1
|
Hummelgaard S, Hvid H, Birn H, Glerup S, Tom N, Bilgin M, Kirchhoff JE, Weyer K. Lack of renoprotective effects by long-term PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin in obese ZSF1 rats. Am J Physiol Renal Physiol 2025; 328:F48-F67. [PMID: 39556312 DOI: 10.1152/ajprenal.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). Despite the entry of sodium glucose cotransporter 2 (SGLT2) inhibitors, CKD persists as a medical challenge. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition reduces low-density lipoprotein (LDL)-cholesterol, a major risk factor of CVD. Interestingly, studies indicate that PCSK9 inhibition decreases proteinuria in kidney disease, complementing the reduced CVD risk. This study aimed to validate obese ZSF1 rats as a model for the renoprotective effects of PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin for 15 wk. Obese rats revealed a significant reduction in measured glomerular filtration rate (mGFR) and increased urine albumin/creatinine ratio (UACR) during follow-up compared with lean controls. Alirocumab treatment resulted in a decline in mGFR and increased UACR compared with vehicle-treated obese rats. Immunohistochemistry showed increased fibrosis and inflammation in kidney tissue from obese rats treated with empagliflozin or alirocumab, whereas hepatic cholesterol and triglyceride levels were lowered compared with vehicle-treated obese rats. Although alirocumab lowered circulating free cholesterol levels throughout the treatment period, certain cholesteryl esters were increased at the end of the study, resulting in no overall difference in total cholesterol levels in the alirocumab group. Correspondingly, only a trend toward increased hepatic LDL-receptor levels was observed. In conclusion, these findings suggest that alirocumab treatment aggravates kidney dysfunction in obese ZSF1 rats. Moreover, in contrast to the renoprotective properties of empagliflozin observed in patients with CKD, empagliflozin did not ameliorate kidney disease progression in the obese ZSF1 rat.NEW & NOTEWORTHY New treatments to slow kidney disease progression and reduce cardiovascular disease risk are needed for chronic kidney disease (CKD). We investigated the cholesterol-lowering PCSK9 inhibitor alirocumab as a new treatment for proteinuric CKD and the effect of SGLT2 inhibition using empagliflozin in obese ZSF1 rats. Regarding renoprotection, our findings were contradictory with previous preclinical studies and clinical data, suggesting that different pathophysiological mechanisms may apply to this rat model.
Collapse
Affiliation(s)
- Sandra Hummelgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardio-Renal Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Henning Hvid
- Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark
| | - Henrik Birn
- Department of Clinical Medicine and Renal Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Draupnir Bio, c/o INCUBA Skejby, Aarhus, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Savelieff MG, Elafros MA, Viswanathan V, Jensen TS, Bennett DL, Feldman EL. The global and regional burden of diabetic peripheral neuropathy. Nat Rev Neurol 2025; 21:17-31. [PMID: 39639140 DOI: 10.1038/s41582-024-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is length-dependent peripheral nerve damage arising as a complication of type 1 or type 2 diabetes in up to 50% of patients. DPN poses a substantial burden on patients, who can experience impaired gait and loss of balance, predisposing them to falls and fractures, and neuropathic pain, which is frequently difficult to treat and reduces quality of life. Advanced DPN can lead to diabetic foot ulcers and non-healing wounds that often necessitate lower-limb amputation. From a socioeconomic perspective, DPN increases both direct health-care costs and indirect costs from loss of productivity owing to neuropathy-related disability. In this Review, we highlight the importance of understanding country-specific and region-specific variations in DPN prevalence to inform public health policy and allocate resources appropriately. We also explore how identification of DPN risk factors can guide treatment and prevention strategies and aid the development of health-care infrastructure for populations at risk. We review evidence that metabolic factors beyond hyperglycaemia contribute to DPN development, necessitating a shift from pure glycaemic control to multi-targeted metabolic control, including weight loss and improvements in lipid profiles.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Melissa A Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre, Royapuram, Chennai, India
| | - Troels S Jensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Blaibel D, Fernandez CJ, Pappachan JM. Non-pharmacological interventions for diabetic peripheral neuropathy: Are we winning the battle? World J Diabetes 2024; 15:579-585. [PMID: 38680695 PMCID: PMC11045424 DOI: 10.4239/wjd.v15.i4.579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Despite the advent of relatively reliable modalities of diagnosing diabetic peripheral neuropathy (DPN), such as nerve conduction studies, there is still a knowledge gap about the pathophysiology, and thus limited available interventions for symptom control and curtailing disease progression. The pharmacologic aspect of management is mainly centred on pain control, however, there are several important aspects of DPN such as loss of vibration sense, pressure sense, and proprioception which are associated with risks to lower limb health, which pharmacotherapy does not address. Furthermore, published evidence suggests non-pharmacologic interventions such as glycaemic control through dietary modification and exercise need to be combined with other measures such as psychotherapy, to reach a desired, however modest effect. Acupuncture is emerging as an important treatment modality for several chronic medical conditions including neuropathic and other pain syndromes. In their study published in the World Journal of Diabetes on the potential of acupuncture to reduce DPN symptoms and enhance nerve conduction parameters, Hoerder et al have been able to demonstrate that acupuncture improves sensory function and that this effect is likely sustained two months after treatment cessation. Although previous studies also support these findings, larger multi-center randomized control trials including a sham-controlled arm accounting for a placebo effect are required. Overall, given the satisfactory safety profile and the positive results found in these studies, it is likely that acupuncture may become an important aspect of the repertoire of effective DPN management.
Collapse
Affiliation(s)
- Dania Blaibel
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
| | - Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Maffei P, Bettini S, Busetto L, Dassie F. SGLT2 Inhibitors in the Management of Type 1 Diabetes (T1D): An Update on Current Evidence and Recommendations. Diabetes Metab Syndr Obes 2023; 16:3579-3598. [PMID: 37964939 PMCID: PMC10642354 DOI: 10.2147/dmso.s240903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
SGLT2i (sodium glucose transporter type 2 inhibitors) are pharmacological agents that act by inhibiting the SGLT2, by reducing the renal plasma glucose threshold and inducing glycosuria, resulting in a blood glucose lowering effect. In recent years, studies demonstrating some additional positive effects of SGLT2i also in the treatment of T1D have increased progressively. The SGLT2i dapagliflozin and sotagliflozin have been temporarily licensed for use by the European Medical Agency (EMA) as an adjunct to insulin therapy in adults with T1D with a body mass index of 27 kg/m2 or higher. However, in the meantime, the US Food and Drug Administration (FDA) Endocrinologic and Metabolic Drugs Advisory Committee was divided, citing concerns about the main side effects of SGLT2i, especially diabetic ketoacidosis (DKA). The aim of this manuscript was to conduct an update on current evidence and recommendations of the reported use of SGLT2i in the treatment of T1D in humans. Preclinical studies, clinical trial and real world data suggest benefits in glycaemia control and nefro-cardiovascular protection, even though several studies have documented an important increase in the risk of DKA, a serious and life-threatening adverse event of these agents. SGLT2i potentially addresses some of the unmet needs associated with T1D by improving glycaemic control with weight loss and without increasing hypoglycemia, by reducing glycaemic variability. However, due to side effects, EMA recommendation for SGLT2 use on T1D was withdrawn. Further studies will be needed to determine the safety of this therapy in T1D and to define the type of patient who can benefit most from these medications.
Collapse
Affiliation(s)
- Pietro Maffei
- Department of Medicine, Padua University, Padua, Italy
| | | | - Luca Busetto
- Department of Medicine, Padua University, Padua, Italy
| | | |
Collapse
|
5
|
Aiello JJ, Bogart MC, Chan WT, Holoman NC, Trobenter TD, Relf CE, Kleinman DM, De Vivo DC, Samuels IS. Systemic Reduction of Glut1 Normalizes Retinal Dysfunction, Inflammation, and Oxidative Stress in the Retina of Spontaneous Type 2 Diabetic Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:927-938. [PMID: 37062410 PMCID: PMC10294444 DOI: 10.1016/j.ajpath.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Defects in the light-evoked responses of the retina occur early in the sequalae of diabetic retinopathy (DR). These defects, identified through the electroretinogram (ERG), represent dysfunction of retinal neurons and the retinal pigment epithelium and are commonly identifiable at the timing of, or almost immediately following, diabetes diagnosis. Recently, systemic reduction of the facilitated glucose transporter type 1, Glut1, in type 1 diabetic mice was shown to reduce retinal sorbitol accumulation, mitigate ERG defects, and prevent retinal oxidative stress and inflammation. Herein, the study investigated whether systemic reduction of Glut1 also diminished hallmarks of DR in type 2 diabetic mice. Transgenic nondiabetic Leprdb/+ and spontaneously diabetic Leprdb/db mice that expressed wild-type (Glut1+/+) or systemically reduced levels of Glut1 (Glut1+/-) were aged and subjected to standard strobe flash electroretinography and c-wave analysis before evaluation of inflammatory cytokines and oxidative stress molecules. Although Leprdb/dbGlut1+/- mice still displayed overt obesity and diabetes, no scotopic, photopic, or c-wave ERG defects were present through 16 weeks of age, and expression of inflammatory cytokines and oxidative stress molecules was also normalized. These findings suggest that systemic reduction of Glut1 is sufficient to prevent functional retinal pathophysiology in type 2 diabetes. Targeted, moderate reductions of Glut1 or inhibition of Glut1 activity in the retina of diabetic patients should be considered as a novel therapeutic strategy to prevent development and progression of DR.
Collapse
Affiliation(s)
- Jacob J Aiello
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Maislin C Bogart
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Wai-Ting Chan
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Nicholas C Holoman
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Timothy D Trobenter
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Chloe E Relf
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Dana M Kleinman
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Darryl C De Vivo
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Ivy S Samuels
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, Ohio; Department of Ophthalmic Research, Cole Eye Institute, Cleveland, Ohio.
| |
Collapse
|
6
|
Eid SA, Noureldein M, Kim B, Hinder LM, Mendelson FE, Hayes JM, Hur J, Feldman EL. Single-cell RNA-seq uncovers novel metabolic functions of Schwann cells beyond myelination. J Neurochem 2023; 166:367-388. [PMID: 37328915 PMCID: PMC11141588 DOI: 10.1111/jnc.15877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Schwann cells (SCs) support peripheral nerves under homeostatic conditions, independent of myelination, and contribute to damage in prediabetic peripheral neuropathy (PN). Here, we used single-cell RNA sequencing to characterize the transcriptional profiles and intercellular communication of SCs in the nerve microenvironment using the high-fat diet-fed mouse, which mimics human prediabetes and neuropathy. We identified four major SC clusters, myelinating, nonmyelinating, immature, and repair in healthy and neuropathic nerves, in addition to a distinct cluster of nerve macrophages. Myelinating SCs acquired a unique transcriptional profile, beyond myelination, in response to metabolic stress. Mapping SC intercellular communication identified a shift in communication, centered on immune response and trophic support pathways, which primarily impacted nonmyelinating SCs. Validation analyses revealed that neuropathic SCs become pro-inflammatory and insulin resistant under prediabetic conditions. Overall, our study offers a unique resource for interrogating SC function, communication, and signaling in nerve pathophysiology to help inform SC-specific therapies.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mohamed Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Dhakal B, Shiwakoti S, Park EY, Kang KW, Schini-Kerth VB, Park SH, Ji HY, Park JS, Ko JY, Oak MH. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci Rep 2023; 13:6256. [PMID: 37069192 PMCID: PMC10110533 DOI: 10.1038/s41598-023-33086-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Nano plastics (NPs) have been a significant threat to human health and are known to cause premature endothelial senescence. Endothelial senescence is considered one of the primary risk factors contributing to numerous cardiovascular disorders. Recent studies have suggested that inhibition of sodium glucose co-transporter (SGLT2) ameliorates endothelial senescence and dysfunction. Therefore, our study intends to explore the role of SGLT2 in NPs-induced endothelial senescence and dysfunction. Porcine coronary artery and its endothelial cells were treated with NPs in the presence or absence of Enavogliflozin (ENA), a SGLT2 inhibitor and then SGLTs expression, senescence markers and vascular function were evaluated. NPs significantly up-regulated SGLT2 and ENA significantly decreased NPs-induced senescence-associated-β-gal activity, cell-cycle arrest, and senescence markers p53 and p21 suggesting that inhibition of SGLT2 prevents NPs-induced endothelial senescence. In addition, ENA decreased the formation of reactive oxygen species with the downregulation of Nox2, and p22phox. Furthermore, SGLT2 inhibition also up regulated the endothelial nitric oxide synthase expression along with improving vascular function. In conclusion, premature endothelial senescence by NPs is, at least in part, associated with SGLT2 and it could be a potential therapeutic target for preventing and/or treating environmental pollutants-induced cardiovascular disorders mediated by endothelial senescence and dysfunction.
Collapse
Affiliation(s)
- Bikalpa Dhakal
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Sun-Hwa Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Hye-Young Ji
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Joon Seok Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
8
|
Wołos-Kłosowicz K, Matuszewski W, Rutkowska J, Krankowska K, Bandurska-Stankiewicz E. Will GLP-1 Analogues and SGLT-2 Inhibitors Become New Game Changers for Diabetic Retinopathy? J Clin Med 2022; 11:6183. [PMID: 36294503 PMCID: PMC9604821 DOI: 10.3390/jcm11206183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus (DM), estimated to affect approximately one-third of the diabetic population, and the most common cause of preventable vision loss. The available treatment options focus on the late stages of this complication, while in the early stages there is no dedicated treatment besides optimizing blood pressure, lipid and glycemic control; DR is still lacking effective preventive methods. glucagon-like peptide 1 receptor agonists (GLP-1 Ras) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors have a proven effect in reducing risk factors of DR and numerous experimental and animal studies have strongly established its retinoprotective potential. Both drug groups have the evident potential to become a new therapeutic option for the prevention and treatment of diabetic retinopathy and there is an urgent need for further comprehensive clinical trials to verify whether these findings are translatable to humans.
Collapse
Affiliation(s)
- Katarzyna Wołos-Kłosowicz
- Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
9
|
Zaini LM, Kartasasmita AS, Gondhowiardjo TD, Syukri M, Lesmana R. Potential molecular mechanism of action of sodium-glucose co-transporter 2 inhibitors in the prevention and management of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Lia Meuthia Zaini
- Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
- Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
- Department of Medicine, Zainoel Abidin Hospital, Banda Aceh
| | - Arief S Kartasasmita
- Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
- Department of Ophthalmology, Cicendo Eye Hospital, Bandung, Indonesia
| | - Tjahjono D Gondhowiardjo
- Faculty of Medicine, Indonesia University, Jakarta, Indonesia
- Department of Ophthalmology, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Maimun Syukri
- Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Ronny Lesmana
- Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
10
|
Chen J, Sun Y, Chen L, Zhou Y. NADH-Cytochrome B5 reductase 2 suppresses retinal vascular dysfunction through regulation of vascular endothelial growth factor A in diabetic retinopathy. Exp Eye Res 2022; 222:109186. [PMID: 35820466 DOI: 10.1016/j.exer.2022.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Diabetic retinopathy (DR) is a progressive vascular complication of diabetes mellitus (DM) and is related to retinal vascular abnormalities. NADH-Cytochrome B5 Reductase 2 (CBR2) has been implicated in angiogenesis, but the effect of CBR2 on angiogenesis and endothelial cell biological behavior in DR remains unclear. Here, we aimed to explore the effect of CBR2 on retinal vascular dysfunction under diabetic conditions. The histological analyses were performed to explore the effect of CBR2 on pathological change in streptozotocin (STZ)-induced diabetic rat retinas. The effect of CBR2 on endothelial cell function was explored by CCK-8, scratch wound, transwell, tube formation, and immunofluorescence assays in high glucose (HG)-stimulated human retinal microvascular endothelial cells (HRMECs). CBR2 expression was significantly downregulated in DM rat retinas and HG-stimulated HRMECs. Intravitreal injection of CBR2-expressing lentivirus under diabetic conditions reduced retinal angiogenesis, acellular capillary formation, and pericyte loss, along with decreased expression of hypoxia-inducible factor-1α (HIF-1α), cluster of differentiation 31 (CD31), and vascular endothelial growth factor A (VEGFA) in vivo. Moreover, CBR2 overexpression inhibited cell growth and tube formation and led to decreased expression of HIF-1α and VEGFA in HG-induced HRMECs. Interestingly, the repressive effects of CBR2 on cell proliferation, migration, and tube formation under HG conditions were strongly reversed when VEGFA was overexpressed. Overall, the key findings of our study suggested that CBR2 might alleviate retinal vascular dysfunction and abnormal endothelial proliferation during the process of DR by regulating VEGFA, providing a piece of potent evidence for DR therapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yizhou Sun
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
11
|
Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharm Res 2022; 45:475-493. [PMID: 35767208 PMCID: PMC9325846 DOI: 10.1007/s12272-022-01391-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers’ count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1β), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA’s beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.
Collapse
|
12
|
Abdelkader NF, Elbaset MA, Moustafa PE, Ibrahim SM. Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharm Res 2022. [PMID: 35767208 DOI: 10.1007/s12272-022-01391-5/figures/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers' count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1β), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA's beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Marawan A Elbaset
- Medical Research and Clinical Studies Institute, Pharmacology, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Medical Research and Clinical Studies Institute, Pharmacology, National Research Centre, Giza, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
13
|
Hanaguri J, Yokota H, Kushiyama A, Kushiyama S, Watanabe M, Yamagami S, Nagaoka T. The Effect of Sodium-Dependent Glucose Cotransporter 2 Inhibitor Tofogliflozin on Neurovascular Coupling in the Retina in Type 2 Diabetic Mice. Int J Mol Sci 2022; 23:ijms23031362. [PMID: 35163285 PMCID: PMC8835894 DOI: 10.3390/ijms23031362] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
We investigated the effect of tofogliflozin, a sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i), on retinal blood flow dysregulation, neural retinal dysfunction, and the impaired neurovascular coupling in type 2 diabetic mice. Tofogliflozin was added to mouse chow to deliver 5 mg/kg/day and 6-week-old mice were fed for 8 weeks. The longitudinal changes in the retinal neuronal function and blood flow responses to systemic hyperoxia and flicker stimulation were evaluated every 2 weeks in diabetic db/db mice that received tofogliflozin (n =6) or placebo (n = 6) from 8 to 14 weeks of age. We also evaluated glial activation and vascular endothelial growth factor (VEGF) expression by immunofluorescence. Tofogliflozin treatment caused a sustained decrease in blood glucose in db/db mice from 8 weeks of the treatment. In tofogliflozin-treated db/db mice, both responses improved from 8 to 14 weeks of age, compared with vehicle-treated diabetic mice. Subsequently, the electroretinography implicit time for the oscillatory potential was significantly improved in SGLT2i-treated db/db mice. The systemic tofogliflozin treatment prevented the activation of glial fibrillary acidic protein and VEGF protein expression, as detected by immunofluorescence. Our results suggest that glycemic control with tofogliflozin significantly improved the impaired retinal neurovascular coupling in type 2 diabetic mice with the inhibition of retinal glial activation.
Collapse
Affiliation(s)
- Junya Hanaguri
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan;
| | - Sakura Kushiyama
- Division of Life Science, Department of Nursing, National College of Nursing, Kiyose, Tokyo 204-8575, Japan;
| | - Masahisa Watanabe
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Itabashi, Tokyo 173-8601, Japan; (J.H.); (H.Y.); (M.W.); (S.Y.)
- Correspondence: ; Tel.: +81-3-3972-8111
| |
Collapse
|
14
|
Mehta S, Nain P, Agrawal BK, Singh RP, Kaur J, Maity S, Bhattacharjee A, Peela J, Nauhria S, Nauhria S. Effectiveness of Empagliflozin With Vitamin D Supplementation in Peripheral Neuropathy in Type 2 Diabetic Patients. Cureus 2021; 13:e20208. [PMID: 35004028 PMCID: PMC8730350 DOI: 10.7759/cureus.20208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Neuropathy is the most prevalent broad-spectrum microvascular complication of diabetes. The present study aims to evaluate the effect of empagliflozin with vitamin D supplementation on diabetic peripheral neuropathy. Methods: A prospective, randomized, controlled study was conducted for six months including 150 type 2 diabetic patients, divided into three groups (n=50/group): Group 1, patients on oral hypoglycemic agents; Group 2, patients on empagliflozin and Group 3, patients on empagliflozin with vitamin D. Biochemical parameters were estimated for outcome measurements and patients’ neuropathic pain was analysed using Douleur Neuropathique 4 Questions, Neuropathic Pain Symptom Inventory and Ipswich Touch the toes test questionnaire. Data were analysed using a one-way analysis of variance. Results: Diabetic neuropathy in males was more prevalent (more than 50%) as compared to females in all three groups, with an average age of 50±6 years, along with a diabetic history of 15±4.5 years and a glycated hemoglobin A1C (HbA1C) level of >10%. The mean value of serum vitamin D level significantly increased by 64.7% (19±5 to 54±8 ng/mL; p<0.05). A remarkable decrease (by 17.4%) from baseline in the HbA1C level was observed after six months of treatment only in Group 3, whereas in other groups (1 and 2), there was a non-significant decrease in HbA1C levels when compared to baseline. Moreover, a significant improvement in neuropathic condition was seen only in Group 3. Conclusion: The results indicated that empagliflozin with vitamin D supplementation significantly controlled or reduced HbA1C and improved diabetic neuropathic symptoms in patients. It is suggested that this combination can be considered as the primary therapeutic approach for neuropathic complications in diabetic patients.
Collapse
Affiliation(s)
- Sanjana Mehta
- Department of Pharmacy Practice, Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, IND
| | - Parminder Nain
- Department of Pharmacy Practice, Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, IND
| | - Bimal K Agrawal
- Department of Internal Medicine, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, IND
| | | | - Jaspreet Kaur
- Department of Pharmacy Practice, Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, IND
| | - Sabyasachi Maity
- Department of Physiology, St. George's University School of Medicine, St. George's, GRD
| | | | - Jagannadha Peela
- Department of Medical Genetics and Biochemistry, St. Matthew's University, George Town, CYM
| | - Shreya Nauhria
- Department of Psychology, University of Leicester, Leicester, GBR
| | - Samal Nauhria
- Department of Pathology, St. Matthew's University, George Town, CYM
| |
Collapse
|
15
|
Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother 2021; 145:112395. [PMID: 34775239 DOI: 10.1016/j.biopha.2021.112395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-β. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-β/PKC/TRPV1/SP pathways.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt.
| | - Sherehan M Ibrahim
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt
| | - Passant E Moustafa
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| | - Marawan A Elbaset
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| |
Collapse
|
16
|
Eid SA, Feldman EL. Advances in diet-induced rodent models of metabolically acquired peripheral neuropathy. Dis Model Mech 2021; 14:273425. [PMID: 34762126 PMCID: PMC8592018 DOI: 10.1242/dmm.049337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuropathy (PN) is a severe complication that affects over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients. The metabolic syndrome is increasingly recognized as a major driver of PN. However, basic and translational research is needed to understand the mechanisms that contribute to nerve damage. Rodent models of diet-induced obesity, prediabetes, T2D and PN closely resemble the human disease and have proven to be instrumental for the study of PN mechanisms. In this Perspective article, we focus on the development, neurological characterization and dietary fat considerations of diet-induced rodent models of PN. We highlight the importance of investigating sex differences and discuss some of the challenges in translation from bench to bedside, including recapitulating the progressive nature of human PN and modeling neuropathic pain. We emphasize that future research should overcome these challenges in the quest to better mimic human PN in animal models.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Østergaard MV, Secher T, Christensen M, Salinas CG, Roostalu U, Skytte JL, Rune I, Hansen HH, Jelsing J, Vrang N, Fink LN. Therapeutic effects of lisinopril and empagliflozin in a mouse model of hypertension-accelerated diabetic kidney disease. Am J Physiol Renal Physiol 2021; 321:F149-F161. [PMID: 34180715 DOI: 10.1152/ajprenal.00154.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a critical comorbidity for progression of diabetic kidney disease (DKD). To facilitate the development of novel therapeutic interventions with the potential to control disease progression, there is a need to establish translational animal models that predict treatment effects in human DKD. The present study aimed to characterize renal disease and outcomes of standard of medical care in a model of advanced DKD facilitated by adeno-associated virus (AAV)-mediated renin overexpression in uninephrectomized (UNx) db/db mice. Five weeks after single AAV administration and 4 wk after UNx, female db/db UNx-ReninAAV mice received (PO, QD) vehicle, lisinopril (40 mg/kg), empagliflozin (20 mg/kg), or combination treatment for 12 wk (n = 17 mice/group). Untreated db/+ mice (n = 8) and vehicle-dosed db/db UNx-LacZAAV mice (n = 17) served as controls. End points included plasma, urine, and histomorphometric markers of kidney disease. Total glomerular numbers and individual glomerular volume were evaluated by whole kidney three-dimensional imaging analysis. db/db UNx-ReninAAV mice developed hallmarks of progressive DKD characterized by severe albuminuria, advanced glomerulosclerosis, and glomerular hypertrophy. Lisinopril significantly improved albuminuria, glomerulosclerosis, tubulointerstitial injury, and inflammation. Although empagliflozin alone had no therapeutic effect on renal endpoints, lisinopril and empagliflozin exerted synergistic effects on renal histological outcomes. In conclusion, the db/db UNx-ReninAAV mouse demonstrates good clinical translatability with respect to physiological and histological hallmarks of progressive DKD. The efficacy of standard of care to control hypertension and hyperglycemia provides a proof of concept for testing novel drug therapies in the model.NEW & NOTEWORTHY Translational animal models of diabetic kidney disease (DKD) are important tools in preclinical research and drug discovery. Here, we show that the standard of care to control hypertension (lisinopril) and hyperglycemia (empagliflozin) improves physiological and histopathological hallmarks of kidney disease in a mouse model of hypertension-accelerated progressive DKD. The findings substantiate hypertension and type 2 diabetes as essential factors in driving DKD progression and provide a proof of concept for probing novel drugs for potential nephroprotective efficacy in this model.
Collapse
|
18
|
Blinova E, Pakhomov D, Shimanovsky D, Kilmyashkina M, Mazov Y, Demura T, Drozdov V, Blinov D, Deryabina O, Samishina E, Butenko A, Skachilova S, Sokolov A, Vasilkina O, Alkhatatneh BA, Vavilova O, Sukhov A, Shmatok D, Sorokvasha I, Tumutolova O, Lobanova E. Cerium-Containing N-Acetyl-6-Aminohexanoic Acid Formulation Accelerates Wound Reparation in Diabetic Animals. Biomolecules 2021; 11:biom11060834. [PMID: 34205061 PMCID: PMC8230275 DOI: 10.3390/biom11060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals. Methods: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 mg/mL aquatic spray was used as wound experimental topical therapy. LHT-8-17 toxicity was assessed in human skin epidermal cell culture using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A linear wound was reproduced in 18 outbred white rats with streptozotocin-induced (60 mg/kg i.p.) diabetes; planar cutaneous defect was modelled in 60 C57Bl6 mice with streptozotocin-induced (200 mg/kg i.p.) diabetes and 90 diabetic db/db mice. Firmness of the forming scar was assessed mechanically. Skin defect covering was histologically evaluated on days 5, 10, 15, and 20. Tissue TNF-α, IL-1β and IL-10 levels were determined by quantitative ELISA. Oxidative stress activity was detected by Fe-induced chemiluminescence. Ki-67 expression and CD34 cell positivity were assessed using immunohistochemistry. FGFR3 gene expression was detected by real-time PCR. LHT-8-17 anti-microbial potency was assessed in wound tissues contaminated by MRSA. Results: LHT-8-17 4 mg twice daily accelerated linear and planar wound healing in animals with type 1 and type 2 diabetes. The formulated topical application depressed tissue TNF-α, IL-1β, and oxidative reaction activity along with sustaining both the IL-10 concentration and antioxidant capacity. LHT-8-17 induced Ki-67 positivity of fibroblasts and pro-keratinocytes, upregulated FGFR3 gene expression, and increased tissue vascularization. The formulation possessed anti-microbial properties. Conclusions: The obtained results allow us to consider the formulation as a promising pharmacological agent for diabetic wound topical treatment.
Collapse
MESH Headings
- Administration, Topical
- Aminocaproates/administration & dosage
- Aminocaproates/metabolism
- Animals
- Cerium/administration & dosage
- Cerium/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Rats
- Wound Healing/drug effects
- Wound Healing/physiology
Collapse
Affiliation(s)
- Ekaterina Blinova
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
- Department of Morphology, National Research Nuclear University MEPHI, 31 Kashirskoe Highway, 115409 Moscow, Russia
| | - Dmitry Pakhomov
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Denis Shimanovsky
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Marina Kilmyashkina
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Yan Mazov
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Tatiana Demura
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Vladimir Drozdov
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Dmitry Blinov
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraya Kupavna, Russia; (E.S.); (S.S.); (I.S.)
- Correspondence: ; Tel.: +7-927-197-1422
| | - Olga Deryabina
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Elena Samishina
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraya Kupavna, Russia; (E.S.); (S.S.); (I.S.)
| | - Aleksandra Butenko
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Sofia Skachilova
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraya Kupavna, Russia; (E.S.); (S.S.); (I.S.)
| | - Alexey Sokolov
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Olga Vasilkina
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Bashar A. Alkhatatneh
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Olga Vavilova
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Andrey Sukhov
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Regenerative Medicine, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia; (E.B.); (D.S.); (Y.M.); (T.D.); (V.D.); (A.B.); (A.S.); (O.V.); (A.S.)
| | - Daniil Shmatok
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Ilya Sorokvasha
- Laboratory of Molecular Pharmacology and Drug Design, Department of Pharmaceutical Chemistry, All-Union Research Center for Biological Active Compounds Safety, 23 Kirova Street, 142450 Staraya Kupavna, Russia; (E.S.); (S.S.); (I.S.)
| | - Oxana Tumutolova
- Laboratory of Pharmacology, Department of Pathology, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Street, 430005 Saransk, Russia; (D.P.); (M.K.); (O.D.); (O.V.); (B.A.A.); (D.S.); (O.T.)
| | - Elena Lobanova
- Department of Pharmacology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 20/1 Delegatskaya Street, 127473 Moscow, Russia;
| |
Collapse
|
19
|
Elzinga SE, Savelieff MG, O'Brien PD, Mendelson FE, Hayes JM, Feldman EL. Sex differences in insulin resistance, but not peripheral neuropathy, in a diet-induced prediabetes mouse model. Dis Model Mech 2021; 14:dmm048909. [PMID: 33692086 PMCID: PMC8077554 DOI: 10.1242/dmm.048909] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral neuropathy (PN) is a common complication of prediabetes and diabetes and is an increasing problem worldwide. Existing PN treatments rely solely on glycemic control, which is effective in type 1 but not type 2 diabetes. Sex differences in response to anti-diabetic drugs further complicate the identification of effective PN therapies. Preclinical research has been primarily carried out in males, highlighting the need for increased sex consideration in PN models. We previously reported PN sex dimorphism in obese leptin-deficient ob/ob mice. This genetic model is inherently limited, however, owing to leptin's role in metabolism. Therefore, the current study goal was to examine PN and insulin resistance in male and female C57BL6/J mice fed a high-fat diet (HFD), an established murine model of human prediabetes lacking genetic mutations. HFD mice of both sexes underwent longitudinal phenotyping and exhibited expected metabolic and PN dysfunction compared to standard diet (SD)-fed animals. Hindpaw thermal latencies to heat were shorter in HFD females versus HFD males, as well as SD females versus males. Compared to HFD males, female HFD mice exhibited delayed insulin resistance, yet still developed the same trajectory of nerve conduction deficits and intraepidermal nerve fiber density loss. Subtle differences in adipokine levels were also noted by sex and obesity status. Collectively, our results indicate that although females retain early insulin sensitivity upon HFD challenge, this does not protect them from developing the same degree of PN as their male counterparts. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillipe D. O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|