative analysis showed increased serum superoxide dismutase (SOD) and decreased catalase (CAT) activities on day 14 (p < 0.05). In addition, FP supplementation significantly decreased serum diamine oxidase (DAO) activity and D-lactate levels by day 28, indicating a potential improvement in gut integrity. Fecal microbiota assessment demonstrated a distinctive clustering of microbial communities between the FP and CON groups, with an increase in the abundance of Clostridium_sensu_stricto_1, Tyzzerella, and Prevotellaceae_NK3B31_group and a decrease in Lactobacillus, Bacillus, and Subdoligranulum in the FP group (p < 0.05). Functional predictions suggested that the relative abundance of microbial butyrate synthesis enzymes (EC 2.7.2.7 and EC 2.3.1.19) was significantly enhanced by FP treatment. This modulation was further corroborated by elevated fecal butyrate levels (p < 0.05). In summary, dietary supplementation with FP promotes early-growth performance and has beneficial effects on immune function and intestinal health in weaned piglets. The enhancements may be attributed to distinct microbiota compositional changes and targeted modulation of microbial butyrate metabolism, which are crucial for piglet post-weaning adaptation and overall health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Zian Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Jingang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| |
Collapse
|
14
|
Kongpanna P, Doerr JA, Nilubol D, Jamikorn U. Effect of a Multi-Species Direct-Fed Microbial on Growth Performance, Nutrient Digestibility, Intestinal Morphology and Colonic Volatile Fatty Acids in Weanling Pigs. Animals (Basel) 2024; 14:1749. [PMID: 38929368 PMCID: PMC11200373 DOI: 10.3390/ani14121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The potentials of ABO replacer of ENZ and DFM on growth performance, AID, colonic VFAs, gut morphology, fecal score and diarrhea incidence were evaluated. We randomly assigned 120 piglets to four experimental diets that included: (1) control diet (CON), fed the basal ration; (2) ABO was added at 250 ppm of in-feed ABO; (3) ENZ was added at a rate of 3 kg/ton feed; (4) DFM was added with 50 × 106 cfu/g of Bacillus subtilis and 2 × 106 cfu/g of Lactobacillus spp. at a rate of 1.2 kg/ton feed. A complete randomized design used six pens per treatment with five pigs per pen. Pigs had ad libitum access to feed and water throughout the 6-week trial. Feed intake and BW were recorded on weeks 0, 2, 4 and 6, as well as fecal scores and diarrhea incidences (visually recorded and calculated). At weeks 2 and 4, a sub-sample of pigs (n = 6) was sacrificed for intestinal morphology, enzyme activity and VFAs. The results of the study demonstrated that DFM piglets showed increased final BW (3 kg) (p < 0.001) vs. CON. Likewise, ADG was positively affected by the incorporation of ABO, ENZ and DFM in the diets, with an average increase of 8 to 17% on ADG compared with CON (p < 0.001). The AID of gross energy, organic matter, CP and EAAs in piglets fed ENZ and DFM were significantly higher (p < 0.05) than those of CON and ABO at weeks 2 and 4. Inclusion of DFM increased intestinal morphology, enzymatic activities and propionic and butyric acid more than in pigs fed CON, ABO and ENZ (p < 0.05). The fecal score and diarrhea incidence generally decreased over time in pigs fed DFM (p < 0.05). These findings indicate that dietary supplementation with DFM has better effects at any period on growth performance, CP and AA digestibility and beneficially altered the intestinal health in weanling piglets.
Collapse
Affiliation(s)
- Panumas Kongpanna
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - John A. Doerr
- Agrarian Solutions, 585 Shawnee St., Nappanee, IN 46550, USA;
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Uttra Jamikorn
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
15
|
Bagaria M, Ramayo-Caldas Y, González-Rodríguez O, Vila L, Delàs P, Fàbrega E. Impact of Nutritional Strategies to Prevent Post-Weaning Diarrhoea on Performance, Behaviour, and Microbiota in Piglets from Organic Farming. Animals (Basel) 2024; 14:1730. [PMID: 38929349 PMCID: PMC11200382 DOI: 10.3390/ani14121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Organic livestock farming is committed to high environmental and animal welfare standards, although pathologies such as post-weaning diarrhoea (PWD) may appear. The main objective of this study was to assess nutritional strategies to prevent PWD in organic piglets. A total of 134 weaned piglets were fed one of three diets: high crude protein (17.8%, HCP), low crude protein (16.8%, LCP), and low crude protein supplemented with liquid whey (LCP+W). Piglets were assessed weekly for four weeks on the following parameters: diarrhoea incidence, additional health parameters, average daily gain, and behaviour. Faecal samples were taken to analyse the intestinal microbiota composition. Data were analysed using LMM and GLMM models and Shannon and Whittaker indexes. No significant effect of diet on diarrhoea incidence was found, but the LCP+W diet increased average daily gain. Pigs fed the LCP+W diet presented a lower percentage of drinking and negative social behaviour compared with the HCP diet, and LCP pigs presented higher exploration compared with HCP. In addition, LCP+W piglets showed a higher abundance of the beneficial genus Frisingicoccus. Although liquid whey did not reduce diarrhoea incidence, the benefits found in growth, microbiota composition, and reduced negative social behaviour indicate that it could be an optimal supplement to organic diets.
Collapse
Affiliation(s)
- Marc Bagaria
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain;
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; (Y.R.-C.); (O.G.-R.)
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; (Y.R.-C.); (O.G.-R.)
| | - Lluís Vila
- Llavora Agropecuària, 17473 Ventalló, Spain; (L.V.); (P.D.)
| | - Pino Delàs
- Llavora Agropecuària, 17473 Ventalló, Spain; (L.V.); (P.D.)
| | - Emma Fàbrega
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain;
| |
Collapse
|
16
|
Tang Q, Lan T, Zhou C, Gao J, Wu L, Wei H, Li W, Tang Z, Tang W, Diao H, Xu Y, Peng X, Pang J, Zhao X, Sun Z. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:297-311. [PMID: 38800731 PMCID: PMC11127239 DOI: 10.1016/j.aninu.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tianyi Lan
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jingchun Gao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiyang Wei
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644005, China
| |
Collapse
|
17
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
18
|
Zhou J, Liu F, He M, Gao J, Wu C, Gan Y, Bian Y, Wei J, Zhang W, Zhang W, Han X, Dai J, Sun L. Detection and Analysis of Antidiarrheal Genes and Immune Factors in Various Shanghai Pig Breeds. Biomolecules 2024; 14:595. [PMID: 38786002 PMCID: PMC11117698 DOI: 10.3390/biom14050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy-Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy-Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy-Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai.
Collapse
Affiliation(s)
- Jinyong Zhou
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Fuqin Liu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Mengqian He
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jun Gao
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Caifeng Wu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yeqing Gan
- Shanghai Jiading Municipal Centre for Disease Control and Prevention, Shanghai 201899, China; (Y.G.); (Y.B.); (J.W.)
| | - Yi Bian
- Shanghai Jiading Municipal Centre for Disease Control and Prevention, Shanghai 201899, China; (Y.G.); (Y.B.); (J.W.)
| | - Jinliang Wei
- Shanghai Jiading Municipal Centre for Disease Control and Prevention, Shanghai 201899, China; (Y.G.); (Y.B.); (J.W.)
| | - Weijian Zhang
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200051, China; (W.Z.); (W.Z.)
| | - Wengang Zhang
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200051, China; (W.Z.); (W.Z.)
| | - Xuejun Han
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Jianjun Dai
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Lingwei Sun
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (F.L.); (M.H.); (J.G.); (C.W.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
19
|
Guitart-Matas J, Ballester M, Fraile L, Darwich L, Giler-Baquerizo N, Tarres J, López-Soria S, Ramayo-Caldas Y, Migura-Garcia L. Gut microbiome and resistome characterization of pigs treated with commonly used post-weaning diarrhea treatments. Anim Microbiome 2024; 6:24. [PMID: 38702766 PMCID: PMC11067243 DOI: 10.1186/s42523-024-00307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The global burden of antimicrobial resistance demands additional measures to ensure the sustainable and conscious use of antimicrobials. For the swine industry, the post-weaning period is critical and for many years, antimicrobials have been the most effective strategy to control and treat post-weaning related infections. Among them, post-weaning diarrhea causes vast economic losses, as it severely compromises piglets' health and growth performance. In this study, 210 piglets were transferred from a farm with recurrent cases of post-weaning diarrhea to an experimental farm and divided into six different treatment groups to determine the effect of the different treatments on the growth performance and survival, the microbiome, and the resistome in a cross-sectional and longitudinal study. The different treatments included antimicrobials trimethoprim/sulfamethoxazole, colistin, and gentamicin, an oral commercial vaccine, a control with water acidification, and an untreated control. An extra group remained at the farm of origin following the implemented amoxicillin routine treatment. A total of 280 fecal samples from pigs at four different sampling times were selected for metagenomics: before weaning-treatment at the farm of origin, and three days, two weeks, and four weeks post-treatment. RESULTS The control group with water acidification showed a reduced death risk in the survival analyses and non-significant differences in average daily weight gain in comparison to the antibiotic-treated groups. However, the growth-promoting effect among antibiotic-treated groups was demonstrated when comparing against the untreated control group at the experimental farm. After four weeks of treatment, diversity indexes revealed significantly decreased diversity for the untreated control and the group that remained at the farm of origin treated with amoxicillin. For this last group, impaired microbial diversity could be related to the continuous amoxicillin treatment carried out at the farm. Analysis of the resistome showed that both gentamicin and amoxicillin treatments significantly contributed to the emergence of resistance, while trimethoprim/sulphonamide and colistin did not, suggesting that different treatments contribute differently to the emergence of resistance. CONCLUSIONS Overall, this shotgun longitudinal metagenomics analysis demonstrates that non-antibiotic alternatives, such as water acidification, can contribute to reducing the emergence of antimicrobial resistance without compromising pig growth performance and gut microbiome.
Collapse
Affiliation(s)
- Judith Guitart-Matas
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Lorenzo Fraile
- School of Agrifood and Forestry Science and Engineering (ETSEA), Department of Animal Production, University of Lleida, Catalonia, Spain
| | - Laila Darwich
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Noemí Giler-Baquerizo
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Joaquim Tarres
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Sergio López-Soria
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Catalonia, Spain
| | - Lourdes Migura-Garcia
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Autonomous University of Barcelona (UAB), Catalonia, Spain.
- Institute of Agrifood Research and Technology (IRTA), Animal Health Program (CReSA), WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Autonomous University of Barcelona (UAB), Catalonia, Spain.
| |
Collapse
|
20
|
von Mentzer A, Svennerholm AM. Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 2024; 32:448-464. [PMID: 38052687 DOI: 10.1016/j.tim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.
Collapse
Affiliation(s)
- Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden; Wellcome Sanger Institute, Hinxton, UK.
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
21
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
22
|
Fratto A, Torricelli M, Sebastiani C, Ciullo M, Felici A, Biagetti M. Survey on resistance occurrence for F4 + and F18 + enterotoxigenic Escherichia coli (ETEC) among pigs reared in Central Italy regions. Vet Res Commun 2024; 48:1279-1284. [PMID: 38175328 DOI: 10.1007/s11259-023-10287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Porcine Post Weaning Diarrhoea (PWD) is one of the most important swine disease worldwide, caused by Enterotoxigenic Escherichia coli (ETEC) strains able to provoke management, welfare and sanitary issues. ETEC is determined by proteinaceous surface appendages. Numerous studies conducted by now in pigs have demonstrated, at the enterocytes level, that, the genes mucin 4 (MUC4) and fucosyltransferase (FUT1), coding for ETEC F4 and F18 receptors respectively, can be carriers of single nucleotide polymorphisms (SNPs) associated with natural resistance/susceptibility to PWD. The latter aspect was investigated in this study, evaluating the SNPs of the MUC4 and FUT1 genes in slaughtered pigs reared for the most in Central Italy. Genomic DNA was extracted from 362 swine diaphragmatic samples and then was subjected to the detection of known polymorphisms on MUC4 and FUT1candidate target genes by PCR-RFLP. Some of the identified SNPs were confirmed by sequencing analysis. Animals carrying the SNPs associated with resistance were 11% and 86% for the FUT1 and MUC4 genes respectively. Therefore, it can be assumed that the investigated animals may be an important resource and reservoir of favorable genetic traits for the breeding of pigs resistant to enterotoxigenic E.coli F4 variant.
Collapse
Affiliation(s)
- Anna Fratto
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy.
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| |
Collapse
|
23
|
Monger XC, Saucier L, Guay F, Turcotte A, Lemieux J, Pouliot E, Fournaise S, Vincent AT. Effect of a probiotic and an antibiotic on the mobilome of the porcine microbiota. Front Genet 2024; 15:1355134. [PMID: 38606356 PMCID: PMC11006968 DOI: 10.3389/fgene.2024.1355134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: To consider the growing health issues caused by antibiotic resistance from a "one health" perspective, the contribution of meat production needs to be addressed. While antibiotic resistance is naturally present in microbial communities, the treatment of farm animals with antibiotics causes an increase in antibiotic resistance genes (ARG) in the gut microbiome. Pigs are among the most prevalent animals in agriculture; therefore, reducing the prevalence of antibiotic-resistant bacteria in the pig gut microbiome could reduce the spread of antibiotic resistance. Probiotics are often studied as a way to modulate the microbiome and are, therefore, an interesting way to potentially decrease antibiotic resistance. Methods: To assess the efficacy of a probiotic to reduce the prevalence of ARGs in the pig microbiome, six pigs received either treatment with antibiotics (tylvalosin), probiotics (Pediococcus acidilactici MA18/5M; Biopower® PA), or a combination of both. Their faeces and ileal digesta were collected and DNA was extracted for whole genome shotgun sequencing. The reads were compared with taxonomy and ARG databases to identify the taxa and resistance genes in the samples. Results: The results showed that the ARG profiles in the faeces of the antibiotic and combination treatments were similar, and both were different from the profiles of the probiotic treatment (p < 0.05). The effects of the treatments were different in the digesta and faeces. Many macrolide resistance genes were detected in a higher proportion in the microbiome of the pigs treated with antibiotics or the combination of probiotics and antibiotics. Resistance-carrying conjugative plasmids and horizontal transfer genes were also amplified in faeces samples for the antibiotic and combined treatments. There was no effect of treatment on the short chain fatty acid content in the digesta or the faeces. Conclusion: There is no positive effect of adding probiotics to an antibiotic treatment when these treatments are administered simultaneously.
Collapse
Affiliation(s)
- Xavier C. Monger
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Institut sur La Nutrition et Les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Linda Saucier
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Institut sur La Nutrition et Les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Annie Turcotte
- Département de Biologie, Microbiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joanie Lemieux
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, QC, Canada
| | | | | | - Antony T. Vincent
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Institut sur La Nutrition et Les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
24
|
Eriksen EØ, Sejersen MF, Pedersen KS. The cotton swab method: an accurate and less invasive way to assess fecal consistency in weaned pigs. BMC Vet Res 2024; 20:47. [PMID: 38310282 PMCID: PMC10837864 DOI: 10.1186/s12917-024-03888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Researchers and pig veterinarians are interested in assessing pigs' fecal consistency. This study developed a standardized protocol and scale for the cotton swab method, which is a way of assessing the fecal consistency in pigs. The accuracy of the cotton swab method was evaluated in weaned pigs using fecal dry-matter analysis as a golden standard. The study also proposed fecal dry-matter percentage thresholds for the categorization of fecal consistency on a four-point scale. RESULTS The thresholds of 10.3%, 16.6%, and 21.9% fecal dry-matter were suggested for categorization of the consistency of fecal samples on a four-point scale. The accuracy of the cotton swab method was high. The agreement to the four-point fecal consistency score derived from the fecal dry-matter percentage was almost perfect (weighted Gwet's agreement coefficient = 0.87 [95% confidence interval: 0.84; 0.91]). The cotton swab method had a sensitivity of 85.0% (95% confidence interval: 76.5; 91.4) and a specificity of 95.2% (95% confidence interval: 92.0; 97.3) when used to diagnose whether pigs had diarrhea or not. For non-diarrheic pigs, the method almost always (n = 287/289) required less handling than the collection of a fecal sample by digital rectal manipulation. CONCLUSION The cotton swab method is an accurate way to assess fecal consistency in pigs, both on a four-point scale and as a dichotomous diarrhea score. The method is quick to perform and less invasive than methods relying on the collection of fecal samples. New fecal dry-matter thresholds between feces of different consistencies were proposed.
Collapse
Affiliation(s)
- Esben Østergaard Eriksen
- Department of Veterinary and Animal Sciences, Section for Production Nutrition and Health, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark.
- The Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433, Ås, Norway.
| | - Martin Friis Sejersen
- Department of Veterinary and Animal Sciences, Section for Production Nutrition and Health, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark
| | - Ken Steen Pedersen
- Department of Veterinary and Animal Sciences, Section for Production Nutrition and Health, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark
- Ø-Vet, Køberupvej 33, 4700, Næstved, Denmark
| |
Collapse
|
25
|
Cornelius V, Droessler L, Amasheh S. Quercetin Improves Barrier Properties in Porcine Small Intestine but Not in Peyer's Patches. Int J Mol Sci 2024; 25:1530. [PMID: 38338808 PMCID: PMC10855467 DOI: 10.3390/ijms25031530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.
Collapse
Affiliation(s)
| | | | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
26
|
Middelkoop A, Kettunen H, Guan X, Vuorenmaa J, Tichelaar R, Gambino M, Rydal MP, Molist F. Effect of dietary tall oil fatty acids and hydrolysed yeast in SNP2-positive and SNP2-negative piglets challenged with F4 enterotoxigenic Escherichia coli. Sci Rep 2024; 14:2060. [PMID: 38267615 PMCID: PMC10808182 DOI: 10.1038/s41598-024-52586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
Reduction of post-weaning diarrhoea caused by ETEC is a principal objective in pig farming in terms of welfare benefits. This study determined the effects of genetic susceptibility and dietary strategies targeting inflammation and fimbriae adherence on F4-ETEC shedding and diarrhoea in weaned piglets in an experimental challenge model. A DNA marker test targeting single nucleotide polymorphism 2 (SNP2) identified piglets as heterozygous (SNP2+, susceptible) or homozygous (SNP2-, resistant) to developing F4ac-ETEC diarrhoea. A total of 50 piglets, 25 SNP2+ and 25 SNP2-, were weaned at 30 days of age and equally distributed to different treatments (n = 10): Positive control (PC): piglets fed with a negative control diet and provided with colistin via drinking water; Negative control (NC): piglets fed with a negative control diet; Tall oil fatty acids (TOFA): piglets fed with a negative control diet + 1.0 g TOFA/kg feed; Yeast hydrolysate (YH): piglets fed with a negative control diet + 1.5 g YH/kg feed derived from Saccharomyces cerevisiae; and Combination (COM): piglets fed with a negative control diet + 1.0 g TOFA and 1.5 g YH/kg feed. On day 10 post-weaning, all piglets were infected with F4-ETEC by oral administration. Piglets fed with PC, TOFA, YH or COM had a lower faecal shedding of F4-ETEC than NC piglets (P < 0.001), which was also shorter in duration for PC and TOFA piglets than for NC piglets (P < 0.001). Piglets in PC, TOFA, YH and COM had a shorter diarrhoea duration versus NC when classified as SNP2+ (P = 0.02). Furthermore, PC, TOFA and YH piglets grew more than NC and COM piglets in the initial post-inoculation period (P < 0.001). In addition, the level of faecal F4-ETEC shedding and the percentage of pigs that developed F4-ETEC diarrhoea (72 vs. 32%, P < 0.01) following infection were higher, and the duration of F4-ETEC diarrhoea longer (2.6 vs. 0.6 days, P < 0.001), in SNP2+ piglets than in SNP2- piglets, and led to reduced growth performance (P = 0.03). In conclusion, piglets fed with TOFA, YH or their combination, irrespective of their SNP2 status, are more resilient to F4-ETEC infection. Moreover, SNP2+ piglets show a higher level of F4-ETEC shedding and diarrhoea prevalence than SNP2- piglets, confirming an association between SNP2 and F4ac-ETEC susceptibility.
Collapse
Affiliation(s)
| | | | - Xiaonan Guan
- Schothorst Feed Research B.V., 8218 NA, Lelystad, The Netherlands
| | | | - Ramon Tichelaar
- Schothorst Feed Research B.V., 8218 NA, Lelystad, The Netherlands
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Martin Peter Rydal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Francesc Molist
- Schothorst Feed Research B.V., 8218 NA, Lelystad, The Netherlands
| |
Collapse
|
27
|
Dahmer PL, Jones CK, Ferreyra FM. Evaluation of a microencapsulated form of zinc oxide on weanling pig growth performance, fecal zinc excretion, and small intestinal morphology. Transl Anim Sci 2023; 8:txad146. [PMID: 38529363 PMCID: PMC10962718 DOI: 10.1093/tas/txad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 03/27/2024] Open
Abstract
A total of 300 pigs (DNA 200 × 400; initially 6.0 ± 0.08 kg body weight [BW]) were used in a 42-d study to evaluate a microencapsulated form of zinc oxide. At weaning, pigs were randomly allocated to pens, and pens were randomly assigned to dietary treatments with 5 pigs per pen and 12 pens per treatment. Dietary treatments were 1) negative control (CON; standard nursery diet containing 110 ppm Zn in the form of zinc sulfate from trace mineral premix); 2) control diet with 400 ppm added Zn from ZnO included in phases 1 and 2 (Low-ZnO); 3) control diet with 3,000 ppm added Zn from ZnO included in phase 1 and 2,000 ppm added Zn from ZnO included in phase 2 (High-ZnO); 4) control diet with 400 ppm added Zn from microencapsulated ZnO included in phases 1 and 2 (Low-MZnO; Vetagro S.p.A., Reggio Emilia, Italy); 5) control diet with 3,000 ppm added Zn from microencapsulated ZnO in phase 1 and 2,000 ppm added Zn from microencapsulated ZnO in phase 2 (high-MZnO; Vetagro S.p.A., Reggio Emilia, Italy). On days 10 and 28, fecal samples from 2 pigs per pen were collected for fecal Zn concentrations, and on day 28, 30 pigs (n = 6) were euthanized, and small intestinal tissues were collected to evaluate morphology. For the entire treatment period (days 0 to 28) there was no evidence of differences in average daily gain (ADG), average daily feed intake (ADFI), or G:F (P > 0.05). During the common phase 3 (days 28 to 42) pigs fed the negative control, High-MZnO, or Low-MZnO had improved (P < 0.0001) ADG and ADFI compared to pigs fed High- or Low-ZnO. For the entire experiment (days 0 to 42), pigs fed Low-ZnO or High-ZnO had reduced (P < 0.0001) ADG compared to those fed the negative control. A significant treatment × day interaction (P = 0.04) was observed for fecal Zn concentrations, where the level of Zn excreted in the feces was dependent on the sampling day in pigs fed a low level of ZnO or low level of microencapsulated ZnO. There was no evidence (P > 0.05) that small intestinal morphology differed significantly between treatments. In summary, feeding a microencapsulated form of ZnO did not alter piglet growth performance during the treatment period. Pigs fed a low level of ZnO or microencapsulated ZnO had reduced fecal Zn excretion by the end of the feeding period, but no significant impacts were observed on piglet small intestinal morphology.
Collapse
Affiliation(s)
- Payton L Dahmer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Franco M Ferreyra
- Veterinary Diagnostic Lab, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| |
Collapse
|
28
|
O’Doherty J, Dowley A, Conway E, Sweeney T. Nutritional Strategies to Mitigate Post-Weaning Challenges in Pigs: A Focus on Glucans, Vitamin D, and Selenium. Animals (Basel) 2023; 14:13. [PMID: 38200743 PMCID: PMC10778565 DOI: 10.3390/ani14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This review examines the challenges faced by the pig industry, with a specific focus on improving the health and growth of weaned pigs. It emphasizes the immediate necessity of investigating alternative approaches to managing pig nutrition and health due to restrictions on the use of antibiotics and the prohibition of zinc oxide in weaned pig diets. The weaning phase is identified as a critical stage in piglet development, characterized by stressors that affect their gastrointestinal health, immune responses, and overall physiology. The primary challenge during weaning arises from transitioning piglets from a digestible milk-based diet to a less digestible cereal-based feed, causing nutritional stress. This manifests as reduced feed intake, leading to gastrointestinal disturbances, intestinal inflammation, and adverse effects on intestinal structure and microbiota. To address these challenges and optimize piglet development, various nutritional strategies have been explored. Notably, glucans, particularly β-glucans from fungi, cereals, algae, and yeast, show promise in alleviating weaning-related issues. Furthermore, it is important to highlight the critical roles played by Vitamin D and selenium in piglet nutrition. These essential nutrients can be sourced naturally from enriched mushrooms that are specifically enriched with Vitamin D and selenium, providing a sustainable dietary option. In conclusion, effective nutritional strategies, including glucans, Vitamin D, selenium, and enriched mushrooms, are beneficial for addressing weaning-related challenges.
Collapse
Affiliation(s)
- John O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
29
|
Sun W, Chen Z, Huang Z, Wan A, Zhou M, Gao J. Effects of dietary traditional Chinese medicine residues on growth performance, intestinal health and gut microbiota compositions in weaned piglets. Front Cell Infect Microbiol 2023; 13:1283789. [PMID: 38053526 PMCID: PMC10694240 DOI: 10.3389/fcimb.2023.1283789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Weaning stress can induce diarrhea, intestinal damage and flora disorder of piglets, leading to slow growth and even death of piglets. Traditional Chinese medicine residue contains a variety of active ingredients and nutrients, and its resource utilization has always been a headache. Therefore, we aimed to investigate the effects of traditional Chinese medicine residues (Xiasangju, composed of prunellae spica, mulberry leaves, and chrysanthemum indici flos) on growth performance, diarrhea, immune function, and intestinal health in weaned piglets. Forty-eight healthy Duroc× Landrace × Yorkshire castrated males weaned aged 21 days with similar body conditions were randomly divided into 6 groups with eight replicates of one piglet. The control group was fed a basal diet, the antibiotic control group was supplemented with 75 mg/kg chlortetracycline, and the residue treatment groups were supplemented with 0.5%, 1.0%, 2.0% and 4.0% Xiasangju residues. The results showed that dietary Xiasangju residues significantly reduced the average daily feed intake, but reduced the diarrhea score (P < 0.05). The 1.0% and 2.0% Xiasangju residues significantly increased the serum IgM content of piglets, and the 0.5%, 1.0%, 2.0% and 4.0% Xiasangju residues significantly increased the serum IgG content, while the 1.0%, 2.0% and 4.0% Xiasangju residues significantly increased the sIgA content of ileal contents (P < 0.05). Dietary Xiasangju residues significantly increased the villus height and the number of villus goblet cells in the jejunum and ileum, and significantly decreased the crypt depth (P<0.05). The relative mRNA expression of IL-10 in the ileum was significantly increased in the 1% and 2% Xiasangju residues supplemented groups (P < 0.05), while IL-1β in the ileum was downregulated (P < 0.05). Xiasangju residues improved the gut tight barrier, as evidenced by the enhanced expression of Occludin and ZO-1 in the jejunum and ileum. The diets with 1% Xiasangju residues significantly increased the relative abundance of Lactobacillus johnsonii, and 2% and 4% Xiasangju residues significantly increased the relative abundance of Weissella jogaeotgali (P < 0.05). Dietary supplementation with 0.5%, 1.0%, 2% and 4% with Xiasangju residues significantly decreased the relative abundance of Escherichia coli and Treponema porcinum (P < 0.05). In summary, dietary supplementation with Xiasangju residues improves intestinal health and gut microbiota in weaned piglets.
Collapse
Affiliation(s)
- Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou, China
| | - Zhong Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou, China
| | - Anfeng Wan
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou, China
| | - Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Gao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
30
|
González-Meza GM, Elizondo-Luevano JH, Cuellar-Bermudez SP, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3609. [PMID: 37896072 PMCID: PMC10610262 DOI: 10.3390/plants12203609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing according to the food demand. Additionally, seaweeds are being promoted for their nutritional benefits, which contribute to the health, growth, and performance of animals intended for human consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae biomass due to their nutritional profile and bioactive components, which have the potential to play a crucial role in animal growth and making possible new sources of healthy food ingredients.
Collapse
Affiliation(s)
- Georgia M. González-Meza
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Joel H. Elizondo-Luevano
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Sara P. Cuellar-Bermudez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
31
|
Arnaud EA, Gardiner GE, Lawlor PG. Selected Nutrition and Management Strategies in Suckling Pigs to Improve Post-Weaning Outcomes. Animals (Basel) 2023; 13:1998. [PMID: 37370508 PMCID: PMC10294848 DOI: 10.3390/ani13121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Weaning is a critical period in a pig's life. Piglets are confronted with abrupt changes to their physical and social environment, as well as management and nutritional changes. Weaning has always been associated with a growth check and is frequently accompanied by post-weaning diarrhoea in piglets. However, rapid increases in litter size in the last decade have increased within-litter piglet weight variation, with piglets now generally lighter at weaning, making the challenges associated with weaning even greater. Many interventions can be employed during the suckling period to ease the weaning transition for piglets. Pre-weaning strategies such as supervised farrowing (assistance with suckling and oxytocin provision), the provision of pain relief to sows around farrowing, split-suckling, early oral supplementation with glucose, bovine colostrum, faecal microbiota transplantation, feed additives and solid and liquid creep feeding (milk and liquid feed) have all been investigated. The objective of these strategies is to stimulate earlier maturation of the digestive tract, improve immunity, reduce latency to the first feed post-weaning and increase early post-weaning feed intake and growth. This review focuses in particular on: (1) pain relief provision to sows around farrowing, (2)split-suckling of piglets, (3) pre-weaning provision of supplementary milk and/or liquid feed, (4) other strategies to stimulate earlier enzyme production (e.g., enzyme supplementation), (5) other nutritional strategies to promote improved gut structure and function (e.g., L-glutamine supplementation), and (6) other strategies to modulate gut microbiota (e.g., probiotics and prebiotics). Correctly implementing these strategies can, not only increase post-weaning growth and reduce mortality, but also maximise lifetime growth in pigs.
Collapse
Affiliation(s)
- Elisa A. Arnaud
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland;
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland;
| | - Gillian E. Gardiner
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland;
| | - Peadar G. Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland;
| |
Collapse
|
32
|
Xu J, Noel SJ, Lauridsen C, Lærke HN, Canibe N. Liquid fermented cereals with added Pediococcus acidilactici did not reduce post-weaning diarrhea in pigs - an Escherichia coli challenge study. Front Vet Sci 2023; 10:1147165. [PMID: 37252380 PMCID: PMC10213407 DOI: 10.3389/fvets.2023.1147165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The effect of feeding fermented liquid feed (FLF) with added Pediococcus acidilactici to weaning piglets challenged with enterotoxigenic Escherichia coli (ETEC) F4 on aspects of diarrhea, performance, immune responses, and intestinal epithelial barrier function was investigated. A total of 46 weaners (weaning at 27-30 days of age) were assigned to four treatments: (1) Non-challenged and dry feed (Non-Dry); (2) Challenged and dry feed (Ch-Dry); (3) Non-challenged and FLF (Non-Ferm); (4) Challenged and FLF (Ch-Ferm). All groups received the same feed, either dry (Non-Dry and Ch-Dry), or in liquid form (Non-Ferm and Ch-Ferm) in which the cereals with added P. acidilactici (106 CFU/g cereals) had been fermented for 24 h at 30°C. On day 1 and 2 post weaning, Ch-Dry and Ch-Ferm were orally inoculated with 5 mL × 109 CFU ETEC F4/mL, whereas the Non-Dry and Non-Ferm received the same amount of saline. Fecal samples and blood samples were collected through the study period. The microbial composition, concentration of microbial metabolites and nutrient composition indicated that the quality of the FLF was high. In the first week, ADFI of both non-challenged groups was significantly higher (p < 0.05) than that of the Ch-Ferm group. The two challenged groups had higher fecal levels of FaeG gene (ETEC F4 fimbriae) from day 2 to 6 post weaning (p < 0.01), and higher risk of having ETEC F4 present in feces from day 3 to 5 post weaning (p < 0.05) compared to non-challenged groups, indicating the validity of the ETEC challenge model. Generally, ADG of the two groups fed FLF were numerically higher than those fed dry feed. Neither challenge nor FLF affected diarrhea. No significant differences were measured between Ch-Ferm and Ch-Dry regarding the level of plasma haptoglobin and C-reactive protein, hematological parameters or parameters related to epithelial barrier. The data indicated a low level of infection caused by the ETEC challenge, while recovery from weaning stress could be observed. The study showed that a strategy like this can be a way of providing a high level of probiotics to pigs by allowing their proliferation during fermentation.
Collapse
|
33
|
Jerez-Bogota K, Jensen M, Højberg O, Cormican P, Lawlor PG, Gardiner GE, Canibe N. Antibacterial plant combinations prevent postweaning diarrhea in organically raised piglets challenged with enterotoxigenic Escherichia coli F18. Front Vet Sci 2023; 10:1095160. [PMID: 37077951 PMCID: PMC10106643 DOI: 10.3389/fvets.2023.1095160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Antibiotics and zinc oxide restrictions encourage the search for alternatives to combat intestinal pathogens, including enterotoxigenic Escherichia coli (ETEC), a major cause of postweaning diarrhea (PWD) in pigs. PWD causes important economic losses for conventional and organic farming. This study investigated the effect of dietary supplementation with garlic and apple pomace or blackcurrant on infection indicators and the fecal microbiota of organic-raised piglets challenged with ETEC-F18. For 21 days, 32 piglets (7-weeks-old) were randomly assigned to one of four groups: non-challenge (NC); ETEC-challenged (PC); ETEC-challenged receiving garlic and apple pomace (3 + 3%; GA); ETEC-challenged receiving garlic and blackcurrant (3 + 3%; GB). ETEC-F18 was administered (8 mL; 109 CFU/ml) on days 1 and 2 postweaning. The 1st week, PC had lower average daily gain than those in the NC, GA, and GB groups (P < 0.05). NC pigs showed neither ETEC-F18 shedding nor signs of diarrhea. The PC group had higher diarrhea incidence and lower fecal dry matter than NC (≈5–10 days; 95% sEBCI). The GA and GB groups showed reduced ETEC-F18 and fedA gene shedding, higher fecal dry matter, and lower diarrhea incidence than the PC (≈5–9 days; 95% sEBCI). The NC, GA, and GB had normal hematology values during most of the study, whereas the PC had increased (P < 0.05) red blood cells, hemoglobin, and hematocrit on day 7. Haptoglobin and pig-MAP increased in all groups, peaking on day 7, but PC showed the greatest increase (P < 0.05). The fecal microbiota of PC pigs had reduced α-diversity (day 7; P < 0.05) and higher volatility (days 3–14; P < 0.05). Escherichia, Campylobacter, and Erysipelothrix were more abundant in the PC than in the NC, GB, and GA groups (log2FC > 2; P < 0.05), whereas Catenibacterium, Dialister, and Mitsoukella were more abundant in the NC, GB, and GA than in the PC group (log2FC > 2; P < 0.05). Prevotella and Lactobacillus were more abundant in the GB group (log2FC > 2, P < 0.05). In conclusion, dietary supplementation of GA and GB limited ETEC proliferation, reduced PWD, and beneficially impacted the fecal microbiota's diversity, composition, and stability.
Collapse
Affiliation(s)
- Kevin Jerez-Bogota
- Department of Food Science, Aarhus University, Aarhus, Denmark
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Martin Jensen
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Ole Højberg
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Paul Cormican
- Animal Bioscience Research Centre, Teagasc Grange, Meath, Ireland
| | - Peadar G. Lawlor
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - Gillian E. Gardiner
- Department of Science, Eco-Innovation Research Centre, Southeast Technological University, Waterford, Ireland
| | - Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- *Correspondence: Nuria Canibe
| |
Collapse
|
34
|
Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Since January 2006 when using antibiotics as growth promoters in animal feed have been banned scientists are looking for the best resolution to apply alternative substances. Extensive research into the health-promoting properties of probiotics and prebiotics has led to significant interest in the mechanisms of action of the combined administration of these feed additives as a synbiotic. Subsequent research has led to the development of new products. Among the most important health benefits of additives are, inhibiting the growth of pathogenic bacteria in the GI tract, maintenance of homeostasis, treatment of inflammatory bowel diseases, and increase in immunity. Specific immunomodulatory mechanisms of action are not well understood and the effect is not always positive, though there are no reports of adverse effects of these substances found in the literature. For this reason, research is still being conducted on their proper application. However, due to the difficulties of carrying out research on humans, evidence of the beneficial effect of these additives comes mainly from experiments on animals. The objective of the present work was to assess the effect of probiotics, prebiotics, and synbiotics, as well as new additives including postbiotics, proteobiotics, nutribiotics, and pharmabiotics, on specific immunomodulatory mechanisms of action, increase in immunity, the reduction of a broad spectrum of diseases.
Collapse
|
35
|
Effects of Exposure to Low Zearalenone Concentrations Close to the EU Recommended Value on Weaned Piglets’ Colon. Toxins (Basel) 2023; 15:toxins15030206. [PMID: 36977097 PMCID: PMC10055674 DOI: 10.3390/toxins15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pigs are the most sensitive animal to zearalenone (ZEN) contamination, especially after weaning, with acute deleterious effects on different health parameters. Although recommendations not to exceed 100 µg/kg in piglets feed exists (2006/576/EC), there are no clear regulations concerning the maximum limit in feed for piglets, which means that more investigations are necessary to establish a guidance value. Due to these reasons, the present study aims to investigate if ZEN, at a concentration lower than the EC recommendation for piglets, might affect the microbiota or induce changes in SCFA synthesis and can trigger modifications of nutritional, physiological, and immunological markers in the colon (intestinal integrity through junction protein analysis and local immunity through IgA production). Consequently, the effect of two concentrations of zearalenone were tested, one below the limit recommended by the EC (75 µg/kg) and a higher one (290 µg/kg) for comparison reasons. Although exposure to contaminated feed with 75 µg ZEN/kg feed did not significantly affect the observed parameters, the 290 µg/kg feed altered several microbiota population abundances and the secretory IgA levels. The obtained results contribute to a better understanding of the adverse effects that ZEN can have in the colon of young pigs in a dose-dependent manner.
Collapse
|
36
|
Differential Impacts of Cereal and Protein Sources Fed to Pigs after Weaning on Diarrhoea and Faecal Shedding of Escherichia coli, Production, and Total Tract Apparent Digestibility. Animals (Basel) 2023; 13:ani13050863. [PMID: 36899720 PMCID: PMC10000030 DOI: 10.3390/ani13050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Different cereal types, in combination with different protein sources, are fed to pigs after weaning, but their interactions and possible implications are not well researched. In this study, 84 male weaned piglets were used in a 21-day feeding trial to investigate the effects of feeding either medium-grain or long-grain extruded rice or wheat, in a factorial combination with protein sources of either vegetable or animal origin, on postweaning performance, shedding of β-haemolytic Escherichia coli, and the coefficient of total tract apparent digestibility (CTTAD). Pigs fed either rice type performed the same (p > 0.05) as wheat-fed pigs after weaning. The use of vegetable protein sources reduced growth rate (p < 0.001) and feed intake (p = 0.007) and deteriorated the feed conversion ratio (p = 0.028) in weeks two and three compared to pigs fed animal protein sources. The number of antibiotic treatments given for clinical diarrhoea was similar (p > 0.05). However, the faecal E. coli score showed a trend for the main effect of protein source, with pigs fed animal proteins showing a higher E. coli score than pigs fed vegetable proteins (0.63 vs. 0.43, p = 0.057). There was also a tendency for an interaction (p = 0.069) between cereal type and protein source (p = 0.069), with this difference being associated with a greater faecal score in pigs fed diets with long-grain rice plus animal proteins and wheat plus animal proteins. Significant interactions occurred for the CTTAD when assessed in week three. In general, pigs fed diets with medium-grain rice or long-grain rice with animal proteins had a higher (p < 0.001) CTTAD for dietary components than pigs fed all other diets, and vegetable proteins depressed (p < 0.001) CTTAD compared to animal proteins (main effect of protein: p < 0.001). In summary, pigs tolerated the extruded rice-based diets well and performed equivalently to pigs fed wheat as the sole cereal, and the use of vegetable proteins decreased the E. coli score.
Collapse
|
37
|
Yin H, Liu W, Ji X, Yan G, Zeng X, Zhao W, Wang Y. Study on the mechanism of Wumei San in treating piglet diarrhea using network pharmacology and molecular docking. Front Vet Sci 2023; 10:1138684. [PMID: 36925608 PMCID: PMC10011153 DOI: 10.3389/fvets.2023.1138684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Wumei San (WMS) is a traditional Chinese medicine that has been widely applied in the treatment of piglet diarrhea (PD). However, the mechanism of WMS in PD has not been investigated. In this study, the main active compounds of WMS and the target proteins were obtained from the Traditional Chinese Medicine Systematic Pharmacology, PubChem, and SwissTargetPrediction databases. The molecular targets of PD were identified using GeneCards, OMIM, and NCBI databases. The common targets of WMS and PD were screened out and converted into UniProt gene symbols. PD-related target genes were constructed into a protein-protein interaction network, which was further analyzed by the STRING online database. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to construct the component-target gene-disease network. Molecular docking was then used to examine the relationship between the core compounds and proteins. As a result, a total of 32 active compounds and 638 target genes of WMS were identified, and a WMS-compound-target network was successfully constructed. Through network pharmacology analysis, 14 core compounds in WMS that showed an effect on PD were identified. The targets revealed by GO and KEGG enrichment analysis were associated with the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, IL-17 signaling pathway, and other pathways and physiological processes. Molecular docking analysis revealed that the active compounds in WMS spontaneously bind to their targets. The results indicated that WMS may regulate the local immune response and inflammatory factors mainly through the TNF signaling pathway, IL-17 signaling pathway, and other pathways. WMS is a promising treatment strategy for PD. This study provides new insights into the potential mechanism of WMS in PD.
Collapse
Affiliation(s)
- Huihui Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wei Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
- *Correspondence: Wei Liu ✉
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoqing Yan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Xueyan Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wu Zhao
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanhua Wang
- Guangxi Mountain Comprehensive Technology Development Center, Nanning, China
| |
Collapse
|