1
|
Rahimian M, Deyhim H, Shirazi-Zavaragh S, Zeynali M, Bonabi E, Zarghami N. Phage isolation, characterization, and antibiotic resistance profiling in Avian pathogenic Escherichia coli: Integrating data for a possible novel AMR surveillance model. Microb Pathog 2025; 203:107506. [PMID: 40147560 DOI: 10.1016/j.micpath.2025.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Colibacillosis, brought on by Avian Pathogenic Escherichia coli (APEC), is a significant risk to poultry farming. The management of colibacillosis is made more difficult by the increasing levels of antimicrobial resistance (AMR) in APEC isolates. The antibiotic resistance profiles, antibiotic resistance gene (ARG) presence, and phage susceptibility of 130 APEC isolates were examined in this investigation. The highest resistance against antibiotics was detected against tetracycline and nalidixic acid, with 86.15% and 85.38%, respectively, among isolates. A high frequency of ARGs was found in the data, especially the positively correlated blaTEM (95.38%) and tetA (85.38%) genes. The 20 bacteriophages we recovered were further described, with PhEcoAP90 having the widest host range. A 14 ± 1.41 nm tail and a 52.20 ± 2.94 nm head were revealed by TEM examination. A one-step growth experiment observed a 20-min latent period and a 58 PFU/cell burst size. PhEcoAP90 showed instability at high temperatures and extreme pH values. These results imply that although PhEcoAP90 exhibits potential as an antibiotic alternative for managing APEC infections, its use in severe settings may be restricted. To help combat AMR in chicken farming, we also suggest a unique AMR surveillance system that includes phage sensitivity, ARG prevalence, and antibiotic resistance profiles. In conclusion, our research emphasizes the need for integrated AMR surveillance systems in the poultry industry and the promise of phages as efficient alternative therapeutic approaches in regulating AMR in APEC.
Collapse
Affiliation(s)
- Mohammadreza Rahimian
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Hanieh Deyhim
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Shirazi-Zavaragh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zeynali
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
2
|
Raposo ML, Pimentel AC, Manageiro V, Duarte A, Caniça M, Vale FF. Identifying phage Lysins through genomic analysis of prophages from Acinetobacter baumannii. Front Microbiol 2025; 16:1532950. [PMID: 40236489 PMCID: PMC11998280 DOI: 10.3389/fmicb.2025.1532950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen, responsible for nosocomial infections worldwide. In recent years, this microorganism has acquired resistance to various antibiotics, prompting the World Health Organization (WHO) to declare carbapenem-resistant A. baumannii (CRAB) a critical priority microorganism requiring urgent attention and the development of new therapeutic options. Here, we screened for prophages in 158 genomes of A. baumannii, comprising 139 complete genomes from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and 19 newly sequenced clinical isolates. Additionally, we conducted phylogenetic analyses of prophages, highlighting their diversity and local clustering. The analyzed genomes harbored at least two prophage regions, resulting in the identification of a total of 950 prophage regions, of which 348 were considered complete prophages through software analysis and manual curation, while the remainder may represent prophage remnants. The complete prophages ranged from 28.6 to 103.9 kbp, with an average GC content of 39%. Based on genomic similarity, only 18 complete prophages were taxonomically classified to the genus Vieuvirus. Among all identified complete prophages, we identified 166 genes encoding for putative lysins, while prophage regions that were not considered complete could also harbor putative lysins. These findings highlight the abundance of prophage-encoded lysins in A. baumannii genomes, which are promising therapeutic agents for combating A. baumannii infections, particularly in the face of rising antibiotic resistance.
Collapse
Affiliation(s)
- Maria Leonor Raposo
- Faculdade de Ciências, BioISI – Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Ana Carolina Pimentel
- Faculdade de Ciências, BioISI – Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa F. Vale
- Faculdade de Ciências, BioISI – Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Petrzik K, Sovová L. New lytic and new temperate Staphylococcus hyicus phages. Virus Genes 2025:10.1007/s11262-025-02151-5. [PMID: 40087227 DOI: 10.1007/s11262-025-02151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
A novel lytic phage with a broad host range was isolated from pig faeces and the complete genome was subsequently sequenced. The phage was found to lyse Staphylococcus hyicus, S. pseudintermedius, S. schleiferi and S. warneri, generating approximately 27 PFU per infected S. hyicus cell. The phage has an isometric head of 42 ± 2 nm in diameter and a noncontractile tail of 114 ± 9 nm long. The genome is 53,660 bp in size and consists of 79 predicted ORFs and one tRNAArg gene. The phage has been classified within the Caudoviricetes, specifically the Chaseviridae family. Its broad host range and absence of harmful genes make it suitable for use in phage therapy. In addition, a novel temperate phage was discovered that was spontaneously released from a S. hyicus isolate Pel11 from a pig with exudative epidermitis. This novel temperate phage differs from the known temperate phages in S. hyicus strains NCTC10350, MM2101 or 83/7-1B, representing a novel pathogenicity element in the S. hyicus genome.
Collapse
Affiliation(s)
- Karel Petrzik
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Virology, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czechia.
| | - Lucie Sovová
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Virology, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czechia
| |
Collapse
|
4
|
Gorodnichev RB, Krivulia AO, Kornienko MA, Abdraimova NK, Malakhova MV, Zaychikova MV, Bespiatykh DA, Manuvera VA, Shitikov EA. Phage-antibiotic combinations against Klebsiella pneumoniae: impact of methodological approaches on effect evaluation. Front Microbiol 2025; 16:1530819. [PMID: 40143863 PMCID: PMC11937024 DOI: 10.3389/fmicb.2025.1530819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background The combined use of bacteriophages and antibiotics represents a promising strategy for combating multidrug-resistant bacterial pathogens. However, the lack of uniformity in methods for assessing combination effects and experimental protocols has resulted in inconsistent findings across studies. This study aimed to evaluate the effects of interactions between phages and antibiotics on Klebsiella pneumoniae strains using various statistical approaches to formalize combination effects. Methods Effects were assessed for four antibiotics from distinct classes (gentamicin, levofloxacin, meropenem, chloramphenicol), three phages from different genera (Dlv622, Seu621, FRZ284), and a depolymerase (Dep622) on three K. pneumoniae strains of the KL23 capsule type. Antibiotics were used at Cmax concentrations, and phages at sublethal levels. A modified t-test, Bliss independence model, two-way ANOVA, and checkerboard assay were employed to evaluate the results. Results Among 48 combinations, 33 effects were statistically significant, including 26 cases of synergy and 7 of antagonism. All statistical methods showed consistency in identifying effects; however, the t-test and Bliss method detected a greater number of effects. The strongest synergy was observed with levofloxacin in combination with Seu621 or Dep622 across all bacterial strains. Checkerboard assays confirmed synergy in selected cases but indicated that combined effects could vary with antimicrobial concentrations. Conclusion The choice of analytical method substantially impacts the detection of phage-antibiotic effects. The t-test and Bliss method, due to their simplicity and sensitivity, may be optimal for clinical application, while two-way ANOVA for confirming strong interactions. These results emphasize the need to consider interaction characteristics when designing therapeutic strategies.
Collapse
Affiliation(s)
- Roman B. Gorodnichev
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anastasiia O. Krivulia
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Maria A. Kornienko
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Narina K. Abdraimova
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Maja V. Malakhova
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Marina V. Zaychikova
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry A. Bespiatykh
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valentin A. Manuvera
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Egor A. Shitikov
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
5
|
Jiao X, Wang M, Liu Y, Yang S, Yu Q, Qiao J. Bacteriophage-derived depolymerase: a review on prospective antibacterial agents to combat Klebsiella pneumoniae. Arch Virol 2025; 170:70. [PMID: 40057622 DOI: 10.1007/s00705-025-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/21/2024] [Indexed: 03/29/2025]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that colonizes mucosal surfaces and is a common cause of nosocomial infections. The emergence of antimicrobial resistance in K. pneumoniae, particularly carbapenem-resistant strains, poses a significant threat to human health, with high mortality rates and healthcare costs. Another major problem is that hypervirulent K. pneumoniae tends to form biofilms. Bacteriophage-derived depolymerases, a class of enzymes that degrade diverse bacterial surface carbohydrates, have been exploited as antibiofilm and antimicrobial adjuvants because of their high stability, specificity, strong antimicrobial activity, and low incidence of bacterial resistance. This review presents a summary of the structure and properties of depolymerase, as well as an overview of both in vitro and in vivo studies of depolymerase therapy for multidrug-resistant or biofilm-forming K. pneumoniae infections. These studies employed a range of approaches, including utilizing a single depolymerase or combinations of depolymerase and phages or antibiotics. Furthermore, this review outlines the current challenges facing depolymerase therapy and potential future approaches for treating K. pneumoniae infections.
Collapse
Affiliation(s)
- Xin Jiao
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Menglu Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yanxia Liu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, Shandong, People's Republic of China
| | - Shuqi Yang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Qianhui Yu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jinjuan Qiao
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2025; 16:247-269. [PMID: 39545771 PMCID: PMC11875505 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M. Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
7
|
Tasdurmazli S, Cinar I, Karamese M, Aksak Karamese S, Cadirci E, Melo LDR, Ozbek T. Exploring in vitro efficacy of rCHAPk with antibiotic combinations, and promising findings of its therapeutic potential for clinical-originated MRSA wound infection. Int J Biol Macromol 2025; 296:139630. [PMID: 39788229 DOI: 10.1016/j.ijbiomac.2025.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 10 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics. Application of 10 μg of rCHAPk reduced OD600 by 0.4 within 5 min against a clinical methicillin-resistant S. aureus (MRSA) strain. Combining rCHAPk (1.875 μg/mL) with oxacillin/vancomycin lowered their minimum bactericidal concentrations to 1 μg/mL from initial values over 64 μg/mL and 32 μg/mL, respectively, with a fractional inhibitory concentration index below 0.1. rCHAPk retained efficacy after one year of refrigerated storage. In in vivo experiments, rCHAPk outperformed commercial fucidin therapy in MRSA-induced murine wound models over two weeks, enhancing wound healing by modulating pro-inflammatory cytokine responses and the proliferative phase. This study, for the first time, investigates rCHAPk's in vitro combination with antibiotics and wound healing parameters, highlighting its potential as a potent antibacterial agent synergizing with antibiotics to address antibiotic-resistant bacterial wound infections.
Collapse
Affiliation(s)
- Semra Tasdurmazli
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Irfan Cinar
- Kastamonu University, Faculty of Medicine, Kastamonu, Turkey
| | | | | | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Erzurum, Turkey
| | - Luís D R Melo
- Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tulin Ozbek
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey.
| |
Collapse
|
8
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
9
|
Maan SA, Faiesal AA, Gamar GM, El Dougdoug NK. Efficacy of bacteriophages with Aloe vera extract in formulated cosmetics to combat multidrug-resistant bacteria in skin diseases. Sci Rep 2025; 15:4335. [PMID: 39910123 PMCID: PMC11799309 DOI: 10.1038/s41598-025-86334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
Phage therapy offers a promising alternative to antibiotic treatment for combating illnesses caused by multidrug-resistant bacteria. In this study, pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa were isolated from pus and skin infected fluidsusing selective media. These bacterial isolates were biochemically identified as S. aureus and P. aeruginosa with probabilities of 98% and 99%, respectively, through VITEK2 system, and were confirmed as multidrug-resistant based on minimum inhibitory concentration test using colorimetric reagent cards. Lytic phages specific to these isolates were isolated, identified through plaque assays, transmission electron microscopy and classified morphologically according to the new International Committee on Taxonomy of Viruses classification as members of the Straboviridae, Drexlerviridae, and Autographiviridae families. A cosmetic gel formulation combining Aloe vera extract and the phage cocktail was prepared and tested. This gel significantly enhanced phage longevity and reduced bacterial growth by 95.5% compared to the reductions of 90.5% with Aloe Vera extract alone and 45.7% with the basic cosmetic gel. The phage remained effective for 4 to over 12 weeks after being preserved in the cosmetic formula, maintaining populations ranging from 5 × 103 to 25 × 104 PFU/mL in vitro. These findings highlight the potential of phage-based formulations, such as Vena Skin Gel, as innovative biotherapeutic tools for managing skin infections.
Collapse
Affiliation(s)
- Sodaf A Maan
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Abeer A Faiesal
- Department of Basic and Applied Agriculture Sciences, Higher Institute for Agriculture Cooperation, Cairo, Egypt
| | - Gamar M Gamar
- Department of Life and Earth Sciences, Higher N'Djamena Institute for Training Teachers, N'Djamena, Chad
| | - Noha K El Dougdoug
- Department of Plant and Microbiology, Faculty of Science, Benha University, Banha, Egypt
| |
Collapse
|
10
|
Xia Y, Hu Z, Jin Q, Chen Q, Zhao C, Qiang R, Xie Z, Li L, Zhang H. Structural characteristics, functions, and counteracting strategies of biofilms in Staphylococcus aureus. Comput Struct Biotechnol J 2025; 27:488-500. [PMID: 39916696 PMCID: PMC11799891 DOI: 10.1016/j.csbj.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Background Staphylococcus aureus (S. aureus) is a prevalent pathogen associated with a wide range of infections, exhibiting significant antibiotic resistance and posing therapeutic challenges in clinical settings. The formation of biofilms contributes to the emergence of resistant strains, further diminishing the efficacy of antibiotics. This, in turn, leads to chronic and recurrent infections, ultimately increasing the healthcare burden. Consequently, preventing and eliminating biofilms has become a critical focus in clinical management and research. Aim of review This review systematically examines the mechanisms underlying biofilm formation in S. aureus and its contribution to antibiotic resistance, emphasizing the essential roles biofilms play in maintaining structural integrity and enhancing resistance. It also analyses the protective mechanisms that fortify S. aureus biofilms against antimicrobial treatments. Furthermore, the review provides a comprehensive overview of recent therapeutic innovations, including enzymatic therapy, nanotechnology, gene editing, and phage therapy. Key scientific concepts of review Emerging therapeutic strategies present novel approaches to combat S. aureus biofilm-associated infections through various mechanisms. This review discusses recent advancements in these therapies, their practical challenges in clinical application, and provides an in-depth analysis of each strategy's mechanisms and therapeutic potential. By mapping future research directions, this review aims to refine anti-biofilm strategies to control infection progression and effectively mitigate recurrence.
Collapse
Affiliation(s)
- Yanze Xia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenghui Hu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiyuan Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Qiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liubing Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Kocot AM, Swebocki T, Ciemińska K, Łupkowska A, Kapusta M, Grimon D, Laskowska E, Kaczorowska AK, Kaczorowski T, Boukherroub R, Briers Y, Plotka M. Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii. Sci Rep 2025; 15:2047. [PMID: 39814769 PMCID: PMC11735859 DOI: 10.1038/s41598-024-80440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.97 ± 0.38 °C, significantly higher than their natural counterparts derived from mesophilic sources. The minimum inhibitory concentration (MIC) of MLE-15 was 100 µg/mL for a panel of Gram-positive and Gram-negative bacteria, while the MIC of reline ranged from 6.25 to 25% v/v for the same strains. The addition of reline effectively reduced the MIC of MLE-15 from 100 µg/mL to 3.15-50 µg/mL. This combination displayed additive effects for most strains and synergism for extensively antibiotic-resistant Acinetobacter baumannii and Bacillus subtilis. The subsequent evaluation revealed that MLE-15 eliminated planktonic cells of A. baumannii RUH134, but was ineffective against matured biofilms. However, combined with reline, MLE-15 reduced the bacterial load in the matured biofilm by 1.39 log units. Confocal fluorescence microscopy indicated that reline damaged the structure of the biofilm, allowing MLE-15 to penetrate it. Additionally, MLE-15 and its combination with reline eradicated meropenem-persistent cells of A. baumannii RUH134. Effectiveness in lowering the MIC value of MLE-15 as well as protection against antibiotic-tolerant persister cells, indicate that MLE-15 and reline combination is a promising candidate for effective therapies in bacterial infections, which is especially important in the light of the global crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| | - Tomasz Swebocki
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland
| | - Karolina Ciemińska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Dennis Grimon
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Yves Briers
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
12
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2025; 14:13-57. [PMID: 39549153 PMCID: PMC11782739 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
13
|
Cremelie E, Vázquez R, Briers Y. A comparative guide to expression systems for phage lysin production. Essays Biochem 2024; 68:645-659. [PMID: 39290148 DOI: 10.1042/ebc20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.
Collapse
Affiliation(s)
- Emma Cremelie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Arakelian AG, Chuev GN, Mamedov TV. Molecular Docking of Endolysins for Studying Peptidoglycan Binding Mechanism. Molecules 2024; 29:5386. [PMID: 39598776 PMCID: PMC11597070 DOI: 10.3390/molecules29225386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Endolysins of bacteriophages, which degrade the bacterial cell wall peptidoglycan, are applicable in many industries to deal with biofilms and bacterial infections. While multi-domain endolysins have both enzymatically active and cell wall-binding domains, single-domain endolysins consist only of an enzymatically active domain, and their mechanism of peptidoglycan binding remains unexplored, for this is a challenging task experimentally. This research aimed to explore the binding mechanism of endolysins using computational approaches, namely molecular docking and bioinformatical tools, and analyze the performance of these approaches. The docking engine Autodock Vina 1.1.2 and the 3D-RISM module of AmberTools 24 were studied in the current work and used for receptor-ligand affinity and binding energy calculations, respectively. Two possible mechanisms of single-domain endolysin-ligand binding were predicted by Autodock Vina and verified by the 3D-RISM. As a result, the previously obtained experimental results on peptidoglycan binding of the isolated gamma phage endolysin PlyG enzymatically active domain were supported by molecular docking. Both methods predicted that single-domain endolysins are able to bind peptidoglycan, with Autodock Vina being able to give accurate numerical estimates of protein-ligand affinities and 3D-RISM providing comparative values.
Collapse
Affiliation(s)
- Arina G. Arakelian
- Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya ul., 3, 142290 Pushchino, Moscow Oblast, Russia; (G.N.C.)
| | | | | |
Collapse
|
15
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
16
|
Antonova NP, Vasina DV, Grigoriev IV, Laishevtsev AI, Kapustin AV, Savinov VA, Vorobev AM, Aleshkin AV, Zackharova AA, Remizov TA, Makarov VV, Yudin SM, Gushchin VA. Pharmacokinetic and preclinical safety studies of endolysin-based therapeutic for intravenous administration. Int J Antimicrob Agents 2024; 64:107328. [PMID: 39244166 DOI: 10.1016/j.ijantimicag.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Pharmacokinetics and safety studies of innovative drugs is an essential part of drug development process. Previously we have developed a novel drug for intravenous administration (lyophilizate) containing modified endolysin LysECD7-SMAP that showed notable antibacterial effect in different animal models of systemic infections. Here we present data on pharmacokinetics of endolysin in mice after single and multiple injections. Time-concentration curves were obtained, and pharmacokinetic parameters for preparation (C0, kel t1/2, AUC0-∞, MRT, ClT, Vss) were calculated. It was shown that although endolysin is rather short-lived in blood serum (t1/2 = 12.5 min), the therapeutic concentrations of LysECD7-SMAP (in degraded and non-degraded form) were detected for 60 minutes after injection that is sufficient for antibacterial effect. Based on the obtained data, it was proposed that endolysin distributes presumably in murine blood, degrades in blood and liver, and is eliminated via glomerular filtration. Safety profile of the preparation relating to general toxicity, immunotoxicity and allergenicity was assessed in rodents. It was demonstrated that LysECD7-SMAP in potential therapeutic (12.5 mg/kg), 10-fold (125 mg/kg) and 40-fold (500 mg/kg) doses showed no signs of intoxication and significant abnormalities after single and repeated i.v. administrations, preparation was non-immunogenic and induced minor and reversible allergic reaction in animals.
Collapse
Affiliation(s)
- Nataliia P Antonova
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Daria V Vasina
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei I Laishevtsev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Andrey V Kapustin
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Vasiliy A Savinov
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Aleksei M Vorobev
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Andrei V Aleshkin
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Anastasia A Zackharova
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Timofey A Remizov
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Vladimir A Gushchin
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
17
|
Gangakhedkar R, Jain V. Elucidating the molecular properties and anti-mycobacterial activity of cysteine peptidase domain of D29 mycobacteriophage endolysin. J Virol 2024; 98:e0132824. [PMID: 39287392 PMCID: PMC11494882 DOI: 10.1128/jvi.01328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Emergence of antibiotic resistance in pathogenic Mycobacterium tuberculosis (Mtb) has elevated tuberculosis to a serious global threat, necessitating alternate solutions for its eradication. D29 mycobacteriophage can infect and kill several mycobacterial species including Mtb. It encodes an endolysin LysA to hydrolyze host bacteria peptidoglycan for progeny release. We previously showed that out of the two catalytically active domains of LysA [N-terminal domain (NTD) and lysozyme-like domain], NTD, when ectopically expressed in Mycobacterium smegmatis (Msm), is able to kill the bacterium nearly as efficiently as full-length LysA. Here, we dissected the functioning of NTD to develop it as a phage-derived small molecule anti-mycobacterial therapeutic. We performed a large-scale site-directed mutagenesis of the conserved residues in NTD and examined its structure, stability, and function using molecular dynamic simulations coupled with biophysical and biochemical experiments. Our data show that NTD functions as a putative cysteine peptidase with a catalytic triad composed of Cys41, His112, and Glu137, acting as nucleophile, base, and acid, respectively, and showing characteristics similar to the NlpC/P60 family of cysteine peptidases. Additionally, our peptidoglycan hydrolysis assays suggested that NTD hydrolyzes only mycobacterial peptidoglycan and does not act on Gram-positive and Gram-negative bacterial peptidoglycans. More importantly, the combined activity of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills Msm in vitro and exhibits disruption of pre-formed mycobacterial biofilm. We additionally show that NTD treatment increases the permeability of antibiotics in Msm, which reduces the minimum inhibitory concentration of the antibiotics. Collectively, we present NTD as a promising phage-derived therapeutic against mycobacteria.IMPORTANCEMycobacteriophages are the viruses that use mycobacteria as host for their progeny production and, in the process, kill them. Mycobacteriophages are, therefore, considered as promising alternatives to antibiotics for killing pathogenic Mycobacterium tuberculosis. The endolysin LysA produced by mycobacteriophage D29 plays an important role in host cell lysis and virion release. Our work presented here highlights the functioning of LysA's N-terminal catalytic domain (NTD) in order to develop it as phage-derived small molecule therapeutics. We show that combined treatment of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills M. smegmatis, shows synergism by reducing the minimum inhibitory concentration of these antibiotics, and exhibits disruption of pre-formed mature biofilm. These outcomes and our detailed biochemical and biophysical dissection of the protein further pave the way toward engineering and development of NTD as a promising therapeutic against mycobacterial infections such as tuberculosis.
Collapse
Affiliation(s)
- Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
18
|
Chu D, Lan J, Liang L, Xia K, Li L, Yang L, Liu H, Zhang T. The antibacterial activity of a novel highly thermostable endolysin, LysKP213, against Gram-negative pathogens is enhanced when combined with outer membrane permeabilizing agents. Front Microbiol 2024; 15:1454618. [PMID: 39439944 PMCID: PMC11493673 DOI: 10.3389/fmicb.2024.1454618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Phages and phage-encoded lytic enzymes are promising antimicrobial agents. In this study, we report the isolation and identification of bacteriophage KP2025 from Klebsiella pneumoniae. Bioinformatics analysis of KP2025 revealed a putative endolysin, LysKP213, containing a T4-like_lys domain. Purified LysKP213 was found to be highly thermostable, retaining approximately 44.4% of its lytic activity after 20 h of incubation at 95°C, and approximately 57.5% residual activity after 30 min at 121°C. Furthermore, when administered in combination with polymyxin B or fused at the N-terminus with the antimicrobial peptide cecropin A (CecA), LysKP213 exhibited increased antibacterial activity against Gram-negative pathogens, including K. pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli, both in vitro and in vivo. These results indicated that LysKP213 is a highly thermostable endolysin that, when combined with or fused with an outer membrane permeabilizer, has enhanced antibacterial activity and is a candidate agent for the control of infections by Gram-negative pathogens.
Collapse
Affiliation(s)
- Dingjian Chu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Jing Lan
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Lu Liang
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Kaide Xia
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongmei Liu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech 2024; 14:256. [PMID: 39355200 PMCID: PMC11442959 DOI: 10.1007/s13205-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The rapid rise of multidrug-resistant (MDR) organisms has created a critical need for alternative treatment options. Phage therapy is gaining attention as an effective way to fight bacterial infections by using lytic bacteriophages to specifically target and kill harmful bacteria. This review discusses several phage therapeutic options and emphasizes new developments in phage biology. Phage treatment has proven to be successful against MDR bacteria, as evidenced by multiple human clinical trials that indicate favorable results in treating a range of diseases caused by these pathogens. Despite these promising results, challenges such as phage resistance, regulatory hurdles, and the need for standardized treatment protocols remain. To effectively combat MDR bacterial infections, future research must focus on enhancing phage effectiveness, guaranteeing safety for human usage and incorporating phage therapy into clinical practice.
Collapse
Affiliation(s)
- Arushi Kapoor
- Robert R Mcormick School of Engineering and Applied Science, Northwestern University, Illinois, USA
| | - Samriti Balaji Mudaliar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vyasraj G. Bhat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
20
|
Le Pogam A, Medina F, Belkacem A, Raffetin A, Jaafar D, Wodecki P, Corlouer C, Dublanchet A, Caraux-Paz P, Diallo K. Proportion of patients with prosthetic joint infection eligible for adjuvant phage therapy: a French single-centre retrospective study. BMC Infect Dis 2024; 24:923. [PMID: 39237903 PMCID: PMC11378432 DOI: 10.1186/s12879-024-09814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Bone and joint infections represent a major public health issue due to their increasing prevalence, their functional prognosis and their cost to society. Phage therapy has valuable anti-biofilm properties against prosthetic joint infections (PJI). The aim of this study was to establish the proportion of patients eligible for phage therapy and to assess their clinical outcome judged against all patients presenting with PJI. METHOD . Patients admitted for periprosthetic joint infection (PJI) at a French general hospital between 2015 and 2019 were retrospectively included. Eligibility for phage therapy was determined based on French recommendations, with polymicrobial infections serving as exclusion criteria. Patients were categorized into two groups: those eligible and those ineligible for phage therapy. We analyzed their characteristics and outcomes, including severe adverse events, duration of intravenous antibiotic therapy, length of hospitalization, and relapse rates. RESULTS . In this study, 96 patients with PJI were considered in multidisciplinary medical meetings. Of these, 44% patients (42/96) were eligible for additional phage therapy. This group of patients had a longer duration of intravenous therapy (17 days vs. 10 days, p = 0.02), more severe adverse events (11 vs. 3, p = 0.08) and had a longer hospital stay (43 days vs. 18 days, p < 0.01). CONCLUSION . A large number of patients met eligibility criteria for phage therapy and treatment and follow-up is more complex. A larger epidemiological study would more accurately describe the prognosis of eligible patients.
Collapse
Affiliation(s)
- Ambroise Le Pogam
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Fernanda Medina
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Anna Belkacem
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Alice Raffetin
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Danielle Jaafar
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Philippe Wodecki
- Department of Orthopaedic surgery, Intercommunal Hospital Centre of Villeneuve-Saint- Georges, Villeneuve-Saint-Georges, 94190, France
| | - Camille Corlouer
- Department of Bacteriology, Intercommunal Hospital Centre of Villeneuve-Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | | | - Pauline Caraux-Paz
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Kevin Diallo
- Department of Infective and Tropical Diseases and Dermatology, University Hospital of La Reunion, Saint-Pierre, 97448, France.
| |
Collapse
|
21
|
Fu Y, Yu S, Li J, Lao Z, Yang X, Lin Z. DeepMineLys: Deep mining of phage lysins from human microbiome. Cell Rep 2024; 43:114583. [PMID: 39110597 DOI: 10.1016/j.celrep.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vast shotgun metagenomics data remain an underutilized resource for novel enzymes. Artificial intelligence (AI) has increasingly been applied to protein mining, but its conventional performance evaluation is interpolative in nature, and these trained models often struggle to extrapolate effectively when challenged with unknown data. In this study, we present a framework (DeepMineLys [deep mining of phage lysins from human microbiome]) based on the convolutional neural network (CNN) to identify phage lysins from three human microbiome datasets. When validated with an independent dataset, our method achieved an F1-score of 84.00%, surpassing existing methods by 20.84%. We expressed 16 lysin candidates from the top 100 sequences in E. coli, confirming 11 as active. The best one displayed an activity 6.2-fold that of lysozyme derived from hen egg white, establishing it as the most potent lysin from the human microbiome. Our study also underscores several important issues when applying AI to biology questions. This framework should be applicable for mining other proteins.
Collapse
Affiliation(s)
- Yiran Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuting Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
22
|
Sauve K, Watson A, Oh JT, Swift S, Vila-Farres X, Abdelhady W, Xiong YQ, LeHoux D, Woodnutt G, Bayer AS, Schuch R. The Engineered Lysin CF-370 Is Active Against Antibiotic-Resistant Gram-Negative Pathogens In Vitro and Synergizes With Meropenem in Experimental Pseudomonas aeruginosa Pneumonia. J Infect Dis 2024; 230:309-318. [PMID: 38366561 PMCID: PMC11326841 DOI: 10.1093/infdis/jiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Lysins (cell wall hydrolases) targeting gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for the engineered lysin CF-370 was examined in vitro and in vivo against gram-negative pathogens important in human infections. METHODS Minimum inhibitory concentration (MICs) and bactericidal activity were determined using standard methods. An in vivo proof-of-concept efficacy study was conducted using a rabbit acute pneumonia model caused by Pseudomonas aeruginosa. RESULTS CF-370 exhibited potent antimicrobial activity, with MIC50/90 values (in µg/mL) for: P aeruginosa, 1/2; Acinetobacter baumannii, 1/1; Escherichia coli, 0.25/1; Klebsiella pneumoniae, 2/4; Enterobacter cloacae 1/4; and Stenotrophomonas maltophilia 2/8. CF-370 furthermore demonstrated bactericidal activity, activity in serum, a low propensity for resistance, anti-biofilm activity, and synergy with antibiotics. In the pneumonia model, CF-370 alone decreased bacterial densities in lungs, kidneys, and spleen versus vehicle control, and demonstrated significantly increased efficacy when combined with meropenem (vs either agent alone). CONCLUSIONS CF-370 is the first engineered lysin described with potent broad-spectrum in vitro activity against multiple clinically relevant gram-negative pathogens, as well as potent in vivo efficacy in an animal model of severe invasive multisystem infection.
Collapse
Affiliation(s)
| | | | - Jun T Oh
- ContraFect Corporation, Yonkers, New York
| | | | | | - Wessam Abdelhady
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
| | - Yan Q Xiong
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
- Geffen School of Medicine, University of California, Los Angeles
| | | | | | - Arnold S Bayer
- The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
- Geffen School of Medicine, University of California, Los Angeles
| | | |
Collapse
|
23
|
Bin Yahia NM, Shan M, Zhu Y, Yang Y, Zhang S, Yang Y. From crisis to cure: harnessing the potential of mycobacteriophages in the battle against tuberculosis. J Appl Microbiol 2024; 135:lxae208. [PMID: 39134510 DOI: 10.1093/jambio/lxae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/30/2024]
Abstract
Tuberculosis (TB) is a serious and fatal disease caused by Mycobacterium tuberculosis (Mtb). The World Health Organization reported an estimated 1.30 million TB-related deaths in 2022. The escalating prevalence of Mtb strains classified as being multi-, extensively, extremely, or totally drug resistant, coupled with the decreasing efficacies of conventional therapies, necessitates the development of novel treatments. As viruses that infect Mycobacterium spp., mycobacteriophages may represent a strategy to combat and eradicate drug-resistant TB. More exploration is needed to provide a comprehensive understanding of mycobacteriophages and their genome structure, which could pave the way toward a definitive treatment for TB. This review focuses on the properties of mycobacteriophages, their potential in diagnosing and treating TB, the benefits and drawbacks of their application, and their use in human health. Specifically, we summarize recent research on mycobacteriophages targeted against Mtb infection and newly developed mycobacteriophage-based tools to diagnose and treat diseases caused by Mycobacterium spp. We underscore the urgent need for innovative approaches and highlight the potential of mycobacteriophages as a promising avenue for developing effective diagnosis and treatment to combat drug-resistant Mycobacterium strains.
Collapse
Affiliation(s)
- Noura M Bin Yahia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Minghai Shan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yue Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yuma Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Sihan Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| |
Collapse
|
24
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
25
|
Bałdysz S, Nawrot R, Barylski J. "Tear down that wall"-a critical evaluation of bioinformatic resources available for lysin researchers. Appl Environ Microbiol 2024; 90:e0236123. [PMID: 38842338 PMCID: PMC11267937 DOI: 10.1128/aem.02361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Lytic enzymes, or lysins for short, break down peptidoglycan and interrupt the continuity of the cell wall, which, in turn, causes osmotic lysis of the bacterium. Their ability to destroy bacteria from within makes them promising antimicrobial agents that can be used as alternatives or supplements to antibiotics. In this paper, we briefly summarize basic terms and concepts used to describe lysin sequences and delineate major lysin groups. More importantly, we describe the domain repertoire found in lysins and critically review bioinformatic tools or databases which are used in studies of these enzymes (with particular emphasis on the repositories of Hidden Markov models). Finally, we present a novel comprehensive, meticulously curated set of lysin-related family and domain models, sort them into clusters that reflect major families, and demonstrate that the selected models can be used to efficiently search for new lysins.
Collapse
Affiliation(s)
- Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
26
|
Kairamkonda M, Saxena H, Gulati K, Poluri KM. Analyzing the impact of T7L variants overexpression on the metabolic profile of Escherichia coli. Metabolomics 2024; 20:68. [PMID: 38941046 DOI: 10.1007/s11306-024-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
27
|
Lewis JM, Williams J, Sagona AP. Making the leap from technique to treatment - genetic engineering is paving the way for more efficient phage therapy. Biochem Soc Trans 2024; 52:1373-1384. [PMID: 38716972 PMCID: PMC11346441 DOI: 10.1042/bst20231289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Bacteriophages (phages) are viruses specific to bacteria that target them with great efficiency and specificity. Phages were first studied for their antibacterial potential in the early twentieth century; however, their use was largely eclipsed by the popularity of antibiotics. Given the surge of antimicrobial-resistant strains worldwide, there has been a renaissance in harnessing phages as therapeutics once more. One of the key advantages of phages is their amenability to modification, allowing the generation of numerous derivatives optimised for specific functions depending on the modification. These enhanced derivatives could display higher infectivity, expanded host range or greater affinity to human tissues, where some bacterial species exert their pathogenesis. Despite this, there has been a noticeable discrepancy between the generation of derivatives in vitro and their clinical application in vivo. In most instances, phage therapy is only used on a compassionate-use basis, where all other treatment options have been exhausted. A lack of clinical trials and numerous regulatory hurdles hamper the progress of phage therapy and in turn, the engineered variants, in becoming widely used in the clinic. In this review, we outline the various types of modifications enacted upon phages and how these modifications contribute to their enhanced bactericidal function compared with wild-type phages. We also discuss the nascent progress of genetically modified phages in clinical trials along with the current issues these are confronted with, to validate it as a therapy in the clinic.
Collapse
Affiliation(s)
| | - Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, U.K
| | | |
Collapse
|
28
|
Das R, Arora R, Nadar K, Saroj S, Singh AK, Patil SA, Raman SK, Misra A, Bajpai U. Insights into the genomic features and lifestyle of B1 subcluster mycobacteriophages. J Basic Microbiol 2024; 64:e2400027. [PMID: 38548701 DOI: 10.1002/jobm.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 06/06/2024]
Abstract
Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Saroj Saroj
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Amit K Singh
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Shripad A Patil
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sunil K Raman
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetic Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
29
|
Li C, Xue H, Du X, Nyaruaba R, Yang H, Wei H. Outer membrane vesicles generated by an exogenous bacteriophage lysin and protection against Acinetobacter baumannii infection. J Nanobiotechnology 2024; 22:273. [PMID: 38773507 PMCID: PMC11110425 DOI: 10.1186/s12951-024-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The outer membrane vesicles (OMVs) produced by Gram-negative bacteria can modulate the immune system and have great potentials for bacterial vaccine development. RESULTS A highly active Acinetobacter baumannii phage lysin, LysP53, can stimulate the production of OMVs after interacting with A. baumannii, Escherichia coli, and Salmonella. The OMVs prepared by the lysin (LOMVs) from A. baumannii showed better homogeneity, higher protein yield, lower endotoxin content, and lower cytotoxicity compared to the naturally produced OMVs (nOMVs). The LOMVs contain a significantly higher number of cytoplasmic and cytoplasmic membrane proteins but a smaller number of periplasmic and extracellular proteins compared to nOMVs. Intramuscular immunization with either LOMVs or nOMVs three times provided robust protection against A. baumannii infections in both pneumonia and bacteremia mouse models. Intranasal immunization offered good protection in the pneumonia model but weaker protection (20-40%) in the bacteremia model. However, with a single immunization, LOMVs demonstrated better protection than the nOMVs in the pneumonia mouse model. CONCLUSIONS The novel lysin approach provides a superior choice compared to current methods for OMV production, especially for vaccine development.
Collapse
Affiliation(s)
- Changchang Li
- WHP Innovation Lab, National Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Xue
- WHP Innovation Lab, National Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinjing Du
- WHP Innovation Lab, National Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Raphael Nyaruaba
- WHP Innovation Lab, National Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Yang
- WHP Innovation Lab, National Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongping Wei
- WHP Innovation Lab, National Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Li P, Guo G, Zheng X, Xu S, Zhou Y, Qin X, Hu Z, Yu Y, Tan Z, Ma J, Chen L, Zhang W. Therapeutic efficacy of a K5-specific phage and depolymerase against Klebsiella pneumoniae in a mouse model of infection. Vet Res 2024; 55:59. [PMID: 38715095 PMCID: PMC11077817 DOI: 10.1186/s13567-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.
Collapse
Affiliation(s)
- Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Genglin Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Xiangkuan Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Sixiang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Xiayan Qin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhongming Tan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China.
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China.
| |
Collapse
|
31
|
Alreja AB, Appel AE, Zhu JC, Riley SP, Gonzalez-Juarbe N, Nelson DC. SP-CHAP, an endolysin with enhanced activity against biofilm pneumococci and nasopharyngeal colonization. mBio 2024; 15:e0006924. [PMID: 38470268 PMCID: PMC11005408 DOI: 10.1128/mbio.00069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Streptococcus pneumoniae (Spn), a Gram-positive bacterium, is responsible for causing a wide variety of invasive infections. The emergence of multi-drug antibiotic resistance has prompted the search for antimicrobial alternatives. Phage-derived peptidoglycan hydrolases, known as endolysins, are an attractive alternative. In this study, an endolysin active against Spn, designated SP-CHAP, was cloned, produced, purified, biochemically characterized, and evaluated for its antimicrobial properties. Cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains are widely represented in bacteriophage endolysins but have never previously been reported for pneumococcal endolysins. Here, we characterize the first pneumococcal endolysin with a CHAP catalytic domain. SP-CHAP was antimicrobial against all Spn serovars tested, including capsular and capsule-free pneumococci, and it was found to be more active than the most widely studied pneumococcal endolysin, Cpl-1, while not affecting various oral or nasal commensal organisms tested. SP-CHAP was also effective in eradicating Spn biofilms at concentrations as low as 1.56 µg/mL. In addition, a Spn mouse nasopharyngeal colonization model was employed, which showed that SP-CHAP caused a significant reduction in Spn colony-forming units, even more than Cpl-1. These results indicate that SP-CHAP may represent a promising alternative to combating Spn infections. IMPORTANCE Considering the high rates of pneumococcal resistance reported for several antibiotics, alternatives are urgently needed. In the present study, we report a Streptococcus pneumoniae-targeting endolysin with even greater activity than Cpl-1, the most characterized pneumococcal endolysin to date. We have employed a combination of biochemical and microbiological assays to assess the stability and lytic potential of SP-CHAP and demonstrate its efficacy on pneumococcal biofilms in vitro and in an in vivo mouse model of colonization. Our findings highlight the therapeutic potential of SP-CHAP as an antibiotic alternative to treat Streptococcus pneumoniae infections.
Collapse
Affiliation(s)
- Adit B. Alreja
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Amanda E. Appel
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Norberto Gonzalez-Juarbe
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Daniel C. Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
32
|
Flores VS, Amgarten DE, Iha BKV, Ryon KA, Danko D, Tierney BT, Mason C, da Silva AM, Setubal JC. Discovery and description of novel phage genomes from urban microbiomes sampled by the MetaSUB consortium. Sci Rep 2024; 14:7913. [PMID: 38575625 PMCID: PMC10994904 DOI: 10.1038/s41598-024-58226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.
Collapse
Affiliation(s)
- Vinicius S Flores
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Deyvid E Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Bruno Koshin Vázquez Iha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Braden T Tierney
- Weill Cornell Medicine, New York, NY, USA
- Harvard Medical School, Cambridge, MA, USA
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
33
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
34
|
Pantiora PD, Georgakis ND, Premetis GE, Labrou NE. Metagenomic analysis of hot spring soil for mining a novel thermostable enzybiotic. Appl Microbiol Biotechnol 2024; 108:163. [PMID: 38252132 PMCID: PMC10803476 DOI: 10.1007/s00253-023-12979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: • Metagenomic analysis allowed the identification of a novel prophage endolysin • The endolysin belongs to type 2 amidase family with lysin motif region • The endolysin displays high thermostability and broad bactericidal spectrum.
Collapse
Affiliation(s)
- Panagiota D Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
35
|
Le KY, Otto M. Approaches to combating methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections. Expert Opin Investig Drugs 2024; 33:1-3. [PMID: 38205812 PMCID: PMC10923051 DOI: 10.1080/13543784.2024.2305136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Affiliation(s)
- Katherine Y. Le
- Guest Researcher, Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 50 S Drive, Bethesda, MD 20814, USA
- Research Fellow, Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY 10016, USA
- Attending Physician, Division of General Internal Medicine, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY 10016, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 50 S Drive, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
37
|
Wang H, Liu Y, Bai C, Leung SSY. Translating bacteriophage-derived depolymerases into antibacterial therapeutics: Challenges and prospects. Acta Pharm Sin B 2024; 14:155-169. [PMID: 38239242 PMCID: PMC10792971 DOI: 10.1016/j.apsb.2023.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 01/22/2024] Open
Abstract
Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection. These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates. They are exploited as antibiofilm agents and antimicrobial adjuvants while rarely inducing bacterial resistance, making them an invaluable asset in the era of antibiotic resistance. Numerous depolymerases have been investigated preclinically, with evidence indicating that depolymerases with appropriate dose regimens can safely and effectively combat different multidrug-resistant pathogens in animal infection models. Additionally, some formulation approaches have been developed for improved stability and activity of depolymerases. However, depolymerase formulation is limited to liquid dosage form and remains in its infancy, posing a significant hurdle to their clinical translation, compounded by challenges in their applicability and manufacturing. Future development must address these obstacles for clinical utility. Here, after unravelling the history, diversity, and therapeutic use of depolymerases, we summarized the preclinical efficacy and existing formulation findings of recombinant depolymerases. Finally, the challenges and perspectives of depolymerases as therapeutics for humans were assessed to provide insights for their further development.
Collapse
Affiliation(s)
- Honglan Wang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changqing Bai
- Department of Respiratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong 518055, China
| | | |
Collapse
|
38
|
Pottie I, Vázquez Fernández R, Van de Wiele T, Briers Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 2024; 16:2387144. [PMID: 39106212 PMCID: PMC11305034 DOI: 10.1080/19490976.2024.2387144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.
Collapse
Affiliation(s)
- Iris Pottie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Roberto Vázquez Fernández
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
39
|
da Silva JD, Melo LDR, Santos SB, Kropinski AM, Xisto MF, Dias RS, da Silva Paes I, Vieira MS, Soares JJF, Porcellato D, da Silva Duarte V, de Paula SO. Genomic and proteomic characterization of vB_SauM-UFV_DC4, a novel Staphylococcus jumbo phage. Appl Microbiol Biotechnol 2023; 107:7231-7250. [PMID: 37741937 PMCID: PMC10638138 DOI: 10.1007/s00253-023-12743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/25/2023]
Abstract
Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.
Collapse
Affiliation(s)
- Jéssica Duarte da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Andrew M Kropinski
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Isabela da Silva Paes
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcella Silva Vieira
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Júnior Ferreira Soares
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Vinícius da Silva Duarte
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
40
|
Hoopes JT, Heselpoth RD, Schwarz FP, Nelson DC. Thermal Characterization and Interaction of the Subunits from the Multimeric Bacteriophage Endolysin PlyC. BIOLOGY 2023; 12:1277. [PMID: 37886987 PMCID: PMC10604209 DOI: 10.3390/biology12101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Bacteriophage endolysins degrade the bacterial peptidoglycan and are considered enzymatic alternatives to small-molecule antibiotics. In particular, the multimeric streptococcal endolysin PlyC has appealing antibacterial properties. However, a comprehensive thermal analysis of PlyC is lacking, which is necessary for evaluating its long-term stability and downstream therapeutic potential. Biochemical and kinetic-based methods were used in combination with differential scanning calorimetry to investigate the structural, kinetic, and thermodynamic stability of PlyC and its various subunits and domains. The PlyC holoenzyme structure is irreversibly compromised due to partial unfolding and aggregation at 46 °C. Unfolding of the catalytic subunit, PlyCA, instigates this event, resulting in the kinetic inactivation of the endolysin. In contrast to PlyCA, the PlyCB octamer (the cell wall-binding domain) is thermostable, denaturing at ~75 °C. The isolation of PlyCA or PlyCB alone altered their thermal properties. Contrary to the holoenzyme, PlyCA alone unfolds uncooperatively and is thermodynamically destabilized, whereas the PlyCB octamer reversibly dissociates into monomers and forms an intermediate state at 74 °C in phosphate-buffered saline with each subunit subsequently denaturing at 92 °C. Adding folded PlyCA to an intermediate state PlyCB, followed by cooling, allowed for in vitro reconstitution of the active holoenzyme.
Collapse
Affiliation(s)
- J. Todd Hoopes
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (J.T.H.); (R.D.H.)
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ryan D. Heselpoth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (J.T.H.); (R.D.H.)
| | - Frederick P. Schwarz
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (J.T.H.); (R.D.H.)
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Daniel C. Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (J.T.H.); (R.D.H.)
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
41
|
Vázquez R, Briers Y. What's in a Name? An Overview of the Proliferating Nomenclature in the Field of Phage Lysins. Cells 2023; 12:2016. [PMID: 37566095 PMCID: PMC10417350 DOI: 10.3390/cells12152016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
In the last few years, the volume of research produced on phage lysins has grown spectacularly due to the interest in using them as alternative antimicrobials. As a result, a plethora of naming customs has sprouted among the different research groups devoted to them. While the naming diversity accounts for the vitality of the topic, on too many occasions it also creates some confusion and lack of comparability between different works. This article aims at clarifying the ambiguities found among names referring to phage lysins. We do so by tackling the naming customs historically, framing their original adoption, and employing a semantic classification to facilitate their discussion. We propose a periodization of phage lysin research that begins at the discovery era, in the early 20th century, enriches with a strong molecular biology period, and grows into a current time of markedly applied research. During these different periods, names referring to the general concepts surrounding lysins have been created and adopted, as well as other more specific terms related to their structure and function or, finally, names that have been coined for the antimicrobial application and engineering of phage lysins. Thus, this article means to serve as an invitation to the global lysin community to take action and discuss a widely supported, standardized nomenclature.
Collapse
Affiliation(s)
- Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Sui B, Wang X, Zhao T, Zhen J, Ren H, Liu W, Zhang X, Zhang C. Design, Screening, and Characterization of Engineered Phage Endolysins with Extracellular Antibacterial Activity against Gram-Negative Bacteria. Appl Environ Microbiol 2023; 89:e0058123. [PMID: 37338346 PMCID: PMC10370328 DOI: 10.1128/aem.00581-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Phage-encoded endolysins are emerging antibacterial agents based on their ability to efficiently degrade peptidoglycan on Gram-positive bacteria, but the envelope characteristics of Gram-negative bacteria limit their application. Engineering modifications of endolysins can improve the optimization of their penetrative and antibacterial properties. This study constructed a screening platform to screen for engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular antibacterial activity against Escherichia coli. An oligonucleotide of 20 repeated NNK codons was inserted upstream of the endolysin gene Bp7e to construct a chimeric endolysin library in the pColdTF vector. The chimeric Art-Bp7e proteins were expressed by transforming the plasmid library into E. coli BL21 and released by chloroform fumigation, and the protein activities were evaluated by the spotting method and the colony-counting method to screen for promising proteins. Sequence analysis showed that all screened proteins with extracellular activities had a chimeric peptide with a positive charge and an α-helical structure. Also, a representative protein, Art-Bp7e6, was further characterized. It exhibited broad antibacterial activity against E. coli (7/21), Salmonella enterica serovar Enteritidis (4/10), Pseudomonas aeruginosa (3/10), and even Staphylococcus aureus (1/10). In the transmembrane process, the chimeric peptide of Art-Bp7e6 depolarized the host cell envelope, increased the permeability of the cell, and facilitated the movement of Art-Bp7e6 across the envelope to hydrolyze the peptidoglycan. In conclusion, the screening platform successfully screened for chimeric endolysins with extracellular antibacterial activities against Gram-negative bacteria, which provides methodological support for the further screening of engineered endolysins with high extracellular activities against Gram-negative bacteria. Also, the established platform showed broad application prospects and can be used to screen various proteins. IMPORTANCE The presence of the envelope in Gram-negative bacteria limits the use of phage endolysins, and engineering endolysins is an efficient way to optimize their penetrative and antibacterial properties. We built a platform for endolysin engineering and screening. A random peptide was fused with the phage endolysin Bp7e to construct a chimeric endolysin library, and engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular activity against Gram-negative bacteria were successfully screened from the library. The purposeful Art-Bp7e had a chimeric peptide with an abundant positive charge and an α-helical structure, which led Bp7e to acquire the ability for the extracellular lysis of Gram-negative bacteria and showed a broad lysis spectrum. The platform provides a huge library capacity without the limitations of reported proteins or peptides. It can be utilized for the further screening of optimal endolysins against Gram-negative bacteria as well as for the screening of additional proteins with specific modifications.
Collapse
Affiliation(s)
- Bingrui Sui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinrui Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tianyi Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianyu Zhen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
43
|
Petrzik K. Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria. Microorganisms 2023; 11:1888. [PMID: 37630448 PMCID: PMC10458142 DOI: 10.3390/microorganisms11081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branisovska 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
44
|
Du J, Meile S, Baggenstos J, Jäggi T, Piffaretti P, Hunold L, Matter CI, Leitner L, Kessler TM, Loessner MJ, Kilcher S, Dunne M. Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors. Nat Commun 2023; 14:4337. [PMID: 37474516 PMCID: PMC10359290 DOI: 10.1038/s41467-023-39612-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Bacteriophages operate via pathogen-specific mechanisms of action distinct from conventional, broad-spectrum antibiotics and are emerging as promising alternative antimicrobials. However, phage-mediated killing is often limited by bacterial resistance development. Here, we engineer phages for target-specific effector gene delivery and host-dependent production of colicin-like bacteriocins and cell wall hydrolases. Using urinary tract infection (UTI) as a model, we show how heterologous effector phage therapeutics (HEPTs) suppress resistance and improve uropathogen killing by dual phage- and effector-mediated targeting. Moreover, we designed HEPTs to control polymicrobial uropathogen communities through production of effectors with cross-genus activity. Using phage-based companion diagnostics, we identified potential HEPT responder patients and treated their urine ex vivo. Compared to wildtype phage, a colicin E7-producing HEPT demonstrated superior control of patient E. coli bacteriuria. Arming phages with heterologous effectors paves the way for successful UTI treatment and represents a versatile tool to enhance and adapt phage-based precision antimicrobials.
Collapse
Affiliation(s)
- Jiemin Du
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Susanne Meile
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jasmin Baggenstos
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Tobias Jäggi
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pietro Piffaretti
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Laura Hunold
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Kilcher
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Usvaliev AD, Belogurova NG, Pokholok KV, Finko AV, Prusov AN, Golovin DY, Miroshnikov KA, Golovin YI, Klyachko NL. E. coli Cell Lysis Induced by Lys394 Enzyme Assisted by Magnetic Nanoparticles Exposed to Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2023; 15:1871. [PMID: 37514057 PMCID: PMC10384812 DOI: 10.3390/pharmaceutics15071871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The spreading of microbial pathogens with more and more resistance to traditional low-molecular antibiotic agents demands new approaches to antibacterial therapy. The employment of bacteriophage enzymes capable of breaking bacterial cell walls has attracted much interest within this context. The specific features of the morphology of Gram-negative bacteria prevent the effective direct usage of lytic enzymes and require assistance from additional helpers to facilitate cell lysis. The current work is devoted to the study of boosting the lysis of Escherichia coli (E. coli) JM 109 and MH 1 strains induced by Lys394 bacteriophage endolysin by means of rod-like (56 × 13 nm) magnetic nanoparticles (MNPs) activated by a non-heating low-frequency magnetic field (LF MF) with a frequency of 50 Hz and a flux density of 68.5 mT in a pulse-pause mode (1 s on and 0.3 s off). According to theoretical assumptions, the mechanism of MNP assistance is presumably based upon the disordering of the outer membrane that facilitates enzyme permeation into peptidoglycans to its substrate. It is found that the effect of the LF MF reaches an almost a twofold acceleration of the enzyme reaction, resulting in almost 80 and 70%, respectively, of lysed E. coli JM 109 and MH 1 cells in 21 min. An increase in the membrane permeability was proven by two independent experiments employing β-lactamase periplasmic enzyme leakage and Nile Red (NR) hydrophobic dye fluorescence. It is shown that the outer membrane disordering of E. coli caused by exposure to LF MF nanoparticle movement leads to almost complete (more than 80%) β-lactamase release out of the cells' periplasm to the buffer suspension. Experiments with NR (displaying fluorescence in a non-polar medium only) reveal a drastic reduction in NR fluorescence intensity, reaching a change of an order of magnitude when exposed to LF MF. The data obtained provide evidence of changes in the bacterial cell wall structure. The result shown open up the prospects of non-heating LF MF application in enhancing enzyme activity against Gram-negative pathogens.
Collapse
Affiliation(s)
- Azizbek D Usvaliev
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | | | - Alexander V Finko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey N Prusov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Dmitry Yu Golovin
- Institute of Nanomaterials and Nanotechnologies, G.R. Derzhavin Tambov State University, Tambov 392000, Russia
| | - Konstantin A Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Yuri I Golovin
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Nanomaterials and Nanotechnologies, G.R. Derzhavin Tambov State University, Tambov 392000, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
46
|
Kornienko M, Bespiatykh D, Gorodnichev R, Abdraimova N, Shitikov E. Transcriptional Landscapes of Herelleviridae Bacteriophages and Staphylococcus aureus during Phage Infection: An Overview. Viruses 2023; 15:1427. [PMID: 37515114 PMCID: PMC10383478 DOI: 10.3390/v15071427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.
Collapse
Affiliation(s)
- Maria Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Roman Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Narina Abdraimova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| |
Collapse
|
47
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
48
|
Lazar V, Oprea E, Ditu LM. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness-Current State and Envisioned Solutions for the Near Future. Pathogens 2023; 12:pathogens12050746. [PMID: 37242416 DOI: 10.3390/pathogens12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The current antibiotic crisis and the global phenomena of bacterial resistance, inherited and non-inherited, and tolerance-associated with biofilm formation-are prompting dire predictions of a post-antibiotic era in the near future. These predictions refer to increases in morbidity and mortality rates as a consequence of infections with multidrug-resistant or pandrug-resistant microbial strains. In this context, we aimed to highlight the current status of the antibiotic resistance phenomenon and the significance of bacterial virulence properties/fitness for human health and to review the main strategies alternative or complementary to antibiotic therapy, some of them being already clinically applied or in clinical trials, others only foreseen and in the research phase.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| |
Collapse
|
49
|
Premetis GE, Stathi A, Papageorgiou AC, Labrou NE. Structural and functional features of a broad-spectrum prophage-encoded enzybiotic from Enterococcus faecium. Sci Rep 2023; 13:7450. [PMID: 37156923 PMCID: PMC10167349 DOI: 10.1038/s41598-023-34309-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-L-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby-Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded β-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.
Collapse
Affiliation(s)
- Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Angeliki Stathi
- Department of Microbiology, "Aghia Sophia" Children's Hospital, 11527, Athens, Greece
| | | | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece.
| |
Collapse
|
50
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|