1
|
Ayim-Akonor M, Ohene Larbi R, Owusu-Ntumy DD, Sasu BK, Ohene Asa HE, Odoom T. Antimicrobial Susceptibility Profile and Extended-Spectrum Beta-Lactamase Phenotype of E. coli Isolated From Poultry. Int J Microbiol 2025; 2025:9468425. [PMID: 40027339 PMCID: PMC11871970 DOI: 10.1155/ijm/9468425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Bacterial resistance to antibiotics is increasing globally, with the food-animal sector (FAS) playing a key role. Knowledge of the antimicrobial resistance (AMR) of microbes from the FAS is important in the development of country-specific methods to minimize the AMR burden. In Ghana, there is limited data on the susceptibility of FAS bacteria to frequently used antimicrobials. We evaluated the susceptibility of 58 Escherichia coli isolates obtained from chickens to nine antibiotics and further assessed their potential to produce extended-spectrum beta-lactamase (ESBL). The Kirby-Bauer disc diffusion and combined disc methods were used following the Clinical and Laboratory Standards Institute guidelines. Nearly all isolates showed high resistance (> 50%) to all the antibiotics except gentamicin, to which more than two-thirds (n = 48, 83%) were susceptible. Resistance to streptomycin, tetracycline, and ampicillin was observed to be 93%, 97%, and 100%, respectively. All isolates were multidrug resistant. Over one-third of the isolates (n = 22, 37.9%) were resistant to seven classes of antibiotics, and a substantial proportion (n = 12, 20.7%) exhibited resistance to all eight antimicrobial classes. None of the isolates was detected as an ESBL producer. Most farms (86%) did not have a footbath, and the majority (71%) changed the bedding material after 4 weeks. Free-range chickens were kept on 80% of the farms. The high resistance to frequently used antibiotics suggests long-term use of these antimicrobials, which may be attributed to poor biosecurity practices that may be exposing the birds to frequent infections. There is a need to educate farmers on the prudent use of antibiotics and adherence to good biosecurity practices.
Collapse
Affiliation(s)
- Matilda Ayim-Akonor
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Rita Ohene Larbi
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Doreen Dela Owusu-Ntumy
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Benjamin Kissi Sasu
- National Food Safety Laboratory, Veterinary Services Directorate, Accra, Ghana
| | - Hilda Emefa Ohene Asa
- Animal Health Division, Council for Scientific and Industrial Research-Animal Research Institute, Accra, Ghana
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra, Ghana
| |
Collapse
|
2
|
Kasparaviciene B, Novoslavskij A, Aksomaitiene J, Stankeviciene J, Kasetiene N, Sinkevicius R, Malakauskas M. Prevalence and Antimicrobial Resistance of ESBL E. coli in Early Broiler Production Stage and Farm Environment in Lithuania. Microorganisms 2025; 13:425. [PMID: 40005790 PMCID: PMC11858233 DOI: 10.3390/microorganisms13020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Escherichia coli, a major opportunistic pathogen in chickens, poses a serious threat to poultry production and public health via potential zoonotic transmission of ESBL-producing strains. Therefore, this study aimed to emphasize broilers as early carriers of ESBL E. coli and provide deeper insights into antimicrobial resistance of these bacteria. Prevalence and antimicrobial resistance (MIC) testing of ESBL E. coli in cloacal and environmental samples from one-day-old and five-day-old broilers was conducted on three different growth cycles from a conventional poultry farm in Lithuania. Confirmed prevalence of ESBL E. coli in cloacal samples ranged from 0% to 57.5%, and in environmental swabs from 0% to 25%. All 102 ESBL E. coli isolates were susceptible to meropenem, imipenem, fosfomycin, and colistin. However, 93.14% of the strains were resistant to ceftriaxone (89.06-100%, depending on bacteria isolation source), 97.06% to ciprofloxacin (95.31-100%), and 66.67% to tetracycline (26.09-100%). Additionally, 80.39% of ESBL E. coli strains exhibited multidrug resistance. In total, 23 different antimicrobial resistance profiles were confirmed, with CRO/AMS/AUG/CIP/SXT/TE and CRO/CIP being the most common, detected in 18 of the 102 strains. The detection of widespread antimicrobial-resistant ESBL E. coli in five-day-old broilers emphasizes the need to implement control strategies early in the broiler production cycle.
Collapse
Affiliation(s)
- Beatrice Kasparaviciene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (B.K.); (J.A.); (J.S.); (N.K.); (M.M.)
| | - Aleksandr Novoslavskij
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (B.K.); (J.A.); (J.S.); (N.K.); (M.M.)
| | - Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (B.K.); (J.A.); (J.S.); (N.K.); (M.M.)
| | - Jurate Stankeviciene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (B.K.); (J.A.); (J.S.); (N.K.); (M.M.)
| | - Neringa Kasetiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (B.K.); (J.A.); (J.S.); (N.K.); (M.M.)
| | - Romualdas Sinkevicius
- Department of Animal Nutrition, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (B.K.); (J.A.); (J.S.); (N.K.); (M.M.)
| |
Collapse
|
3
|
Sabença C, de la Rivière R, Barros P, Cabral JA, Sargo R, Sousa L, Dapkevicius MDLE, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Caniça M, Igrejas G, Torres C, Poeta P. Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome. Pathogens 2025; 14:99. [PMID: 39861060 PMCID: PMC11768959 DOI: 10.3390/pathogens14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. Klebsiella and Raoultella genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation. Antibiograms were performed for 15 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested by the double-disc synergy test, and one ESBL-producing K. pneumoniae isolate was screened by PCR and whole-genome sequencing. Biofilm production was analyzed using the microtiter plate method. A total of 23 Klebsiella spp. and 3 Raoultella spp. isolates were obtained from 312 fecal samples from wild animals, 9 Klebsiella spp. and 4 Raoultella spp. isolates were obtained from 18 river and stream water samples, and 4 Klebsiella spp. and 3 Raoultella spp. isolates from 48 soil samples. Regarding antibiotic resistance, only one isolate of K. pneumoniae from soil samples was an ESBL-producer and showed resistance to six antibiotics. This isolate harbored multiple β-lactams genes (blaCTX-M-15, blaTEM-1, blaSHV-28, and blaOXA-1), as well as genes of resistance to quinolones, sulfonamides, tetracycline, aminoglycosides, and chloramphenicol, and belonged to the lineage ST307. Most of the Klebsiella spp. and Raoultella spp. isolates were biofilm producers (except for one Klebsiella isolate), and 45.6% were weak biofilm producers, with the remaining being moderate to strong biofilm producers. We can conclude that antibiotic resistance is not widespread in these environment-associated isolates, which is a positive epidemiological outcome. However, identifying a single ESBL-K. pneumoniae isolate should serve as a warning of potential hotspots of resistance emergence.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rani de la Rivière
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal; (R.d.l.R.); (M.C.)
| | - Paulo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.B.); (J.A.C.)
- Fluvial and Terrestrial Ecology Laboratory (LEFT), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - João Alexandre Cabral
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.B.); (J.A.C.)
| | - Roberto Sargo
- CRAS-Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS-Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - Filipe Silva
- CRAS-Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- CERAS, Wildlife Study and Rehabilitation Centre, Quercus ANCN, Rua Tenente Valadim 19, 6000-284 Castelo Branco, Portugal;
| | - Ana Carolina Abrantes
- CECAV, Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV, Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal; (R.d.l.R.); (M.C.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV, Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Martínez-Álvarez S, Châtre P, François P, Zarazaga M, Madec JY, Haenni M, Torres C. Comparative phylogenomics of extended-spectrum beta-lactamase-producing Escherichia coli revealed a wide diversity of clones and plasmids in Spanish chicken meat. Int J Food Microbiol 2025; 426:110900. [PMID: 39305653 DOI: 10.1016/j.ijfoodmicro.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
Animal food products are important sources of zoonotic agents, increasing the risk of exposure to antibiotic-resistant bacteria from farm to fork. Therefore, we aimed to detect and fully characterise Extended-Spectrum Beta-Lactamase (ESBL)-producing E. coli from the poultry sector in a One Health approach. From December 2021 to March 2022, 48 chicken meat samples were collected from 16 establishments in La Rioja (Northern Spain). Antibiotic susceptibility testing was assessed by the disk-diffusion method. Forty E. coli isolates were recovered from 33 of the 48 chicken meat samples tested (68.8%) when plated on MacConkey-agar. In addition, six ESBL-E. coli (6/48, 12.5%) were obtained on cefotaxime-supplemented MacConkey-agar, which were Whole-Genome Sequenced. A large diversity of clones and ESBL genes was observed, namely ST1140-E/blaCTX-M-32 (n = 1), ST752-A/blaTEM-52 (n = 1), ST117-B2/blaCTX-M-1/blaSHV-12 (n = 2), ST10-A/blaSHV-12 (n = 1) and ST223-B1/blaSHV-12 (n = 1). Three IncI1-plasmids (pST3-CC3) were found carrying the blaSHV-12/blaCTX-M-1/blaCTX-M-32 genes in two genetic environments: i) IS26-smc-glpR-blaSHV-12-IS26; and ii) wbuC-blaCTX-M-32/blaCTX-M-1-ISEcp1. The blaTEM-52 gene was carried on a P1-like phage-plasmid flanked by an IS4-mediated composite transposon. An IncHI2 plasmid harboured a blaSHV-12 gene flanked by an IS26-mediated composite transposon but also additional genes conferring resistance to aminoglycosides, chloramphenicol, and sulphonamides. To analyse the cross-sectoral relatedness of our ESBL-E. coli isolates, our six genomes were mapped with publicly available genomes (n = 2588) related to the STs detected, revealing that one of our genomes (X3078-ST117) displayed strong similarities (34-40 allelic differences) with few genomes belonging to ST117 from the poultry sector from Germany and USA. This study demonstrated that the proportion of ESBL-E. coli is still high in chicken meat in Spain. In addition, the ST117 clone and the IncI1-blaCTX-M-1-32/blaSHV-12 plasmids might represent successful clones and plasmids adapted to the chicken host.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja - Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes - Lyon, France
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes - Lyon, France
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja - Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes - Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes - Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja - Logroño, Spain.
| |
Collapse
|
5
|
Lemlem M, Aklilu E, Mohamed M, Kamaruzzaman NF, Devan SS, Lawal H, Kanamma AA. Prevalence and molecular characterization of ESBL-producing Escherichia coli isolated from broiler chicken and their respective farms environment in Malaysia. BMC Microbiol 2024; 24:499. [PMID: 39592959 PMCID: PMC11590571 DOI: 10.1186/s12866-024-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Extended spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) is an increasing public health threat. This study aimed to determine the prevalence and characterization of ESBL-producing Escherichia coli (E. coli) isolated from broiler chicken and their farm environment, in Kelantan Malaysia. METHODS Escherichia coli was isolated from 453 collected samples, including 210 cloacal swabs and 243 environmental samples. The antimicrobial susceptibility profile of the E. coli isolates was assessed for sixteen antibiotics using the disc diffusion method. The E. coli isolates were evaluated for phenotypic ESBL production using modified double disc synergy. After extraction of genomic DNA, ESBL resistance genes, phylogenetic group, and virulence genes were detected by PCR using appropriate primers. ESBL genes were further confirmed by sequencing. The molecular typing of E. coli strains was determined by Multilocus Sequence Typing (MLST). RESULTS A total of 93.8% (425/453) E. coli were isolated from the collected samples. Out of 334 E. coli isolates screened, 14.7% (49/334) were phenotypically ESBL producers. All the ESBL-EC were resistant to tetracycline, ciprofloxacin, and ampicillin. Thus, 100% of the ESBL-EC were multidrug resistant. Of the ESBL-EC 81.6% were positive for at least one ESBL encoding gene. The most prevalent ESBL gene detected was blaTEM (77.6%; 38/49) followed by blaCTX-M (32.7%; 16/49) and blaSHV (18.4%; 9/49). The majority of ESBL-EC belonged to phylogenic groups A followed by B1 accounting for 44.9% and 12.2%, respectively. The most frequently identified sequence types were ST10 (n = 3) and ST206 (n = 3). The most detected virulence genes in the E. coli isolates were astA (33.3%; 22/66) followed by iss (15.2%; 10/66). CONCLUSIONS Our results show both broiler chicken and their respective farms environment were reservoirs of multi-drug resistant ESBL-producing E. coli and ESBL resistance genes.
Collapse
Affiliation(s)
- Mulu Lemlem
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia.
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, Tigray, Ethiopia.
| | - Erkihun Aklilu
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia.
| | - Maizan Mohamed
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Nor Fadhilah Kamaruzzaman
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Susmita Seenu Devan
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Habiba Lawal
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
- Department of Public Health, Ministry of Animal Health, Husbandry and Fisheries, Birnin Kebbi, Kebbi State, 860101, Nigeria
| | - Abubakar Abdulkarim Kanamma
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| |
Collapse
|
6
|
Arfaoui A, Martínez-Álvarez S, Abdullahi IN, Fethi M, Sayem N, Melki SBK, Ouzari HI, Torres C, Klibi N. Surveillance of Enterobacteriaceae from Diabetic Foot Infections in a Tunisian Hospital: Detection of E. coli-ST131- blaCTX-M-15 and K. pneumoniae-ST1- blaNDM-1 Strains. Microb Drug Resist 2024; 30:341-349. [PMID: 38722095 DOI: 10.1089/mdr.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The study determined the prevalence, antimicrobial resistant (AMR) determinants, and genetic characteristics of Escherichia coli and Klebsiella pneumoniae isolates from patients with diabetic foot infection (DFI) in a Tunisian hospital. A total of 26 Escherichia spp. and Klebsiella spp. isolates were recovered and identified by MALDI-TOF-MS. Antimicrobial susceptibility testing, the detection of AMR determinants and Shiga-like toxin genes, phylogenetic grouping, and molecular typing were performed. Twelve E. coli, 10 K. pneumoniae, 3 K. oxytoca, and 1 E. hermanii were isolated. A multidrug-resistant phenotype was detected in 65.4% of the isolates. About 30.8% of isolates were extended-spectrum β-lactamase (ESBL) producers and mainly carried blaCTX-M-15 and blaCTX-M-14 genes. One blaNDM-1-producing K. pneumoniae-ST1 strain was identified. Class 1 integrons were detected in 11 isolates and 5 gene cassette arrangements were noted: dfrA1+aadA1 (n = 1), dfrA12+aadA2 (n = 3), and dfrA17+aadA5 (n = 1). Other non-β-lactam resistance genes detected were as follows (number of isolates): aac(3')-II (3), aac(6')-Ib-cr(8), qnrB (2), qnrS (4), cmlA (2), floR (4), sul1 (11), sul2 (11), and sul3 (2). The phylogroup B1 was the most frequent (41.7%) among E. coli, and two ESBL-producing isolates corresponded to the ST131-B2 lineage. The ESBL- and carbapenemase-producing Enterobacteriaceae in DFIs are described for the first time in Tunisia.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Noureddine Sayem
- Service of Biology, International Hospital Center Carthagene of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Madni H, Mohamed HA, Abdelrahman HAM, Dos Santos-Silva CA, Benko-Iseppon AM, Khatir Z, Eltai NO, Mohamed NA, Crovella S. In silico-designed antimicrobial peptide targeting MRSA and E. coli with antibacterial and antibiofilm actions. Sci Rep 2024; 14:12127. [PMID: 38802469 PMCID: PMC11130184 DOI: 10.1038/s41598-024-58039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Antibiotic resistance is a paramount global health issue, with numerous bacterial strains continually fortifying their resistance against diverse antibiotics. This surge in resistance levels primarily stems from the overuse and misuse of antibiotics in human, animal, and environmental contexts. In this study, we advocate for exploring alternative molecules exhibiting antibacterial properties to counteract the escalating antibiotic resistance. We identified a synthetic antimicrobial peptide (AMP) by using computational search in AMP public databases and further engineering through molecular docking and dynamics. Microbiological evaluation, cytotoxicity, genotoycity, and hemolysis experiments were then performed. The designed AMP underwent rigorous testing for antibacterial and antibiofilm activities against Methicillin-Resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), representing gram-positive and gram-negative bacteria, respectively. Subsequently, the safety profile of the AMP was assessed in vitro using human fibroblast cells and a human blood sample. The selected AMP demonstrated robust antibacterial and antibiofilm efficacy against MRSA and E. coli, with an added assurance of non-cytotoxicity and non-genotoxicity towards human fibroblasts. Also, the AMP did not demonstrate any hemolytic activity. Our findings emphasize the considerable promise of the AMP as a viable alternative antibacterial agent, showcasing its potential to combat antibiotic resistance effectively.
Collapse
Affiliation(s)
- Hafsa Madni
- Biological and Environmental Sciences Department, Qatar University, PO Box 2713, Doha, Qatar
| | - Hana A Mohamed
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | | | | | - Ana Maria Benko-Iseppon
- Department of Biomedical Sciences, University Center Cesamc, PO Box 57051-160, Naceio-AL, Brazil
| | - Zenaba Khatir
- Environmental Science Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Nahla O Eltai
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Nura A Mohamed
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar.
| | - Sergio Crovella
- Laboratory Animal Research Center, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Kozajda A, Miśkiewicz E, Jeżak K. Zoonotic bacteria in the vicinity of animal farms as a factor disturbing the human microbiome: a review. Int J Occup Med Environ Health 2024; 37:138-152. [PMID: 38577723 PMCID: PMC11142397 DOI: 10.13075/ijomeh.1896.02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/17/2024] [Indexed: 04/06/2024] Open
Abstract
This review is aimed at summarizing the current state of knowledge about the relationship between environmental exposure to the bioaerosol emitted by intensive livestock farming and changes in the microbiome of people living in livestock farm vicinity. The PubMed, Scopus and Web of Science databases were searched by crossing keywords from the following 3 groups: a) "livestock," "animal farms," "animal breeding"; b) "microbiome," "resistome"; c) "livestock vicinity," "farm vicinity," "neighborhoods and health" in 2010-2022. Literature screening did not reveal any paper related to the full microbiome composition in the population studied. In the study, the authors included 7 papers (5 from the Netherlands, 1 from the USA, and 1 from China). The studies confirmed the carriage of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), livestockassociated MRSA (LA-MRSA MC398) and multidrug-resistant S. aureus (MDRSA) in the nasal microbiome of adults and children living within 500-2000 m from a livestock farm. Clostridium difficile, including LA-ribotype RT078 carriage, was detected in the intestinal microbiome of adults living within 500-1000 m. Extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae were confirmed in the intestinal microbiome of adults living within 500-6200 m. Knowledge on the composition of the microflora of people living in livestock farm vicinity is insufficient to conclude about changes in the microbiome caused by the environmental emission of bioaerosol. The carriage prevalence of the LA-bacteria, including both strains with antimicrobial resistance and antimicrobial resistance genes, confirms the presence of zoonotic bacteria in the human microflora in populations without occupational contact with animals. It cannot be ruled out that zoonotic bacteria, as a component of the microbiome, have a negative impact on people's health. Int J Occup Med Environ Health. 2024;37(2):138-52.
Collapse
Affiliation(s)
- Anna Kozajda
- Nofer Institute of Occupational Medicine, Department of Chemical Safety, Biological Safety Unit, Łódź, Poland
| | - Emilia Miśkiewicz
- Nofer Institute of Occupational Medicine, Department of Chemical Safety, Biological Safety Unit, Łódź, Poland
| | - Karolina Jeżak
- Nofer Institute of Occupational Medicine, Department of Chemical Safety, Nofer Institute of Occupational Medicine, Łódź, Poland
| |
Collapse
|
9
|
Titouche Y, Akkou M, Campaña-Burguet A, González-Azcona C, Djaoui Y, Mechoub D, Fatihi A, Bouchez P, Bouhier L, Houali K, Nia Y, Torres C, Hennekinne JA. Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria. Pathogens 2024; 13:408. [PMID: 38787260 PMCID: PMC11124369 DOI: 10.3390/pathogens13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The present study aimed to determine the phenotypic and genotypic characteristics of S. aureus isolates from the nasal swabs of goats. A total of 232 nasal samples (one per animal) were collected from goats on 13 farms located in two regions of Algeria and were analyzed for the presence of S. aureus. The detection of virulence factors was carried out using PCR. The antibiotic susceptibility of the recovered isolates was assessed using the disc diffusion method. The biofilm formation ability was assessed by the Congo red agar method and a microtiter plate assay, and the molecular characterization of isolates was carried out by spa-typing, and for selected isolates also by multilocus sequence typing (MLST). Overall, 36 out of 232 nasal swabs (15.5%) contained S. aureus, and 62 isolates were recovered. Regarding the virulence factors, at least one staphylococcal enterotoxin gene was detected in 30 (48.4%) isolates. The gene tst encoding the toxic shock syndrome toxin was detected in fifteen isolates (24.2%), but none of the isolates harbored the gene of Panton-Valentine leukocidin (lukF/S-PV). Nine different spa-types were identified, including the detection of a new one (t21230). The recovered isolates were assigned to three clonal complexes, with CC5 (51.8%) being the most common lineage. Two isolates were methicillin-resistant (MRSA) and belonged to ST5 (CC5) and to spa-types t450 and t688. Moreover, 27 (43.5%) of the S. aureus isolates were found to be slime producers in Congo red agar, and all of the recovered isolates could produce biofilms in the microtiter plate assay. Our study showed that the nares of healthy goats could be a reservoir of toxigenic and antibiotic-resistant strains of S. aureus isolates, including MRSA, which could have implications for public health.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Madjid Akkou
- Institute of Veterinary Sciences, University of Saad Dahlab Blida 1, Blida 09000, Algeria;
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Abdelhak Fatihi
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Pascal Bouchez
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Laurence Bouhier
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Yacine Nia
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Jacques-Antoine Hennekinne
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| |
Collapse
|
10
|
Martínez-Álvarez S, Châtre P, François P, Abdullahi IN, Simón C, Zarazaga M, Madec JY, Haenni M, Torres C. Unexpected role of pig nostrils in the clonal and plasmidic dissemination of extended-spectrum beta-lactamase-producing Escherichia coli at farm level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116145. [PMID: 38460199 DOI: 10.1016/j.ecoenv.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The presence of methicillin-resistant or -susceptible S. aureus in pig nostrils has been known for a long time, but the occurrence of extended-spectrum beta-lactamase (ESBL)-producing E. coli has hardly been investigated. Here, we collected 25 E. coli recovered from nasal samples of 40 pigs/10 farmers of four farms. Nine ESBL-producing isolates belonging to ST48, ST117, ST847, ST5440, ST14914 and ST10 were retrieved from seven pigs. All blaESBL genes (blaCTX-M-32,blaCTX-M-14,blaCTX-M-1,blaCTX-M-65, and blaSHV-12) were horizontally transferable by conjugation through plasmids belonging to IncI1 (n=3), IncX1 (n=3) and IncHI2 (n=1) types. IncI1-plasmids displayed different genetic environments: i) IS26-blaSHV-12-deoR-IS26, ii) wbuC-blaCTX-M-32-ISKpn26 (IS5), and iii) IS930-blaCTX-M-14-IS26. The IncHI2-plasmid contained the genetic environment IS903-blaCTX-M-65-fipA with multiple resistance genes associated either to: a) Tn21-like transposon harbouring genes conferring aminoglycosides/beta-lactams/chloramphenicol/macrolides resistance located on two atypical class 1 integrons with an embedded ΔTn5393; or b) Tn1721-derived transposon displaying an atypical class 1 integron harbouring aadA2-arr3-cmlA5-blaOXA-10-aadA24-dfrA14, preceding the genetic platform IS26-blaTEM-95-tet(A)-lysR-floR-virD2-ISVsa3-IS3075-IS26-qnrS1, as well as the tellurite resistance module. Other plasmids harbouring clinically relevant genes were detected, such as a ColE-type plasmid carrying the mcr-4.5 gene. Chromosomally encoded genes (fosA7) or integrons (intI1-dfrA1-aadA1-qacE-sul1/intI1-IS15-dfrA1-aadA2) were also identified. Finally, an IncY plasmid harbouring a class 2 integron (intI2-dfrA1-sat2-aadA1-qacL-IS406-sul3) was detected but not associated with a blaESBL gene. Our results evidence that pig nostrils might favour the spread of ESBL-E. coli and mcr-mediated colistin-resistance. Therefore, enhanced monitoring should be considered, especially in a sector where close contact between animals in intensive farming increases the risk of spreading antimicrobial resistance.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
11
|
Liu C, Yi J, Lu M, Yang P, Du C, Jiang F, Du P, Shen N. Dynamic within-host cefiderocol heteroresistance caused by bla SHV-12 amplification in pandrug-resistant and hypervirulent Klebsiella pneumoniae sequence type 11. Drug Resist Updat 2024; 73:101038. [PMID: 38181587 DOI: 10.1016/j.drup.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
AIMS Although cefiderocol (FDC) is not prescribed in China, FDC-resistant pandrug-resistant hypervirulent Klebsiella pneumoniae (PDR-hvKp) is emerging. In this study, we performed FDC susceptibility testing of clinical Kp isolates to explore the prevalence of FDC-resistant isolates and the mechanism of FDC-resistance. METHODS We retrospectively selected 151 carbapenem-resistant Kp isolates to assess FDC susceptibility. Seven isolates harboring blaSHV-12 from two patients were enrolled for whole-genome sequencing. The antimicrobial resistance, virulence, blaSHV-12 expression, and fitness costs in different media were examined. The amplification of blaSHV-12 was further investigated by qPCR and long-read sequencing. RESULTS The 151 isolates showed a low MIC50/MIC90 (1/4 mg/L) of FDC. The seven isolates were ST11 PDR-hvKp, and two represented FDC-resistance (MIC=32 mg/L). The IncR/IncFII plasmids of two FDC-resistant isolates harbored 6 and 15 copies of blaSHV-12, whereas four FDC-susceptible isolates carried one copy and one harbored three copies. These blaSHV-12 genes concatenated together and were located within the same 7.3 kb fragment flanked by IS26, which contributed to the increased expression and FDC resistance without fitness costs. The amplification of blaSHV-12 and FDC resistance could be induced by FDC in vitro and reversed during continuous passage. CONCLUSIONS The amplification of blaSHV-12 and the consequent dynamic within-host heteroresistance are important concerns for the rational application of antibiotics. Long-read sequencing might be a superior way to detect resistance gene amplification rapidly and accurately.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China; Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China; Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ping Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chunjing Du
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | | | - Ning Shen
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China; Center of Infectious Disease, Peking University Third Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
12
|
Thongratsakul S, Amavisit P, Poolkhet C. Antimicrobial Resistance in Poultry Farming: A Look Back at Environmental Escherichia coli Isolated from Poultry Farms during the Growing and Resting Periods. Vet Med Int 2023; 2023:8354235. [PMID: 38058657 PMCID: PMC10697774 DOI: 10.1155/2023/8354235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
During the production cycle of poultry farms, pathogens may remain in the next cycle of rearing young chickens. This study was conducted at three industrial chicken farms (A, B, and C) in central Thailand. Results showed that the percentages of E. coli during the resting period in farms A, B, and C were 28.6, 53.8, and 7.8, respectively, and those during the growing period were 45, 68.8, and 75. The most common resistant patterns during the resting period in all farms were AML-AMP-SXT and AML-AMP-DO-SXT, and those during the growing period were AML-AMP and AML-AMP-SXT. The locations of blaTEM-positive E. coli isolates from the inside houses (inside buildings) of all farms included cloacal swabs, floors, water nipples, pan feeders, and husks, whereas that from the outside environment included boots, wastewater, soil, and water from cooling pads and tanks. Our results indicate that the percentage of antimicrobial resistance (AMR) and its pattern depend on the husbandry period and the strictness of biosecurity. Moreover, our findings derived from samples gathered from broiler farms between 2013 and 2015 align with those of the current studies, highlighting persistent trends in E. coli resistance to various antimicrobial agents. Therefore, enhancing biosecurity measures throughout both the resting and growing periods is crucial, with a specific focus on managing raw materials, bedding, breeding equipment, and staff hygiene to reduce the transmission of antimicrobial resistance in poultry farms.
Collapse
Affiliation(s)
- Sukanya Thongratsakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Patamabhorn Amavisit
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Chaithep Poolkhet
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
13
|
Martínez-Álvarez S, Châtre P, Cardona-Cabrera T, François P, Sánchez-Cano A, Höfle U, Zarazaga M, Madec JY, Haenni M, Torres C. Detection and genetic characterization of bla ESBL-carrying plasmids of cloacal Escherichia coli isolates from white stork nestlings (Ciconia ciconia) in Spain. J Glob Antimicrob Resist 2023; 34:186-194. [PMID: 37482121 DOI: 10.1016/j.jgar.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES This study aimed to characterize Escherichia coli isolates from cloacal samples of white stork nestlings, with a special focus on extended-spectrum β-lactamases (ESBLs)-producing E. coli isolates and their plasmid content. METHODS Cloacal samples of 88 animals were seeded on MacConkey-agar and chromogenic-ESBL plates to recover E. coli and ESBL-producing E. coli. Antimicrobial susceptibility was screened using the disc diffusion method, and the genotypic characterization was performed by polymerase chain reaction (PCR) and subsequent sequencing. S1 nuclease Pulsed-Field-Gel-Electrophoresis (PFGE), Southern blotting, and conjugation essays were performed on ESBL-producing E. coli, as well as whole-genome sequencing by short- and long-reads. The four blaESBL-carrying plasmids were completely sequenced. RESULTS A total of 113 non-ESBL-producing E. coli isolates were collected on antibiotic-free MacConkey-agar, of which 27 (23.9%) showed a multidrug-resistance (MDR) phenotype, mainly associated with β-lactam-phenicol-sulfonamide resistance (blaTEM/cmlA/floR/sul1/sul2/sul3). Moreover, four white stork nestlings carried ESBL-producing E. coli (4.5%) with the following characteristics: blaSHV-12/ST38-D, blaSHV-12/ST58-B1, blaCTX-M-1/ST162-B1, and blaCTX-M-32/ST155-B1. Whole-genome sequencing followed by Southern blot hybridizations on S1-PFGE gels in ESBL-positive isolates proved that the blaCTX-M-1 gene and one of the blaSHV-12 genes were carried by IncI1/pST3 plasmids, while the second blaSHV-12 gene and the blaCTX-M-32 gene were located on IncF plasmids. The two blaSHV-12 genes and the two blaCTX-M genes had similar but non-identical close genetic environments, as all four genes were flanked by a variety of insertion sequences. CONCLUSION The role played by several genetic platforms in the mobility of ESBL genes allows for interchangeability on a remarkably small scale (gene-plasmid-clones), which may support the spread of ESBL genes.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Alberto Sánchez-Cano
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
14
|
Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023; 11:2127. [PMID: 37763971 PMCID: PMC10537193 DOI: 10.3390/microorganisms11092127] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a global health problem without geographic boundaries. This increases the risk of complications and, thus, makes it harder to treat infections, which can result in higher healthcare costs and a greater number of deaths. Antimicrobials are often used to treat infections from pathogens in food-producing animals, making them a potential source of AMR. Overuse and misuse of these drugs in animal agriculture can lead to the development of AMR bacteria, which can then be transmitted to humans through contaminated food or direct contact. It is therefore essential to take multifaceted, comprehensive, and integrated measures, following the One Health approach. To address this issue, many countries have implemented regulations to limit antimicrobial use. To our knowledge, there are previous studies based on AMR in food-producing animals; however, this paper adds novelty related to the AMR pathogens in livestock, as we include the recent publications of this field worldwide. In this work, we aim to describe the most critical and high-risk AMR pathogens among food-producing animals, as a worldwide health problem. We also focus on the dissemination of AMR genes in livestock, as well as its consequences in animals and humans, and future strategies to tackle this threat.
Collapse
Affiliation(s)
- Ayidh M. Almansour
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Meshari A. Alhadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| | - Abdulmohsen L. Alharbi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| |
Collapse
|
15
|
Prevalence of Potential Pathogenic and Antimicrobial Resistant Escherichia coli in Danish Broilers. Antibiotics (Basel) 2023; 12:antibiotics12020344. [PMID: 36830255 PMCID: PMC9952160 DOI: 10.3390/antibiotics12020344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) are important bacteria in broiler production in terms of economy, welfare, and use of antibiotics. During a previous outbreak of APEC in the Nordic countries, it was suggested that the pathogenic clones of E. coli causing the outbreak originated from grandparent stock and were transmitted to the offspring, causing increased first week mortality. This study investigated whether the pathogenic potential of E. coli at the parent and broiler level differs in relation to pathogenic potential described by the level of virulence-associated genes and pattern of antimicrobial resistance. The hypothesis was that, due to higher biosecurity at the parent level, the E. coli population will show a lower level of antimicrobial resistance and carry fewer virulence-associated genes, as a result of fewer E. coli infections observed. From four parent flocks and eight broiler flocks, 715 E. coli were isolated from cloacal swabs of newly hatched chickens (Ross 308). The isolated E. coli were characterized by eight virulence-associated genes and phenotypic resistance against six antimicrobials. It was found that the prevalence of virulence-associated genes and phenotypic antimicrobial resistance varied significantly between flocks, and the virulence-associated genes papC and irp2 and resistance against ampicillin were significantly more prevalent in breeder flocks compared to broiler flocks.
Collapse
|
16
|
Agatha TM, Wibawati PA, Izulhaq RI, Agustono B, Prastiya RA, Wardhana DK, Abdramanov A, Lokapirnasari WP, Lamid M. Antibiotic resistance of Escherichia coli from the milk of Ettawa crossbred dairy goats in Blitar Regency, East Java, Indonesia. Vet World 2023; 16:168-174. [PMID: 36855371 PMCID: PMC9967718 DOI: 10.14202/vetworld.2023.168-174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 01/29/2023] Open
Abstract
Background and Aim Antimicrobial resistance, especially antibiotic resistance, is one of the most severe public health challenges. Antibiotic resistance occurs when bacteria avoid and fight the mechanism of action of antibiotic drugs. This study aimed to determine the resistance of Escherichia coli from the milk of Ettawa crossbreed dairy goat at Blitar Regency, East Java, Indonesia, with the antibiotics streptomycin, sulfonamides, and trimethoprim. Materials and Methods A total of 34 milk samples of Ettawa crossbreed dairy goats were used in this study. The initial stages of this research included tests of the physical properties, isolation, and identification of E. coli. Then, the E. coli isolates were tested for antibiotic resistance using the Kirby-Bauer method. Results The results showed that all samples were positive for E. coli. The physical properties of milk, namely, color, odor, flavor, and consistency, were normal. The results of the alcohol test showed normal acidity, and the specific gravity of goat milk met the criteria, with an average specific gravity of 1.0295 g/mL. The results of the antibiotic resistance test showed that 4 (12%) samples were resistant to streptomycin, 5 (15%) to sulfonamide, and 3% to trimethoprim. Conclusion The prevalence of E. coli from Ettawa crossbreed dairy goats in Blitar Regency, East Java, Indonesia, was 100%. Furthermore, this E. coli isolate exhibited resistance to antibiotics streptomycin, sulfonamides, and trimethoprim. The use of antibiotics in the dairy goat industry in Indonesia should be controlled to prevent the spread of resistant E. coli from animals to humans through the food chain and prevent the emergence of multidrug-resistant E. coli.
Collapse
Affiliation(s)
- Tweedekharis Marlin Agatha
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Prima Ayu Wibawati
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia,Corresponding author: Prima Ayu Wibawati, e-mail: Co-authors: TMA: , RII: , BA: , RAP: , DKW: , AA: , WPL: , ML:
| | - Reza Ikhza Izulhaq
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bodhi Agustono
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ragil Angga Prastiya
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Dhandy Koesoemo Wardhana
- Department of Veterinary Science, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Abzal Abdramanov
- Department of Veterinary Sanitary Expertise and Hygiene, Faculty of Veterinary medicine, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Widya Paramita Lokapirnasari
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mirni Lamid
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
17
|
Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches. Molecules 2022; 27:molecules27217248. [PMID: 36364077 PMCID: PMC9653804 DOI: 10.3390/molecules27217248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure–activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.
Collapse
|
18
|
Ferreira M, Leão C, Clemente L, Albuquerque T, Amaro A. Antibiotic Susceptibility Profiles and Resistance Mechanisms to β-Lactams and Polymyxins of Escherichia coli from Broilers Raised under Intensive and Extensive Production Systems. Microorganisms 2022; 10:microorganisms10102044. [PMID: 36296320 PMCID: PMC9608943 DOI: 10.3390/microorganisms10102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
The intensive and extensive broiler production systems imply different veterinary interventions, including the use of antimicrobials. This study aimed to compare the antimicrobial susceptibility profiles of Escherichia coli isolated from both systems, characterize resistance mechanisms to β-lactams and polymyxins, and identify genetic elements such as integrons. E. coli isolates recovered from broiler cecal samples were assayed for antimicrobial susceptibility through the broth microdilution technique. The molecular characterization of acquired resistance mechanisms to β-lactams and colistin and the detection of integrons was performed by a multiplex PCR. For most antibiotics tested, the prevalence of reduced susceptibility is higher in commensal and extended-spectrum β-lactamases (ESBL)/AmpC producers from broilers raised in the intensive system, compared with those raised under extensive conditions. SHV-12 was the most common ESBL enzyme found in both production systems. Other ESBL variants such as CTX-M-1, CTX-M-55, CTX-M-14, CTX-M-32, CTX-M-9, TEM-52, and plasmid-encoded AmpC enzyme CMY-2 were also present. MCR-1 was identified in a colistin-resistant isolate from broilers raised under the intensive system. This study highlights the differences in E. coli antibiotic susceptibility from both production types and emphasizes that a great deal of work remains to decrease consumption and antimicrobial resistance levels.
Collapse
Affiliation(s)
- Mariana Ferreira
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- University of Évora, 7004-516 Évora, Portugal
| | - Célia Leão
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Teresa Albuquerque
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
19
|
Songsri J, Mala W, Wisessombat S, Siritham K, Cheha S, Noisa N, Wongtawan T, Klangbud WK. First isolation of verocytotoxin-producing Escherichia coli O157:H7 from sports animals in Southern Thailand. Vet World 2022; 15:2275-2284. [PMID: 36341074 PMCID: PMC9631374 DOI: 10.14202/vetworld.2022.2275-2284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: Escherichia coli O157:H7 is enterohemorrhagic E. coli, which produces verocytotoxin or Shiga toxin. It is a well-known cause of severe diseases in humans worldwide. Cattle and other ruminants are the main reservoirs of this organism. Sports animals, such as fighting bulls, riding horses, and fighting cocks, are economic animals in Southern Thailand. This study aimed to identify E. coli O157:H7 from the rectal swabs of these sports animals and determine the antimicrobial susceptibility patterns of isolated bacteria. Materials and Methods: The rectal swabs were collected from 34 fighting bulls, 32 riding horses, and 31 fighting cocks. The swabs were cultured on MacConkey (MAC) Agar; the suspected colonies were then identified by VITEK® 2 GN card, and the antimicrobial susceptibility was tested by VITEK® 2 AST N194 in VITEK® 2 Compact automation. Escherichia coli O157:H7 was confirmed by culturing on sorbitol MAC agar, the ability to grow at 44°C, and the presence of H7 antigen. In addition, the eaeA (E. coli attaching and effacing), along with stx1 and stx2 (Shiga cytotoxins) genes, were determined using polymerase chain reaction. Finally, the cytotoxicity of Shiga toxin was confirmed using the Vero cytotoxicity test. Results: Fifty-five suspected isolates (56.70%), which were collected from 19 fighting bulls (55.88%), 13 riding horses (40.63%), and 23 fighting cocks (71.13%), were identified as E. coli. However, one sample (Bull H9/1) from fighting bulls had an equal confidence level (50%) for E. coli and E. coli O157. The confirmation of this isolate demonstrated that it was sorbitol non-fermenter, could assimilate L-lactate, was unable to grow well at 44°C, and reacted with anti-serum to H7 antigen. In addition, it was positive with stx2 and eaeA genes, and the toxin affected Vero cells by a dose-dependent response. The antimicrobial susceptibility test revealed that five out of 55 (9.09%) E. coli isolates were resistant to antimicrobial agents. All five isolates (21.74%) were collected from fighting cocks. Escherichia coli Cock H4/3 was only one of the five isolates resistant to three antimicrobial agents (ciprofloxacin, moxifloxacin, and trimethoprim/sulfamethoxazole). Fortunately, it was not multidrug-resistant bacteria. Conclusion: This is the first report on detection of E. coli O157:H7 in fighting bulls and antibiotic-resistant characteristic of E. coli in fighting cocks in Southern Thailand. This research is beneficial in preventing the dissemination of E. coli O157:H7 or antimicrobial agent-resistant E. coli in sports animals and humans.
Collapse
Affiliation(s)
- Jirarat Songsri
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand; Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Wanida Mala
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand; Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand; Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Kesinee Siritham
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Sahida Cheha
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Nattita Noisa
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Tuempong Wongtawan
- Department of Veterinary Medicine , Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Wiyada Kwanhian Klangbud
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160 Thailand; Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| |
Collapse
|
20
|
Antimicrobial Resistance Trends of Escherichia coli Isolates: A Three-Year Prospective Study of Poultry Production in Spain. Antibiotics (Basel) 2022; 11:antibiotics11081064. [PMID: 36009933 PMCID: PMC9404938 DOI: 10.3390/antibiotics11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a major threat to health worldwide. Poultry products are one of the main threats, due to the transmission of antimicrobial resistance genes throughout the food chain. Escherichia coli is the main cause of mortality in the poultry industry, mainly mitigated with antibiotics, but due to the high genetic strain variability, recurrent outbreaks of multidrug resistant E. coli take place. The major challenge to tackling AMR is understanding the burden of resistance. For this reason, one of the main strategies is monitoring AMR by phenotypic characterisation. Our study aimed to monitor the resistance of E. coli strains isolated from the poultry sector over a period of three years (2019–2021) to provide information on the resistance magnitude and trends. Promising results have been found concerning the low frequency of resistance to cephalosporins, polymyxin, and fluoroquinolones. However, levels of resistance found to antimicrobials such as erythromycin (100%), tylosin (98%), or penicillin (97%) suggest the need to continue working on the limitation of use of antimicrobials in poultry to achieve the demise of MDR.
Collapse
|