1
|
Yibcharoenporn C, Muanprasat C, Moonwiriyakit A, Satitsri S, Pathomthongtaweechai N. AMPK in Intestinal Health and Disease: A Multifaceted Therapeutic Target for Metabolic and Inflammatory Disorders. Drug Des Devel Ther 2025; 19:3029-3058. [PMID: 40291159 PMCID: PMC12024487 DOI: 10.2147/dddt.s507489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The intestines play essential roles in nutrient absorption and immune function and help maintain a protective barrier. Disruptions to its function can result in various diseases, including metabolic disorders, inflammation, and cancer. As a key regulator of cellular energy levels, 5'-adenosine monophosphate-activated protein kinase (AMPK) is essential for intestinal health. Beyond its established metabolic role, emerging evidence suggests that AMPK exerts profound effects on intestinal cell physiology, influencing cell proliferation and differentiation, inflammation, autophagy, barrier integrity, and smooth muscle contractility. Here, we explore the structure and regulation of AMPK, as well as its diverse roles in intestinal diseases and potential as a therapeutic target. Our findings reveal that AMPK is a multifaceted regulator of intestinal health, modulating various cellular processes and intestinal diseases. It plays a dual role in cancer, acting as both a tumor suppressor and promoter, and it regulates inflammatory pathways, autophagy, tight junction formation, and smooth muscle contractility. Both natural and synthetic AMPK activators offer promise as therapeutic agents. This review of AMPK's mechanisms and activators offers valuable insights for developing novel therapies for intestinal disorders. Further research is needed to fully define AMPK's roles and therapeutic potential.
Collapse
Affiliation(s)
- Chamnan Yibcharoenporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| |
Collapse
|
2
|
Xiong Y, He Z, Wu Q, Xiao H, Cao S, Yang X, Li Y, Jiang Z, Zhu C, Wang L. Dietary steviol glycosides mixture supplementation modulates the gene expression of gut chemoreceptors and enhances the antioxidant capacity in weaned piglets. Porcine Health Manag 2025; 11:6. [PMID: 39915811 PMCID: PMC11803942 DOI: 10.1186/s40813-024-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/15/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Stevia glycosides (SGs) have been widely used as an ideal sugar alternative in the food industry. However, the potential application of SGs mixture in the diets of weaned piglets remains unexplored. This study aimed to investigate the effect of dietary SGs mixture supplementation on growth performance, gene expression of gut chemoreceptors, and antioxidant capacity in weaned piglets. METHODS A total of 216 weaned piglets (Duroc × Landrace × Yorkshire, 7.36 ± 0.04 kg body weight) were randomly assigned to 6 groups (6 pens/group with 6 piglets/pen), and were fed with the basal diet supplemented with 0, 100, 150, 200, 250, or 300 mg/kg SGs mixture for 42 days. The serum, liver, longissimus thoracis, and jejunal samples were collected on day 43. RESULTS The results showed that inclusion the SGs mixture in the diet did not have a significant impact on growth performance from days 1 to 28 (P > 0.05). But increasing the concentration of SGs mixture tended to linearly decrease the average daily gain from days 1 to 42 (P = 0.052). However, 150 mg/kg SGs mixture supplementation significantly increased the mRNA expression of taste receptor family 1 member 2 (T1R2) and glucose transporters 2 (GLUT2) in the jejunum (P < 0.05), while 150 and 200 mg/kg SGs mixture supplementation significantly increased T1R3 mRNA expression (P < 0.05). Moreover, 150 mg/kg SGs mixture supplementation significantly reduced serum malondialdehyde content (P < 0.05). Increasing the concentration of SGs mixture linearly and quadratically increased serum total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity, as well as hepatic T-SOD, GSH-Px activity, and muscle total antioxidant capacity contents (P < 0.05). Furthermore, piglets fed a diet supplemented with 100 mg/kg SGs mixture had higher serum T-SOD, CAT, and GSH-Px activities compared with the other treatments (P < 0.05). CONCLUSIONS Therefore, our results suggest that dietary 100 ~ 150 mg/kg SGs mixture supplementation modulates gene expression of sweet taste recognition receptors and glucose transporters, while also enhancing the antioxidant capacity of weaned piglets.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhentao He
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Qiwen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Hao Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Yajing Li
- Dongtai Hirye Biotechnology Co., Ltd, Dongtai, 224200, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Cui Zhu
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China.
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
3
|
Li L, Zhong S, Ye J, Hu S, Xiong X, Chen G, Hu Z. Shenmai injection revives cardiac function in rats with hypertensive heart failure: involvement of microbial-host co-metabolism. BMC Complement Med Ther 2025; 25:24. [PMID: 39856640 PMCID: PMC11761217 DOI: 10.1186/s12906-024-04737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Heart failure (HF) is a complex syndrome marked by considerable expenditures and elevated mortality and morbidity rates globally. Shenmai injection (SMI), a form of Traditional Chinese Medicine-based therapy, has demonstrated effectiveness in treating HF. Recent research suggests that Traditional Chinese Medicine (TCM) may induce beneficial changes in microbial-host co-metabolism, potentially providing cardiovascular protection. This study used a rat model of hypertensive heart failure (H-HF) to explore the mechanism of SMI. The possible compounds and key targets of SMI against H-HF were investigated using network pharmacology. The pharmacodynamics of SMI were validated using the H-HF animal model, with analysis of fecal gut microbiota integrating metabolomics and 16S rRNA sequencing. Metorigin metabolite traceability analysis and the MetaboAnalyst platform were utilized to explore the action mechanism. To evaluate changes in serum TMAO levels, targeted metabolomics was performed. Finally, the study looked at the intrinsic relationships among modifications in the intestinal flora, metabolite profile changes, and the targets of SMI compounds to clarify how they might be used to treat H-HF. According to metabolomics and 16S rRNA sequencing, by reestablishing homeostasis in the gut microbiota, SMI affects vital metabolic pathways, such as energy metabolism, amino acid metabolism, and bile acid metabolism. Increased serum TMAO levels were identified to be a risk factor for H-HF, and SMI was able to downregulate the levels of TMAO-related metabolites. Network pharmacology analysis identified 13 active components of SMI targeting 46 proteins, resulting in differential expression changes in 8 metabolites and 24 gut microbes. In conclusion, this study highlights the effectiveness of SMI in alleviating H-HF and its potential to modulate microbial-host co-metabolism. Through a comprehensive discussion of the interconnected relationships among the components, targets, metabolites, and gut microbiota, it provided fresh light on the therapeutic mechanism of SMI on H-HF.
Collapse
Affiliation(s)
- Lin Li
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Senjie Zhong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahao Ye
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyuan Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiajun Xiong
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guangyu Chen
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center For Medicinal and Functional Food, Changsha, Hunan, China
| | - Zhixi Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zou C, Xing X, Li S, Zheng X, Zhao J, Liu H. Effects of a Combined Chinese Herbal Medicine on Growth Performance, Intestinal Barrier Function, Immune Response, and Cecal Microflora in Broilers Infected with Salmonella enteritidis. Animals (Basel) 2024; 14:2670. [PMID: 39335258 PMCID: PMC11429040 DOI: 10.3390/ani14182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of CCHM in drinking water on broilers infected with Salmonella enteritidis. One-day-old male Cobb 500 broilers (n = 300) were randomly assigned to five groups: a control (NC) group, a Salmonella enteritidis challenge (SE) group, an antibiotic (AB) group, a low dose of CCHM (CL) group, and a high dose of CCHM (CH) group. Each group had six replicate cages with ten broilers per cage. The broilers in the NC and SE groups were given normal drinking water. From days 12 to 18, the AB group received water treated with ciprofloxacin lactate injection (1 mL/L), while the CL and CH groups received water containing CCHM at doses of 5 mL/L and 10 mL/L, respectively. Broilers in all groups except the NC group were orally given Salmonella enteritidis daily from days 9 to 11. The experimental period was 28 days. The results showed that, compared with the SE group, the CL and CH groups showed improved growth performance; increased immune organ indices, expressions of ileal occludin and ZO-1 proteins, jejunal and ileal villus heights (except at day 19), and cecal Lactobacillus counts on days 19 and 28 (p < 0.05); and decreased jejunal and ileal lesion scores, ileal interleukin 1β (IL-1β) (except at day 19), interferon-γ (IFN-γ), interleukin 6 (IL-6) (except at day 19), secretory immunoglobulin A (slgA) and tumor necrosis factor α (TNF-α) (except at day 19) levels, serum D-lactic acid and diamine oxidase (DAO) (except at day 19) contents, jejunal and ileal crypt depths (except at day 19), and cecal Salmonella and Escherichia coli counts on days 19 and 28 (p < 0.05). On day 28, except for the levels of ileal interleukin 10 (IL-10), TNF-α, slgA, and serum D-lactic acid content, there were no differences among the NC, AB, and CL groups (p > 0.05). In conclusion, drinking water supplemented with CCHM alleviated the intestinal damage caused by Salmonella enteritidis infection and improved growth performance and cecal microbiota in broilers. The optimal addition rate of CCHM was 5 mL/L.
Collapse
Affiliation(s)
- Changzhi Zou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Xin Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Shunxi Li
- Guangrao County Livestock Development Service Center, Dongying 257000, China;
| | - Xuelong Zheng
- Pingdu Yunshan Animal Health and Product Quality Supervision Station, Qingdao 266700, China;
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| |
Collapse
|
5
|
Dai H, Huang Z, Shi F, Li S, Zhang Y, Wu H, Lv Z. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poult Sci 2024; 103:103969. [PMID: 39047316 PMCID: PMC11318554 DOI: 10.1016/j.psj.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders in maternal generation during the late egg-laying period have adverse effects on neonatal development. The study was conducted to clarify the effects of maternal feeding of hawthorn-leaf flavonoid (HF) on the microbial community and intestinal development of chicks. Breeder hens were fed a basic corn-soybean diet, while the treatment groups were supplemented with 30 or 60 mg/kg HF. The offspring chicks were divided into CON, LHF, and HHF groups according to the maternal treatments. Maternal HF supplementation at 60 mg/kg increased the average daily gain and decreased the feed conversion rate of chicks (P < 0.05), but did not affect the average daily feed intake. HF treatments increased the villus height to crypt depth ratio and up-regulated the protein expressions of PCNA, IGF-1R, PI3K and p-mTOR in the jejunum (P < 0.05) of 1-day-old and 14-day-old chicks. Additionally, maternal HF treatment up-regulated the mRNA expression of tight junction transmembrane proteins (occludin) and scaffolding proteins (ZO-1 and ZO-2) in the jejunum of 1-day-old chicks (P < 0.05). Moreover, the maternal effects of HF on ZO-1 expression could last for 14 d (P < 0.05). Interestingly, dietary HF supplementation altered the vertically transmitted microbial community from breeder hens to chicks, especially increased the relative abundance of probiotics (i.e., Clostridium_sensu_stricto_1) in the meconium of chicks (P < 0.05), which may help with early gut microbiota colonization and intestinal development. In summary, dietary HF supplementation for breeder hens altered the bacterial community of neonates and might promote intestinal development of chicks through the IGF-1R/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Huang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simeng Li
- College of Biotechnology, Aksu Vocational and Technical College, Aksu 843000, China
| | - Yi Zhang
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Haoze Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Zhao H, Huang Y, Yang W, Huang C, Ou Z, He J, Yang M, Wu J, Yao H, Yang Y, Yi J, Kong L. Viola yedoensis Makino alleviates lipopolysaccharide-induced intestinal oxidative stress and inflammatory response by regulating the gut microbiota and NF-κB-NLRP3/ Nrf2-MAPK signaling pathway in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116692. [PMID: 38971097 DOI: 10.1016/j.ecoenv.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Viola yedoensis Makino (Vy) is a well-known traditional Chinese medicine widely used to treat inflammatory diseases. However, the regulatory effects of dietary Vy supplementation on lipopolysaccharide (LPS)-induced intestinal damage in broilers and the underlying molecular mechanisms remain unclear. In this study, broilers were intraperitoneally injected with 1 mg/kg LPS on days 17, 19 and 21 to induce intestinal damage. Vy supplementation at 0.5, 1.5 and 4.5 % in the diet was administered separately for 21 days to investigate the potential protective effects of Vy supplementation against LPS-induced intestinal impairment in broilers. Vy supplementation improved intestinal morphology and restored growth performance. Vy supplementation attenuated intestinal inflammation by regulating the nuclear factor kappa B (NF-κB) / NLR family pyrin domain-containing 3 (NLRP3) signaling pathway and inhibited its downstream pro-inflammatory factor levels. In addition, Vy supplementation relieved intestinal oxidative impairment by regulating the nuclear factor erythroid-2 related factor 2 (Nrf2) / mitogen-activated protein kinase (MAPK) signaling pathway and downstream antioxidant enzyme activity. Vy supplementation reduced LPS-induced mitochondrial damage and apoptosis. Furthermore, Vy supplementation alleviated LPS-induced intestinal inflammation and oxidative damage in chickens by increasing the abundance of protective bacteria (Lactobacillus and Romboutsia) and reducing the number of pathogenic bacteria (unclassified_f_Ruminococcaceae, unclassified_f_Oscillospiraceae and norank_f_norank_o_Clostridia_vadinBB60_group). Overall, Vy supplementation effectively ameliorated LPS-induced intestinal damage by regulating the NF-κB-NLRP3/Nrf2-MAPK signaling pathway and maintaining intestinal microbiota balance. Vy supplementation can be used as a dietary supplement to protect broilers against intestinal inflammation and oxidative damage.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Huan Yao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yu Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Zha P, Liu W, Zhou Y, Chen Y. Protective effects of chlorogenic acid on the intestinal barrier of broiler chickens: an immunological stress model study. Poult Sci 2024; 103:103949. [PMID: 38917604 PMCID: PMC11251075 DOI: 10.1016/j.psj.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3β, as well as the translocation of nuclear β-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
8
|
Anas MA, Aprianto MA, Akit H, Muhlisin, Kurniawati A, Hanim C. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult Sci 2024; 103:103777. [PMID: 38713986 PMCID: PMC11091524 DOI: 10.1016/j.psj.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
This study aimed to determine the influence of black soldier fly larvae oil calcium salt (BSFLO-SCa) supplementation on performance, jejunal histomorphology and gene expression of tight junctions and inflammatory cytokines in laying hens. A total of 60 ISA Brown laying hens (40 wk of age) were divided into 3 treatment groups, including a control group fed a basal diet (T0) and basal diets supplemented with 1% (T1) and 2% (T2) of BSFLO-SCa. Each treatment group consisted of 5 replicates with 4 laying hens each. Results showed that 1% and 2% BSFLO-SCa supplementation significantly reduced (P < 0.05) feed conversion ratio (FCR), while egg weight (EW) increased (P < 0.05). The inclusion with 2% increased (P < 0.05) both egg production (HDA) and mass (EM). The addition of 1% and 2% BSFLO-SCa significantly increased (P < 0.05) villus height (VH) and villus width (VW), while crypt depth (CD) significantly increased (P < 0.05) with 2% BSFLO-SCa. The tight junction and gene expression of claudin-1 (CLDN-1), junctional adhesion molecules-2 (JAM-2), and occludin (OCLN) were significantly upregulated (P < 0.05) with 2% BSFLO-SCa. The pro-inflammatory cytokines and gene expression of interleukin-6 (IL-6) was significantly downregulated (P < 0.05) with the addition of BSFLO-SCa, while gene expression of interleukin-18 (IL-18), toll-like receptor 4 (TLR-4), and tumor necrosis factor-α (TNF-α) were downregulated with 2% BSFLO-SCa. On the other hand, the anti-inflammatory cytokines and gene expression of interleukin-13 (IL-13) and interleukin-10 (IL-10) were significantly upregulated (P < 0.05) at 2% BSFLO-SCa. In conclusion, dietary supplementation with 2% BSFLO-SCa improved productivity, intestinal morphology and integrity by upregulating tight junction-related protein of gene expression of laying hens. In addition, supplementation with BSFLO-SCa enhanced intestinal immune responses by upregulating anti-inflammatory and downregulating pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Muhsin Al Anas
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Muhammad Anang Aprianto
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhlisin
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Asih Kurniawati
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Chusnul Hanim
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Fu Y, Yuan P, Everaert N, Comer L, Jiang S, Jiao N, Huang L, Yuan X, Yang W, Li Y. Effects of Chinese Gallotannins on Antioxidant Function, Intestinal Health, and Gut Flora in Broilers Challenged with Escherichia coli Lipopolysaccharide. Animals (Basel) 2024; 14:1915. [PMID: 38998028 PMCID: PMC11240627 DOI: 10.3390/ani14131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
This experiment was conducted to study the protective effects of dietary Chinese gallotannins (CGT) supplementation against Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury in broilers. Four hundred and fifty healthy Arbor Acres broilers (one-day-old) were randomly divided into three groups: (1) basal diet (CON group), (2) basal diet with LPS challenge (LPS group), and (3) basal diet supplemented with 300 mg/kg CGT as well as LPS challenge (LPS+CGT group). The experiment lasted for 21 days. Intraperitoneal LPS injections were administered to broilers in the LPS group and the LPS+CGT group on days 17, 19, and 21 of the trial, whereas the CON group received an intraperitoneal injection of 0.9% physiological saline. Blood and intestinal mucosa samples were collected 3 h after the LPS challenge. The results showed that LPS administration induced intestinal inflammation and apoptosis and damaged small intestinal morphology and structure in broilers. However, dietary supplementation with CGT alleviated the deleterious effects on intestinal morphology and barrier integrity caused by the LPS challenge, while also reducing intestinal apoptosis and inflammation, enhancing intestinal antioxidant capacity, and increasing cecal microbial alpha diversity in the LPS-challenged broilers. Therefore, our findings demonstrated that a 300 mg/kg CGT addition could improve intestinal morphology and gut barrier structure, as well as maintaining bacterial homeostasis, in broilers exposed to LPS. This might partially be attributed to the reduced cell apoptosis, decreased inflammatory response, and enhanced antioxidant capacity in the small intestinal mucosa.
Collapse
Affiliation(s)
- Yuemeng Fu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Peng Yuan
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Nadia Everaert
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium; (N.E.); (L.C.)
| | - Luke Comer
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium; (N.E.); (L.C.)
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China;
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium; (N.E.); (L.C.)
| |
Collapse
|
10
|
Cao X, Amevor FK, Du X, Wu Y, Xu D, Wei S, Shu G, Feng J, Zhao X. Supplementation of the Combination of Quercetin and Vitamin E Alleviates the Effects of Heat Stress on the Uterine Function and Hormone Synthesis in Laying Hens. Animals (Basel) 2024; 14:1554. [PMID: 38891601 PMCID: PMC11171397 DOI: 10.3390/ani14111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Chickens are sensitive to heat stress because their capacity to dissipate body heat is low. Hence, in chickens, excessive ambient temperature negatively influences their reproductive performance and health. Heat stress induces inflammation and oxidative stress, thereby rendering many reproductive organs dysfunctional. In this study, we evaluated the effects of the supplementation of dietary quercetin and vitamin E on the uterine function, eggshell quality via estrogen concentration, calcium metabolism, and antioxidant status of the uterus of laying hens under heat stress. The ambient temperature transformation was set at 34 ± 2 °C for 8 h/d (9:00 am-5:00 pm), which was followed by 22 °C to 28 °C for 16 h/d. Throughout the experiment, the relative humidity in the chicken's pen was at 50 to 65%. A total of 400 Tianfu breeder hens (120-days-old) were randomly divided into four dietary experimental groups, including basal diet (Control); basal diet + 0.4 g/kg quercetin; basal diet + 0.2 g/kg vitamin E; and basal diet + the combination of quercetin (0.4 g/kg) and vitamin E (0.2 g/kg). The results show that the combination of quercetin and vitamin E significantly increased the serum alkaline phosphatase levels and the antioxidant status of the uterus (p < 0.05). In addition, the combination of quercetin and vitamin E significantly increased the concentrations of serum estrogen and progesterone, as well as elevated the expression of hypothalamic gonadotropin-releasing hormone-1 and follicular cytochrome P450 family 19 subfamily A member-1 (p < 0.05). We also found that the calcium levels of the serum and uterus were significantly increased by the synergistic effects of quercetin and vitamin E (p < 0.05), and they also increased the expression of Ca2+-ATPase and the mRNA expression of calcium-binding-related genes in the uterus (p < 0.05). These results are consistent with the increased eggshell quality of the laying hens under heat stress. Further, the combination of quercetin and vitamin E significantly increased the uterine morphological characteristics, such as the height of the uterine mucosal fold and the length of the uterine mucosa villus of the heat-stressed laying hens. These results collectively improve the uterine function, serum and uterine calcium concentration, eggshell strength, and eggshell thickness (p < 0.05) in heat-stressed laying hens. Taken together, we demonstrated in the present study that supplementing the combination of dietary quercetin and vitamin E alleviated the effects of heat stress and improved calcium metabolism, hormone synthesis, and uterine function in the heat-stressed laying hens. Thus, the supplementation of the combination of quercetin and vitamin E alleviates oxidative stress in the eggshell gland of heat-stressed laying hens, thereby promoting calcium concentration in the serum and eggshell gland, etc., in laying hens. Hence, the combination of quercetin and vitamin E promotes the reproductive performance of the laying hens under heat stress and can also be used as a potent anti-stressor in laying hens.
Collapse
Affiliation(s)
- Xueqing Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Felix Kwame Amevor
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaxia Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Youhao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuo Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 851418, China;
| | - Xiaoling Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.C.); (F.K.A.); (X.D.); (Y.W.); (D.X.); (S.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Tang M, Zhao J, Wu Y, Yu C, Peng C, Liu H, Cui Y, Lan W, Lin Y, Kong X, Xiong X. Improving gut functions and egg nutrition with stevia residue in laying hens. Poult Sci 2024; 103:103324. [PMID: 38141275 PMCID: PMC10784312 DOI: 10.1016/j.psj.2023.103324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023] Open
Abstract
This study aimed to investigate the effect of stevia residue (STER) on the production performance, egg quality and nutrition, antioxidant ability, immune responses, gut morphology and microbiota of laying hens during the peak laying period. A total of 270 Yikoujingfen NO. 8 laying hens (35 wk of age) were randomly divided into 5 treatments. The control group fed a basal diet and groups supplemented with 2, 4, 6, and 8% STER. The results showed that STER significantly increased egg production, the content of amino acids (alanine, proline, valine, ornithine, asparagine, aspartic acid, and cysteine) in egg whites, and decreased the yolk color (P < 0.05). Additionally, STER significantly increased acetate, HOMOγ linolenic acid and cis-13, 16-docosadienoic acid levels in egg yolk (P < 0.05). IL-2, IL-4, and IL-10 levels in serum significantly increased by STER (P < 0.05), while IL-1β significantly decreased (P < 0.05). STER also increased total antioxidant activity (T-AOC) in the liver and estradiol level in the oviduct (P < 0.05), but decreased the cortisol level in the oviduct (P < 0.05). For the intestinal morphology, the jejunal villus height and crypt-to-villus (V:C) significantly increased by STER (P < 0.05). STER increased the relative abundance of Actinobacteriota (P < 0.05), while deceased Proteobacteria, Desulfobacterota, and Synergistota (P < 0.05). In conclusion, STER improved egg production, quality and nutrition, improved the immune responses, antioxidant capabilities, estrogen level, gut morphology, and increased the relative abundance of beneficial bacteria while decreased the harmful bacteria. Among all treatments, 4 and 6% STER supplementation yielded the most favorable results in terms of enhancing production performance, egg nutrition, gut health, and immune capabilities in laying hens.
Collapse
Affiliation(s)
- Mengxuan Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu 61004, China
| | - Yuliang Wu
- Hunan Normal University, Changsha 410081, China
| | - Chu Yu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Can Peng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hongnan Liu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Yong Lin
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Xia Xiong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
12
|
Zhang H, Liu M, Song F, Zhu X, Lu Q, Liu R. Fermentation enhances the amelioration effect of bee pollen on Caco-2 monolayer epithelial barrier dysfunction based on NF-κB-mediated MLCK-MLC signaling pathway. Food Res Int 2024; 178:113938. [PMID: 38309866 DOI: 10.1016/j.foodres.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1β and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Fanfen Song
- Research Unit VEG-i-TEC, Faculty of BioscienceEngineering, Ghent University, Sint-Martens-Latemlaan2B, 8500 Kortrijk, Belgium
| | - Xiaoling Zhu
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
13
|
Liu Y, Han K, Liu H, Jia G, Comer L, Wang G, Pan Z, Zhao Y, Jiang S, Jiao N, Huang L, Yang W, Li Y. Macleaya cordata isoquinoline alkaloids attenuate Escherichia coli lipopolysaccharide-induced intestinal epithelium injury in broiler chickens by co-regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways. Front Immunol 2024; 14:1335359. [PMID: 38299145 PMCID: PMC10828024 DOI: 10.3389/fimmu.2023.1335359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
This study sought to explore the effects and potential mechanisms of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata to alleviate lipopolysaccharide (LPS)-induced intestinal epithelium injury in broilers. A total of 486 1-day-old broilers were assigned at random to a control (CON) group, LPS group, and LPS+IA group in a 21-d study. The CON and LPS groups received a basal diet, while the LPS+IA group received a basal diet supplemented with 0.6 mg/kg IA. At 17, 19, and 21 days of age, the LPS and LPS+BP groups were injected intraperitoneally with LPS, and the CON group was intraperitoneally injected equivalent amount of saline solution. The results manifested that LPS injection caused intestinal inflammation and lipid peroxidation, disrupted intestinal barrier and function, and increased the abundance of harmful microorganisms. However, dietary IA supplementation alleviated LPS-induced adverse changes in intestinal morphology, apoptosis, mucosal barrier integrity, cecum microorganisms, and homeostasis disorder by decreasing inflammatory cytokines and enhancing antioxidant-related genes expressions; inhibited LPS-induced increases in TLR4 and NF-κB expressions and decreases in Nrf2 and GPX1 genes expressions. Our findings indicated that Macleaya cordata IA addition attenuated LPS-induced intestinal epithelium injury and disorder of intestinal homeostasis by enhancing the anti-inflammatory and antioxidant capacity of broiler chickens possibly via co-regulating TLR4/MyD88/NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Han
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Luke Comer
- The Nutrition and Animal Microbiota Ecosystems Laboratory, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Guanlin Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Zizhu Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yiqian Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- The Nutrition and Animal Microbiota Ecosystems Laboratory, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Heverlee, Belgium
| |
Collapse
|
14
|
Liu X, Jing Y, Li Z, Wang X, Song Y, Zeng J, Lin Q. Effects of dietary stevia extract supplementation on growth performance, serum biochemical indices, and intestinal health of yellow-feathered broilers. J Anim Sci 2024; 102:skae245. [PMID: 39177443 PMCID: PMC11487150 DOI: 10.1093/jas/skae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024] Open
Abstract
Stevia, a perennial shrub from the genus Stevia in the Asteraceae family, contains active ingredients like chlorogenic acid and shows promise as a natural feed additive. Despite this potential, there is limited research on the impact of stevia extract specifically on yellow-feather broilers. The study aimed to evaluate the effects of dietary stevia extract with varying concentrations of chlorogenic acid on the growth performance, serum biochemical indices, and intestinal health of yellow-feathered broilers. A total of 425 1-d-old female yellow-feathered broilers were randomly allocated into five treatment groups with five replicates of 17 broilers each, and the feeding trial lasted 63 d. The groups included control and those supplemented with stevia extract at concentrations of 100, 200, 300, and 400 mg/kg. Results showed that adding 100 mg/kg of stevia extract to the basal diet significantly increased the daily weight gain (ADG) of the broilers while reducing the average daily feed intake and feed conversion ratio (F/G). However, supplementation with stevia extract at concentrations up to 300 mg/kg led to decreased final weight and ADG. Conversely, dietary supplementation with 100-200 mg/kg of stevia extract improved serum antioxidant capacity and reduced serum total cholesterol levels compared to the control group. Additionally, the cecum n-butyric acid level was significantly higher in the 200 mg/kg stevia extract group than in the control group. In conclusion, supplementing yellow-feathered broilers' diets with stevia extract can enhance growth performance, antioxidant and immune capacity, and intestinal health. The optimal concentration of stevia extract for these benefits is between 100 and 200 mg/kg.
Collapse
Affiliation(s)
- Xiubin Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Yidan Jing
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Zhen Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Xin Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yunfei Song
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianguo Zeng
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
- Guilin Layn Natural Ingredients Corporation, Guilin, China
| | - Qian Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
15
|
Chen J, Yang W, Liu H, Niu J, Liu Y, Cheng Q. Protective effect of Macleaya cordata isoquinoline alkaloids on lipopolysaccharide-induced liver injury in broilers. Anim Biosci 2024; 37:131-141. [PMID: 37946426 PMCID: PMC10766460 DOI: 10.5713/ab.23.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This experiment aimed to explore the protective action of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata on lipopolysaccharide (LPS)-induced liver injury in broilers. METHODS Total 216 healthy broilers were selected in a 21-d trial and assigned randomly to the following 3 treatments: control (CON) group, LPS group, and LPS+IA group. The CON and LPS groups were provided with a basal diet, whereas the LPS+IA group received the basal diet supplemented with 0.6 mg/kg Macleaya cordata IA. Broilers in LPS and LPS+IA groups were intraperitoneally injected with LPS (1 mg/kg body weight) at 17, 19, and 21 days of age, while those in CON group were injected with equivalent amount of saline solution. RESULTS Results showed LPS injection caused systemic and liver inflammation in broilers, inhibited immune function, and ultimately lead to liver injury. By contrast, supplementation of IA ameliorated LPS-induced adverse change in serum parameters, boosted immunity in LPS+IA group. Furthermore, IA suppressed the elevation of hepatic inflammatory cytokines and caspases levels induced by LPS, as well as the expressions of genes related to the tolllike receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factorkappa B (NF-κB) pathway. CONCLUSION Dietary inclusion of 0.6 mg/kg Macleaya cordata IA could enhance immune function of body and inhibit liver damage via inactivating TLR4/MyD88/NF-κB signaling pathway in broilers.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Animal Science, Qingdao Agricultural University, Qingdao 266109,
China
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,
China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128,
China
| | - Jiaxing Niu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,
China
| | - Yang Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,
China
| | - Qun Cheng
- Department of Animal Science, Qingdao Agricultural University, Qingdao 266109,
China
| |
Collapse
|
16
|
Sun H, Zheng X, Yang B, Yan M, Wang H, Yang S, Shi D, Guo S, Liu C. Effect of Wu Zhi San supplementation in LPS-induced intestinal inflammation and barrier damage in broilers. Front Vet Sci 2023; 10:1234769. [PMID: 38111733 PMCID: PMC10725941 DOI: 10.3389/fvets.2023.1234769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Intestinal inflammation and barrier damage can inhibit the absorption and transportation of nutrients in the small intestine, and lead to various chronic diseases. Wu Zhi San (WZS) is a traditional Chinese formula composed of Schisandrae, Anemarrhenae, Lonicerae, and Glycyrrhizae that was made to cure intestinal inflammation and barrier damage in broilers. To evaluate the protective effect of WZS on intestinal inflammation and barrier damage of broilers under lipopolysaccharide (LPS) stress, a total of 200 one-day-old broilers were randomly divided into five groups, namely, the CON group, LPS group, and three WZS groups (WZS-H, WZS-M, and WZS-L). The groups were designed for stress phase I (days 15, 17, 19, and 21) and stress phase II (days 29, 31, 33, and 35). The protective effect of WZS on the intestinal tract was evaluated by measuring the levels of serum myeloperoxidase (MPO), diamine oxidase (DAO), super oxide dismutase (SOD), and serum D-lactate (D-LA) and the expression of inflammatory factors in jejunum. The results showed that the diet supplemented with WZS could significantly reduce serum MPO, DAO, and D-LA levels and jejunal CD in broilers (p < 0.05), increase serum SOD levels and jejunal VH (p < 0.05), significantly downregulate the expression of NF-κB, TLR4, MyD88, and inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), and upregulate Claudin-1, Occludin-1, and ZO-1 in broiler jejunum mucosa (p < 0.05). On the other hand, WZS could significantly reduce the protein expression of NF-κB (p65) in broiler jejunum (p < 0.05). These results indicate that supplementing WZS in the diet can reduce intestinal inflammation and alleviate intestinal barrier damage, and by inhibiting the NF-κB/TLR4/MyD88 signaling pathway, supplementation with WZS intervenes in LPS-induced stress injury in broilers.
Collapse
Affiliation(s)
- Han Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xirui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bowen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingen Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiting Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, China
| |
Collapse
|
17
|
Hao W, Yu TT, Zuo DZ, Hu HZ, Zhou PP. Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting the NF-κB and TGF-β1/Smad2/3 pathways. Exp Lung Res 2023; 49:205-219. [PMID: 38044666 DOI: 10.1080/01902148.2023.2286465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Objective: This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. Methods: In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1β, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-β1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-β1/Smad2/3 pathway in lung tissues. Results: STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1β, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-β1/Smad2/3 pathways. Conclusion: STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-β1/Smad2/3 pathway, thereby improving BLM-induced PF.
Collapse
Affiliation(s)
- Wei Hao
- Department of Functional Experimental Training Center, Basic Medical College, Wannan Medical College, Wuhu, China
| | - Ting-Ting Yu
- Department of Functional Experimental Training Center, Basic Medical College, Wannan Medical College, Wuhu, China
| | - Dong-Ze Zuo
- Department of Pharmacy, Second People's Hospital of Hefei, Hefei, China
| | - Heng-Zhao Hu
- School of Anesthesiology, Wannan Medical College, Wuhu, China
| | - Ping-Ping Zhou
- Department of Physiology, Basic Medical College, Wannan Medical College, Wuhu, China
| |
Collapse
|
18
|
Zheng W, Guan Y, Wu B. Effects of Yupingfeng Polysaccharides as Feed Supplement on Immune Function and Intestinal Microbiome in Chickens. Microorganisms 2023; 11:2774. [PMID: 38004785 PMCID: PMC10672924 DOI: 10.3390/microorganisms11112774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The health of chicks is closely related to their productivity. Yupingfeng polysaccharide (YPF-P) is a kind of water-soluble polysaccharide extracted from Yupingfeng powder; it has high pharmacological activity and can be used as a potential substitute for antibiotics to improve the health of chicks. This study aimed to investigate the effects of YPF-P on immune performance, the duodenum, and the cecal microflora of chicks. All chickens (4224) were randomly distributed into four groups (eight replicas/group, 132 hens/replica). The control group was fed a basal diet (0 g/kg YPF-P), while the experimental groups were fed basal diets supplemented with 1, 2, or 4 g/kg YPF-P. The results showed that YPF-P significantly increased the thymus index (p < 0.05). The content of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), immunoglobulin A (IgA), and IgG and immunoglobulin M (IgM) was upregulated in the serum by YPF-P (p < 0.05). YPF-P decreased the content of malondialdehyde (MDA) (p < 0.05). Further, 16S rRNA sequencing showed that 2 g/kg YPF-P modulated the predominant duodenum and cecal microbial community structure, which increased the number of Faecalibacterium, Megamonas, Bacteroides, Alistipes, NK4A214_group, and Enterococcus. In conclusion, YPF-P ameliorated the growth performance of chicks by regulating serum immune and antioxidant balance, as well as the intestinal microbiota.
Collapse
Affiliation(s)
| | | | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
19
|
Hu W, He Z, Du L, Zhang L, Li J, Ma Y, Bi S. Biomarkers of oxidative stress in broiler chickens attacked by lipopolysaccharide: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115606. [PMID: 37866038 DOI: 10.1016/j.ecoenv.2023.115606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Oxidative stress (OS) constitutes a pivotal factor in the initiation and progression of lipopolysaccharide (LPS) challenges in broiler chickens. Increasing studies have demonstrated that Alleviation of oxidative stress seems to be a reasonable strategy to alleviate LPS-mediated afflictions in broilers. Nonetheless, the relationship between OS-related indicators and exposure to LPS remains a topic of debate. The aim of this investigation was to precisely and holistically evaluate the effect of LPS exposure on OS-associated markers. We conducted a systematic search of four electronic databases-PubMed, Web of Science, Scopus, and Cochrane for relevant studies, and a total of 31 studies were included. The overall results showed that the LPS treatment significantly increased the levels of oxygen radicals and their products, such as malondialdehydes (MDA), reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG), while significantly reduced the levels of antioxidants, such as total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH), in the chickens. Intriguingly, though the observed trends in alterations were not strictly correlated with LPS concentrations, the enzyme activity levels were indeed influenced by the concentration of LPS. This observation highlights the complex relationship between LPS exposure and the body's antioxidant response. Despite some limitations, all the included studies were deemed credible. Subgroup evaluations revealed that the jejunum and duodenum has demonstrated stronger antioxidant capability compared to other tissues. Overall, our study presents compelling evidence that exposure to LPS induces significant OS in chickens. And we also found that the extent of OS was related to LPS doses, target tissues, and dietary ingredients.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Yue Ma
- Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
20
|
Han L, Zhang M, Li F, Su J, Wang R, Li G, Yang X. 10-hydroxy-2-decenoic acid alleviates lipopolysaccharide-induced intestinal mucosal injury through anti-inflammatory, antioxidant, and gut microbiota modulation activities in chickens. Front Microbiol 2023; 14:1285299. [PMID: 37915852 PMCID: PMC10616258 DOI: 10.3389/fmicb.2023.1285299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction This study aimed to investigated the effects of 10-hydroxy-2-decenoic acid (10-HDA) on the growth performance, intestinal barrier, inflammatory response, oxidative stress, and gut microbiota of chickens challenged with lipopolysaccharide (LPS). Methods A total of 240 one-day-old chickens were randomly assigned to five treatment groups: (1) control group (basal diet + saline); (2) LPS group (basal diet + LPS); (3) Chlortetracycline (CTC) group (basal diet containing 75 mg/kg CTC + LPS); (4) 0.1% 10-HDA group (basal diet containing 1 g/kg 10-HDA + LPS); and (5) 0.5% 10-HDA group (basal diet containing 5 g/kg 10-HDA + LPS). All chickens were injected intraperitoneally with 0.5 mg/kg body weight of either LPS or saline at 17, 19, and 21 days of age. Results The results showed that dietary 10-HDA supplementation attenuated the loss in growth performance caused by the LPS challenge (p < 0.05). 10-HDA effectively alleviated LPS-induced intestinal mucosal injury, as evidenced by reduced bleeding, decreased serum diamine oxidase levels (p < 0.05), and increased villus/crypt ratios of the jejunum and ileum (p < 0.05). Dietary treatment with 0.1% 10-HDA reduced the concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6; p < 0.05), and increased immunoglobulin (IgA, IgG) and antioxidant enzyme levels (CAT, GSH-px, T-SOD) in the serum of LPS-challenged chickens (p < 0.05). These effects were similar to those observed in the CTC group. Moreover, 0.1% 10-HDA treatment reversed the LPS-induced variations in the mRNA expression of genes related to inflammation, antioxidant capacity, and intestinal tight junctions (p < 0.05). 16S rRNA analysis revealed that 10-HDA supplementation increased the relative abundance of Faecalibacterium and Clostridia_UCG-014 (p < 0.05). Additionally, it decreased the abundance of Clostridia_vadinBB60_group, Eubacterium_nodatum_group, and UC5-1-2E3 (p < 0.05). These changes were correlated with reduced inflammation and improved antioxidant capacity in the LPS-challenged chickens. Conclusion Collectively, dietary 10-HDA supplementation alleviated LPS-induced intestinal mucosal injury and the loss of growth performance through anti-inflammatory, antioxidant, and gut microbiota modulation activities in chickens. Moreover, 0.1% 10-HDA supplementation had comparable or even better protection for LPS-challenged chickens than supplementation with antibiotics or 0.5% 10-HDA. 10-HDA has the potential to be used as an alternative to antibiotics in protecting the intestinal health and improving the performance of poultry.
Collapse
Affiliation(s)
- Lianquan Han
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Maolu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fuwei Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
21
|
Han W, Jiao Y, Mi S, Han S, Xu J, Li S, Liu Y, Guo L. Stevioside reduces inflammation in periodontitis by changing the oral bacterial composition and inhibiting P. gingivalis in mice. BMC Oral Health 2023; 23:550. [PMID: 37563632 PMCID: PMC10416424 DOI: 10.1186/s12903-023-03229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Excessive sugar intake has become a major challenge in modern societies. Stevioside is a promising non-calorie sweetener with anti-inflammatory effects; however, its effects on the oral environment and periodontitis remain unclear. Therefore, this study explores the effect of stevioside on periodontitis in mice. METHODS Mice were divided into four groups, namely, control, treated with water, and periodontitis models, established using 5 - 0 silk sutures ligation around the second molar then infected the oral cavity with Porphyromonas gingivalis (P. gingivalis) viscous suspension, divided into three groups treated with 0.1% stevioside (P + S), 10% glucose (P + G), or water (P). Micro-CT scanning was used to assess alveolar bone resorption, while RT-PCR was used to evaluate the inflammatory factors expression and P. gingivalis invasion in the gingiva. The composition of the oral bacteria was analysed using 16 S rRNA sequence in the saliva. In addition, P. gingivalis was co-cultured with stevioside at different concentrations in vitro, and bacterial activity was detected via optical density values and live/dead staining. The virulence was detected using RT-PCR, while biofilm formation was detected using scanning electron microscopy. RESULTS Compared with 10% glucose, treatment with 0.1% stevioside reduced alveolar bone absorption and osteoclasts while decreasing IL-6, TNF-α, IL-1β, and P. gingivalis in the gingiva of periodontitis mice. The CEJ-ABC distance in the P + S group was significantly lower than that in the P and P + G groups (P < 0.05). Moreover, the composition of the oral bacteria in the P + S group was similar to that of the control. In vitro stevioside treatment also reduced the bacterial activity and toxicity of P. gingivalis in a dose-dependent manner and affected its biofilm composition. CONCLUSION Our results indicate that, compared with 10% glucose, 0.1% stevioside intake can reduce alveolar bone resorption and inflammation in periodontal tissues in mice; the bacterial composition following 0.1% stevioside intake was similar to that of a healthy environment. In vitro, high concentrations of stevioside reduced P. gingivalis activity, biofilm formation, and virulence expression. Therefore, stevioside is a potential alternative to glucose for patients with periodontitis.
Collapse
Affiliation(s)
- Wenrui Han
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yao Jiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Sicong Mi
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Shu Han
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
22
|
Xu Q, Liu M, Chao X, Zhang C, Yang H, Chen J, Zhou B. Stevioside Improves Antioxidant Capacity and Intestinal Barrier Function while Attenuating Inflammation and Apoptosis by Regulating the NF-κB/MAPK Pathways in Diquat-Induced Oxidative Stress of IPEC-J2 Cells. Antioxidants (Basel) 2023; 12:antiox12051070. [PMID: 37237936 DOI: 10.3390/antiox12051070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
As a natural sweetener, stevioside is extracted from Stevia rebaudiana Bertoni and possesses potent antioxidant activity. However, little information is known about its protective role in maintaining the intestinal epithelial cells health under oxidative stress. The aim of this study was to investigate the protective effects and underlying mechanisms of stevioside on alleviating inflammation, apoptosis, and improving antioxidant capacity in intestinal porcine epithelial cells (IPEC-J2) under oxidative stress by diquat. The results demonstrated that the pretreatment with stevioside (250 μM) for 6 h increased cell viability and proliferation and prevented apoptosis induced by diquat at 1000 μM for 6 h in IPEC-J2 cells, compared with the diquat alone-treated cells. Importantly, stevioside pretreatment significantly reduced ROS and MDA production as well as upregulated T-SOD, CAT, and GSH-Px activity. Moreover, it also decreased cell permeability and improved intestinal barrier functions by significantly upregulating the tight junction protein abundances of claudin-1, occludin, and ZO-1. At the same time, stevioside significantly down-regulated the secretion and gene expression of IL-6, IL-8, and TNF-α and decreased the phosphorylation levels of NF-κB, IκB, and ERK1/2 compared with the diquat alone group. Taken together, this study demonstrated that stevioside alleviated diquat-stimulated cytotoxicity, inflammation, and apoptosis in IPEC-J2 cells, protecting cellular barrier integrity and mitigating oxidative stress by interfering with the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Chicken embryo thermal manipulation alleviates postnatal heat stress-induced jejunal inflammation by inhibiting Transient Receptor Potential V4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114851. [PMID: 37004430 DOI: 10.1016/j.ecoenv.2023.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 ℃ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.
Collapse
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
24
|
Xiong X, Xu J, Yan X, Wu S, Ma J, Wang Z, He Q, Gong J, Rao Y. Gut microbiome and serum metabolome analyses identify biomarkers associated with sexual maturity in quails. Poult Sci 2023; 102:102762. [PMID: 37209654 DOI: 10.1016/j.psj.2023.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Increasing evidence indicates that the gut microbiome plays an important role in host aging and sexual maturity. However, the gut microbial taxa associated with sexual maturity in quails are unknown. This study used shotgun metagenomic sequencing to identify bacterial taxa associated with sexual maturity in d 20 and d 70 quails. We found that 17 bacterial species and 67 metagenome-assembled genomes (e.g., Bacteroides spp. and Enterococcus spp.) significantly differed between the d 20 and d 70 groups, including 5 bacterial species (e.g., Enterococcus faecalis) enriched in the d 20 group and 12 bacterial species (e.g., Christensenella massiliensis, Clostridium sp. CAG:217, and Bacteroides neonati) which had high abundances in the d 70 group. The bacterial species enriched in d 20 or d 70 were key biomarkers distinguishing sexual maturity and significantly correlated with the shifts in the functional capacities of the gut microbiome. Untargeted serum metabolome analysis revealed that 5 metabolites (e.g., nicotinamide riboside) were enriched in the d 20 group, and 6 metabolites (e.g., D-ribose, stevioside, and barbituric acid) were enriched in the d 70 group. Furthermore, metabolites with high abundances in the d 20 group were significantly enriched for the KEGG pathways of arginine biosynthesis, nicotinate and nicotinamide metabolism, and lysine degradation. However, glutathione metabolism and valine, leucine and isoleucine biosynthesis were enriched in high-abundance metabolites from the d 70 group. These results provide important insights into the effects of gut microbiome and host metabolism on quail sexual maturity.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China.
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Xiao Yan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Shuoshuo Wu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jinge Ma
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Qin He
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| |
Collapse
|
25
|
Wang J, Ding X, Zeng Q, Bai S, Zhang K, Mao X, Xu S, Zhuo Y, Xuan Y, Peng H, Liu J, Yin H. Dietary 25-hydroxyvitamin D improves productive performance and intestinal health of laying hens under Escherichia coli lipopolysaccharide challenge. Poult Sci 2023; 102:102371. [PMID: 36739264 PMCID: PMC10014338 DOI: 10.1016/j.psj.2022.102371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/04/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022] Open
Abstract
The effect of 25-hydroxyvitamin D (25OHD) on the immune response of laying hens is not well elucidated. This study investigated the effects of 25OHD on egg production, egg quality, immune response, and intestinal health of laying hens challenged with Escherichia coli lipopolysaccharide (LPS). One hundred and sixty laying hens at 45 wk of age were randomly divided into 4 dietary treatments with 10 replicates of 4 birds. Hens were fed the corn-soybean based diets contained either 0 or 80 µg/kg 25OHD for 8 wks. At wk of 53 wk, birds of each dietary treatment were injected into the abdomen with 1.5 mg/kg body weight of either LPS or saline a day at 24-h intervals for continuous 7 d. LPS injection significantly decreased (PLPS < 0.05) egg laying rate, feed intake and feed efficiency; while the supplementation of 25OHD increased (PInteraction < 0.05) egg laying rate, feed efficiency and decreased (PInteraction < 0.05) the broken egg rate in layers under LPS injection. LPS challenge decreased (PLPS < 0.05) eggshell strength, eggshell thickness, albumen height and Haugh unit, while dietary 25OHD supplementation increased eggshell strength and eggshell thickness (P25OHD < 0.05). The serum proinflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], endotoxin and diamine oxidase (DAO) levels were higher in layers under LPS challenge (PLPS < 0.05); whereas the dietary addition of 25OHD were shown to decrease (P25OHD < 0.05) serum IL-1β and IL-6 concentration irrespective of LPS challenge and led to a higher serum 25OHD level and a reduction in endotoxin concentration in layers under LPS challenge (PInteraction < 0.05). The layers under LPS challenge had higher crypt depth and lower villus height/crypt depth (V/C) ratio in duodenum and jejunum (PLPS < 0.05), while feeding 25OHD were shown to have decreasing effect on crypt depth and increasing effect V/C ratio in layers under LPS challenge (PInteraction < 0.05). Layers under LPS challenge had lower mRNA expression of intestinal barrier associated proteins (claudin-1 and mucin-1) (PLPS < 0.05), while the addition of 25OHD up-regulated claudin-1 and mucin-1 expression (Pinteraction < 0.05). Lower antioxidant enzymes activities, including superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), glutathione peroxidase (GPx) and higher malondialdehyde (MDA) content in jejunum were found in layers challenged with LPS (P25OHD < 0.05). The effect of 25OHD reversed the effect of LPS on SOD, T-AOC, and MDA content (PInteraction< 0.05). These results suggest that supplementing 80 µg/kg 25OHD in diets may elevate laying performance and egg quality through the improvement of intestinal barrier function, antioxidant capacity, and decreased the proinflammatory cytokines levels in laying hens with Escherichia coli LPS challenge.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Xuan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
26
|
Ye J, Yang H, Hu W, Tang K, Liu A, Bi S. Changed cecal microbiota involved in growth depression of broiler chickens induced by immune stress. Poult Sci 2023; 102:102598. [PMID: 36913756 PMCID: PMC10023976 DOI: 10.1016/j.psj.2023.102598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
A previous study identified genes and metabolites associated with amino acid metabolism, glycerophospholipid metabolism, and inflammatory response in the liver of broilers with immune stress. The present research was designed to investigate the effect of immune stress on the cecal microbiome in broilers. In addition, the correlation between altered microbiota and liver gene expression, the correlation between altered microbiota and serum metabolites were compared using the Spearman correlation coefficients. Eighty broiler chicks were randomly assigned to 2 groups with 4 replicate pens per group and 10 birds per pen. The model broilers were intraperitoneally injected of 250 µg/kg LPS at 12, 14, 33, and 35 d of age to induce immunological stress. Cecal contents were taken after the experiment and kept at -80°C for 16S rDNA gene sequencing. Then the Pearson's correlation between gut microbiome and liver transcriptome, between gut microbiome and serum metabolites were calculated using R software. The results showed that immune stress significantly changed microbiota composition at different taxonomic levels. KEGG pathways analysis suggested that these gut microbiota were mainly involved in biosynthesis of ansamycins, glycan degradation, D-glutamine and D-glutamate metabolism, valine, leucine, and isoleucine biosynthesis and biosynthesis of vancomycin group antibiotics. Moreover, immune stress increased the activities of metabolism of cofactors and vitamins, as well as decreased the ability of energy metabolism and digestive system. Pearson's correlation analysis identified several bacteria were positively correlated with the gene expression while a few of bacteria were negatively correlated with the gene expression. The results identified potential microbiota involvement in growth depression mediated by immune stress and provided strategies such as supplement of probiotic for alleviating immune stress in broiler chickens.
Collapse
Affiliation(s)
- Jixuan Ye
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, China
| | - Huaao Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, China
| | - Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, China
| | - Keyi Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Anfang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, China.
| |
Collapse
|
27
|
Yuan P, Xu H, Ma Y, Niu J, Liu Y, Huang L, Jiang S, Jiao N, Yuan X, Yang W, Li Y. Effects of dietary Galla Chinensis tannin supplementation on immune function and liver health in broiler chickens challenged with lipopolysaccharide. Front Vet Sci 2023; 10:1126911. [PMID: 36865438 PMCID: PMC9974168 DOI: 10.3389/fvets.2023.1126911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Herein, Galla Chinensis tannin (GCT) was examined for its influence on preventing lipopolysaccharide (LPS)-induced liver damage in broiler chickens. Approximately 486 one-day-old healthy broilers were randomly allocated to 3 treatment groups (control, LPS, and LPS + GCT). The control and LPS groups were fed a basal diet and the LPS+GCT group was fed the basal diet supplemented with 300 mg/kg GCT. LPS was intraperitoneally injected (1 mg/kg body weight BW) in broilers in the LPS and LPS+GCT groups at 17, 19, and 21 days of age. The results manifested that dietary GCT addition attenuated LPS-induced deleterious effects on serum parameters and significantly increased serum immunoglobulin and complement C3 concentrations relative to the control and LPS groups. Dietary supplementation of GCT inhibited LPS-induced increase in broiler hepatic inflammatory cytokines, caspases activities, and TLR4/NF-κB pathway-related gene mRNA expression. Therefore, 300 mg/kg GCT addition to the diet improved the immune function of broilers and inhibit liver inflammation by blocking the TLR4/NF-κB pathway. Our findings provide support for the application of GCT in poultry production.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Haitao Xu
- Animal Husbandry Development Center of Changyi City, Weifang, China
| | - Yuanfei Ma
- Agricultural and Rural Comprehensive Service Center of Bincheng District, Binzhou, China
| | - Jiaxing Niu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yang Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China,*Correspondence: Weiren Yang ✉
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China,Yang Li ✉
| |
Collapse
|
28
|
Effects of Glyceryl Monolaurate on Production Performance, Egg Quality, Oviduct Cytokines and Intestinal Microflora of 66 Weeks Old Laying Hens. Animals (Basel) 2023; 13:ani13020215. [PMID: 36670755 PMCID: PMC9855180 DOI: 10.3390/ani13020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
The principal purpose of this research was to study the effects of glycerol monolaurate (GML) on the production performance; egg quality; health state of the oviduct, ovary and ileum; and gut microbiota of laying hens in the later stage. The laying hens were randomly assigned to two groups: a control group and an experiment group, for which 1000 mg/kg of GML was added to a control diet. The results showed that GML increased the laying rate, average egg weight, albumen height, yolk color and Haugh unit and decreased the feed conversion ratio and defective eggs (p < 0.05). GML increased the intestinal villi height and the ratio of villus height to crypt depth (p < 0.05). Moreover, GML improved the contents of cytokines in the oviduct, ovary and ileum mucosa; ameliorated the expression of TLR2, TLR4, MyD88, IL-4, IL-1β and TNF-α; and increased the expression of Occludin and Muc-2 in the ileal mucosa. The supplementation of GML increased the volatile fatty acids in the cecal contents, such as acetic acid and propionic acid, and up-regulated Bacteroides (p < 0.01) and Alistipes (p < 0.05) richness in the cecal contents. In summary, GML improved production performance, egg quality and immunity; ameliorated the health status of the oviduct, ovary and ileum; enhanced the intestinal barrier function; improved the content of intestinal volatile fatty acids; and regulated the abundance of cecal flora.
Collapse
|
29
|
Xie Z, Yu G, Yun Y, Zhang X, Shen M, Jia M, Li A, Zhang H, Wang T, Zhang J, Zhang L. Effects of bamboo leaf extract on energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. J Anim Sci 2023; 101:skac391. [PMID: 36440554 PMCID: PMC9833010 DOI: 10.1093/jas/skac391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The present study was carried out to investigate the effects of bamboo leaf extract (BLE) on energy metabolism, antioxidant capacity, and biogenesis of broilers' small intestine mitochondria. A total of 384 one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with six replicates each for 42 d. The control group was fed a basal diet, whereas the BLE1, BLE2, and BLE3 groups consumed basal diets with 1.0, 2.0, and 4.0 g/kg of BLE, respectively. Some markers of mitochondrial energy metabolism including isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase and some markers of redox system including total superoxide dismutase, malondialdehyde, and glutathione were measured by commercial colorimetric kits. Mitochondrial and cellular antioxidant genes, mitochondrial biogenesis-related genes, and mitochondrial DNA copy number were measured by quantitative real-time-polymerase chain reaction (qRT-PCR). Data were analyzed using the SPSS 19.0, and differences were considered as significant at P < 0.05. BLE supplementation linearly increased jejunal mitochondrial isocitrate dehydrogenase (P < 0.05) and total superoxide dismutase (P < 0.05) activity. The ileal manganese superoxide dismutase mRNA expression was linearly affected by increased dietary BLE supplementation (P < 0.05). Increasing BLE supplementation linearly increased jejunal sirtuin 1 (P < 0.05) and nuclear respiratory factor 1 (P < 0.05) mRNA expression. Linear (P < 0.05) and quadratic (P < 0.05) responses of the ileal nuclear respiratory factor 2 mRNA expression occurred with increased dietary BLE levels. In conclusion, BLE supplementation was beneficial to the energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. The dose of 4.0 g/kg BLE demonstrated the best effects.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Minghui Jia
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Anqi Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
30
|
Stevioside attenuates osteoarthritis via regulating Nrf2/HO-1/NF-κB pathway. J Orthop Translat 2023; 38:190-202. [DOI: 10.1016/j.jot.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
|
31
|
Dietary supplementation with anthocyanin attenuates lipopolysaccharide-induced intestinal damage through antioxidant effects in yellow-feathered broiler chicks. Poult Sci 2022; 102:102325. [PMID: 36566655 PMCID: PMC9801212 DOI: 10.1016/j.psj.2022.102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigated the protective effects of anthocyanin (AC) supplementation on lipopolysaccharide (LPS)-challenged yellow-feathered broiler chicks. A total of 480 1-d female broiler chicks were randomly assigned to 4 treatment groups: basal diet (CON), basal diet + LPS-challenge (LPS), supplementation with 100 or 400 mg/kg AC + LPS-challenge (AC100, AC400). On d 17 and d 19, birds in LPS, AC100 and AC400 received an intramuscular dose of LPS, while birds in CON received saline. The result showed that (1) LPS injection significantly decreased (P < 0.05) body weight on d 21 and average daily gain of broiler chicks from 1 to 21 days of age, and supplementation with 100 mg/kg AC increased (P < 0.05) those of LPS-challenged broilers. (2) There were no differences among the treatments (P > 0.05) in relative weights of immune organs. (3) Supplementation with AC (AC100 and AC400) increased (P < 0.05) the jejunal villus height and villus height/crypt depth ratio (AC100) of LPS-challenged birds. Challenge with LPS decreased the relative expression of OCLN (Occludin), ZO-1, JAM2, and MUC2 in jejunal mucosa of broilers, and supplementation with AC offset the relative expression of ZO-1, JAM2 (AC100 and AC400), and OCLN (AC400) in LPS-injected broilers. (4) LPS-induced increase in the malondialdehyde (MDA) concentration and decreases in activity of total superoxide dismutase (T-SOD), and expression of SOD1, CAT and GPX in jejunal mucosa, were attenuated by dietary AC supplementation. In conclusion, in yellow-feathered broiler chicks, dietary supplementation with AC alleviated LPS-induced declined growth performance and mucosal damage of the intestine through antioxidant effects.
Collapse
|
32
|
Wang Q, Niu J, Liu Y, Jiao N, Huang L, Jiang S, Yan L, Yang W, Li Y. Supplementation of Paraformic Acid as a Substitute for Antibiotics in the Diet Improves Growth Performance and Liver Health in Broiler Chickens. Animals (Basel) 2022; 12:ani12202825. [PMID: 36290210 PMCID: PMC9597723 DOI: 10.3390/ani12202825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The current study aimed to explore the effects of supplementing paraformic acid (PFA) into broilers’ diet on growth performance, inflammatory responses, and liver protection. A total of 567 healthy one-day-old broilers were used in a 42-d study, and they were randomized into three groups. Broilers were fed a basal diet (CON group) or the basal diet supplemented with either 50 mg/kg aureomycin (AB group) or 1000 mg/kg PFA (PFA group). The results showed that the PFA and AB groups had a higher feed conversion rate than the CON group from day 21 to 42 (p < 0.05). Dietary PFA or aureomycin supplementation decreased serum levels of interleukin (IL)-1β, IL-6, IL-10, alanine transaminase, diamine oxidase, and D-lactate, and significantly increased serum concentrations of immunoglobulin (Ig) A, IgM, and complement C4 (p < 0.05). Moreover, dietary PFA or aureomycin supplementation decreased hepatic levels of caspase-1, NOD-like receptor family pyrin domain containing 3 (NLRP3), tumor necrosis factor-alpha, IL-6, and IL-18, as well as NF-κB mRNA expression (p < 0.05). Above all, PFA supplementation into the broilers’ diet improved growth performance, inhibited inflammatory responses, and benefited liver protection. The protective effects of PFA on the liver might be related to inhibition of caspase-1-induced pyroptosis via inactivating the NF-κB/NLRP3 inflammasome axis in broiler chickens.
Collapse
Affiliation(s)
- Qinjin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- Shandong Wonong Agro-Tech Group Co., Ltd., Changning Street 118#, Weifang 261200, China
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Lei Yan
- Shandong New Hope Liuhe Group Co., Ltd., Jiudongshui Road 592-26#, Qingdao 266100, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- Correspondence: (W.Y.); (Y.L.)
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- Correspondence: (W.Y.); (Y.L.)
| |
Collapse
|
33
|
Maternal stevioside supplementation improves intestinal immune function of chicken offspring potentially via modulating gut microbiota and down-regulating the promoter methylation level of suppressor of cytokine signaling 1 (SOCS1). ANIMAL NUTRITION 2022; 10:329-346. [PMID: 35919247 PMCID: PMC9307571 DOI: 10.1016/j.aninu.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/18/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
The intestinal immune function of chickens is limited during the early growing stage. Maternal nutritional intervention has been suggested to affect the innate immunity of offspring. The present study aimed to investigate the effects of maternal stevioside supplementation on the intestinal immune function of chicken offspring. A total of 120 Jinmao yellow-feathered breeder hens were fed a basal diet or a diet supplemented with 250 mg/kg stevioside for 5 weeks. During the last week, 200 breeding eggs from each group were collected for incubation. After hatching, 80 male offspring (40 chickens from each group) were randomly selected and fed the same basal diet for 28 d. In addition, 90 well-shaped fertile eggs of non-treated breeder hens were incubated for the in ovo injection experiment. Steviol dissolved in 20% glycerol was injected at 7 d of incubation. The results showed that maternal stevioside supplementation could improve embryonic development, jejunal integrity and proliferation in the jejunal crypt (P < 0.05). Maternal stevioside supplementation could also increase the innate transcription levels of cytokines and endotoxin tolerance-related factors in the jejunum of chicken offspring (P < 0.05). At 28 d of age, the offspring following maternal stevioside supplementation exhibited higher jejunal secretory immunoglobulin A and serum interferons levels (P < 0.05). A higher abundance of Lactobacillales induced by maternal stevioside supplementation was positively correlated with intestinal immune-related factors (P < 0.05). The in ovo injection with steviol did not alter either embryonic development or intestinal immune function of hatching chickens (P > 0.05). Furthermore, maternal stevioside supplementation could induce hypo-methylation on the promoter region of suppressor of cytokine signaling 1 (SOCS1). In conclusion, maternal stevioside supplementation could improve the intestinal immune function of chicken offspring potentially via modulating the gut microbiota and down-regulating the promoter methylation level of SOCS1.
Collapse
|
34
|
Kong L, Wang Z, Xiao C, Zhu Q, Song Z. Glycerol monolaurate attenuated immunological stress and intestinal mucosal injury by regulating the gut microbiota and activating AMPK/Nrf2 signaling pathway in lipopolysaccharide-challenged broilers. ANIMAL NUTRITION 2022; 10:347-359. [PMID: 35919246 PMCID: PMC9307562 DOI: 10.1016/j.aninu.2022.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
This study was conducted to investigate the effects of glycerol monolaurate (GML) on lipopolysaccharide (LPS)-induced immunological stress and intestinal mucosal injury in broilers and its underlying mechanisms. A total of 144 one-d-old Arbor Acres broilers were allocated to a 2 × 2 factorial arrangement involving dietary treatment (0 or 1,200 mg/kg dietary GML) and LPS challenge (injected with saline or Escherichia coli LPS on d 16, 18, and 20). Samples were collected on d 21. The results revealed that dietary GML augmented serum immunoglobulin A (P = 0.009) and immunoglobulin G (P < 0.001) levels in challenged birds. Dietary GML normalized LPS-induced variations in serum interleukin-6, interferon-gamma, and LPS levels (P < 0.05), jejunal villus height (P = 0.030), and gene expression of interleukin-6, macrophage inflammatory protein-3 alpha, Toll-like receptor 4, nuclear factor kappa-B, caspase-1, tight junction proteins, adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and superoxide dismutase-1 (P < 0.05). GML supplementation ameliorated LPS-induced peroxidation by reducing malondialdehyde content and increasing antioxidant enzyme activity (P < 0.05). Dietary GML enhanced the abundances of Anaerostipes, Pseudoflavonifractor, and Gordonibacter and reduced the proportion of Phascolarctobacterium in challenged birds. Dietary GML was positively correlated with alterations in antioxidant enzyme activities and AMPKα1, Nrf2, and zonula occludens-1 expressions. The genera Anaerostipes, Lachnospira, Gordonibacter, Lachnospira, Marvinbryantia, Peptococcus, and Pseudoflavonifractor were linked to attenuated inflammation and improved antioxidant capacity of challenged birds. In conclusion, dietary GML alleviated LPS-induced immunological stress and intestinal injury of broilers by suppressing inflammation and oxidative stress. Dietary GML regulated cecal microbiota and activated the AMPK/Nrf2 pathway in LPS-challenged broilers.
Collapse
|
35
|
Chitosan Oligosaccharide Attenuates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction through Suppressing the Inflammatory Response and Oxidative Stress in Mice. Antioxidants (Basel) 2022; 11:antiox11071384. [PMID: 35883875 PMCID: PMC9312058 DOI: 10.3390/antiox11071384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate the protective effect of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced intestinal injury. The results demonstrated that COS improved the mucosal morphology of the jejunum and colon in LPS-challenged mice. COS alleviated the LPS-induced down-regulation of tight junction protein expressions and reduction of goblet cells number and mucin expression. The mRNA expressions of anti-microbial peptides secreted by the intestinal cells were also up-regulated by COS. Additionally, COS decreased pro-inflammatory cytokine production and neutrophil recruitment in the jejunum and colon of LPS-treated mice. COS ameliorated intestinal oxidative stress through up-regulating the mRNA expressions of nuclear factor E2-related factor 2 and downstream antioxidant enzymes genes. Correlation analysis indicated that the beneficial effects of COS on intestinal barrier function were associated with its anti-inflammatory activities and antioxidant capacity. Our study provides evidence for the application of COS to the prevention of intestinal barrier dysfunction caused by the stress of a LPS challenge.
Collapse
|
36
|
Zhou J, Hou P, Yao Y, Yue J, Zhang Q, Yi L, Mi M. Dihydromyricetin Improves High-Fat Diet-Induced Hyperglycemia through ILC3 Activation via a SIRT3-Dependent Mechanism. Mol Nutr Food Res 2022; 66:e2101093. [PMID: 35635431 DOI: 10.1002/mnfr.202101093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Previous studies indicate that dihydromyricetin (DHM) effectively improved glucose homeostasis and alleviated insulin resistance in population-intervened trials, yet the underlying mechanism remains obscure. METHODS AND RESULTS Wild-type male mice and recombinase activating gene 1(Rag1)-/- mice (lacking adaptive immunity lymphocytes) are fed with control, high-fat diet (HFD), or HFD+DHM diets for 8 weeks. DHM effectively protects HFD feeding mice against hyperglycemia by promoting group 3 innate lymphoid cells (ILC3s) cells proliferation and interleukin 22 (IL-22) production. Furthermore, IL-22 secretion induced by DHM increases the expression levels of the tight junction (TJs) molecules to protect the intestinal barrier integrity, thereby decreasing the level of lipopolysaccharides (LPS), an endotoxin that is involved in the regulation of chronic tissue inflammation and insulin resistance. In addition, silent mating-type information regulation 2 homolog 3 (SIRT3) deficiency results in more serious obesity and intestinal barrier damage following HFD feeding and abolished DHM-mediated increase in IL-22 expression levels of ILC3 cells in SIRT3 knockout (SIRT3KO) mice. DHM reduces metabolic stress and enhances mitochondrial respiratory capacity to promote cell proliferation and IL-22 secretion by activating SIRT3 in ILC3 cells CONCLUSIONS: DHM improves IL-22 production of ILC3 cells and subsequently inhibits intestinal barrier dysfunction to alleviate hyperglycemia partially mediated by SIRT3.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yu Yao
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jing Yue
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
37
|
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022; 12:ani12070909. [PMID: 35405897 PMCID: PMC8996973 DOI: 10.3390/ani12070909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune stress is an important stressor in domestic animals that leads to decreased feed intake, slow growth, and reduced disease resistance of pigs and poultry. Especially in high-density animal feeding conditions, the risk factor of immune stress is extremely high, as they are easily harmed by pathogens, and frequent vaccinations are required to enhance the immunity function of the animals. This review mainly describes the causes, mechanisms of immune stress and its prevention and treatment measures. This provides a theoretical basis for further research and development of safe and efficient prevention and control measures for immune stress in animals. Abstract Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.
Collapse
Affiliation(s)
- Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yuexia Ding
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
| | - Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
- Correspondence:
| |
Collapse
|
38
|
Kasti AN, Nikolaki MD, Synodinou KD, Katsas KN, Petsis K, Lambrinou S, Pyrousis IA, Triantafyllou K. The Effects of Stevia Consumption on Gut Bacteria: Friend or Foe? Microorganisms 2022; 10:744. [PMID: 35456796 PMCID: PMC9028423 DOI: 10.3390/microorganisms10040744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Stevia, a zero-calorie sugar substitute, is recognized as safe by the Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA). In vitro and in vivo studies showed that stevia has antiglycemic action and antioxidant effects in adipose tissue and the vascular wall, reduces blood pressure levels and hepatic steatosis, stabilizes the atherosclerotic plaque, and ameliorates liver and kidney damage. The metabolism of steviol glycosides is dependent upon gut microbiota, which breaks down glycosides into steviol that can be absorbed by the host. In this review, we elucidated the effects of stevia's consumption on the host's gut microbiota. Due to the lack of randomized clinical trials in humans, we included in vitro using certain microbial strains and in vivo in laboratory animal studies. Results indicated that stevia consumption has a potential benefit on the microbiome's alpha diversity. Alterations in the colonic microenvironment may depend on the amount and frequency of stevia intake, as well as on the simultaneous consumption of other dietary components. The anti-inflammatory properties of stevioside were confirmed in vitro by decreasing TNF-α, IL-1β, IL-6 synthesis and inhibiting of NF-κB transcription factor, and in vivo by inhibiting NF-κB and MAPK in laboratory animals.
Collapse
Affiliation(s)
- Arezina N. Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Kalliopi D. Synodinou
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Konstantinos N. Katsas
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
- Institute of Preventive Medicine Environmental and Occupational Health Prolepsis, 15125 Athens, Greece
| | - Konstantinos Petsis
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Sophia Lambrinou
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Ioannis A. Pyrousis
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
- Medical School, University of Patras, 26504 Patras, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
39
|
Stevioside Enhances the Anti-Adipogenic Effect and β-Oxidation by Activating AMPK in 3T3-L1 Cells and Epididymal Adipose Tissues of db/db Mice. Cells 2022; 11:cells11071076. [PMID: 35406641 PMCID: PMC8997985 DOI: 10.3390/cells11071076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Stevioside, the primary sweetener in stevia, is a glycoside with numerous beneficial biological activities. However, its anti-adipogenic effects on tissue differentiation and adipose tissues remain to be thoroughly investigated. In this study, the anti-adipogenic effects of stevioside during the differentiation of 3T3-L1 cells and epididymal adipose tissues of db/db mice were investigated by measuring the lipid droplets stained with Oil Red O and an immunoblot assay. Immunoblot analysis revealed that stevioside downregulated the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), sterol regulatory element-binding protein-1c (SREBP-1c), CCAAT/enhancer-binding protein alpha (C/EBPα), and fatty acid synthase (FAS). Additionally, the protein expression of carnitine palmitoyltransferase 1 (CPT1), silent mating type information regulation 2 homolog 1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) increased following treatment with stevioside. Furthermore, stevioside increased the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), both in vitro and in vivo. The activity of AMPK in stevioside-treated 3T3-L1 cells was further confirmed using agonists and antagonists of AMPK signaling. Our data indicate that stevioside ameliorates anti-adipogenic effects and promotes β-oxidation in adipocytes by activating AMPK-mediated signaling. The results of this study clearly demonstrated the inhibitory effect of stevioside on the differentiation of adipocytes and the reduction of lipid accumulation in the epididymal adipose tissues of db/db mice.
Collapse
|
40
|
Wang H, Yang F, Song ZW, Shao HT, Bai DY, Ma YB, Kong T, Yang F. The influence of immune stress induced by Escherichia coli lipopolysaccharide on the pharmacokinetics of danofloxacin in broilers. Poult Sci 2022; 101:101629. [PMID: 34986447 PMCID: PMC8743212 DOI: 10.1016/j.psj.2021.101629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to determine whether the challenge from Escherichia coli (E. coli) lipopolysaccharide (LPS) affects the pharmacokinetics of danofloxacin in broilers. Twenty 1-day-old Arbor Acres (AA) broilers were equally and randomly divided into 2 groups. When the chickens were 23, 25, 27, and 29 days old, E. coli LPS (1 mL; 0.5 mg/kg body weight [BW]) and sterile saline (1 mL) were intraperitoneally injected into the two groups. After the last injection, danofloxacin was given to all chickens by gavage at the dose of 5 mg/kg BW. Then serum and plasma samples at each time point were collected through the wing vein. Danofloxacin concentrations in plasma were detected through the high-performance liquid chromatography (HPLC) method and subjected to noncompartmental analysis using Phoenix software. The levels of chicken interleukin-1β (IL-1β) and corticosterone (CORT) in serum were measured by the Enzyme-linked immunosorbent assay (ELISA) kit. In addition, after the collection of plasma or serum samples, 7 chickens (31 days of age) in each group were killed to calculate the organ indices. Compared with the control group, the challenge of LPS significantly decreased the parameters of AUC0-∞, Cmax, and t1/2λz and increased the parameters of Tmax and λz. Additionally, in the LPS group, the absorption time of danofloxacin was prolonged; however, the elimination was accelerated, which resulted in reduced internal exposure.
Collapse
Affiliation(s)
- Han Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhe-Wen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Hao-Tian Shao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Dong-Ying Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan-Bo Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Tao Kong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
41
|
Gao J, Wang R, Liu J, Wang W, Chen Y, Cai W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult Sci 2022; 101:101412. [PMID: 34920387 PMCID: PMC8683594 DOI: 10.1016/j.psj.2021.101412] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we prepared a kind of novel microecologics, namely Chinese medicine-probiotic compound microecological preparation (CPCMP), which is composed of 5 traditional Chinese medicine herbs (Galla Chinensis, Andrographis paniculata, Arctii Fructus, Glycyrrhizae Radix, and Schizonepeta tenuifolia) fermented by Aspergillus niger and a kind of compound probiotics (Lactobacillus plantarum A37 and L. plantarum MIII). The effects of the CPCMP in broilers on growth performance, serum parameters, immune function, and intestinal health were investigated. A total of 450 one-day-old male Arbor Acres broilers were randomly divided into 6 treatment groups with 5 replicates, 15 birds per replicate. Treatments consisted of: blank control, CPCMP, positive control, commercial CPCMP, traditional Chinese medicine, and probiotics groups, which were birds fed with basal diet supplemented with no extra additives, 0.2% CPCMP, 0.0035% chlortetracycline, 0.2% commercially available CPCMP, 0.2% fermented traditional Chinese medicines, and 0.2% compound probiotics, respectively. CPCMP obviously increased the average body weight and average daily gain (P < 0.05, compared with any other group) and decreased the feed:gain ratio of broilers (P < 0.05, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Moreover, it significantly increased glutathione peroxidase and secretory immunoglobulin A levels and spleen/bursa indices (P < 0.05 for all, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Villus heights in duodenum, jejunum, and ileum were also elevated by CPCMP treatment (P < 0.05, compared with any other group). Furthermore, CPCMP substantially increased jejunal mRNA levels of occludin and zonula occludens-1 (P < 0.05, compared with the blank control, positive control, or probiotics group) and facilitated the growth and colonization of beneficial cecal bacteria, such as Olsenella, Barnesiella, and Lactobacillus. Overall results show that the CPCMP prepared in our work contributes to improving growth performance, serum parameters, immune function, and intestinal health of broilers and exerts synergistic effects of traditional Chinese medicines and probiotics to some extent. Our findings suggest that CPCMP is a promising antibiotic substitute in the livestock and poultry industry in the future.
Collapse
Affiliation(s)
- Jin Gao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Rui Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jingxuan Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
42
|
ietary curcumin supplementation ameliorates placental inflammation in rats with intra-uterine growth retardation by inhibiting the NF-κB signaling pathway. J Nutr Biochem 2022; 104:108973. [DOI: 10.1016/j.jnutbio.2022.108973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
|
43
|
Supplementation with Exogenous Catalase from Penicillium notatum in the Diet Ameliorates Lipopolysaccharide-Induced Intestinal Oxidative Damage through Affecting Intestinal Antioxidant Capacity and Microbiota in Weaned Pigs. Microbiol Spectr 2021; 9:e0065421. [PMID: 34908474 PMCID: PMC8672903 DOI: 10.1128/spectrum.00654-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to explore the protective effects of exogenous catalase (CAT) from microorganisms against lipopolysaccharide (LPS)-induced intestinal injury and its molecular mechanism in weaned pigs. Fifty-four weaned pigs (21 days of age) were randomly allocated to CON, LPS, and LPS+CAT groups. The pigs in CON and LPS groups were fed a basal diet, whereas the pigs in LPS+CAT group fed the basal diet with 2,000 mg/kg CAT supplementation for 35 days. On day 36, six pigs were selected from each group, and LPS and LPS+CAT groups were administered with LPS (50 μg/kg body weight). Meanwhile, CON group was injected with an equivalent amount of sterile saline. Results showed that LPS administration damaged intestinal mucosa morphology and barrier. However, CAT supplementation alleviated the deleterious effects caused by LPS challenge through enhancing intestinal antioxidant capacity which was benefited to decrease proinflammatory cytokines concentrations and suppress enterocyte apoptosis. Besides, LPS-induced gut microbiota dysbiosis was significantly shifted by CAT through decreasing mainly Streptococcus and Escherichia-Shigella. Our study suggested that dietary supplemented with 2,000 mg/kg catalase was conducive to improve intestinal development and protect against LPS-induced intestinal mucosa injury via enhancing intestinal antioxidant capacity and altering microbiota composition in weaned pigs. IMPORTANCE Exogenous CAT derived from microorganisms has been widely used in food, medicine, and other industries. Recent study also found that exogenous CAT supplementation could improve growth performance and antioxidant capacity of weaned pigs. However, it is still unknown that whether dietary exogenous CAT supplementation can provide a defense against the oxidative stress-induced intestinal damage in weaned pigs. Our current study suggested that dietary supplemented with 2,000 mg/kg CAT was conducive to improve intestinal development and protect against LPS-induced intestinal mucosa injury via enhancing intestinal antioxidant capacity and altering microbiota composition in weaned pigs. Moreover, this study will also assist in developing of CAT produced by microorganisms to attenuate various oxidative stress-induced injury or diseases.
Collapse
|
44
|
Bisdemethoxycurcumin Protects Small Intestine from Lipopolysaccharide-Induced Mitochondrial Dysfunction via Activating Mitochondrial Antioxidant Systems and Mitochondrial Biogenesis in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9927864. [PMID: 34795844 PMCID: PMC8595021 DOI: 10.1155/2021/9927864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Bisdemethoxycurcumin is one of the three curcuminoids of turmeric and exhibits good antioxidant activity in animal models. This study is aimed at investigating the effect of bisdemethoxycurcumin on small intestinal mitochondrial dysfunction in lipopolysaccharide- (LPS-) treated broilers, especially on the mitochondrial thioredoxin 2 system and mitochondrial biogenesis. A total of 320 broiler chickens were randomly assigned into four experimental diets using a 2 × 2 factorial arrangement with diet (0 and 150 mg/kg bisdemethoxycurcumin supplementation) and stress (saline or LPS challenge) for 20 days. Broilers received a dose of LPS (1 mg/kg body weight) or sterile saline intraperitoneally on days 16, 18, and 20 of the trial. Bisdemethoxycurcumin mitigated the mitochondrial dysfunction of jejunum and ileum induced by LPS, as evident by the reduced reactive oxygen species levels and the increased mitochondrial membrane potential. Bisdemethoxycurcumin partially reversed the decrease in the mitochondrial DNA copy number and the depletion of ATP levels. Bisdemethoxycurcumin activated the mitochondrial antioxidant response, including the prevention of lipid peroxidation, enhancement of manganese superoxide dismutase activity, and the upregulation of the mitochondrial glutaredoxin 5 and thioredoxin 2 system. The enhanced mitochondrial respiratory complex activities in jejunum and ileum were also attributed to bisdemethoxycurcumin treatment. In addition, bisdemethoxycurcumin induced mitochondrial biogenesis via transcriptional regulation of proliferator-activated receptor-gamma coactivator-1alpha pathway. In conclusion, our results demonstrated the potential of bisdemethoxycurcumin to attenuate small intestinal mitochondrial dysfunction, which might be mediated via activating the mitochondrial antioxidant system and mitochondrial biogenesis in LPS-treated broilers.
Collapse
|
45
|
Zhang J, Yang Y, Han H, Zhang L, Wang T. Bisdemethoxycurcumin attenuates lipopolysaccharide-induced intestinal damage through improving barrier integrity, suppressing inflammation, and modulating gut microbiota in broilers. J Anim Sci 2021; 99:6401757. [PMID: 34664650 DOI: 10.1093/jas/skab296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Bisdemethoxycurcumin has good antioxidant and anti-inflammatory effects and has been widely used as food and feed supplements in the form of curcuminoids. However, the beneficial effect of individual bisdemethoxycurcumin on preventing lipopolysaccharide (LPS)-induced inflamed intestinal damage is unclear. The present study aimed to investigate whether dietary bisdemethoxycurcumin supplementation could attenuate LPS-induced intestinal damage and alteration of cecal microbiota in broiler chickens. In total, 320 one-day-old male Arbor Acres broiler chickens with a similar weight were randomly divided into four treatments. The treatments were designed as a 2 × 2 factorial arrangement: basal diet (CON); 150 mg/kg bisdemethoxycurcumin diet (BUR); LPS challenge + basal diet (LPS); LPS challenge + 150 mg/kg bisdemethoxycurcumin diet (L-BUR). Results showed that dietary bisdemethoxycurcumin supplementation attenuated the LPS-induced decrease of average daily feed intake. LPS challenge compromised the intestinal morphology and disrupted the intestinal tight junction barrier. Dietary bisdemethoxycurcumin supplementation significantly increased villus length:crypt depth ratio and upregulated the mRNA expression of intestinal tight junction proteins. Moreover, a remarkably reduced mRNA expression of inflammatory mediators was observed following bisdemethoxycurcumin supplementation. The cecal microbiota analysis showed that bisdemethoxycurcumin supplementation increased the relative abundance of the genus Faecalibacterium while decreased the relative abundance of the genera Bacteroides and Subdoligranulum. In conclusion, dietary bisdemethoxycurcumin supplementation could counteract LPS-induced inflamed intestinal damage in broiler chickens by improving intestinal morphology, maintaining intestinal tight junction, downregulating pro-inflammatory mediators, and restoring cecal microbiota.
Collapse
Affiliation(s)
- Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxiang Yang
- Bluestar Adisseo Nanjing Co. Ltd., Nanjing, 210000, China
| | - Hongli Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
46
|
Kong L, Wang Z, Xiao C, Zhu Q, Song Z. Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota. Front Immunol 2021; 12:713485. [PMID: 34630388 PMCID: PMC8496679 DOI: 10.3389/fimmu.2021.713485] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate the impact of glycerol monolaurate (GML) on performance, immunity, intestinal barrier, and cecal microbiota in broiler chicks. A total of 360 one-day-old broilers (Arbor Acres) with an average weight of 45.7 g were randomly allocated to five dietary groups as follows: basal diet and basal diets complemented with 300, 600, 900, or 1200 mg/kg GML. Samples were collected at 7 and 14 days of age. Results revealed that feed intake increased (P < 0.05) after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased (P < 0.05) crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced (P < 0.05) interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased (P < 0.05) the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulate (P < 0.05) jejunal interleukin-1β and interferon-γ expression and increased (P < 0.05) the mRNA level of zonula occludens 1 and occludin. A reduced (P < 0.05) expression of toll-like receptor 4 and nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved (P < 0.05) microbial diversity, and increased (P < 0.05) the abundance of butyrate-producing bacteria. Spearman’s correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.
Collapse
Affiliation(s)
- Linglian Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Ageing, College of Life Sciences, Yantai University, Yantai, China
| | - Chuanpi Xiao
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Qidong Zhu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
47
|
Jiang J, Qi L, Wei Q, Shi F. Maternal stevioside supplementation ameliorates intestinal mucosal damage and modulates gut microbiota in chicken offspring challenged with lipopolysaccharide. Food Funct 2021; 12:6014-6028. [PMID: 34036963 DOI: 10.1039/d0fo02871a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our previous study showed that dietary stevioside supplementation could alleviate intestinal mucosal damage induced by lipopolysaccharide (LPS) through its anti-inflammatory and antioxidant effects in broiler chickens. However, it remains unknown whether feeding stevioside to breeder hens could exert similar biological functions in their offspring. The present study aimed to investigate whether maternal dietary stevioside supplementation could prevent LPS-induced intestinal mucosal damage and alteration of gut microbiota in chicken offspring. A total of 120 Jinmao yellow-feathered breeder hens were fed a basal diet (CON) or a 250 mg kg-1 stevioside-supplemented diet (STE) for 5 weeks before collecting their eggs. After hatching, 160 male offspring (80 chickens from each group) were randomly selected and divided into four treatment groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a stevioside-supplemented diet (STE); (3) the CON group challenged with LPS (LPS); and (4) the STE group challenged with LPS (LSTE). The results showed that maternal stevioside supplementation increased the hatching weight and improved the intestinal morphology. LPS challenge significantly decreased the terminal body weight and the concentrations of serum triglyceride (TG) and glucose (GLU) of the chicken offspring. Maternal stevioside supplementation protected against LPS-induced morphological damage, goblet cell impairment, intestinal apoptosis, and gene expression alteration. In addition, sequence analysis of 16S rRNA gene showed that maternal stevioside supplementation could prevent the impairment of bacterial diversity in LPS-challenged chicken offspring. Moreover, the increased abundance of Lactobacillus caused by maternal stevioside supplementation had a significant negative correlation with the expression of intestinal inflammatory cytokines. In conclusion, maternal stevioside supplementation could ameliorate intestinal mucosal damage and modulate gut microbiota in chicken offspring challenged with LPS.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
48
|
Novel multi-strain probiotics reduces Pasteurella multocida induced fowl cholera mortality in broilers. Sci Rep 2021; 11:8885. [PMID: 33903662 PMCID: PMC8076301 DOI: 10.1038/s41598-021-88299-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pasteurella multocida causes fowl cholera, a highly contagious poultry disease of global concern, causing significant ecological and economic challenges to the poultry industry each year. This study evaluated the effects of novel multi-strain probiotics consisting of Lactobacillus plantarum, L. fermentum, Pediococcus acidilactici, Enterococcus faecium and Saccharomyces cerevisiae on growth performance, intestinal microbiota, haemato-biochemical parameters and anti-inflammatory properties on broilers experimentally challenged with P. multocida. A total of 120 birds were fed with a basal diet supplemented with probiotics (108 CFU/kg) and then orally challenged with 108 CFU/mL of P. multocida. Probiotics supplementation significantly (P < 0.05) improved growth performance and feed efficiency as well as reducing (P < 0.05) the population of intestinal P. multocida, enterobacteria, and mortality. Haemato-biochemical parameters including total cholesterol, white blood cells (WBC), proteins, glucose, packed cell volume (PCV) and lymphocytes improved (P < 0.05) among probiotic fed birds when compared with the controls. Transcriptional profiles of anti-inflammatory genes including hypoxia inducible factor 1 alpha (HIF1A), tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) and prostaglandin E receptor 2 (PTGER2) in the intestinal mucosa were upregulated (P < 0.05) in probiotics fed birds. The dietary inclusion of the novel multi-strain probiotics improves growth performance, feed efficiency and intestinal health while attenuating inflammatory reaction, clinical signs and mortality associated with P. multocida infection in broilers.
Collapse
|
49
|
Molina-Barrios RM, Avilés-Trejo CR, Puentes-Mercado ME, Cedillo-Cobián JR, Hernández-Chavez JF. Effect of dietary stevia-based sweetener on body weight and humoral immune response of broiler chickens. Vet World 2021; 14:913-917. [PMID: 34083940 PMCID: PMC8167524 DOI: 10.14202/vetworld.2021.913-917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Aim: Steviol glycosides extracted from the leaves of Stevia rebaudiana Bertoni have been of much consideration recently because of their beneficial effects on health, raising the possibilities for improving farm animals’ health. Although some studies on stevia’s dietary effect on body weight gain are available, few studies have been conducted to evaluate stevioside supplementation on immune response in broilers. This experiment aimed to analyze how a stevia-based sweetener can affect broiler chickens’ growth performance and humoral response. Materials and Methods: In this experiment, one hundred and twenty 1-day-old Cobb-line broiler chicks fed with commercial starter/grower diets were included in three groups and supplemented with stevia-based sweetener at levels 0, 80, and 160 ppm, respectively. Chickens were weighed on day 0 and every 7 days for the next 6 weeks. Chicks were then immunized on days 10 and 24 with a Newcastle and infectious bronchitis vaccine and blood sampled on days 7, 24, and 35. Serologic assays were performed to detect specific antibody levels. Results: The body weight means and body weight gain on day 42 were found to be significantly higher in birds from the group fed with 80 ppm of stevia-based sweetener than those in the control group and slightly higher than those in the group supplemented with 160 ppm of stevia-based sweetener. Likewise, on day 35, antibodies against the Newcastle disease virus were higher in the treatment groups. Immune response to infectious bronchitis virus vaccination was not statistically different among the three groups through the experiment. Conclusion: Stevia-based sweetener at 80 ppm in commercial-based diets improved body weight gain and immune response in broiler chickens at the market age.
Collapse
Affiliation(s)
- Ramón Miguel Molina-Barrios
- Department of Agronomic and Veterinary Sciences, Technological Institute of Sonora, Ciudad Obregon, Sonora, Mexico
| | - Cielo Rubí Avilés-Trejo
- Department of Agronomic and Veterinary Sciences, Technological Institute of Sonora, Ciudad Obregon, Sonora, Mexico
| | | | | | | |
Collapse
|
50
|
Pirgozliev V, Kljak K, Whiting IM, Rose SP, Mansbridge SC, Enchev S, Atanasov A, Stringhini JH. Feeding dry stevia leaf (Stevia rebaudiana) or xylanase improves the hepatic antioxidative status of broiler chickens. Res Vet Sci 2021; 136:227-229. [PMID: 33689879 DOI: 10.1016/j.rvsc.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Four diets, formulated with and without stevia and with and without exogenous xylanase, following a 2 × 2 factorial design, were prepared. Each diet was fed ad libitum to birds in eight pens (three birds in each pen) in a randomised block design. It was found that birds fed xylanase grew faster, used the feed more efficiently and had an increased concentration of hepatic α-tocopherol and vitamin E concentrations (P < 0.05). Feeding stevia did not affect growth performance (P > 0.05), but increased hepatic CoQ10 (P = 0.05), lutein, zeaxanthin and total carotenoids (P < 0.001) concentrations. There were no dietary stevia by xylanase interactions (P > 0.05) for any of the studied variables. The results showed that alone, dietary stevia and dietary xylanase can improve the antioxidative status of birds through enhancing dietary antioxidant availability.
Collapse
Affiliation(s)
- Vasil Pirgozliev
- National Institute of Poultry Husbandry, Harper Adams University, Shropshire TF10 8NB, UK.
| | - Kristina Kljak
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Croatia
| | | | - Stephen Paul Rose
- National Institute of Poultry Husbandry, Harper Adams University, Shropshire TF10 8NB, UK
| | | | | | - Atanas Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|