1
|
Tiszbein K, Koss-Mikołajczyk I, Martysiak-Żurowska D. Unlocking the Secrets of Human Milk: Isolation and Characterization of Extracellular Vesicles. Adv Nutr 2025; 16:100430. [PMID: 40288493 DOI: 10.1016/j.advnut.2025.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Extracellular vesicles from human milk (HMEVs) are crucial for neonatal development, immune modulation, and protection against pathogens. However, the lack of standardized isolation and characterization protocols poses significant challenges. This review aims to evaluate and compare various methods for the isolation and characterization of HMEVs, highlighting their effectiveness and potential applications. Preliminary purification steps, including the removal of cells, fat globules, and casein micelles, enhance the purity of isolated HMEVs. We categorized isolation methods into density-based, size-based, and affinity-based techniques. Density-based methods include differential and density gradient ultracentrifugation. Size-based methods encompass polymer precipitation, membrane filtration, electrophoretic filtration, size exclusion chromatography, and microfluidics. Affinity-based methods involve immunoisolation using antibodies specific to HMEV surface proteins. Characterization techniques discussed include flow cytometry, dynamic light scattering, nanoparticle tracking analysis, tunable resistive pulse sensing, electron microscopy, atomic force microscopy, confocal microscopy, western blotting, ELISA, and lateral flow immunoassay systems. Differential ultracentrifugation, considered the "gold standard," provides high purity but is time-consuming. Density gradient ultracentrifugation offers precise separation. Size-based methods like polyethylene glycol precipitation and membrane filtration are simple and fast. Electrophoretic filtration and microfluidics provide precise control of sample flow. Affinity-based methods are highly specific but costly. Advanced characterization techniques provide comprehensive insights into HMEV properties and functions. Standardizing isolation protocols and employing advanced characterization techniques are essential for advancing HMEV research. Future studies should focus on understanding the molecular mechanisms of HMEVs, exploring the impact of maternal health, and developing targeted delivery technologies. These efforts will enhance the therapeutic potential of HMEVs in neonatal care and contribute to personalized nutritional interventions.
Collapse
|
2
|
Rolland TJ, Zahra S, Cucinotta D, Young R, Weil B. Mesenchymal Stem Cell-Derived Extracellular Vesicles Mitigate Immune Cell Activation in an In Vitro Model of Post-Resuscitation Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637856. [PMID: 40027652 PMCID: PMC11870425 DOI: 10.1101/2025.02.13.637856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Systemic inflammation is a well-established component of post-cardiac arrest syndrome (PCAS), a condition responsible for significant morbidity and mortality in patients who are initially resuscitated from sudden cardiac arrest. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as promising immunomodulatory agents in various inflammatory conditions, including after ischemia-reperfusion injury (IRI). Here, we investigated the therapeutic potential of MSC-EVs in porcine peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or mitochondrial DNA (mtDNA) to mimic immune cell activation in PCAS. Methods PBMCs were isolated from healthy pigs ( Sus scrofa ), cultured in vitro , stimulated with LPS or mtDNA, and treated with a range of MSC-EV concentrations. Flow cytometry, quantitative PCR, ELISA, and ROS/RNS measurements were performed to assess PBMC activation. Results MSC-EV treatment reduced LPS-induced inflammatory granulocyte activation and selectively modulated cytokine transcripts, including IFNα, IL-1β, and TNF-α, in a concentration-dependent manner. Similar immunosuppressive effects were observed in mtDNA-stimulated PBMCs, where MSC-EVs attenuated dendritic cell activation and inflammatory cytokine release. Furthermore, higher concentrations of MSC-EVs significantly decreased ROS/RNS production in both LPS- and mtDNA-challenged PBMCs. Conclusions MSC-EVs exhibit potent immunomodulatory properties against LPS- and mtDNA-induced activation of porcine PBMCs, highlighting their broad capacity to modulate immune responses and mitigate oxidative stress induced by pro-inflammatory stimuli that are relevant to PCAS. These findings provide further support for the administration of MSCs, or MSC-EVs themselves, as a potential therapeutic intervention to target immune activation in PCAS and other disorders characterized by an acute systemic inflammatory state.
Collapse
|
3
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025; 7:934-962. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
4
|
Kasprzyk-Pochopień J, Kamińska A, Mielczarek P, Piekoszewski W, Klimkowska A, Sładek K, Soja J, Adamek D, Stępień E. Comparison of nanoLC-MALDI-MS/MS with nanoLC-TIMS-MS/MS in the proteomic analysis of extracellular vesicles of bronchoalveolar lavage fluid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1173-1187. [PMID: 39835386 DOI: 10.1039/d4ay01599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The proteomic profiles of these EVs are then analyzed using the aforementioned techniques, highlighting their unique and common proteins. The study found that nanoLC-TIMS-MS/MS identified significantly more proteins compared to nanoLC-MALDI-MS/MS. Functional analysis via Gene Ontology revealed pathways related to inflammation and cell signaling, underscoring the role of EVs in disease pathophysiology. The findings suggest that EVs in BALF can serve as valuable biomarkers and therapeutic targets in respiratory diseases, providing a foundation for future research and clinical applications.
Collapse
Affiliation(s)
- Joanna Kasprzyk-Pochopień
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
| | - Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Krakow, Poland
| | - Wojciech Piekoszewski
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Krzysztof Sładek
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Faculty of Medicine Jagiellonian University, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
- Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Hayati H, Kurtz C, Feng Y, Khattak S. Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture. Bioprocess Biosyst Eng 2025; 48:331-342. [PMID: 39751653 DOI: 10.1007/s00449-024-03112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm. diameter suspended in the supernatant were quantified using a nano-flow cytometry method. A computational fluid dynamics (CFD) model was developed to evaluate the impact of feed flow rate and particle count on the transmembrane pressure (TMP). Then a steady-state discrete phase model was applied to incorporate particles into the model and simulate the particles deposition over the membrane wall. The results showed an increase in the number of particles and the membrane resistance along the time course of the perfusion process. The CFD model illustrated that more particle deposition was observed at lower feed stream flow rates. The fraction of deposited particle was reduced by > 50% when the feed flow rate was increased from 35 ml/min to 300 ml/min. Our findings suggest that the total number of subvisible particles has a significant impact on TMP and membrane resistance and, thus, could play a major role in the mechanism of membrane fouling. CFD modeling can be a useful tool to predict the behavior of a process in a specific membrane. CFD simulations could also be used to optimize process parameters to improve membrane cleanability, reduce particle deposition, and reduce the risk of membrane fouling.
Collapse
Affiliation(s)
- Hamideh Hayati
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Caitlin Kurtz
- Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sarwat Khattak
- Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
6
|
Sonallya T, Gaál A, Szigyártó IC, Varga Z, Beke-Somfai T. Biophysical Profiling of Protein Corona on Red Blood Cell-Derived Extracellular Vesicles (REVs): Linear Dichroism and Microfluidic Resistive Pulse Sensing Separate Surface Clearing from Vesicle Disruption. Methods Mol Biol 2025; 2908:213-223. [PMID: 40304912 DOI: 10.1007/978-1-0716-4434-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Extracellular vesicles (EVs) have attracted significant scientific attention due to their critical functions in intercellular communication and their possible uses in diverse fields such as immunology, therapeutics, reproductive biology, biotechnology, and medicine. EVs are engulfed in a layer of proteins, also known as protein corona, which is speculated to play roles in several areas, from intercellular communication through immune recognition to cargo delivery. The composition of the protein corona strongly depends on the origin and the biological environment of EVs. Understanding the protein corona opens doors to finding various applications for vesicles by manipulating them. Typical ways of protein corona removal involve applying high salt concentration or the use of surface-active biomolecules, such as peptides, but this can result in EV membrane damage or complete vesicle disruption. Here, we describe a protocol for characterizing the change in protein corona content on red blood cell-derived EVs (REVs) by using linear dichroism spectroscopy (LD) with microfluidic resistive pulse sensing (MRPS). LD can quantify the change in the amount of the surface attached hemoglobins but cannot identify whether these changes are due to vesicle disruption or protein corona removal from intact vesicles. This necessitates the use of MRPS, which counts the number of vesicles before and after adding a surface manipulating compound. Thus it can identify whether the change in LD signal is due to vesicle disruption or due to loss of protein corona. The combined methods can be employed to understand which process takes place in which ratio, allowing the optimization of vesicle engineering toward specific needs.
Collapse
Affiliation(s)
- Tasvilla Sonallya
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anikó Gaál
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Imola Cs Szigyártó
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Tamás Beke-Somfai
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
7
|
Zanelli S, Agnoletti D, Alastruey J, Allen J, Bianchini E, Bikia V, Boutouyrie P, Bruno RM, Climie R, Djeldjli D, Gkaliagkousi E, Giudici A, Gopcevic K, Grillo A, Guala A, Hametner B, Joseph J, Karimpour P, Kodithuwakku V, Kyriacou PA, Lazaridis A, Lønnebakken MT, Martina MR, Mayer CC, Nabeel PM, Navickas P, Nemcsik J, Orter S, Park C, Pereira T, Pucci G, Rey ABA, Salvi P, Seabra ACG, Seeland U, van Sloten T, Spronck B, Stansby G, Steens I, Stieglitz T, Tan I, Veerasingham D, Wassertheurer S, Weber T, Westerhof BE, Charlton PH. Developing technologies to assess vascular ageing: a roadmap from VascAgeNet. Physiol Meas 2024; 45:121001. [PMID: 38838703 PMCID: PMC11697036 DOI: 10.1088/1361-6579/ad548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Vascular ageing (vascular ageing) is the deterioration of arterial structure and function which occurs naturally with age, and which can be accelerated with disease. Measurements of vascular ageing are emerging as markers of cardiovascular risk, with potential applications in disease diagnosis and prognosis, and for guiding treatments. However, vascular ageing is not yet routinely assessed in clinical practice. A key step towards this is the development of technologies to assess vascular ageing. In this Roadmap, experts discuss several aspects of this process, including: measurement technologies; the development pipeline; clinical applications; and future research directions. The Roadmap summarises the state of the art, outlines the major challenges to overcome, and identifies potential future research directions to address these challenges.
Collapse
Affiliation(s)
- Serena Zanelli
- Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord, Paris, France
- Axelife, Paris, France
| | - Davide Agnoletti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico Sant’Orsola, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EU, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elisabetta Bianchini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Vasiliki Bikia
- Stanford University, Stanford, California, United States
- Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Pierre Boutouyrie
- INSERM U970 Team 7, Paris Cardiovascular Research Centre
- PARCC, University Paris Descartes, AP-HP, Pharmacology Unit, Hôpital Européen Georges Pompidou, 56
Rue Leblanc, Paris 75015, France
| | - Rosa Maria Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre
- PARCC, University Paris Descartes, AP-HP, Pharmacology Unit, Hôpital Européen Georges Pompidou, 56
Rue Leblanc, Paris 75015, France
| | - Rachel Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | | | - Alessandro Giudici
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | | | - Andrea Grillo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernhard Hametner
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Jayaraj Joseph
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Parmis Karimpour
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| | | | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| | - Antonios Lazaridis
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mai Tone Lønnebakken
- Department of Heart Disease, Haukeland University Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Christopher Clemens Mayer
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - P M Nabeel
- Healthcare Technology Innovation Centre, IIT Madras, Chennai 600 113, India
| | - Petras Navickas
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Stefan Orter
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, 1–19 Torrington Place, London WC1E 7HB, UK
| | - Telmo Pereira
- Polytechnic University of Coimbra, Coimbra Health School, Rua 5 de Outubro—S. Martinho do Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Unit of Internal Medicine, ‘Santa Maria’ Terni Hospital, Terni, Italy
| | - Ana Belen Amado Rey
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Paolo Salvi
- Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Ana Carolina Gonçalves Seabra
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Ute Seeland
- Institute of Social Medicine, Epidemiology and Health Economics, Charitè—Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas van Sloten
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University,
Sydney, Australia
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Indra Steens
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Isabella Tan
- Macquarie University, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | | | - Siegfried Wassertheurer
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Berend E Westerhof
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Nijmegen, The Netherlands
| | - Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| |
Collapse
|
8
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|
9
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
10
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application. Vaccines (Basel) 2024; 12:1282. [PMID: 39591185 PMCID: PMC11599128 DOI: 10.3390/vaccines12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
11
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
12
|
Gilboa T, Ter-Ovanesyan D, Wang SC, Whiteman S, Kannarkat GT, Church GM, Chen-Plotkin AS, Walt DR. Measurement of α-synuclein as protein cargo in plasma extracellular vesicles. Proc Natl Acad Sci U S A 2024; 121:e2408949121. [PMID: 39475636 PMCID: PMC11551346 DOI: 10.1073/pnas.2408949121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
Extracellular vesicles (EVs) are released by all cells and hold great promise as a class of biomarkers. This promise has led to increased interest in measuring EV proteins from both total EVs as well as brain-derived EVs in plasma. However, measuring cargo proteins in EVs has been challenging because EVs are present at low levels, and EV isolation methods are imperfect at separating EVs from free proteins. Thus, knowing whether a protein measured after EV isolation is truly inside EVs is difficult. In this study, we developed methods to measure whether a protein is inside EVs and quantify the ratio of a protein in EVs relative to total plasma. To achieve this, we combined a high-yield size-exclusion chromatography protocol with an optimized protease protection assay and Single Molecule Array (Simoa) digital enzyme-linked immunoassays (ELISAs) for ultrasensitive measurement of proteins inside EVs. We applied these methods to analyze α-synuclein and confirmed that a small fraction of the total plasma α-synuclein is inside EVs. Additionally, we developed a highly sensitive Simoa assay for phosphorylated α-synuclein (phosphorylated at the Ser129 residue). We found enrichment in the phosphorylated α-synuclein to total α-synuclein ratio inside EVs relative to outside EVs. Finally, we applied the methods we developed to measure total and phosphorylated α-synuclein inside EVs from Parkinson's disease and Lewy body dementia patient samples. This work provides a framework for determining the levels of proteins in EVs and represents an important step in the development of EV diagnostics for diseases of the brain, as well as other organs.
Collapse
Affiliation(s)
- Tal Gilboa
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Dmitry Ter-Ovanesyan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
| | - Shih-Chin Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Sara Whiteman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
| | - George T. Kannarkat
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - David R. Walt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Pierce C, Suryoraharjo K, Robertson IH, Su X, Hatchett DB, Shin A, Adams KN, Berthier E, Thongpang S, Ogata A, Theberge AB, Sohn LL. CandyCollect: An Open-Microfluidic Device for the Direct Capture and Enumeration of Salivary-Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617508. [PMID: 39463934 PMCID: PMC11507796 DOI: 10.1101/2024.10.09.617508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Extracellular Vesicles (EVs) are membrane-derived vesicles shed by cells into the extracellular space that play key roles in intercellular communication and other biological processes. As membrane-bound cargos of nucleic acids and other proteins that are abundantly found in virtually every biofluid including blood, urine, and saliva, EVs are widely regarded as promising biomarkers for disease detection. While it is an increasingly promising biofluid from which to isolate EVs, saliva poses challenges due its complexity and heterogeneity-cells, debris, and other proteins can inhibit the isolation of EVs by traditional platforms. Here, we employ the CandyCollect, a lollipop-inspired sampling device with open microfluidic channels, as a non-invasive and patient-friendly alternative for the capture of salivary EVs. The CandyCollect simplifies sample preparation by effectively pre-concentrating EVs on the device surface before EVs are eluted off of the CandyCollect, labeled with cholesterol-tagged oligonucleotides, and subsequently detected by qPCR with primers specific for the tagged oligos to enumerate the relative number of EVs. We demonstrate that downstream EV cargo analysis can be performed using Simoa. Overall, the CandyCollect ushers a new method to capture, enumerate, and analyze salivary EVs.
Collapse
|
14
|
Tang F, Dong T, Zhou C, Deng L, Liu HB, Wang W, Liu G, Ying M, Li PP. Genetically engineered human induced pluripotent stem cells for the production of brain-targeting extracellular vesicles. Stem Cell Res Ther 2024; 15:345. [PMID: 39380039 PMCID: PMC11462716 DOI: 10.1186/s13287-024-03955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-secreted membrane vesicles that have become a promising, natural nanoparticle system for delivering either naturally carried or exogenously loaded therapeutic molecules. Among reported cell sources for EV manufacture, human induced pluripotent stem cells (hiPSCs) offer numerous advantages. However, hiPSC-EVs only have a moderate ability for brain delivery. Herein, we sought to develop a stable hiPSC line for producing EVs with substantially enhanced brain targeting by genetic engineering to overexpress rabies viral glycoprotein (RVG) peptide fused to the N terminus of lysosomal associated membrane protein 2B (RVG-Lamp2B) which has been shown capable of boosting the brain delivery of EVs via the nicotinic acetylcholine receptor. METHODS An RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. Western blot was used to detect the expression of RVG-Lamp2B-HA in RVG-edited hiPSCs as well as EVs derived from RVG-edited hiPSCs. Uptake of EVs by SH-SY5Y cells in the presence of various endocytic inhibitors was analyzed using flow cytometry. Biodistribution and brain delivery of intravenously injected control and RVG-modified EVs in wild-type mice were examined using ex vivo fluorescent imaging. RESULTS Here we report that an RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. The RVG-edited iPSCs have normal karyotype, express pluripotency markers, and have differentiation potential. Expression of RVG-Lamp2B-HA was detected in total cell extracts as well as EVs derived from RVG-edited (vs. control) hiPSCs. The RVG-modified EVs enter neuronal cells via distinct endocytic pathways, compared with control EVs. The biodistribution study confirmed that EVs derived from RVG-edited hiPSCs possess higher brain delivery efficiency. CONCLUSION Taken together, we have established stable, genetically engineered hiPSCs for producing EVs with RVG expression, offering the improved ability for brain-targeted drug delivery.
Collapse
Affiliation(s)
- Fan Tang
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Dong
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leon Deng
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans B Liu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenshen Wang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Mingyao Ying
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Pan P Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD, 21287, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Walker SN, Lucas K, Dewey MJ, Badylak SF, Hussey GS, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using "Catch and Display" on Ultrathin Nanoporous Silicon Nitride Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405505. [PMID: 39358943 PMCID: PMC11961765 DOI: 10.1002/smll.202405505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are particles released from cells that facilitate intercellular communication and have tremendous diagnostic and therapeutic potential. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are often undermined by complicated detection schemes and prohibitive instrumentation. To address these issues, a microfluidic technique for EV characterization called "catch and display for liquid biopsy (CAD-LB)" is proposed. In this method, minimally processed samples are pipette-injected and fluorescently labeled EVs are captured in the nanopores of an ultrathin membrane. This enables the rapid assessment of EV number and biomarker colocalization by light microscopy. Here, nanoparticles are used to define the accuracy and dynamic range for counting and colocalization. The same assessments are then made for purified EVs and for unpurified EVs in plasma. Biomarker detection is validated using CD9 and Western blot analysis to confirm that CAD-LB accurately reports relative protein expression levels. Using unprocessed conditioned media, CAD-LB captures the known increase in EV-associated ICAM-1 following endothelial cell cytokine stimulation. Finally, to demonstrate CAD-LB's clinical potential, EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients treated with immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
16
|
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024; 29:4672. [PMID: 39407601 PMCID: PMC11477862 DOI: 10.3390/molecules29194672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that have attracted much attention for their potential in disease diagnosis and therapy. However, the clinical translation is limited by the dosing consistency due to their heterogeneity. Among various characterization techniques, nanoparticle tracking analysis (NTA) offers distinct benefits for EV characterization. In this review, we will discuss the NTA technique with a focus on factors affecting the results; then, we will review the two modes of the NTA techniques along with suitable applications in specific areas of EV studies. EVs are typically characterized by their size, size distribution, concentration, protein markers, and RNA cargos. The light-scattering mode of NTA offers accurate size, size distribution, and concentration information in solution, which is useful for comparing EV isolation methods, storage conditions, and EV secretion conditions. In contrast, fluorescent mode of NTA allows differentiating EV subgroups based on specific markers. The success of fluorescence NTA heavily relies on fluorescent tags (e.g., types of dyes and labeling methods). When EVs are labeled with disease-specific markers, fluorescence NTA offers an effective tool for disease detection in biological fluids, such as saliva, blood, and serum. Finally, we will discuss the limitations and future directions of the NTA technique in EV characterization.
Collapse
Affiliation(s)
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
17
|
Nouvel J, Bustos‐Quevedo G, Prinz T, Masood R, Daaboul G, Gainey‐Schleicher T, Wittel U, Chikhladze S, Melykuti B, Helmstaedter M, Winkler K, Nazarenko I, Pütz G. Separation of small extracellular vesicles (sEV) from human blood by Superose 6 size exclusion chromatography. J Extracell Vesicles 2024; 13:e70008. [PMID: 39441012 PMCID: PMC11497763 DOI: 10.1002/jev2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Extracellular vesicles (EVs) are valuable targets for liquid biopsy. However, attempts to introduce EV-based biomarkers into clinical practice have not been successful to the extent expected. One of the reasons for this failure is the lack of reliable methods for EV baseline purification from complex biofluids, such as cell-free plasma or serum. Because available one-step approaches for EV isolation are insufficient to purify EVs, the majority of studies on clinical samples were performed either on a mixture of EVs and lipoproteins, whilst the real number of EVs and their individual specific biomarker content remained elusive, or on a low number of samples of sufficient volume to allow elaborate 2-step EV separation by size and density, resulting in a high purity but utmost low recovery. Here we introduce Fast Protein Liquid Chromatography (FPLC) using Superose 6 as a matrix to obtain small EVs from biofluids that are almost free of soluble proteins and lipoproteins. Along with the estimation of a realistic number of small EVs in human samples, we show temporal resolution of the effect of the duration of postprandial phase on the proportion of lipoproteins in purified EVs, suggesting acceptable time frames additionally to the recommendation to use fasting samples for human studies. Furthermore, we assessed a potential value of pure EVs for liquid biopsy, exemplarily examining EV- and tumour-biomarkers in pure FPLC-derived fractions isolated from the serum of patients with pancreatic cancer. Consistent among different techniques, showed the presence of diseases-associated biomarkers in pure EVs, supporting the feasibility of using single-vesicle analysis for liquid biopsy.
Collapse
Affiliation(s)
- Jerome Nouvel
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- Institute of Clinical Chemistry and Laboratory MedicineFreiburgGermany
| | - Gonzalo Bustos‐Quevedo
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Tony Prinz
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Ramsha Masood
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
| | | | - Tanja Gainey‐Schleicher
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Uwe Wittel
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- Department of General and Visceral SurgeryFreiburgGermany
| | - Sophia Chikhladze
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- Department of General and Visceral SurgeryFreiburgGermany
| | - Bence Melykuti
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Martin Helmstaedter
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- IMITATE EM Core FacilityFreiburgGermany
| | - Karl Winkler
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- Institute of Clinical Chemistry and Laboratory MedicineFreiburgGermany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyFreiburgGermany
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- Hahn‐SchikardFreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Gerhard Pütz
- Medical Center, Faculty of Medicine, University of FreiburgUniversity of FreiburgFreiburgGermany
- Institute of Clinical Chemistry and Laboratory MedicineFreiburgGermany
| |
Collapse
|
18
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
19
|
Giuliani P, De Simone C, Febo G, Bellasame A, Tupone N, Di Virglio V, di Giuseppe F, Ciccarelli R, Di Iorio P, Angelucci S. Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand? Int J Mol Sci 2024; 25:9778. [PMID: 39337267 PMCID: PMC11431518 DOI: 10.3390/ijms25189778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by "bottom-up" mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other "omics" disciplines will lead to the discovery of druggable pathways for novel GBM therapies.
Collapse
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Giorgia Febo
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Alessia Bellasame
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Nicola Tupone
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Vimal Di Virglio
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Fabrizio di Giuseppe
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
20
|
Jouybari MT, Mojtahedi F, Babaahmadi M, Faeed M, Eslaminejad MB, Taghiyar L. Advancements in extracellular vesicle targeted therapies for rheumatoid arthritis: insights into cellular origins, current perspectives, and emerging challenges. Stem Cell Res Ther 2024; 15:276. [PMID: 39227964 PMCID: PMC11373471 DOI: 10.1186/s13287-024-03887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Rheumatoid arthritis (RA) remains a challenging chronic autoimmune disorder characterized by persistent joint inflammation and damage. While modern regenerative strategies, encompassing cell/stem cell-based therapies, gene therapy, and tissue engineering, have advanced tissue repair efforts, a definitive cure for RA remains elusive. Consequently, there is growing interest in developing targeted therapies that directly address the underlying mechanisms driving RA pathogenesis, such as extracellular vesicles (EVs). These small membrane-bound particles can modulate immune responses within the inflammatory microenvironment of damaged cartilage. To launch the clinical potential of EVs, they can be isolated from various cell types through several techniques. EVs can carry various bioactive molecules and anti-inflammatory or pro-regenerative drugs, deliver them directly to the affected joints, and affect the behavior of injured cells, making them a compelling choice for targeted therapy and drug delivery in RA patients. However, there are still several challenges and limitations associated with EV-based therapy, including the absence of standardized protocols for EV isolation, characterization, and delivery. This review provides a comprehensive overview of the cellular sources of EVs in RA and delves into their therapeutic potential and the hurdles they must overcome.
Collapse
Affiliation(s)
- Maryam Talebi Jouybari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Mojtahedi
- Department of Immunology, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahnaz Babaahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
| | - Maryam Faeed
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
21
|
Lawrence SR, Shah KM. Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer. BIOLOGY 2024; 13:694. [PMID: 39336121 PMCID: PMC11428408 DOI: 10.3390/biology13090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management.
Collapse
Affiliation(s)
- Samuel R Lawrence
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karan M Shah
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
22
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Kim HK, Choi Y, Kim KH, Byun Y, Kim TH, Kim JH, An SH, Bae D, Choi MK, Lee M, Kang G, Chung J, Kim S, Kwon K. Scalable production of siRNA-encapsulated extracellular vesicles for the inhibition of KRAS-mutant cancer using acoustic shock waves. J Extracell Vesicles 2024; 13:e12508. [PMID: 39323378 PMCID: PMC11424982 DOI: 10.1002/jev2.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as a potential delivery vehicle for nucleic-acid-based therapeutics, but challenges related to their large-scale production and cargo-loading efficiency have limited their therapeutic potential. To address these issues, we developed a novel "shock wave extracellular vesicles engineering technology" (SWEET) as a non-genetic, scalable manufacturing strategy that uses shock waves (SWs) to encapsulate siRNAs in EVs. Here, we describe the use of the SWEET platform to load large quantities of KRASG12C-targeting siRNA into small bovine-milk-derived EVs (sBMEVs), with high efficiency. The siRNA-loaded sBMEVs effectively silenced oncogenic KRASG12C expression in cancer cells; they inhibited tumour growth when administered intravenously in a non-small cell lung cancer xenograft mouse model. Our study demonstrates the potential for the SWEET platform to serve as a novel method that allows large-scale production of cargo-loaded EVs for use in a wide range of therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - DaeHo Bae
- Exollence Co., Ltd.SeoulRepublic of Korea
| | | | | | - Gwansuk Kang
- Division of Gastroenterology and Hepatology, School of MedicineStanford UniversityStanfordCaliforniaUSA
| | | | | | - Kihwan Kwon
- Exollence Co., Ltd.SeoulRepublic of Korea
- Department of Internal Medicine, College of MedicineEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
24
|
Pleyer D, Griebler C, Winter C. Virus production in shallow groundwater at the bank of the Danube River. PLoS One 2024; 19:e0306346. [PMID: 39208231 PMCID: PMC11361564 DOI: 10.1371/journal.pone.0306346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses play a crucial role in regulating prokaryotic populations, yet their impact on subsurface environments, specifically groundwater habitats, remains poorly understood. In this study, we employed the virus-dilution approach to measure lytic virus production rates in shallow groundwater located near the city of Vienna (Austria) during the period from July-November 2020. Physico-chemical parameters (pH, electrical conductivity, water temperature, concentration of dissolved oxygen), prokaryotic, and viral abundance, and viral decay rates were monitored as well. Our findings revealed low virus-to-prokaryote ratios varying between 0.9-3.9 throughout the study period and a lack of correlation between prokaryotic and viral abundance in groundwater. Virus production rates varied between 9-12% of viral abundance h-1 in July-August and between 34-36% of viral abundance h-1 in October-November. Seasonal variations in virus production rates were found to be correlated with electrical conductivity, revealing ~3.5 times higher virus production rates during periods with high electrical conductivity and low groundwater recharge in October-November compared to July-August with higher groundwater recharge and lower electrical conductivity. Our data indicate that groundwater recharge disrupts the balance between virus and prokaryotic host communities, resulting in a deficiency of suitable prokaryotic host cells for viral proliferation.
Collapse
Affiliation(s)
- Daniel Pleyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Winter
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
26
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Parra A, Barranco I, Martínez-Díaz P, González E, Albóniga OE, Cabrera D, Falcón-Pérez JM, Roca J. Cryogenic electron microscopy reveals morphologically distinct subtypes of extracellular vesicles among porcine ejaculate fractions. Sci Rep 2024; 14:16175. [PMID: 39003421 PMCID: PMC11246463 DOI: 10.1038/s41598-024-67229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Seminal plasma (SP) is rich in extracellular vesicles (EVs), which are still poorly studied, especially in livestock species. To better understand their functional role in both spermatozoa and endometrial epithelial cells, proper characterization of EVs is an essential step. The objective was to phenotypically characterize porcine seminal EVs (sEVs) using cryogenic electron microscopy (cryo-EM), which allows visualization of EVs in their native state. Porcine ejaculates are released in fractions, each containing SP from different source. This allows characterization sEVs released from various male reproductive tissues. Two experiments were performed, the first with SP from the entire ejaculate (n:6) and the second with SP from three ejaculate fractions (n:15): the first 10 mL of the sperm-rich ejaculate fraction (SRF-P1) with SP mainly from the epididymis, the remainder of the SRF (SRF-P2) with SP mainly from the prostate, and the post-SRF with SP mainly from the seminal vesicles. The sEVs were isolated by size exclusion chromatography and 1840 cryo-EM sEV images were acquired using a Jeol-JEM-2200FS/CR-EM. The size, electron density, complexity, and peripheral corona layer were measured in each sEV using the ImageJ software. The first experiment showed that sEVs were structurally and morphologically heterogeneous, although most (83.1%) were small (less than 200 nm), rounded, and poorly electrodense, and some have a peripheral coronal layer. There were also larger sEVs (16.9%) that were irregularly shaped, more electrodense, and few with a peripheral coronal layer. The second experiment showed that small sEVs were more common in SRF-P1 and SRF-P2, indicating that they originated mainly from the epididymis and prostate. Large sEVs were more abundant in post-SRF, indicating that they originated mainly from seminal vesicles. Porcine sEVs are structurally and morphologically heterogeneous. This would be explained by the diversity of reproductive organs of origin.
Collapse
Affiliation(s)
- Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
| | - Oihane E Albóniga
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
| | - Diana Cabrera
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Vizcaya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Metabolomics Platform, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
28
|
Sun DS, Chang HH. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med J 2024; 36:251-259. [PMID: 38993825 PMCID: PMC11236075 DOI: 10.4103/tcmj.tcmj_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, disease pathology, and therapeutic innovation. Initially overlooked as cellular debris, EVs are now recognized as vital mediators of cell-to-cell communication, ferrying a cargo of proteins, nucleic acids, and lipids, providing cellular resilience in response to stresses. This review provides a comprehensive overview of EVs, focusing on their role as biomarkers in disease diagnosis, their functional significance in physiological and pathological processes, and the potential of bioengineering for therapeutic applications. EVs offer a promising avenue for noninvasive disease diagnosis and monitoring, reflecting the physiological state of originating cells. Their diagnostic potential spans a spectrum of diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, and infectious diseases. Moreover, their presence in bodily fluids such as blood, urine, and cerebrospinal fluid enhances their diagnostic utility, presenting advantages over traditional methods. Beyond diagnostics, EVs mediate crucial roles in intercellular communication, facilitating the transfer of bioactive molecules between cells. This communication modulates various physiological processes such as tissue regeneration, immune modulation, and neuronal communication. Dysregulation of EV-mediated communication is implicated in diseases such as cancer, immune disorders, and neurodegenerative diseases, highlighting their therapeutic potential. Bioengineering techniques offer avenues for manipulating EVs for therapeutic applications, from isolation and purification to engineering cargo and targeted delivery systems. These approaches hold promise for developing novel therapeutics tailored to specific diseases, revolutionizing personalized medicine. However, challenges such as standardization, scalability, and regulatory approval need addressing for successful clinical translation. Overall, EVs represent a dynamic frontier in biomedical research with vast potential for diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
29
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
31
|
Mitrut RE, Stranford DM, DiBiase BN, Chan JM, Bailey MD, Luo M, Harper CS, Meade TJ, Wang M, Leonard JN. HaloTag display enables quantitative single-particle characterisation and functionalisation of engineered extracellular vesicles. J Extracell Vesicles 2024; 13:e12469. [PMID: 38965984 PMCID: PMC11224594 DOI: 10.1002/jev2.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/01/2024] [Indexed: 07/06/2024] Open
Abstract
Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity and other properties. Measuring how incorporation varies across a population of EVs is important for characterising such materials and understanding their function, yet it remains challenging to quantitatively characterise the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterisation platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labelling to antibody-labelling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labelling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterisation tool which complements and expands existing methods.
Collapse
Affiliation(s)
- Roxana E. Mitrut
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Devin M. Stranford
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Beth N. DiBiase
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Jonathan M. Chan
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Minrui Luo
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
| | - Clare S. Harper
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Thomas J. Meade
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| | - Muzhou Wang
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Joshua N. Leonard
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
32
|
Kumar J, Onteru SK, Singh D. Deciphering the Drug Delivery Potential of Milk Exosome Nanovesicles for Aminobenzylpenicillin Therapeutic Efficacy against Contagious Staphylococcus Aureus in Bovine Mastitis. Adv Biol (Weinh) 2024; 8:e2300519. [PMID: 38573624 DOI: 10.1002/adbi.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Indexed: 04/05/2024]
Abstract
The emergence of antimicrobial resistance and failure of antibiotic treatment are challenging tasks for managing bovine mastitis, which is mainly caused by the contagious Staphylococcus aureus (S. aureus).To overcome these difficulties, there is an urgent need for a novel drug system. In the present study, the aim is to develop next-generation therapeutics against S. aureus by harnessing the drug delivery potential of milk nanovesicles called milk exosomes (mENs). In the present work, a drug system is developed by encapsulating aminobenzylpenicillin (AMP) in mENs (mENs-AMP). Electron microscopy and zeta-sizer results indicate that the size of mENs-AMP ranged from 55.79 ± 2.8 to 85.53 ± 7.4 nm. The AMP loading efficiency in mENs is 88.61% with its sustained release. Fluorescence spectroscopy results indicated that mENs are biocompatible with mammary epithelial cells. In vitro studies show that the antibacterial activity and the minimum inhibitory concentrations of mENs-AMP are eleven times greater and four times lower than that of unencapsulated AMP, respectively. The mENs-AMP exhibit significantly higher therapeutic efficacy than AMP at the same dosage and treatment frequency. Validation of this approach is demonstrated in mastitis-affected animals through an observation in the reduction of somatic cell counts and bacterial loads in the milk of treated animals.
Collapse
Affiliation(s)
- Jitendra Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
33
|
Wu X, Chen Y, Kreutz A, Silver B, Tokar EJ. Pluripotent stem cells for target organ developmental toxicity testing. Toxicol Sci 2024; 199:163-171. [PMID: 38547390 PMCID: PMC11131012 DOI: 10.1093/toxsci/kfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Prenatal developmental toxicity research focuses on understanding the potential adverse effects of environmental agents, drugs, and chemicals on the development of embryos and fetuses. Traditional methods involve animal testing, but ethical concerns and the need for human-relevant models have prompted the exploration of alternatives. Pluripotent stem cells (PSCs) are versatile cells with the unique ability to differentiate into any cell type, serving as a foundational tool for studying human development. Two-dimensional (2D) PSC models are often chosen for their ease of use and reproducibility for high-throughput screening. However, they lack the complexity of an in vivo environment. Alternatively, three-dimensional (3D) PSC models, such as organoids, offer tissue architecture and intercellular communication more reminiscent of in vivo conditions. However, they are complicated to produce and analyze, usually requiring advanced and expensive techniques. This review discusses recent advances in the use of human PSCs differentiated into brain and heart lineages and emerging tools and methods that can be combined with PSCs to help address important scientific questions in the area of developmental toxicology. These advancements and new approach methods align with the push for more relevant and predictive developmental toxicity assessment, combining innovative techniques with organoid models to advance regulatory decision-making.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Yichang Chen
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Inotiv, Research Triangle Park, North Carolina 27560, USA
| | - Brian Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
34
|
Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024; 16:709. [PMID: 38931833 PMCID: PMC11206934 DOI: 10.3390/pharmaceutics16060709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Of all the numerous nanosized extracellular vesicles released by a cell, the endosomal-originated exosomes are increasingly recognized as potential therapeutics, owing to their inherent stability, low immunogenicity, and targeted delivery capabilities. This review critically evaluates the transformative potential of exosome-based modalities across pharmaceutical and precision medicine landscapes. Because of their precise targeted biomolecular cargo delivery, exosomes are posited as ideal candidates in drug delivery, enhancing regenerative medicine strategies, and advancing diagnostic technologies. Despite the significant market growth projections of exosome therapy, its utilization is encumbered by substantial scientific and regulatory challenges. These include the lack of universally accepted protocols for exosome isolation and the complexities associated with navigating the regulatory environment, particularly the guidelines set forth by the U.S. Food and Drug Administration (FDA). This review presents a comprehensive overview of current research trajectories aimed at addressing these impediments and discusses prospective advancements that could substantiate the clinical translation of exosomal therapies. By providing a comprehensive analysis of both the capabilities and hurdles inherent to exosome therapeutic applications, this article aims to inform and direct future research paradigms, thereby fostering the integration of exosomal systems into mainstream clinical practice.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.S.); (A.Y.); (A.N.)
| |
Collapse
|
35
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
36
|
Vicente-Gil S, Nuñez-Ortiz N, Morel E, Serra CR, Docando F, Díaz-Rosales P, Tafalla C. Immunomodulatory properties of Bacillus subtilis extracellular vesicles on rainbow trout intestinal cells and splenic leukocytes. Front Immunol 2024; 15:1394501. [PMID: 38774883 PMCID: PMC11106384 DOI: 10.3389/fimmu.2024.1394501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.
Collapse
Affiliation(s)
- Samuel Vicente-Gil
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Cláudia R. Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
37
|
Mitrut RE, Stranford DM, DiBiase BN, Chan JM, Bailey MD, Luo M, Harper CS, Meade TJ, Wang M, Leonard JN. HaloTag display enables quantitative single-particle characterization and functionalization of engineered extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559433. [PMID: 37808729 PMCID: PMC10557717 DOI: 10.1101/2023.09.25.559433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells, and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity, and other properties. Measuring how incorporation varies across a population of EVs is important for characterizing such materials and understanding their function, yet it remains challenging to quantitatively characterize the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterization platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labeling to antibody-labeling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labeling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterization tool which complements and expands existing methods.
Collapse
|
38
|
Walker SN, Lucas K, Dewey MJ, Badylak S, Hussey G, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using 'Catch and Display' on Ultrathin Nanoporous Silicon Nitride Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.589900. [PMID: 38746341 PMCID: PMC11092443 DOI: 10.1101/2024.04.29.589900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
39
|
Raj R, Agrawal P, Bhutani U, Bhowmick T, Chandru A. Spinning with exosomes: electrospun nanofibers for efficient targeting of stem cell-derived exosomes in tissue regeneration. Biomed Mater 2024; 19:032004. [PMID: 38593835 DOI: 10.1088/1748-605x/ad3cab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.
Collapse
Affiliation(s)
- Ritu Raj
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Parinita Agrawal
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Utkarsh Bhutani
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Tuhin Bhowmick
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Arun Chandru
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| |
Collapse
|
40
|
Silver BB, Kreutz A, Weick M, Gerrish K, Tokar EJ. Biomarkers of chemotherapy-induced cardiotoxicity: toward precision prevention using extracellular vesicles. Front Oncol 2024; 14:1393930. [PMID: 38706609 PMCID: PMC11066856 DOI: 10.3389/fonc.2024.1393930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity, pose barriers for preventing cancer progression, or treating cancer early through molecular interception. Extracellular vesicles (EVs) are valued for their potential as biomarkers of human health, chemical and molecular carcinogenesis, and therapeutics to treat disease at the cellular level. EVs are released both during normal growth and in response to toxicity and cellular death, playing key roles in cellular communication. Consequently, EVs may hold promise as precision biomarkers and therapeutics to prevent or offset damaging off-target effects of chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity induced by chemotherapies and as cardioprotective therapeutic agents. However, EVs can also mediate cardiotoxic cues, depending on the identity and past events of their parent cells. Understanding how EVs mediate signaling is critical toward implementing EVs as therapeutic agents to mitigate cardiotoxic effects of chemotherapies. For example, it remains unclear how mixtures of EV populations from cells exposed to toxins or undergoing different stages of cell death contribute to signaling across cardiac tissues. Here, we present our perspective on the outlook of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we discuss how heterogeneous mixtures of EVs and transient exposures to toxicants may add complexity to predicting outcomes of exogenously applied EVs. Elucidating how EV cargo and signaling properties change during dynamic cellular events may aid precision prevention of cardiotoxicity in anticancer treatments and development of safer chemotherapeutics.
Collapse
Affiliation(s)
- Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Epigenetics & Stem Cell Biology Laboratory, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Inotiv, Durham, NC, United States
| | - Madeleine Weick
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Kevin Gerrish
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| |
Collapse
|
41
|
Iavarone I, Molitierno R, Fumiento P, Vastarella MG, Napolitano S, Vietri MT, De Franciscis P, Ronsini C. MicroRNA Expression in Endometrial Cancer: Current Knowledge and Therapeutic Implications. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:486. [PMID: 38541212 PMCID: PMC10972089 DOI: 10.3390/medicina60030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives: An extracellular vesicle is part of a class of submicron particles derived from cells, mediating cellular crosstalk through microRNA (miRNA). MiRNA is a group of RNA molecules, each of which consists of 15-22 nucleotides and post-transcriptionally modulates gene expression. The complementary mRNAs-onto which the miRNAs hybridize-are involved in processes such as implantation, tumor suppression, proliferation, angiogenesis, and metastasis that define the entire tumor microenvironment. The endometrial biopsy is a standard technique used to recognize cellular atypia, but other non-invasive markers may reduce patient discomfort during the use of invasive methods. The present study aims to examine the distribution and the regulation of the differentially expressed miRNAs (DEMs) and EV-derived substances in women with endometrial cancer. Materials and Methods: We systematically searched the PubMed, EMBASE, Scopus, Cochrane Library, and ScienceDirect databases in April 2023, adopted the string "Endometrial Neoplasms AND Exosomes", and followed the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We selected all the studies that included patients with endometrial cancer and that described the regulation of miRNA molecules in that context. The differences in molecule expression between patients and controls were evaluated as significant when the proteins had a fold change of ±1.5. Results: Seventeen records fulfilled the inclusion criteria: a total of 371 patients and 273 controls were analyzed. The upregulated molecules that had the widest delta between endometrial cancer patients and controls-relative expression ≥ 1 > 3 log2(ratio)-were miR-20b-5p, miR-204-5p, miR-15a-5p, and miR-320a. In particular, miR-20b-5p and miR-204-5p were extracted from both serum and endometrial specimens, whereas miR-15a-5p was only isolated from plasma, and miR-320a was only extracted from the endometrial specimens. In parallel, the most downregulated miRNA in the endometrial cancer patients compared to the healthy subjects was miR-320a, which was found in the endometrial specimens. Conclusions: Although their epigenetic regulation remains unknown, these upregulated molecules derived from EVs are feasible markers for the early detection of endometrial cancer. The modulation of these miRNA molecules should be assessed during different treatments or if recurrence develops in response to a targeted treatment modality.
Collapse
Affiliation(s)
- Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Rossella Molitierno
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Pietro Fumiento
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Maria Giovanna Vastarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| |
Collapse
|
42
|
Yang S, Zheng B, Raza F, Zhang S, Yuan WE, Su J, Qiu M. Tumor-derived microvesicles for cancer therapy. Biomater Sci 2024; 12:1131-1150. [PMID: 38284828 DOI: 10.1039/d3bm01980b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
- Engineering Research Center of Cell & Therapeuti c Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| |
Collapse
|
43
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
44
|
Kang WY, Shin EK, Kim EH, Kang MH, Bang CY, Bang OY, Cha JM. Lyoprotectant Constituents Suited for Lyophilization and Reconstitution of Stem-Cell-Derived Extracellular Vesicles. Biomater Res 2024; 28:0005. [PMID: 38327614 PMCID: PMC10845601 DOI: 10.34133/bmr.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Stem-cell-derived extracellular vesicles (EVs) are emerging as an alternative approach to stem cell therapy. Successful lyophilization of EVs could enable convenient storage and distribution of EV medicinal products at room temperature for long periods, thus considerably increasing the accessibility of EV therapeutics to patients. In this study, we aimed to identify an appropriate lyoprotectant composition for the lyophilization and reconstitution of stem-cell-derived EVs. MSC-derived EVs were lyophilized using different lyoprotectants, such as dimethyl sulfoxide, mannitol, trehalose, and sucrose, at varying concentrations. Our results revealed that a mixture of trehalose and sucrose at high concentrations could support the formation of amorphous ice by enriching the amorphous phase of the solution, which successfully inhibited the acceleration of buffer component crystallization during lyophilization. Lyophilized and reconstituted EVs were thoroughly evaluated for concentration and size, morphology, and protein and RNA content. The therapeutic effects of the reconstituted EVs were examined using a tube formation assay with human umbilical vein endothelial cells. After rehydration of the lyophilized EVs, most of their generic characteristics were well-maintained, and their therapeutic capacity recovered to levels similar to those of freshly collected EVs. The concentrations and morphologies of the lyophilized EVs were similar to the initial features of the fresh EV group until day 30 at room temperature, although their therapeutic capacity appeared to decrease after 7 days. Our study suggests an appropriate composition of lyoprotectants, particularly for EV lyophilization, which could encourage the applications of stem-cell-derived EV therapeutics in the health industry.
Collapse
Affiliation(s)
- Wu Young Kang
- Department of Biomedical & Robotics Engineering, College of Engineering,
Incheon National University, Incheon 22012, Republic of Korea
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology,
Incheon National University, Incheon 22012, Republic of Korea
| | | | - Eun Hee Kim
- S&E bio Co., Ltd., Seoul 06351, Republic of Korea
| | - Min-Ho Kang
- Department of BioMedical-Chemical Engineering (BMCE),
The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology,
The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Chi Young Bang
- Department of Plastic and Reconstructive Surgery,
Kangwon National University Hospital, Chuncheon 24341, Republic of Korea
| | - Oh Young Bang
- S&E bio Co., Ltd., Seoul 06351, Republic of Korea
- Department of Neurology, Samsung Medical Center,
Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae Min Cha
- Department of Biomedical & Robotics Engineering, College of Engineering,
Incheon National University, Incheon 22012, Republic of Korea
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology,
Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
45
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
46
|
Amanollahi S, Bahrami AR, Haghighitalab A, Shaterzadeh Yazdi H, Kazemi Mehrjerdi H. Immediate administration of hTERT-MSCs-IDO1-EVs reduces hypoalbuminemia after spinal cord injury. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:27-34. [PMID: 38464608 PMCID: PMC10921135 DOI: 10.30466/vrf.2023.2003942.3903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 03/12/2024]
Abstract
Spinal cord injury (SCI) presents challenging and unpredictable neurological recovery. During inflammatory conditions, the amount of serum albumin and nutrition consumption decreases. Currently, it is proposed to measure serum albumin and glucose content in human or animal subjects to predict the recovery rate and the efficiency of treatments following SCI. In this study, the effect of extra-cellular vesicles (EVs) from immortalized human adipose tissue-derived mesenchymal stem cells (hTERT-MSCs) equipped with the ectopic expression of the human indoleamine 2,3-dioxygenase-1 (IDO1) gene on serum albumin and glucose levels was investigated. After pre-clearing steps of 72-hr conditioned media, small EVs (sEVs) were isolated based on the ultra-filtration method. They were encapsulated with a chitosan-based hydrogel. Five experimental groups (female rats, N = 30, ~ 230 g) were considered, including SCI, sham, hydrogel, control green fluorescent protein (GFP)-EVs and IDO1-EVs. The 60.00 µL of hydrogel or hydrogels containing 100 µg sEVs from GFP or IDO1-EVs were locally injected immediately after SCI (laminectomy of the T10 vertebra and clip compression). After 8 weeks, non-fasting serum glucose and albumin levels were measured. The results indicated that the level of serum albumin in the animals received IDO1-EVs (3.52 ± 0.04) was increased in comparison with the SCI group (3.00 ± 0.94). Also, these animals indicated higher glucose levels in their serum (250.17 ± 69.61) in comparison with SCI ones (214 ± 45.34). Although these changes were not statistically significant, they could be considered as evidence for the beneficial effects of IDO1-EVs administration in the context of SCI to reduce hypoalbuminemia and improve energy consumption. More detailed experiments are required to confirm these results.
Collapse
Affiliation(s)
- Shiva Amanollahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran;
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran;
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran;
| | | | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran;
| |
Collapse
|
47
|
Jang HJ, Shim KS, Lee J, Park JH, Kang SJ, Shin YM, Lee JB, Baek W, Yoon JK. Engineering of Cell Derived-Nanovesicle as an Alternative to Exosome Therapy. Tissue Eng Regen Med 2024; 21:1-19. [PMID: 38066355 PMCID: PMC10764700 DOI: 10.1007/s13770-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes. CDNs exhibit structural, physical, and biological properties similar to exosomes, containing intracellular protein and genetic components encapsulated by the cell plasma membrane. These characteristics allow CDNs to be used as regenerative medicine and therapeutics on their own, or as a drug delivery system. METHODS The paper reviews diverse methods for CDN synthesis, current analysis techniques, and presents engineering strategies to improve lesion targeting efficiency and/or therapeutic efficacy. RESULTS CDNs, with their properties similar to those of exosomes, offer a cost-effective and highly productive alternative due to their non-living biomaterial nature, nano-size, and readiness for use, allowing them to overcome several limitations of conventional cell therapy methods. CONCLUSION Ongoing research and enhancement of CDNs engineering, along with comprehensive safety assessments and stability analysis, exhibit vast potential to advance regenerative medicine by enabling the development of efficient therapeutic interventions.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kyu-Sik Shim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinah Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joo Hyeon Park
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
48
|
Ross M, Jadli AS, Meechem M, Patel VB. Isolation and Characterization of Extracellular Vesicles from Cell Culture Media. Methods Mol Biol 2024; 2835:165-172. [PMID: 39105915 DOI: 10.1007/978-1-0716-3995-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Extracellular vesicles (EVs) were once believed to serve as a means of disposing of cellular waste. However, recent discoveries have identified their crucial roles in intercellular communication between neighboring and distant cells. Almost all cell types have now been identified to produce EVs, which play a vital role in transporting cellular cargo. The functional roles of EVs, along with their implications in (patho)physiology of various diseases, are still being explored. In the last decade, the identification of EV roles in pathophysiology, pharmacology, and diagnostics has gained significant interest, albeit the development of universal methods for the isolation and characterization of EVs has been the limiting factor. A further challenge is ensuring that EVs of various size categories, which are thought to be produced via independent cellular mechanisms and often differ in their cargo and physiological purpose, can be separated and studied in isolation.This protocol provides an efficient and accessible method for isolating and characterizing EV samples from conditioned cell culture media. The combination of differential centrifugation and the use of a commercial EV-precipitation kit allows for the rapid isolation of a highly pure sample of EVs separated by size. A microfluidic resistive pulse sensing (MRPS)-based method is then used to quantify the particles, as well as to assess the size distribution of the EV sample. As a result, this protocol provides a reproducible means to isolate and characterize EVs of a variety of sizes from nearly any cultured cells.
Collapse
Affiliation(s)
- Maia Ross
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Megan Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
49
|
Singh RK, Santos MF, Herndon C, Gieler BA, Lee I, Chen J, Lorico A. Detection by super-resolution microscopy of viral proteins inside bloodborne extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:557-567. [PMID: 39697804 PMCID: PMC11648398 DOI: 10.20517/evcna.2023.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2024]
Abstract
Aim Extracellular vesicles (EVs) are small particles released by all cells, including virally infected cells, into the extracellular space. They play a role in various cellular processes, including intercellular communication, signaling, and immunity, and carry several biomolecules like proteins, lipids, and nucleic acids that can modulate cellular functions mostly by releasing their cargo inside the target cells via the endocytic pathway. One of the most exciting aspects of EV physiology is its potential in liquid biopsy as a diagnostic and prognostic marker. However, due to their extremely small size and lack of a molecular approach to examine intravesicular content or cargo, we cannot fully utilize their potential in healthcare. Methods Here, we present a novel approach that allows examining bloodborne EVs at a single-particle level with the ability to examine their cargo without disrupting structural integrity. Our technique utilizes super-resolution microscopy and a unique permeabilization process that maintains structural integrity while facilitating the examination of EV cargo. We used a mild-detergent-based permeabilization buffer that protects the integrity of EVs, minimizes background, and improves detection. Results Utilizing this approach, we were able to recognize viral proteins of SARS-CoV-2 virus in COVID-19 patients, including spike and nucleocapsid. Surprisingly, we found an almost equal amount of spike protein inside and on the surface of bloodborne EVs. This would have proven difficult to determine using other conventional methods. Conclusion To summarize, we have developed an easy-to-perform, sensitive, and highly efficient method that offers a mechanism to examine bloodborne EV cargo without disrupting their structural integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aurelio Lorico
- Correspondence to: Dr. Aurelio Lorico, Department of Basic Sciences, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA. E-mail:
| |
Collapse
|
50
|
Kim DK, Kang SJ, Rhee WJ. Perilla-Leaf-Derived Extracellular Vesicles Selectively Inhibit Breast Cancer Cell Proliferation and Invasion. Int J Mol Sci 2023; 24:15633. [PMID: 37958616 PMCID: PMC10647566 DOI: 10.3390/ijms242115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer is a common type of cancer characterized by high mortality rates. However, chemotherapy is not selective and often leads to side-effects. Therefore, there is a need for the development of highly efficient drugs. Recent studies have shown that some extracellular vesicles (EVs) derived from cell cultures possess anti-cancer activity and hold great potential as cancer therapeutics. However, the use of mammalian cell cultures for EV production results in low productivity and high costs. To address this issue, extracellular vesicles derived from perilla leaves (Perex) were isolated and investigated for their anti-cancer activity in various cancer cells. Initially, a high concentration of Perex with a low level of impurities was successfully purified through a combination of ultrafiltration and size-exclusion chromatography. Perex exhibited potent anti-cancer activities, inhibiting the proliferation, migration, and invasion of MDA-MB-231 cancer cells, which have high levels of caveolin-1 compared to other cancer and normal cells. This selective attack on cancer cells with high levels of caveolin-1 reduces unwanted side-effects on normal cells. Considering its high productivity, low production cost, selective anti-cancer activity, and minimal side-effects, Perex represents a promising candidate for the therapeutic treatment of breast cancer.
Collapse
Affiliation(s)
- Do Kyung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (D.K.K.); (S.J.K.)
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (D.K.K.); (S.J.K.)
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (D.K.K.); (S.J.K.)
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|