1
|
Duan Y, Wang ZJ, Mei LN, Shen JS, He XC, Luo XD. Anti-Candida albicans effect and mechanism of Pachysandra axillaris Franch. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119284. [PMID: 39725364 DOI: 10.1016/j.jep.2024.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pachysandra axillaris Franch., a traditional herbal medicine in Yunnan, has been used to treat traumatic injuries and stomach ailments, some of which were related to microbial infections in conventional applications, but, to the best of our knowledge, the antifungal bioactivity of this plant and its main antifungal components have not been previously reported. AIM OF THE STUDY To identify the antifungal compounds of P. axillaris against fluconazole-resistant C. albicans in vitro and in vivo, and then elucidate the underlying mechanism of action. MATERIALS AND METHODS The antifungal compounds were obtained by bioguided isolation, and then they were investigated in vitro by MIC, growth curves, time-kill assay, and drug resistance induction. The antifungal mechanism was explored using combined network pharmacology and metabolomic analysis, and further supported by analyzing sterol composition using LC-MS/MS, scanning and transmission electron microscopy observation of fungal cell morphology, examining its effects on cell membranes using the fluorescent probes and RT-qPCR. Additionally, the antifungal effect in vivo was evaluated by a murine C. albicans skin infection model. RESULTS Three bioactive compounds from P. axillaris efficiently inhibited fluconazole-resistant C. albicans (MIC = 4 μg/mL), in which the major compound, pachysamine M, affected the ergosterol biosynthesis pathway by inhibiting ERG genes (ERG1, ERG4, ERG7, ERG9, and ERG24), leading to the accumulation of squalene, lanosterol, and zymosterol. So, pachysamine M targeted cell membranes in vitro by reducing the ergosterol level, to avoid drug resistance. In addition, it promoted wound healing, reduced fungal load, and alleviated inflammation in vivo. CONCLUSIONS Pachysamine M, an antifungal compound without reported before, inhibited fluconazole-resistant C. albicans efficiently in vitro and in vivo, and its mechanism targeted cell membranes, reducing the risk of drug resistance, which validated the traditional use of P. axillaris for the treatment of fungal skin infections.
Collapse
Affiliation(s)
- Yu Duan
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Li-Na Mei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Jia-Shan Shen
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
2
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
3
|
Chegini Z, Shariati A, Alikhani MY, Safaiee M, Rajaeih S, Arabestani M, Azizi M. Antibacterial and antibiofilm activity of silver nanoparticles stabilized with C-phycocyanin against drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus. Front Bioeng Biotechnol 2024; 12:1455385. [PMID: 39524122 PMCID: PMC11544008 DOI: 10.3389/fbioe.2024.1455385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Biofilms are bacterial communities that can protect them against external factors, including antibiotics. In this study, silver nanoparticles (AgNPs) were formed by modifying AgNPs with C-phycocyanin (Ag-Pc) to inhibit the growth of carbapenem-resistant Pseudomonas aeruginosa (CR P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) and destroy biofilm of these bacteria. Methods The AgNPs were prepared with the green synthesis method, and Pc was used to stabilize the AgNPs. The Ag-Pc's antibacterial and antibiofilm effects were evaluated using the Microbroth dilution method and microtiter plate assay. The inhibitory effect of Ag-Pc on the expression of biofilm-related genes was evaluated by real-time PCR. Moreover, the MTT assay was used to assess the Ag-Pc toxicity. Results The Ag-Pc minimum inhibitory concentration (MIC) was 7.4 μg/mL for CR P. aeruginosa and MRSA. Pc did not show antibacterial effects against any of the strains. Ag-Pc suppressed biofilm formation and destroyed matured biofilm in both bacteria more efficiently than the AgNPs (P< 0.05). The expression of all genes was not significantly reduced in the presence of synthesized nanoparticles. Finally, the MTT assay results did not show toxicity against a murine fibroblast cell line (L929) at MIC concentration. Conclusion The present study showed the promising potential of Pc for improving the antibacterial and antibiofilm function of AgNPs and inhibiting drug-resistant bacteria. Therefore, Ag-Pc nanoparticles can be considered a promising therapeutic approach for the managing of the bacterial biofilm.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of medical sciences, Arak, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maliheh Safaiee
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Shahin Rajaeih
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Diseases Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Regenerative Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Teixeira ABV, Carvalho-Silva JM, Ferreira I, Schiavon MA, Cândido Dos Reis A. Silver vanadate nanomaterial incorporated into heat-cured resin and coating in printed resin - Antimicrobial activity in two multi-species biofilms and wettability. J Dent 2024; 145:104984. [PMID: 38583645 DOI: 10.1016/j.jdent.2024.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVES To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.
Collapse
Affiliation(s)
- Ana Beatriz Vilela Teixeira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Izabela Ferreira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Uehara LM, Teixeira ABV, Valente MLDC, Reis ACD. Mechanical and microbiological properties of orthodontic resin modified with nanostructured silver vanadate decorated with silver nanoparticles (βAgVO 3). J Dent 2024; 145:104836. [PMID: 38199325 DOI: 10.1016/j.jdent.2024.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE To investigate the impact of incorporating the antimicrobial nanomaterial β-AgVO3 into orthodontic resin, focusing on degree of conversion, surface characteristics, microhardness, adhesion properties, and antimicrobial activity. METHODS The 3 M Transbond XT resin underwent modification, resulting in three groups (Control, 2.5% addition, 5% addition) with 20 specimens each. Fourier transform infrared spectroscopy assessed monomer conversion. Laser confocal microscopy examined surface roughness, and microhardness was evaluated using Knoop protocols. Shear strength was measured before and after artificial aging on 36 premolar teeth. Microbiological analysis against S. mutans and S. sanguinis was conducted using the agar diffusion method. RESULTS Degree of conversion remained unaffected by time (P = 0.797), concentration (P = 0.438), or their interaction (P = 0.187). The 5% group exhibited the lowest surface roughness, differing significantly from the control group (P = 0.045). Microhardness showed no significant differences between concentrations (P = 0.740). Shear strength was highest in the control group (P < 0.001). No significant differences were observed in the samples with or without thermocycling (P = 0.759). Microbial analysis revealed concentration-dependent variations, with the 5% group exhibiting the largest inhibition halo (P < 0.001). CONCLUSIONS Incorporating β-AgVO3 at 2.5% and 5% concentrations led to significant differences in surface roughness, adhesion, and antimicrobial activity. Overall, resin modification positively impacted degree of conversion, surface characteristics, microhardness, and antimicrobial activity. Further research is warranted to determine clinically optimal concentrations that maximize antimicrobial benefits while minimizing adverse effects on adhesion properties. CLINICAL SIGNIFICANCE Incorporating β-AgVO3 into orthodontic resin could improve patient quality of life by prolonging intervention durability and reducing the impact of cariogenic microorganisms. The study's findings also hold promise for the industry, paving the way for the development of new materials with antimicrobial properties for potential applications in the health sector.
Collapse
Affiliation(s)
- Lívia Maiumi Uehara
- Master´s Degee Student, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Vilela Teixeira
- Post-Doc student, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariana Lima da Costa Valente
- Post-Doc student, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Ramsundar K, Jain RK, Pitchaipillai SG. Anti-quorum Sensing of Terminalia catappa and Murraya koenigii Against Streptococcus mutans. Cureus 2023; 15:e48765. [PMID: 38098904 PMCID: PMC10719546 DOI: 10.7759/cureus.48765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Dental biofilm constitutes micro-organisms existing in an intercellular matrix containing organic and inorganic materials derived from saliva, gingival crevicular fluid, and bacterial products. Dental plaque biofilm inhibition by certain herbs and medicinal plants has been used as a treatment modality for the prevention of white spot lesions in orthodontic subjects. The aim of this study was to evaluate the anti-quorum sensing and anti-biofilm activity of Terminalia catappa and Murraya koenigiiagainst Streptococcus mutans. Materials and methods Samples of dental plaque were taken from patients receiving orthodontic care. The colonies of the S. mutans were isolated and biochemical characterization was done. Leaf extracts of Terminalia catappa and Murraya koenigii were used in the study. Methanolic extracts were subjected to evaluation of minimum inhibitory concentration (MIC) using the broth microdilution (two-fold) method and anti-biofilm activity using the crystal violet staining method. Results The MIC of methanol leaf extracts of Murraya koenigii against S. mutans was noted at 0.62 mg/ml and Terminalia catappa at 1.25 mg/ml. At the lowest concentration of 0.03 mg and 0.01 mg methanol extract of Murraya koenigii had remarkably inhibited biofilm formation of 57.6% and 43.6% against S. mutans, respectively. Terminalia catappa leaf extracts did not show any anti-biofilm activity when the organisms were grown in the presence of S. mutans. Conclusion Both Murraya koenigii and Terminalia catappa had antibacterial effects against S. mutans and Murray koenigii remarkably inhibited biofilm formation by S. mutans.
Collapse
Affiliation(s)
- Kavitha Ramsundar
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Sankar G Pitchaipillai
- Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Esfahani MB, Khodavandi A, Alizadeh F, Bahador N. Antibacterial and Anti-Biofilm Activities of Microbial Synthesized Silver and Magnetic Iron Oxide Nanoparticles Against Pseudomonas aeruginosa. IEEE Trans Nanobioscience 2023; 22:956-966. [PMID: 37071524 DOI: 10.1109/tnb.2023.3268138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Pseudomonas aeruginosa is a human bacterial pathogen causing devastating diseases and equipped with various virulence factors like biofilm formation. Common antibiotic treatment has limited efficacy for the P. aeruginosa present in biofilms because of the increased resistance. In this study, we focused our attention on the antibacterial and anti-biofilm activities of various microbial synthesized silver (nano-Ag) and magnetic iron oxide (nano-Fe3O4) nanoparticles against clinical isolates of P. aeruginosa that displayed ceftazidime resistance. The nano-Ag and nano-Fe3O4 represented great antibacterial properties. Nano-Ag and nano-Fe3O4 exhibited a reduction in the biofilm formation by P. aeruginosa reference strain as determined by crystal violet and XTT assays and light microscopy method. Among all, nano-Ag-2 and 7 owing to inherent attributes and mechanisms of resistance in the bacterial biofilm, exhibited anti-biofilm efficacy against ceftazidime resistance clinical isolate of P. aeruginosa. Moreover, nano-Ag and nano-Fe3O4 changed the relative expression of biofilm-associated genes, PELA and PSLA in a concentration dependent manner by P. aeruginosa reference strain. As revealed by qRT-PCR, the expression levels of biofilm-associated genes were downregulated in P. aeruginosa biofilms treated with nano-Ag, while selected biofilm-associated genes were low expressed under treated with nano-Fe3O4. Results of the study demonstrate the potential of microbial synthesized nano-Ag-2 and 7 to act as anti-biofilm agents against ceftazidime resistance clinical isolate of P. aeruginosa. Molecular targeting of biofilm-associated genes by nano-Ag and nano-Fe3O4 may be candidate for new therapeutics against P. aeruginosa diseases.
Collapse
|
9
|
Abou Hammad AB, Al-Esnawy AA, Mansour AM, El Nahrawy AM. Synthesis and characterization of chitosan-corn starch-SiO 2/silver eco-nanocomposites: Exploring optoelectronic and antibacterial potential. Int J Biol Macromol 2023; 249:126077. [PMID: 37532191 DOI: 10.1016/j.ijbiomac.2023.126077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
This work discusses the physicochemical and antimicrobial characteristics of chitosan-corn starch eco-nanocomposites integrated with silica@Ag nano-spheres. These composites were synthesized through sol-gel polymerization and subsequently exposed to simulated body fluid (SBF). The incorporation of Ag into the eco-nanocomposites led to a decrease in diffuse reflectance across the entire wavelength range. The dielectric permittivity exhibited an increase up to 52.1 at a frequency of 100 kHz, while the ac conductivity reached a value of 5.2 ∗ 10-6 (S cm-1) at the same frequency for the sample with the highest Ag content. The study utilized XRD and FTIR techniques to examine the materials before and after in vitro testing and evaluated the antibacterial properties of the eco-nanocomposites against several pathogenic microorganisms, including Staphylococcus haemolyticus, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli, using the agar diffusion method. The eco-nanocomposites demonstrated bioactivity by forming a hydroxy appetite layer on their surfaces and were capable of releasing silver (Ag) at concentrations of 1.3, 1.9, and 2.5 mol%. This study suggests that chitosan-corn starch-SiO2-based doped with Ag eco-nanocomposite has the potential for various applications, including biomedical and environmental fields, where their antibacterial properties can be utilized to combat harmful microorganisms.
Collapse
Affiliation(s)
- Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - A A Al-Esnawy
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
10
|
Barabadi H, Mobaraki K, Jounaki K, Sadeghian-Abadi S, Vahidi H, Jahani R, Noqani H, Hosseini O, Ashouri F, Amidi S. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: In vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon 2023; 9:e16853. [PMID: 37313153 PMCID: PMC10258451 DOI: 10.1016/j.heliyon.2023.e16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This study showed the anti-candida, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic properties of biogenic silver nanoparticles (AgNPs) fabricated by using the supernatant of Penicillium fimorum (GenBank accession number OQ568180) isolated from soil. The biogenic AgNPs were characterized by using different analytical techniques. A sharp surface plasmon resonance (SPR) peak of the colloidal AgNPs at 429.5 nm in the UV-vis spectrum confirmed the fabrication of nanosized silver particles. The broth microdilution assay confirmed the anti-candida properties of AgNPs with a minimum inhibitory concentration (MIC) of 4 μg mL-1. In the next step, the protein and DNA leakage assays as well as reactive oxygen species (ROS) assay were performed to evaluate the possible anti-candida mechanisms of AgNPs representing an increase in the total protein and DNA of supernatant along with a climb-up in ROS levels in AgNPs-treated samples. Flow cytometry also confirmed a dose-dependent cell death in the AgNPs-treated samples. Further studies also confirmed the biofilm inhibitory performance of AgNPs against Candia albicans. The AgNPs at the concentrations of MIC and 4*MIC inhibited 79.68 ± 14.38% and 83.57 ± 3.41% of biofilm formation in C. albicans, respectively. Moreover, this study showed that the intrinsic pathway may play a significant role in the anticoagulant properties of AgNPs. In addition, the AgNPs at the concentration of 500 μg mL-1, represented 49.27%, and 73.96 ± 2.59% thrombolytic and DPPH radical scavenging potential, respectively. Promising biological performance of AgNPs suggests these nanomaterials as a good candidate for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ajlouni AW, Hamdan EH, Alshalawi RAE, Shaik MR, Khan M, Kuniyil M, Alwarthan A, Ansari MA, Khan M, Alkhathlan HZ, Shaik JP, Adil SF. Green Synthesis of Silver Nanoparticles Using Aerial Part Extract of the Anthemis pseudocotula Boiss. Plant and Their Biological Activity. Molecules 2022; 28:molecules28010246. [PMID: 36615440 PMCID: PMC9822267 DOI: 10.3390/molecules28010246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Green syntheses of metallic nanoparticles using plant extracts as effective sources of reductants and stabilizers have attracted decent popularity due to their non-toxicity, environmental friendliness and rapid nature. The current study demonstrates the ecofriendly, facile and inexpensive synthesis of silver nanoparticles (AP-AgNPs) using the extract of aerial parts of the Anthemis pseudocotula Boiss. plant (AP). Herein, the aerial parts extract of AP performed a twin role of a reducing as well as a stabilizing agent. The green synthesized AP-AgNPs were characterized by several techniques such as XRD, UV-Vis, FT-IR, TEM, SEM and EDX. Furthermore, the antimicrobial and antibiofilm activity of as-prepared AP-AgNPs were examined by a standard two-fold microbroth dilution method and tissue culture plate methods, respectively, against several Gram-negative and Gram-positive bacterial strains and fungal species such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and Acinetobacter baumannii (MDR-AB), methicillin-resistant S. aureus (MRSA) and Candida albicans (C. albicans) strains. The antimicrobial activity results clearly indicated that the Gram-negative bacteria MDR-PA was most affected by AgNPs as compared to other Gram-negative and Gram-positive bacteria and fungi C. albicans. Whereas, in the case of antibiofilm activity, it has been found that AgNPs at 0.039 mg/mL, inhibit biofilms formation of Gram-negative bacteria i.e., MDR-PA, E. coli, and MDR-AB by 78.98 ± 1.12, 65.77 ± 1.05 and 66.94 ± 1.35%, respectively. On the other hand, at the same dose (i.e., 0.039 mg/mL), AP-AgNPs inhibits biofilm formation of Gram-positive bacteria i.e., MRSA, S. aureus and fungi C. albicans by 67.81 ± 0.99, 54.61 ± 1.11 and 56.22 ± 1.06%, respectively. The present work indicates the efficiency of green synthesized AP-AgNPs as good antimicrobial and antibiofilm agents against selected bacterial and fungal species.
Collapse
Affiliation(s)
- Abdul-Wali Ajlouni
- Physics Department, College of Applied Sciences, Umm Al-Qura University (UQU), Makkah 21955, Saudi Arabia
| | - Eman H. Hamdan
- Quality Assurance Supervisor, Salehiya Medical Company, Riyadh 12242, Saudi Arabia
| | - Rasha Awwadh Eid Alshalawi
- Laboratory Specialist Poison Control and Forensic Chemistry Center in Riyadh, Ministry of Health, Riyadh 13211, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jilani P. Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| |
Collapse
|
12
|
El-Naggar ME, Abdelgawad AM, Abdel-Sattar R, Gibriel AA, Hemdan BA. Potential antimicrobial and antibiofilm efficacy of peppermint oil nanoemulsion loaded polycaprolactone nanofibrous scaffolds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Anti- Candida Activity of Extracts Containing Ellagitannins, Triterpenes and Flavonoids of Terminalia brownii, a Medicinal Plant Growing in Semi-Arid and Savannah Woodland in Sudan. Pharmaceutics 2022; 14:pharmaceutics14112469. [PMID: 36432659 PMCID: PMC9692435 DOI: 10.3390/pharmaceutics14112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Various parts of Terminalia brownii (Fresen) are used in Sudanese traditional medicine against fungal infections. The present study aimed to verify these uses by investigating the anti-Candida activity and phytochemistry of T. brownii extracts. Established agar diffusion and microplate dilution methods were used for the antifungal screenings. HPLC-DAD and UHPLC/QTOF-MS were used for the chemical fingerprinting of extracts and for determination of molecular masses. Large inhibition zones and MIC values of 312 µg/mL were obtained with acetone, ethyl acetate and methanol extracts of the leaves and acetone and methanol extracts of the roots. In addition, decoctions and macerations of the leaves and stem bark showed good activity. Sixty compounds were identified from a leaf ethyl acetate extract, showing good antifungal activity. Di-, tri- and tetra-gallotannins, chebulinic acid (eutannin) and ellagitannins, including an isomer of methyl-(S)-flavogallonate, terflavin B and corilagin, were detected in T. brownii leaves for the first time. In addition, genipin, luteolin-7-O-glucoside, apigenin, kaempferol-4’-sulfate, myricetin-3-rhamnoside and sericic acid were also characterized. Amongst the pure compounds present in T. brownii leaves, apigenin and β-sitosterol gave the strongest growth inhibitory effects. From this study, it was evident that the leaf extracts of T. brownii have considerable anti-Candida activity with MIC values ranging from 312 to 2500 µg/mL.
Collapse
|
14
|
Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater 2022; 13:jfb13040242. [PMID: 36412883 PMCID: PMC9680418 DOI: 10.3390/jfb13040242] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall's integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis.
Collapse
|
15
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Tian Y, Luo J, Wang H, Zaki HEM, Yu S, Wang X, Ahmed T, Shahid MS, Yan C, Chen J, Li B. Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2892. [PMID: 36365347 PMCID: PMC9654092 DOI: 10.3390/plants11212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou 317000, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo 315033, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics 2022; 14:pharmaceutics14102182. [PMID: 36297620 PMCID: PMC9609291 DOI: 10.3390/pharmaceutics14102182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The functionalization of nanomaterials with suitable capping ligands or bioactive agents is an interesting strategy in designing nanosystems with suitable applicability and biocompatibility; the physicochemical and biological properties of these nanomaterials can be highly improved for biomedical applications. In this context, numerous explorations have been conducted in the functionalization of silver (Ag) and gold (Au) nanomaterials using suitable functional groups or agents to design nanosystems with unique physicochemical properties such as excellent biosensing capabilities, biocompatibility, targeting features, and multifunctionality for biomedical purposes. Future studies should be undertaken for designing novel functionalization tactics to improve the properties of Au- and Ag-based nanosystems and reduce their toxicity. The possible release of cytotoxic radicals or ions, the internalization of nanomaterials, the alteration of cellular signaling pathways, the translocation of these nanomaterials across the cell membranes into mitochondria, DNA damages, and the damage of cell membranes are the main causes of their toxicity, which ought to be comprehensively explored. In this study, recent advancements in diagnostic and therapeutic applications of functionalized Au and Ag nanomaterials are deliberated, focusing on important challenges and future directions.
Collapse
|
18
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
19
|
Qureshi F, Nawaz M, Ansari MA, Khan FA, Berekaa MM, Abubshait SA, Al-Mutairi R, Paul AK, Nissapatorn V, de Lourdes Pereira M, Wilairatana P. Synthesis of M-Ag 3PO 4, (M = Se, Ag, Ta) Nanoparticles and Their Antibacterial and Cytotoxicity Study. Int J Mol Sci 2022; 23:11403. [PMID: 36232708 PMCID: PMC9569642 DOI: 10.3390/ijms231911403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Silver Phosphate, Ag3PO4, being a highly capable clinical molecule, an ultrasonic method was employed to synthesize the M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles which were evaluated for antibacterial and cytotoxicity activities post-characterization. Escherichia coli and Staphylococcus aureus were used for antibacterial testing and the effects of sonication on bacterial growth with sub-MIC values of M-Ag3PO4 nanoparticles were examined. The effect of M-Ag3PO4 nanoparticles on human colorectal carcinoma cells (HCT-116) and human cervical carcinoma cells (HeLa cells) was examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and DAPI (4′,6-diamidino-2-phenylindole) staining. Additionally, we analyzed the effect of nanoparticles on normal and non-cancerous human embryonic kidney cells (HEK-293). Ag-Ag3PO4 exhibited enhanced antibacterial activity followed by Ta-Ag3PO4, Ag3PO4, and Se-Ag3PO4 nanoparticles against E. coli. Whereas the order of antibacterial activity against Staphylococcus aureus was Ag3PO4 > Ag-Ag3PO4 > Ta-Ag3PO4 > Se-Ag3PO4, respectively. Percentage inhibition of E. coli was 98.27, 74.38, 100, and 94.2%, while percentage inhibition of S. aureus was 25.53, 80.28, 99.36, and 20.22% after treatment with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4, respectively. The MTT assay shows a significant decline in the cell viability after treating with M-Ag3PO4 nanoparticles. The IC50 values for Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-116 were 39.44, 28.33, 60.24, 58.34 µg/mL; whereas for HeLa cells, they were 65.25, 61.27, 75.52, 72.82 µg/mL, respectively. M-Ag3PO4 nanoparticles did not inhibit HEK-293 cells. Apoptotic assay revealed that the numbers of DAPI stained cells were significantly lower in the M-Ag3PO4-treated cells versus control.
Collapse
Affiliation(s)
- Faiza Qureshi
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mahmoud M. Berekaa
- Environmental Health Department, College of Public Health, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samar A. Abubshait
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rayyanah Al-Mutairi
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Kirubakaran D, Selvam K, Prakash P, Manimegalai P, Shivakumar MS, SenthilNathan S. Preparation and characterization of biogenic silver nanoparticles using Strobilanthes cordifolia (Vahl) J.R.I.Wood leaves and its Biological applications. Biotechnol Appl Biochem 2022; 70:870-884. [PMID: 36122650 DOI: 10.1002/bab.2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/10/2022] [Indexed: 11/09/2022]
Abstract
In the present study aqueous leaf extract of Strobilanthes cordifolia J.R.I.Wood was combined with silver nitrate to synthesis silver nanoparticles (AgNPs).The AgNPs was Characterized using visible spectroscopy (UV), X-ray diffraction(XRD), fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDaX), particle size analysis and transmission electron microscope (TEM).The UV spectrum absorption peak occurred at 438nm. The FTIR analysis of the AgNPs indicated the presence of functional groups such as aldehyde, alkenes and carboxylic acids.The crystalline structure of AgNPs was confirmed by XRD. The AgNPs have a spherical shape according to SEM. The AgNPs components composition was confirmed by EDaX.The particle size distribution of AgNPs is monodispersion in the range at 42.54nm.TEM demonstrated that the AgNPs size to be between 11.35-34.90nm.The AgNPs exhibited good antibacterial against Escherichia coli and Staphylococcus aureus. The antioxidant activity of the AgNPs was represented by increased DPPH, ABTS and H2 O2 activities.The antidiabetic activity of the AgNPs was indicated by the inhibition of α-amylase and α-glycosidase and anti-inflammatory highest albumin denaturation and HRBC membrane stabilization properties. Further, the AgNPs also significantly inhibited the MCF-7 cell lines. These results clearly suggest that the synthesized AgNPs using S. cordifolia leaves could have several potential biomedical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dharmalingam Kirubakaran
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Peraman Manimegalai
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | | | - Sengottayan SenthilNathan
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| |
Collapse
|
21
|
Ahmad W, Ansari MA, Yusuf M, Amir M, Wahab S, Alam P, Alomary MN, Alhuwayri AA, Khan M, Ali A, Warsi MH, Ashraf K, Ali M. Antibacterial, Anticandidal, and Antibiofilm Potential of Fenchone: In Vitro, Molecular Docking and In Silico/ADMET Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:2395. [PMID: 36145798 PMCID: PMC9505686 DOI: 10.3390/plants11182395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (β-ketoacyl acyl carrier protein synthase), Candida albicans (1, 3-β−D-glucan synthase), and Pseudomonas aeruginosa (Anthranilate-CoA ligase) were predicted using molecular docking and in silico/ADMET methods. Further, to validate the in-silico prediction, the antibacterial and antifungal potential of fenchone was evaluated against E. coli, P. aeruginosa, and C. albicans by determining minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and minimum fungicidal concentration (MFC). The lowest MIC/MBC values of fenchone against E. coli and P. aeruginosa obtained was 8.3 ± 3.6/25 ± 0.0 and 266.6 ± 115.4/533.3 ± 230.9 mg/mL, respectively, whereas the MIC/MFC value for C. albicans was found to be 41.6 ± 14.4/83.3 ± 28.8 mg/mL. It was observed that fenchone has a significant effect on antimicrobial activity (p < 0.05). Our findings demonstrated that fenchone at 1 mg/mL significantly reduced the production of biofilm (p < 0.001) in E. coli, P. aeruginosa, and C. albicans by 70.03, 64.72, and 61.71%, respectively, in a dose-dependent manner when compared to control. Based on these results, it has been suggested that the essential oil from plants can be a great source of pharmaceutical ingredients for developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince-Sattam Bin-Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | | | - Maria Khan
- Department of Pharmacognosy, R.V. Northland Institute, Dadri 203207, India
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kamran Ashraf
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy 42, Knowledge Park—III, Greater Noida 201308, India
| |
Collapse
|
22
|
Miškovská A, Rabochová M, Michailidu J, Masák J, Čejková A, Lorinčík J, Maťátková O. Antibiofilm activity of silver nanoparticles biosynthesized using viticultural waste. PLoS One 2022; 17:e0272844. [PMID: 35947573 PMCID: PMC9365141 DOI: 10.1371/journal.pone.0272844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Green methods have become vital for sustainable development of the scientific and commercial sphere; however, they can bring new challenges, including the need for detailed characterization and elucidation of efficacy of their products. In this study, green method of silver nanoparticles (AgNPs) production was employed using an extract from grapevine canes. The aim of the study was to contribute to the knowledge about biosynthesized AgNPs by focusing on elucidation of their antifungal efficiency based on their size and/or hypothesized synergy with bioactive substances from Vitis vinifera cane extract. The antifungal activity of AgNPs capped and stabilized with bioactive compounds was tested against the opportunistic pathogenic yeast Candida albicans. Two dispersions of nanoparticles with different morphology (characterized by SEM-in-STEM, DLS, UV-Vis, XRD, and AAS) were prepared by modification of reaction conditions suitable for economical production and their long-term stability monitored for six months was confirmed. The aims of the study included the comparison of the antifungal effect against suspension cells and biofilm of small monodisperse AgNPs with narrow size distribution and large polydisperse AgNPs. The hypothesis of synergistic interaction of biologically active molecules from V. vinifera extracts and AgNPs against both cell forms were tested. The interactions of all AgNPs dispersions with the cell surface and changes in cell morphology were imaged using SEM. All variants of AgNPs dispersions were found to be active against suspension and biofilm cells of C. albicans; nevertheless, surprisingly, larger polydisperse AgNPs were found to be more effective. Synergistic action of nanoparticles with biologically active extract compounds was proven for biofilm cells (MBIC80 20 mg/L of polydisperse AgNPs in extract), while isolated nanoparticles suspended in water were more active against suspension cells (MIC 20 mg/L of polydisperse AgNPs dispersed in water). Our results bring new insight into the economical production of AgNPs with defined characteristics, which were proven to target a specific mode of growth of significant pathogen C. albicans.
Collapse
Affiliation(s)
- Anna Miškovská
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- * E-mail:
| | - Michaela Rabochová
- Research Centre Řež, Husinec, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alena Čejková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | | | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
23
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
24
|
Smirnov O, Kalynovskyi V, Yumyna Y, Zelena P, Levenets T, Kovalenko M, Dzhagan V, Skoryk M. Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. Biologia (Bratisl) 2022; 77:2715-2724. [PMID: 35600147 PMCID: PMC9116077 DOI: 10.1007/s11756-022-01117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Oleksandr Smirnov
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vitalii Kalynovskyi
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Yuliia Yumyna
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlina Zelena
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetiana Levenets
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Mariia Kovalenko
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Skoryk
- G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
25
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
26
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
27
|
Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10040623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To evaluate silver nanoparticles’ (AgNPs) therapeutic and clinical potentials, antibacterial action, blood compatibility, and antiplatelet activities are the main concerns for toxicity profiling. Heat-denatured lysozyme-mediated formulation stabilized the AgNPs, thereby providing more bactericidal activity and blood compatibility. The study of the synthesis of AgNPs suggests the rapid and cost-effective formulation of AgNPs by one-step reaction using a 10:1 ratio of silver nitrate and lysozyme by incubating at 60 °C for two hours. Characterization of AgNPs was analyzed by UV–Visible spectroscopy, DLS, TEM, EDX, XRD, AFM, and FTIR, followed by antibacterial, hemocompatibility, and platelet aggregation testing. The average size of synthesized AgNPs was found to be 94.10 nm with 0.45 mV zeta potential and 0.293 polydispersity index by DLS. The TEM and EXD results indicated homogeneously 28.08 nm spherical-shaped pure formations of AgNPs. The XRD peaks showed the synthesis of small AgNPs with a crystallite size of 22.88 nm, while the AFM confirmed the homogeneity and smoothness of the monodispersed AgNPs. The FTIR spectra specified the coating of the lysozyme-derived amide group on the AgNPs surface, which provides stability and functionality of nanoparticles. The antibacterial activity of AgNPs was remarkable against six pathogenic bacteria and three multidrug resistance (MDR) strains (i.e., Escherichia coli, Klebsiella aerogenes, and Pseudomonas aeruginosa), which exhibited inhibition zones with diameters ranging between 13.5 ± 0.2 mm to 19.0 ± 0.3 mm. The non-hemolytic nature of the AgNPs was calculated by percentage hemolysis with four concentrations. The negative result of platelet aggregation using platelet-rich plasma suggests the antiplatelet effect of AgNPs. Only minor hemolysis of 6.17% in human erythrocytes and mild platelet aggregation of 1.98% were induced, respectively, by the use of 1000 µL of 1 mM AgNPs, which contains approximately 107.8 μg silver. The results indicated that the antiplatelet potency and non-hemolytic nature with the antibacterial action of the lysozyme functionalized AgNPs have a good chance to be used to solve in-stent restenosis and thrombosis issues of the coronary stent and may also have a possibility to use in vaccination to resolve the blood clotting problem. So, the optimized biogenic formulation of AgNPs offers promising opportunities to be used as a therapeutic agent.
Collapse
|
28
|
Rabiee N, Ahmadi S, Akhavan O, Luque R. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1799. [PMID: 35269031 PMCID: PMC8911831 DOI: 10.3390/ma15051799] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023]
Abstract
Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles' physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran;
| | - Rafael Luque
- Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| |
Collapse
|
29
|
Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Fonseca MS, Rodrigues DM, Sokolonski AR, Stanisic D, Tomé LM, Góes-Neto A, Azevedo V, Meyer R, Araújo DB, Tasic L, Portela RD. Activity of Fusarium oxysporum-Based Silver Nanoparticles on Candida spp. Oral Isolates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:501. [PMID: 35159845 PMCID: PMC8840154 DOI: 10.3390/nano12030501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Candida spp. resistant to commercially available antifungals are often isolated from patients with oral candidiasis, a situation that points to the need for the development of new therapies. Thus, we evaluated the activity of Fusarium oxysporum-based silver nanoparticles (AgNPs) on Candida spp. isolated from denture stomatitis lesions. Candida isolates were molecularly identified and submitted to susceptibility assays using AgNPs and commercial fungicides. The interference on biofilm formation and the mechanisms of action of AgNPs on Candida spp. were also investigated. Scanning electron microscopy was used to evaluate the morphology of AgNP-treated Candida. Candida albicans was the most frequent species isolated from denture stomatitis cases. All Candida spp. were susceptible to AgNPs at low concentrations, except Candida parapsilosis. AgNPs caused surface damage, cell disruption, and biofilm formation inhibition. The ergosterol supplementation protected C. albicans against the AgNP action. AgNPs are effective against Candida spp. and can be faced as a promising new therapeutic agent against oral candidiasis.
Collapse
Affiliation(s)
- Maísa Santos Fonseca
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador 40110-100, BA, Brazil; (M.S.F.); (D.M.R.); (R.M.)
| | - Daniela Méria Rodrigues
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador 40110-100, BA, Brazil; (M.S.F.); (D.M.R.); (R.M.)
| | - Ana Rita Sokolonski
- Laboratório de Bioquímica Oral, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador 40110-100, BA, Brazil; (A.R.S.); (D.B.A.)
| | - Danijela Stanisic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, SP, Brazil; (D.S.); (L.T.)
| | - Luiz Marcelo Tomé
- Laboratório de Biologia Molecular e Computacional de Fungos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (L.M.T.); (A.G.-N.)
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (L.M.T.); (A.G.-N.)
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Roberto Meyer
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador 40110-100, BA, Brazil; (M.S.F.); (D.M.R.); (R.M.)
| | - Danilo Barral Araújo
- Laboratório de Bioquímica Oral, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador 40110-100, BA, Brazil; (A.R.S.); (D.B.A.)
| | - Ljubica Tasic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, SP, Brazil; (D.S.); (L.T.)
| | - Ricardo Dias Portela
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador 40110-100, BA, Brazil; (M.S.F.); (D.M.R.); (R.M.)
| |
Collapse
|
31
|
Fanoro OT, Parani S, Maluleke R, Lebepe TC, Varghese RJ, Mgedle N, Mavumengwana V, Oluwafemi OS. Biosynthesis of Smaller-Sized Platinum Nanoparticles Using the Leaf Extract of Combretum erythrophyllum and Its Antibacterial Activities. Antibiotics (Basel) 2021; 10:1275. [PMID: 34827214 PMCID: PMC8614812 DOI: 10.3390/antibiotics10111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022] Open
Abstract
Nanobiotechnology is a promising field in the development of safe antibiotics to combat the increasing trend of antibiotic resistance. Nature is a vast reservoir for green materials used in the synthesis of non-toxic and environmentally friendly nano-antibiotics. We present for the first time a facile, green, cost-effective, plant-mediated synthesis of platinum nanoparticles (PtNPs) using the extract of Combretum erythrophyllum (CE) plant leaves. The extract of CE served as both a bio-reductant and a stabilizing agent. The as-synthesized PtNPs were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. The HR-TEM image confirmed that the PtNPs are ultrasmall, spherical, and well dispersed with an average particle diameter of 1.04 ± 0.26 nm. The PtNPs showed strong antibacterial activities against pathogenic Gram-positive Staphylococcus epidermidis (ATCC 14990) at a minimum inhibitory concentration (MIC) of 3.125 µg/mL and Gram-negative Klebsiella oxytoca (ATCC 8724) and Klebsiella aerogenes (ATCC 27853) at an MIC value of 1.56 µg/mL. The CE-stabilized PtNPs was mostly effective in Klebsiella species that are causative organisms in nosocomial infections.
Collapse
Affiliation(s)
- Olufunto T. Fanoro
- Department of Biotechnology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.T.F.); (V.M.)
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
| | - Sundararajan Parani
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Rodney Maluleke
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Thabang C. Lebepe
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Rajendran J. Varghese
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Nande Mgedle
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Vuyo Mavumengwana
- Department of Biotechnology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.T.F.); (V.M.)
| | - Oluwatobi S. Oluwafemi
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (S.P.); (R.M.); (T.C.L.); (R.J.V.); (N.M.)
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
32
|
Huq MA, Akter S. Biosynthesis, Characterization and Antibacterial Application of Novel Silver Nanoparticles against Drug Resistant Pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules 2021; 26:5996. [PMID: 34641540 PMCID: PMC8512087 DOI: 10.3390/molecules26195996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15-55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Korea
| |
Collapse
|
33
|
Facile Green, Room-Temperature Synthesis of Gold Nanoparticles Using Combretum erythrophyllum Leaf Extract: Antibacterial and Cell Viability Studies against Normal and Cancerous Cells. Antibiotics (Basel) 2021; 10:antibiotics10080893. [PMID: 34438944 PMCID: PMC8388653 DOI: 10.3390/antibiotics10080893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).
Collapse
|
34
|
Ajiboye TO, Oluwarinde BO, Montso PK, Ateba CN, Onwudiwe DC. Antimicrobial activities of Cu(II), In(III), and Sb(III) complexes of N-methyl-N–phenyl dithiocarbamate complexes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|