1
|
Tava V, Reséndiz-Sharpe A, Vanhoffelen E, Saracchi M, Cortesi P, Lagrou K, Velde GV, Pasquali M. Fusarium musae Infection in Animal and Plant Hosts Confirms Its Cross-Kingdom Pathogenicity. J Fungi (Basel) 2025; 11:90. [PMID: 39997383 PMCID: PMC11856682 DOI: 10.3390/jof11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium musae is a pathogen belonging to the Fusarium fujikuroi species complex, isolated from both banana fruits and immunocompromised patients, therefore hypothesized to be a cross-kingdom pathogen. We aimed to characterize F. musae infection in plant and animal hosts to prove its cross-kingdom pathogenicity. Therefore, we developed two infection models, one in banana and one in Galleria mellonella larvae, as a human proxy for the investigation of cross-kingdom pathogenicity of F. musae, along with accurate disease indexes effective to differentiate infection degrees in animal and plant hosts. We tested a worldwide collection of F. musae strains isolated both from banana fruits and human patients, and we provided the first experimental proof of the ability of all strains of F. musae to cause significant disease in banana fruits, as well as in G. mellonella. Thereby, we confirmed that F. musae can be considered a cross-kingdom pathogen. We, thus, provide a solid basis and toolbox for the investigation of the host-pathogen interactions of F. musae with its hosts.
Collapse
Affiliation(s)
- Valeria Tava
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | | | - Eliane Vanhoffelen
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| |
Collapse
|
2
|
Boguś MI, Kaczmarek A, Wrońska AK, Drozdowski M, Siecińska L, Mokijewska E, Gołębiowski M. Morphological and Chemical Changes in the Hemolymph of the Wax Moth Galleria mellonella Infected by the Entomopathogenic Fungus Conidiobolus coronatus. Pathogens 2025; 14:38. [PMID: 39860999 PMCID: PMC11769398 DOI: 10.3390/pathogens14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies. The hemolymph of its larvae was examined after infection with the soil fungus Conidiobolus coronatus (Constantin) Batko 1964 (Entomophthorales). It was found that after one hour of contact with the fungus, the volume of the hemolymph increased while its total protein content decreased. In larvae with a high pathogen load, just before death, hemolymph volume decreased to nearly initial levels, while total protein content and synthesis (incorporation of 35S-labeled methionine) increased. The hemolymph polypeptide profile (SDS-PAGE followed by autoradiography) of infected insects was significantly different from that of healthy larvae. Hemocytes of infected larvae did not surround the fungal hyphae, although they encapsulated small foreign bodies (phase contrast microscopy). Infection had a negative effect on hemocytes, causing oenocyte and spherulocyte deformation, granulocyte degranulation, plasmatocyte vacuolization, and hemocyte disintegration. GC-MS analysis revealed the presence of 21 compounds in the hemolymph of control insects. C. coronatus infection caused the appearance of 5 fatty acids absent in healthy larvae (heptanoic, decanoic, adipic, suberic, tridecanoic), the disappearance of 4 compounds (monopalmitoylglycerol, monooleoylglycerol, monostearin, and cholesterol), and changes in the concentrations of 8 compounds. It remains an open question whether substances appearing in the hemolymph of infected insects are a product of the fungus or if they are released from the insect tissues damaged by the growing hyphae.
Collapse
Affiliation(s)
- Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.); (M.D.)
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland; (L.S.); (E.M.)
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.); (M.D.)
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.); (M.D.)
| | - Mikołaj Drozdowski
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.); (M.D.)
| | - Lena Siecińska
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland; (L.S.); (E.M.)
| | | | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| |
Collapse
|
3
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Sun LN, Meng JY, Wang Z, Lin SY, Shen J, Yan S. Research progress of aphid immunity system: Potential effective target for green pest management. INSECT SCIENCE 2024; 31:1662-1674. [PMID: 38415382 DOI: 10.1111/1744-7917.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Due to the absence of acquired immunity, insects primarily rely on their innate immune system to resist pathogenic microorganisms and parasitoids in natural habitats. This innate immune system can be classified into cellular immunity and humoral immunity. Cellular immunity is mediated by hemocytes, which perform phagocytosis, aggregation, and encapsulation to fight against invaders, whereas the humoral immunity primarily activates the immune signaling pathways and induces the generation of immune effectors. Existing studies have revealed that the hemipteran aphids lack some crucial immune genes compared to other insect species, indicating the different immune mechanisms in aphids. The current review summarizes the adverse impacts of pathogenic microorganisms and parasitoids on aphids, introduces the cellular and humoral immune systems in insects, and analyzes the differences between aphids and other insect species. Furthermore, our review also discussed the existing prospects and challenges in aphid immunity research, and proposed the potential application of immune genes in green pest management.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Yang Lin
- Pu'er Agricultural Science Research Institute, Pu'er, Yunnan Province, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Effect of Benzyl Alcohol on Main Defense System Components of Galleria mellonella (Lepidoptera). Int J Mol Sci 2024; 25:11209. [PMID: 39456990 PMCID: PMC11508370 DOI: 10.3390/ijms252011209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Benzyl alcohol (E1519) is an aromatic alcohol used in the pharmaceutical and food industry. It is used to protect food products against microorganisms during storage, as a flavoring in the production of chocolate and confectionery products, as an important ingredient in fragrance, and as a preservative in medical products. However, little is known of its effect on insects. The main aim of this study was to determine the influence of benzyl alcohol on the defense systems of the wax moth Galleria mellonella, i.e., its cuticular lipid composition and critical elements of its immune system. A gas chromatography/mass spectrometry (GC/MS) analysis found benzyl alcohol treatment to elicit significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles. Our findings indicate that benzyl alcohol treatment increased the levels of HSP70 and HSP90 and decreased those of HSF1, histamine, and cysteinyl leukotriene. Benzyl alcohol application also increased dismutase level in the hemolymph and lowered those of catalase and 8-OHdG. The treatment also had negative effects on G. mellonella hemocytes and a Sf9 cell line in vitro: 48-h treatment resulted in morphological changes, with the remaining cells being clearly spindle-shaped with numerous granules. The high insecticidal activity of compound and its lack of toxicity towards vertebrates suggest it could be an effective insecticide.
Collapse
Affiliation(s)
- Michalina Kazek
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, ul. Poleczki 19, 02-822 Warszawa, Poland;
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Anna K. Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland
| |
Collapse
|
6
|
Ratcliffe NA. Back to the future: Forgotten protocols for optimizing the isolation of arthropod haemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105223. [PMID: 38960294 DOI: 10.1016/j.dci.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Consideration is given to previous and more recent protocols for harvesting arthropod haemocytes from Galleria, Drosophila, mosquitoes, Limulus and crustaceans. The optimal harvesting of these cells is essential for meaningful studies of invertebrate immunity in vitro. The results of such experiments, however, have often been flawed due to a lack of understanding of the fragile nature of arthropod haemocytes on exposure to bacterial lipopolysaccharides, resulting in the aggregation and loss of cell types during haemolymph clotting. This article emphasizes that although there are similarities between mammalian neutrophils and arthropod haemocytes, the protocols required for the successful harvesting of these cells vary significantly. The various stages for the successful harvesting of arthropod haemocytes are described in detail and should provide invaluable advice to those requiring both high cell viability and recovery of the different cell types for subsequent experimentation.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Biology Institute, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP, UK.
| |
Collapse
|
7
|
Aamer NA, El-Moaty ZA, Augustyniak M, El-Samad LM, Hussein HS. Impacts of Combining Steinernema carpocapsae and Bracon hebetor Parasitism on Galleria mellonella Larvae. INSECTS 2024; 15:588. [PMID: 39194793 DOI: 10.3390/insects15080588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The greater wax moth, Galleria mellonella, is a significant pest in apiculture and a well-established model organism for immunological and ecotoxicological studies. This investigation explores the individual and combined effects of the ectoparasite Bracon hebetor (B.h.) and the entomopathogenic nematode Steinernema carpocapsae (S.c.) on G. mellonella larvae. We evaluated the activity of oxidative stress enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA) levels, cytochrome P450 activity, cell viability using Annexin V-FITC, DNA damage via comet assay, and larval morphology through scanning electron microscopy (SEM). Control larvae exhibited higher GPx and GST activities compared to those treated with B.h., S.c., or the B.h. + S.c. combination. Conversely, MDA levels displayed the opposite trend. SOD activity was reduced in the B.h. and S.c. groups but significantly higher in the combined treatment. Cytochrome P450 activity increased in response to parasitism by B. hebetor. The Annexin V-FITC assay revealed decreased cell viability in parasitized groups (B.h. 79.4%, S.c. 77.3%, B.h. + S.c. 70.1%) compared to controls. DNA damage analysis demonstrated significant differences between groups, and SEM observations confirmed severe cuticle abnormalities or malformations in G. mellonella larvae. These findings highlight the complex interactions between B. hebetor, S. carpocapsae, and their host, G. mellonella. Additionally, they illuminate the intricate physiological responses triggered within the host larvae.
Collapse
Affiliation(s)
- Neama A Aamer
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Zeinab A El-Moaty
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsaa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Hanaa S Hussein
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
8
|
Mendoza Barker M, Saeger S, Campuzano A, Yu JJ, Hung CY. Galleria mellonella Model of Coccidioidomycosis for Drug Susceptibility Tests and Virulence Factor Identification. J Fungi (Basel) 2024; 10:131. [PMID: 38392803 PMCID: PMC10890491 DOI: 10.3390/jof10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Coccidioidomycosis (CM) can manifest as respiratory and disseminated diseases that are caused by dimorphic fungal pathogens, such as Coccidioides species. The inhaled arthroconidia generated during the saprobic growth phase convert into multinucleated spherules in the lungs to complete the parasitic lifecycle. Research on coccidioidal virulence and pathogenesis primarily employs murine models typically associated with low lethal doses (LD100 < 100 spores). However, the Galleria model has recently garnered attention due to its immune system bearing both structural and functional similarities to the innate system of mammals. Our findings indicate that Coccidioides posadasii can convert and complete the parasitic cycle within the hemocoel of the Galleria larva. In Galleria, the LD100 is between 0.5 and 1.0 × 106 viable spores for the clinical isolate Coccidioides posadasii C735. Furthermore, we demonstrated the suitability of this model for in vivo antifungal susceptibility tests to validate the bioreactivity of newly discovered antifungals against Coccidioides. Additionally, we utilized this larva model to screen a Coccidioides posadasii mutant library showing attenuated virulence. Similarly, the identified attenuated coccidioidal mutants displayed a loss of virulence in a commonly used murine model of coccidioidomycosis. In this study, we demonstrated that Galleria larvae can be applied as a model for studying Coccidioides infection.
Collapse
Affiliation(s)
| | | | | | | | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.M.B.); (S.S.); (A.C.); (J.-J.Y.)
| |
Collapse
|
9
|
Gallorini M, Marinacci B, Pellegrini B, Cataldi A, Dindo ML, Carradori S, Grande R. Immunophenotyping of hemocytes from infected Galleria mellonella larvae as an innovative tool for immune profiling, infection studies and drug screening. Sci Rep 2024; 14:759. [PMID: 38191588 PMCID: PMC10774281 DOI: 10.1038/s41598-024-51316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval. In this context, G. mellonella larvae can be considered a valid option due to their greater ease of use and the absence of ethical rules. Furthermore, it has been demonstrated that the immune system of these invertebrates has similarity with the one of mammals, thus guaranteeing the reliability of this in vivo model, mainly in the microbiological field. To better develop the full potential of this model, we present a novel approach to characterize the hemocyte population from G. mellonella larvae and to highlight the immuno modulation upon infection and treatments. Our approach is based on the detection in isolated hemocytes from G. mellonella hemolymph of cell membrane markers typically expressed by human immune cells upon inflammation and infection, for instance CD14, CD44, CD80, CD163 and CD200. This method highlights the analogies between G. mellonella larvae and humans. Furthermore, we provide an innovative tool to perform pre-clinical evaluations of the efficacy of antimicrobial compounds in vivo to further proceed with clinical trials and support drug discovery campaigns.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdA TechLab, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
10
|
Nicolosi RM, Bonincontro G, Imperia E, Badiali C, De Vita D, Sciubba F, Dugo L, Guarino MPL, Altomare A, Simonetti G, Pasqua G. Protective Effect of Procyanidin-Rich Grape Seed Extract against Gram-Negative Virulence Factors. Antibiotics (Basel) 2023; 12:1615. [PMID: 37998817 PMCID: PMC10668874 DOI: 10.3390/antibiotics12111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Biofilm formation and lipopolysaccharide (LPS) are implicated in the pathogenesis of gastrointestinal (GI) diseases caused by Gram-negative bacteria. Grape seeds, wine industry by-products, have antioxidant and antimicrobial activity. In the present study, the protective effect of procyanidin-rich grape seed extract (prGSE), from unfermented pomace of Vitis vinifera L. cv Bellone, on bacterial LPS-induced oxidative stress and epithelial barrier integrity damage has been studied in a model of Caco-2 cells. The prGSE was characterized at the molecular level using HPLC and NMR. The in vitro activity of prGSE against formation of biofilm of Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli was investigated. In vivo, prGSE activity using infected Galleria mellonella larvae has been evaluated. The results show that the prGSE, if administered with LPS, can significantly reduce the LPS-induced permeability alteration. Moreover, the ability of the extract to prevent Reactive Oxygen Species (ROS) production induced by the LPS treatment of Caco-2 cells was demonstrated. prGSE inhibited the biofilm formation of E. coli and S. Typhimurium. In terms of in vivo activity, an increase in survival of infected G. mellonella larvae after treatment with prGSE was demonstrated. In conclusion, grape seed extracts could be used to reduce GI damage caused by bacterial endotoxin and biofilms of Gram-negative bacteria.
Collapse
Affiliation(s)
- Roberta Maria Nicolosi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Elena Imperia
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Gastroenterology, University Policlinico Foundation Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Annamaria Altomare
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| |
Collapse
|
11
|
Sugeçti S, Akbayrak S, Büyükgüzel E, Büyükgüzel K. Ecotoxicological Effects of Titanium Aluminum Carbide Composites on Biochemical and Metabolic Parameters of Galleria mellonella. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:52. [PMID: 37776340 DOI: 10.1007/s00128-023-03807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Metal composites have been extensively used in various fields such as automotive industry, medicine and pharmacy. However, the high exposure of these chemicals may have an adverse effect on the living organisms. In this study, the effect of titanium aluminum carbide (Ti3AlC2) on the model organism Galleria mellonella was investigated. The change in the metabolic enzymes such as alanine transferase, aspartate transferase, gamma-glutamyl transferase, lactate dehydrogenase, amylase, creatine kinase, alkaline phosphatase in the hemolymph of G. mellonella which was exposed to Ti3AlC2 was determined. The contents of the bilirubin, albumin, uric acid and the total protein were also measured after the Ti3AlC2 exposure on the model organism. The results of our study clearly indicate that Ti3AlC2 has adverse effects on the model organism G. mellonella.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Serdar Akbayrak
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetic, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
12
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
13
|
Malacarne MC, Mastore M, Gariboldi MB, Brivio MF, Caruso E. Preliminary Toxicity Evaluation of a Porphyrin Photosensitizer in an Alternative Preclinical Model. Int J Mol Sci 2023; 24:ijms24043131. [PMID: 36834543 PMCID: PMC9966276 DOI: 10.3390/ijms24043131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332421541
| |
Collapse
|
14
|
Ribeiro ACDS, Chikhani YCDSA, Valiatti TB, Valêncio A, Kurihara MNL, Santos FF, Minarini LADR, Gales AC. In Vitro and In Vivo Synergism of Fosfomycin in Combination with Meropenem or Polymyxin B against KPC-2-Producing Klebsiella pneumoniae Clinical Isolates. Antibiotics (Basel) 2023; 12:237. [PMID: 36830148 PMCID: PMC9952190 DOI: 10.3390/antibiotics12020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Fosfomycin disodium is a potential therapeutic option to manage difficult-to-treat infections, especially when combined with other antimicrobials. In this study, we evaluated the activity of fosfomycin in combination with meropenem or polymyxin B against contemporaneous KPC-2-producing K. pneumoniae clinical isolates (KPC-KPN). Synergistic activity was assessed by checkerboard (CKA) and time-kill (TKA) assays. TKA was performed using serum peak and trough concentrations. The activity of these combinations was also assessed in the Galleria mellonella model. Biofilm disruption was assessed by the microtiter plate technique. CKA resulted in an 8- to 2048-fold decrease in meropenem MIC, restoring meropenem activity for 82.4% of the isolates when combined with fosfomycin. For the fosfomycin + polymyxin B combination, a 2- to 128-fold reduction in polymyxin B MIC was achieved, restoring polymyxin B activity for 47% of the isolates. TKA resulted in the synergism of fosfomycin + meropenem (3.0-6.7 log10 CFU/mL decrease) and fosfomycin + polymyxin B (6.0-6.2 log10 CFU/mL decrease) at peak concentrations. All larvae treated with fosfomycin + meropenem survived. Larvae survival rate was higher with fosfomycin monotherapy (95%) than that observed for fosfomycin + polymyxin B (75%) (p-value < 0.0001). Finally, a higher biofilm disruption was observed under exposure to fosfomycin + polymyxin B (2.4-3.4-fold reduction). In summary, we observed a synergistic effect of fosfomycin + meropenem and fosfomycin + polymyxin B combinations, in vitro and in vivo, against KPC-KPN, as well as biofilm disruption.
Collapse
Affiliation(s)
- Aghata Cardoso da Silva Ribeiro
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Yohanna Carvalho dos Santos Aoun Chikhani
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Tiago Barcelos Valiatti
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - André Valêncio
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Mariana Neri Lucas Kurihara
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Luciene Andrade da Rocha Minarini
- Laboratório Multidisciplinar em Saúde e Meio Ambiente, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| | - Ana Cristina Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04039-032, Brazil
| |
Collapse
|
15
|
Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules 2022; 27:molecules27238558. [PMID: 36500650 PMCID: PMC9738730 DOI: 10.3390/molecules27238558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.
Collapse
|
16
|
Wang W, Bao X, Bové M, Rigole P, Meng X, Su J, Coenye T. Antibiofilm Activities of Borneol-Citral-Loaded Pickering Emulsions against Pseudomonas aeruginosa and Staphylococcus aureus in Physiologically Relevant Chronic Infection Models. Microbiol Spectr 2022; 10:e0169622. [PMID: 36194139 PMCID: PMC9602683 DOI: 10.1128/spectrum.01696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are promising antibacterials for the development of novel antibiofilm drugs, but their antibiofilm activity in physiologically relevant model systems is poorly characterized. As the host microenvironment can interfere with the activity of the phytochemicals, mimicking the complex environment found in biofilm associated infections is essential to predict the clinical potential of novel phytochemical-based antimicrobials. In the present study, we examined the antibiofilm activity of borneol, citral, and combinations of both as well as their Pickering emulsions against Staphylococcus aureus and Pseudomonas aeruginosa in an in vivo-like synthetic cystic fibrosis medium (SCFM2) model, an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels), and an in vivo Galleria mellonella model. The Pickering emulsions demonstrated an enhanced biofilm inhibitory activity compared to both citral and the borneol/citral combination, reducing the minimum biofilm inhibitory concentration (MBIC) values up to 2 to 4 times against P. aeruginosa PAO1 and 2 to 8 times against S. aureus P8-AE1 in SCMF2. In addition, citral, the combination borneol/citral, and their Pickering emulsions can completely eliminate the established biofilm of S. aureus P8-AE1. The effectiveness of Pickering emulsions was also demonstrated in the wound model with a reduction of up to 4.8 log units in biofilm formation by S. aureus Mu50. Furthermore, citral and Pickering emulsions exhibited a significant degree of protection against S. aureus infection in the G. mellonella model. The present findings reveal the potential of citral- or borneol/citral-based Pickering emulsions as a type of alternative antibiofilm candidate to control pathogenicity in chronic infection. IMPORTANCE There is clearly an urgent need for novel formulations with antimicrobial and antibiofilm activity, but while there are plenty of studies investigating them using simple in vitro systems, there is a lack of studies in which (combinations of) phytochemicals are evaluated in relevant models that closely resemble the in vivo situation. Here, we examined the antibiofilm activity of borneol, citral, and their combination as well as Pickering emulsions (stabilized by solid particles) of these compounds. Activity was tested against Staphylococcus aureus and Pseudomonas aeruginosa in in vitro models mimicking cystic fibrosis sputum and wounds as well as in an in vivo Galleria mellonella model. The Pickering emulsions showed drastically increased antibiofilm activity compared to that of the compounds as such in both in vitro models and protected G. mellonella larvae from S. aureus-induced killing. Our data show that Pickering emulsions from phytochemicals are potentially useful for treating specific biofilm-related chronic infections.
Collapse
Affiliation(s)
- Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|