1
|
Zhu L, Huang R, Feng JR, Zhang M, Huang XJ, Chen Z, Wang W, Chen Y. Shexiang Tongxin Dropping Pills attenuate ischemic microvascular dysfunction via suppressing P66Shc-mediated mitochondrial respiration deficits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119664. [PMID: 40154895 DOI: 10.1016/j.jep.2025.119664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) disrupts mitochondrial energy metabolism, leading to cerebral microvascular dysfunction (CMD). Shexiang Tongxin Dropping Pills (STDP) is a traditional Chinese medicinal formulation that has been clinically used for treating microcirculatory dysfunction. We have previously reported its ability to improve cerebral microcirculatory abnormalities. Nevertheless, the protective effects of STDP on cerebral microvascular mitochondria in the context of energy metabolism repair remain underinvestigated. AIM OF THE STUDY This study aims to investigate the potential mechanisms by which STDP ameliorates IS-induced CMD through the restoration of mitochondrial function. MATERIALS AND METHODS An ischemic stroke/reperfusion model was established by occluding and subsequently reperfusing the middle cerebral artery (MCAO/R) in C57BL/6 J mice. Laser speckle contrast imaging, Y-maze, rotarod tests and TTC staining were employed to evaluate the anti-ischemic stroke effects of STDP. Histological examination of cell adhesion proteins (ICAM 1, VCAM 1) and tight junction proteins (VE-cadherin, occludin) was conducted to assess the effects of STDP on the cerebral microvascular endothelium. In vitro, a bEnd.3 cell model was established through oxygen-glucose deprivation followed by reoxygenation (OGD/R). The cytoprotective capability of STDP was assessed by quantifying endothelial permeability, reactive oxygen species (ROS) levels, and cell viability. Mendelian randomization (MR) analysis and bioinformatic studies were performed to elucidate the causal associations between mitochondrial biological function and IS. Mitochondrial membrane potential (MMP) was assessed using a tetramethylrhodamine ethyl ester perchlorate fluorescent probe, while ATP production was quantified using a commercially available assay kit. Mitochondrial respiration was evaluated by measuring the oxygen consumption rate (OCR). Finally, the verification of important targets in mouse brain slices and bEnd.3 cells was conducted through immunoblotting and immunofluorescence. RESULTS STDP significantly restored cerebral blood flow and neurological function, and reduced infarct volume in MCAO/R mice. Furthermore, STDP markedly alleviated inflammation and hyperpermeability of the cerebral microvascular endothelium in MCAO/R mice, as evidenced by the suppression of ICAM-1 and VCAM-1 expression, along with the upregulation of VE-cadherin and occludin protein levels. Moreover, STDP not only mitigated hyperpermeability and excessive production of ROS induced by OGD/R in bEnd.3 cells but also enhanced the protective effects of the ROS scavenger N-acetylcysteine on bEnd.3 cells. Results of MR analysis and bioinformation studies demonstrated that the disruption of mitochondrial respiration is a critical pathogenic factor in IS-induced CMD. Our data confirmed that STDP effectively restored MMP and ATP production in OGD/R-treated bEnd.3 cells. Furthermore, STDP significantly enhanced basal respiration, maximal OCR, and spare respiratory capacity in bEnd.3 cells compared to the OGD/R group. Mechanistically, STDP markedly increased endothelial cystathionine γ-lyase (CSE)-mediated hydrogen sulfide (H2S) production and S-sulfhydration of P66shc, resulting in reduced protein expression and phosphorylation levels of P66Shc. This inhibition prevented its translocation into mitochondria, thereby restoring mitochondrial respiration. CONCLUSION STDP facilitated CSE expression and promoted H2S production, contributing to the inactivation of P66shc by suppressing its expression and increasing its sulfhydration. This process impeded P66Shc translocation to mitochondria, subsequently restoring mitochondrial respiration and alleviating IS-induced cerebral microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Li Zhu
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Ru Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Jing-Rui Feng
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Miao Zhang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Xiao-Jie Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Zeyu Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Wei Wang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China.
| | - Yang Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; Chinese Medicine Guangdong Laboratory, Zhuhai, 519031, China.
| |
Collapse
|
2
|
Zhang N, Fu T, Li T, Zhong P, Li L, Peng M, Li Z, Zhang L, Wang H, Hu P, Lu Y, Yao M. A superoxide anion responsive and self-reporting fluorescent H 2S donor for the treatment of diabetic wound. Free Radic Biol Med 2025; 231:109-119. [PMID: 39986489 DOI: 10.1016/j.freeradbiomed.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Superoxide anion (O2•-) not only serves as a critical precursor for numerous damaging reactive oxygen species (ROS), but also is implicated in a variety of diseases, including cancer, cardiovascular disorders, and diabetes. Consequently, reducing the levels of superoxide anions and alleviating oxidative stress are of paramount importance. Conversely, hydrogen sulfide (H2S), recognized as a significant biological signaling molecule, plays vital roles in protecting mammalian cells from oxidative damage and promoting tissue regeneration. In this study, we reported a novel superoxide anion-responsive H2S donor (HSD-SO-B) designed to scavenge O2•- and produce H2S concurrently. This H2S donor exhibits several advantages: (1) rapid response to superoxide anions (O2•-) with remarkable selectivity over competing species (2) generating H2S while scavenging superoxide anions (3) producing ratiometric fluorescence for both visualization and quantification of H2S release. Moreover, this O2•--responsive, self-immolative fluorescent H2S donor has shown significant therapeutic and reparative effects on the diabetic wound model in mice.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Tengchuan Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Tao Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Pengjie Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Luoyi Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Mingtao Peng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhenghao Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ling Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Han Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ping Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China.
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Mengyun Yao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Hydrogen Sulfide (H 2S- or H 2S n-Polysulfides) in Synaptic Plasticity: Modulation of NMDA Receptors and Neurotransmitter Release in Learning and Memory. Int J Mol Sci 2025; 26:3131. [PMID: 40243915 PMCID: PMC11988931 DOI: 10.3390/ijms26073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a pivotal gaseous transmitter in the central nervous system, influencing synaptic plasticity, learning, and memory by modulating various molecular pathways. This review examines recent evidence regarding how H2S regulates NMDA receptor function and neurotransmitter release in neuronal circuits. By synthesizing findings from animal and cellular models, we investigate the impacts of enzymatic H2S production and exogenous H2S on excitatory synaptic currents, long-term potentiation, and intracellular calcium signaling. Data suggest that H2S interacts directly with NMDA receptor subunits, altering receptor function and modulating neuronal excitability. Simultaneously, H2S promotes the release of neurotransmitters such as glutamate and GABA, shaping synaptic dynamics and plasticity. Furthermore, reports indicate that disruptions in H2S metabolism contribute to cognitive impairments and neurodegenerative disorders, underscoring the potential therapeutic value of targeting H2S-mediated pathways. Although the precise mechanisms of H2S-induced changes in synaptic strength remain elusive, a growing body of evidence positions H2S as a significant regulator of memory formation processes. This review calls for more rigorous exploration into the molecular underpinnings of H2S in synaptic plasticity, paving the way for novel pharmacological interventions in cognitive dysfunction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
4
|
Gupta SM, Mohite PS, Chakrapani H. Mercapto-NSAIDs generate a non-steroidal anti-inflammatory drug (NSAID) and hydrogen sulfide. Chem Sci 2025; 16:4695-4702. [PMID: 39958646 PMCID: PMC11826334 DOI: 10.1039/d4sc08525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the frontline treatments for inflammation and pain. Hydrogen sulfide (H2S) and related persulfide (RS-SH) are important mediators of antioxidant response and protect cells from oxidative stress. Hybrids of these pharmacological agents have shown promise in clinical trials and are superior to the parent NSAID. Here, we report a new class of NSAID-H2S hybrids, where a strategic placement of a sulfhydryl group adjacent to a carbonyl of a NSAID facilitates the enzymatic generation of H2S. We show that α-mercapto-nabumetone, a derivative of the clinical drug nabumetone, is a substrate for 3-mercaptopyruvate sulfurtransferase (3-MST), an enzyme involved in H2S biosynthesis. The key step of 3-MST catalysis is the cleavage of a C-S bond adjacent to a carbonyl group, which generates an enolate and 3-MST persulfide, which in turn is cleaved under reducing conditions to generate H2S. Guided by a molecular docking study with 3-MST, we prepared two mercapto-nabumetone derivatives, protected as their thioacetates. In the presence of 3-MST, both mercapto-nabumetone derivatives generated H2S and the NSAID in a nearly quantitative yield, produced glutathione persulfide (GS-SH), an important mediator of cellular antioxidant response, and permeated cells to generate H2S. Lastly, to gain insights into the scope of this strategy, we prepared mercapto-NSAID derivatives containing a carboxylic acid. We found that the propensity to generate H2S depended on the nature of the enol that is produced during the transformation of the mercapto-NSAID into the parent NSAID. This offers new insights into 3-MST catalysis and how reaction outcomes can be modulated by the keto-enol equilibrium. Taken together, the atom economical transformation of a clinical NSAID with one strategically placed sulfhydryl group to generate H2S presents new opportunities to enhance the properties of NSAIDs through participation in endogenous H2S biosynthesis.
Collapse
Affiliation(s)
- Simran M Gupta
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Pratiksha S Mohite
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| |
Collapse
|
5
|
Xie L, He Q, Wu H, Shi W, Xiao X, Yu T. Hydrogen Sulfide Sustained Release Donor Alleviates Spinal Cord Ischemia-Reperfusion-Induced Neuron Death by Inhibiting Ferritinophagy-Mediated Ferroptosis. CNS Neurosci Ther 2025; 31:e70366. [PMID: 40168041 PMCID: PMC11960479 DOI: 10.1111/cns.70366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
AIMS Spinal cord ischemia-reperfusion injury (SCIRI) is a disastrous complication that cannot be completely prevented in thoracoabdominal aneurysm surgery, leading to sensory and motor dysfunction and even paraparesis, causing tremendous socioeconomic burden. Ferritinophagy is a form of autophagic ferroptosis, which is a contributor to SCIRI. Hydrogen sulfide (H2S) has been reported to be neuroprotective in various diseases. However, it remains unclear whether H2S alleviates SCIRI-induced neural death via regulating ferritinophagy-mediated ferroptosis. The aim of this study was to explore their relationship and interaction in SCIRI. RESULTS The results demonstrate that Nissl bodies and motor function were obviously lost in SCIRI rats. Meanwhile, SCIRI led to a significant increase in DHE-positive neurons, TUNEL-positive neurons, LC3-positive neurons, and ferritin-positive neurons, downregulation of GPx4, Slc7a11, p62, and ferritin expression, and upregulation of LC3 II/I and NCOA4 expression. Additionally, there was upregulation of the level of MDA, GSH, and Fe2+. Finally, we found that H2S could significantly relieve neuronal death and loss of motor function in SCIRI rats by inhibiting ferritinophagy and ferroptosis. CONCLUSION Ferroptosis and ferritinophagy play a crucial role in the etiopathogenesis of SCIRI, and H2S exerts neuroprotection by inhibiting ferritinophagy-mediated ferroptosis.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedic Surgery, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
| | - Qiuping He
- Department of Orthopedic Surgery, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
| | - Hang Wu
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
- Department of Orthopedics, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Weipeng Shi
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
- Department of Orthopedics, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
6
|
Fu X, Zhang Q, Chen Y, Li Y, Wang H. Exogenous hydrogen sulfide improves non-alcoholic fatty liver disease by inhibiting endoplasmic reticulum stress/NLRP3 inflammasome pathway. Mol Cell Biochem 2025:10.1007/s11010-025-05220-3. [PMID: 39921790 DOI: 10.1007/s11010-025-05220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its exact pathogenesis has not been fully studied. Hydrogen sulfide (H2S) is the third gas signaling molecule discovered in mammals, following nitric oxide and carbon monoxide. It has the effects of anti-inflammation, anti-apoptosis, and so on, thereby playing an important role in many diseases. However, the role and mechanism of exogenous H2S in NAFLD are not fully understood. In this study, we constructed in vitro and in vivo NAFLD models by feeding mice a high-fat diet and stimulating hepatocytes with palmitic acid, respectively, to investigate the improvement effect and mechanism of exogenous H2S on NAFLD. The results showed that NaHS (a donor of H2S) treatment alleviated lipid accumulation, inflammation, apoptosis and pyroptosis, and downregulated endoplasmic reticulum (ER) stress and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NRRP3) inflammasome in NAFLD. The activation of NLRP3 inflammasome weakened NaHS improvement of NAFLD, indicating that exogenous H2S ameliorated NAFLD by inhibiting NLRP3 inflammasome-mediated lipid synthesis, inflammation, apoptosis and pyroptosis. Similarly, the activation of ER stress weakened NaHS improvement of NAFLD and NaHS inhibition of NLRP3 inflammasome, indicating that exogenous H2S suppressed NLRP3 inflammasome by downregulating ER stress, thus improving NAFLD. Additionally, the protein expressions of NLRP3 and cleaved caspase-1 were downregulated after inhibiting the reactive oxygen species (ROS)/extracellular signal-regulated kinases (ERK) and ROS/thioredoxin-interacting protein (TXNIP) pathways, indicating that ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways. In conclusion, our results indicated that exogenous H2S inhibited NLRP3 inflammasome-mediated hepatocytes inflammation, lipid synthesis, apoptosis and pyroptosis by downregulating ER stress, thereby improving NAFLD; Furthermore, ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways in NAFLD. ER stress/NLRP3 inflammasome is expected to become a new target of H2S for treating NAFLD.
Collapse
Affiliation(s)
- Xiaodi Fu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ying Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
7
|
Yavuz E, Cengiz IZ, Arslan A, Eser C. Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps. ANN CHIR PLAST ESTH 2025:S0294-1260(25)00008-1. [PMID: 39863446 DOI: 10.1016/j.anplas.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about H2S effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area. MATERIALS AND METHODS "Wistar albino" rats weighing between 250 and 300 grams were divided into 4 groups (group 1, group 2, group 3, group 4). Each group was divided into 2 subgroups: subgroup A (control) and subgroup B (H2S). In each group, skin flaps were elevated as an island flap with a superficial epigastric artery pedicle, 6 × 4cm from the groin area. In subgroup B (H2S), liquid hydrogen sulfide was injected through the tail vein 20minutes before ischemia at a final concentration of 10μM. Femoral artery and vein blood flows were stopped with separate microclips and left in ischemia, according to the planned ischemia hours of the flaps: group 1 as 1 hour, group 2 as 2hours, group 3 as 3hours, and group 4 as 6hours. Later, microclips were removed, and blood flow restored again. After 12hours of reperfusion, the rats were sacrificed by cervical dislocation, and tissue samples were taken. From the samples taken, neutrophil count in ischemic tissue, MDA (malondialdehyde) measurement, and damage in the tissue were evaluated by electron microscopy. RESULTS On electron microscopy inspection at all hours (1, 2, 3, and 6), hydrogen sulfide was found to provide protection against ischemia, reperfusion damage, and apoptosis at the cellular level. There was a statistically significant (P=0.035) decrease in the tissue neutrophil count at the 1st, 2nd, and 3rd hours. In the tissue MDA measurement, a statistically significant (P=0.026) decrease in hydrogen sulfide was detected at the first hour. There was no statistically significant difference in the 6th hour tissue neutrophil count and 2nd, 3rd, and 6th hour tissue MDA measurement. CONCLUSION Electron microscopy results in this study showed that hydrogen sulfide had antiapoptotic effects on reperfusion damage in skin flaps at all hours. However, the neutrophil counts showed it had cytoprotective and anti-inflammatory properties during the 1st, 2nd, and 3rd hours following ischemia, but not during the 6th hour. Tissue MDA levels indicate that H2S mitigates significant I/R injury during the 1st hour but not in the subsequent 2nd, 3rd, and 6th hours. These results led to the hypothesis that, in order to offer a strong enough protective effect against I/R damage, H2S should be administered repeatedly or at varying concentrations. After more research on how H2S affects skin flaps, we believe that it can be used in plastic surgery practices.
Collapse
Affiliation(s)
- E Yavuz
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.
| | - I Z Cengiz
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - A Arslan
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - C Eser
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
8
|
Bege M, Lovas M, Priksz D, Bernát B, Bereczki I, Kattoub RG, Kajtár R, Eskeif S, Novák L, Hodek J, Weber J, Herczegh P, Lekli I, Borbás A. Synthesis, H 2S releasing properties, antiviral and antioxidant activities and acute cardiac effects of nucleoside 5'-dithioacetates. Sci Rep 2025; 15:2876. [PMID: 39843902 PMCID: PMC11754443 DOI: 10.1038/s41598-025-85351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-H2S-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine. According to our measurements made with an H2S-specific sensor, nucleoside dithioacetates are moderately fast H2S donors, the guanosine derivative showed the fastest kinetics and the adenosine derivative the slowest. The antioxidant activity of 5'-thionucleosides is significantly higher than that of trolox, but lower than that of ascorbic acid, while intact dithioacetates have no remarkable antioxidant effect. In human Calu cells, the guanosine derivative showed a moderate anti-SARS-CoV-2 effect which was also confirmed by virus yield reduction assay. Dithioacetyl-adenosine and its metabolite showed similar acute cardiac effects as adenosine, however, it is noteworthy that both 5'-thio modified adenosines increased left ventricular ejection fraction or stroke volume, which was not observed with native adenosine.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| | - Miklós Lovas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Brigitta Bernát
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
- HUN-REN-UD Pharmamodul Research Group, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
| | - Rasha Ghanem Kattoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Richárd Kajtár
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Rex Ferenc u. 1., Debrecen, 4002, Hungary
| | - Simon Eskeif
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Rex Ferenc u. 1., Debrecen, 4002, Hungary
| | - Levente Novák
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague, 166 10, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague, 166 10, Czech Republic
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - István Lekli
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Rex Ferenc u. 1., Debrecen, 4002, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary.
| |
Collapse
|
9
|
Milovavnović MR, Zarić SD. How Flexible Is the Hydrogen Sulfide Molecule Structure? Influence of Hydrogen Sulfide Molecule Geometry on Its Hydrogen Bonds. Chempluschem 2025; 90:e202400511. [PMID: 39305482 DOI: 10.1002/cplu.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Indexed: 11/21/2024]
Abstract
The geometry of hydrogen sulfide was studied by calculating potential energy surface (PES) with over 1800 configurations. The calculations were performed at very accurate CCSD(T)/aug-cc-pvz5 level. The most stable geometry on the PES has bond angle (H-S-H) of 92.40° and bond length (S-H) of 1.338 Å. The PES shows that hydrogen sulfide is a quite flexible molecule. Namely, it can change the bonding angle (H-S-H) in the range of 15.6° (from 84.6° to 100.2°) and the bond lengths (S-H) in the range of 0.082 Å (from 1.299 Å to 1.381 Å) with an energy increase of only 1.0 kcal/mol. An influence of hydrogen sulfide geometry on its hydrogen bonds was studied on several hydrogen sulfide/hydrogen sulfide and water/hydrogen sulfide dimers. It showed that the change of hydrogen sulfide geometry does not influence the strength of hydrogen bond. Fully optimized geometries in gas and water solution phases revealed structural differences of both monomers and dimers in gas phase and water phase. SAPT analysis of the optimized dimer geometries showed that in all the dimers electrostatic is the most dominant contribution, while, in the dimers with hydrogen sulfide, the influence of dispersion contribution becomes quite pronounced.
Collapse
Affiliation(s)
- Milan R Milovavnović
- Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| |
Collapse
|
10
|
Cui J, Li C, Qi J, Yu W, Li C. Hydrogen sulfide in plant cold stress: functions, mechanisms, and challenge. PLANT MOLECULAR BIOLOGY 2024; 115:12. [PMID: 39718661 DOI: 10.1007/s11103-024-01535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Cold stress is an environmental factor that seriously restricts the growth, production and survival of plants, and has received extensive attention in recent years. Hydrogen sulfide (H2S) is an ubiquitous gas signaling molecule, and its role in alleviating plant cold stress has become a research focus in recent years. This paper reviews for the first time the significant effect of H2S on improving plant cold resistance, which makes up for the gaps in the existing literature. In general, H2S improves plant tolerance to cold stress by activating antioxidant reaction and promoting the accumulation of metabolic substances such as chlorophyll, flavonoids, proline, sucrose and total soluble sugar in plants. Interestingly, H2S also interacts with nitric oxide (NO), auxin, jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH) to alleviate cold stress. More importantly, in the process of alleviating cold stress with H2S, gene expression related to H2S synthesis, cold response and antioxidant is up-regulated or down-regulated, leading to the improvement of plant cold resistance. This paper also points out the problems existing in the current research and the potential of H2S in agricultural practice, and provides relevant theoretical references for future research in this field.
Collapse
Affiliation(s)
- Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chuanghao Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
11
|
Takashima M, Kurita M, Terai H, Zhao FQ, Suzuki JI. S-allylmercaptocysteine inhibits TLR4-mediated inflammation through enhanced formation of inhibitory MyD88 splice variant in mammary epithelial cells. Sci Rep 2024; 14:29627. [PMID: 39609525 PMCID: PMC11604973 DOI: 10.1038/s41598-024-81304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Mastitis is an inflammatory disease affecting mammary tissues caused by bacterial infection that negatively affects milk quality and quantity. S-Allylmercaptocysteine (SAMC), a sulfur compound in aged garlic extract (AGE), suppresses lipopolysaccharide (LPS)-induced inflammation in mouse models and cell cultures. However, the mechanisms underlying this anti-inflammatory effect remain unclear. In this study, we demonstrated that oral administration of AGE suppressed the LPS-induced immune response in a mastitis mouse model and that SAMC inhibited LPS-induced interleukin-6 production and nuclear factor κB p65 subunit activation in HC11 mammary epithelial cells. Global phosphoproteomic analysis revealed that SAMC treatment downregulated 910 of the 1,304 phosphorylation sites upregulated by LPS stimulation in mammary cells, including those associated with toll-like receptor 4 (TLR4) signaling. Additionally, SAMC decreased the phosphorylation of 26 proteins involved in pre-mRNA splicing, particularly the U2 small nuclear ribonucleoprotein complex. Furthermore, we found that SAMC increased the production of the myeloid differentiation factor 88 short form (MyD88-S), an alternatively spliced form of MyD88 that negatively regulates TLR4 signaling. These findings suggest that SAMC inhibits TLR4-mediated inflammation via alternative pre-mRNA splicing, thus promoting MyD88-S production in mammary epithelial cells. Therefore, SAMC may alleviate various inflammatory diseases, such as mastitis, by modulating immune responses.
Collapse
Affiliation(s)
- Miyuki Takashima
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan.
| | - Masahiro Kurita
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Haruhi Terai
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, 102 Terrill, 570 Main Street, Burlington, VT, 05405, USA
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| |
Collapse
|
12
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
13
|
Munteanu C, Popescu C, Vlădulescu-Trandafir AI, Onose G. Signaling Paradigms of H 2S-Induced Vasodilation: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1158. [PMID: 39456412 PMCID: PMC11505308 DOI: 10.3390/antiox13101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory effects of H2S are primarily mediated by activating ATP-sensitive potassium (K_ATP) channels, leading to membrane hyperpolarization and subsequent relaxation of vascular smooth muscle cells (VSMCs). Additionally, H2S inhibits L-type calcium channels, reducing calcium influx and diminishing VSMC contraction. Beyond ion channel modulation, H2S profoundly impacts cyclic nucleotide signaling pathways. It stimulates soluble guanylyl cyclase (sGC), increasing the production of cyclic guanosine monophosphate (cGMP). Elevated cGMP levels activate protein kinase G (PKG), which phosphorylates downstream targets like vasodilator-stimulated phosphoprotein (VASP) and promotes smooth muscle relaxation. The synergy between H2S and nitric oxide (NO) signaling further amplifies vasodilation. H2S enhances NO bioavailability by inhibiting its degradation and stimulating endothelial nitric oxide synthase (eNOS) activity, increasing cGMP levels and potent vasodilatory responses. Protein sulfhydration, a post-translational modification, plays a crucial role in cell signaling. H2S S-sulfurates oxidized cysteine residues, while polysulfides (H2Sn) are responsible for S-sulfurating reduced cysteine residues. Sulfhydration of key proteins like K_ATP channels and sGC enhances their activity, contributing to the overall vasodilatory effect. Furthermore, H2S interaction with endothelium-derived hyperpolarizing factor (EDHF) pathways adds another layer to its vasodilatory mechanism. By enhancing EDHF activity, H2S facilitates the hyperpolarization and relaxation of VSMCs through gap junctions between endothelial cells and VSMCs. Recent findings suggest that H2S can also modulate transient receptor potential (TRP) channels, particularly TRPV4 channels, in endothelial cells. Activating these channels by H2S promotes calcium entry, stimulating the production of vasodilatory agents like NO and prostacyclin, thereby regulating vascular tone. The comprehensive understanding of H2S-induced vasodilation mechanisms highlights its therapeutic potential. The multifaceted approach of H2S in modulating vascular tone presents a promising strategy for developing novel treatments for hypertension, ischemic conditions, and other vascular disorders. The interaction of H2S with ion channels, cyclic nucleotide signaling, NO pathways, ROS (Reactive Oxygen Species) scavenging, protein sulfhydration, and EDHF underscores its complexity and therapeutic relevance. In conclusion, the intricate signaling paradigms of H2S-induced vasodilation offer valuable insights into its physiological role and therapeutic potential, promising innovative approaches for managing various vascular diseases through the modulation of vascular tone.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
14
|
Shukla S, Trivedi P, Johnson D, Sharma P, Jha A, Khan H, Thiruvenkatam V, Banerjee M, Bishnoi A. Synthesis, crystal structure analysis, computational modelling and evaluation of anti-cervical cancer activity of novel 1,5-dicyclooctyl thiocarbohydrazone. Phys Chem Chem Phys 2024; 26:24135-24150. [PMID: 39253873 DOI: 10.1039/d4cp02286f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Thiocarbazones are widely used as bioactive and pharmaceutical intermediates in medicinal chemistry and have been shown to exhibit diverse biological and pharmacological activities such as antimicrobial, anticancer, anti-viral, anti-convulsant and anti-inflammatory etc. In continuation of our interest in biologically active heterocycles and in an attempt to synthesize a spiro derivative, 1,2,4,5-tetraazaspiro[5.7]tridecane-3-thione, herein, the synthesis of 1,5-dicyclooctyl thiocarbohydrazone (3) has been reported via reaction of the cyclooctanone and thiocarbohydrazide. The structure was assigned on the basis of detailed spectral analysis and also confirmed by X-ray crystal studies. The Hirshfeld surface analysis indicates that the most significant interaction is S⋯H (12.7%). The presentation of mechanistic aspects regarding the plausible route of its formation has also been included. The first hyperpolarizability (β0) was found to be 10.22 × 10-30 esu, which indicates that the compound exhibits good non-linear optical properties. The density functional theory (DFT) method has been used to characterize the spectroscopic properties and vibrational analysis of 1,5-dicyclooctyl thiocarbohydrazone (3) theoretically. The compound and cisplatin (standard) were screened for their antiproliferative activity against the human cervical cancer cell line (SiHa) and they exhibited significant activity with IC50 values of 250 μM and 15 μM, respectively. The inhibitory nature of the title compound against viral oncoprotein E6 was confirmed by studies using molecular docking analysis. The results of biological activity and in silico analysis indicate that the synthesized molecule could act as a precursor for the synthesis of new heterocyclic derivatives of medicinal importance.
Collapse
Affiliation(s)
- Soni Shukla
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Prince Trivedi
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Delna Johnson
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj - 382355, Gandhinagar, India
| | - Pulkit Sharma
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Abhinav Jha
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| | - Habiba Khan
- Department of Zoology, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India
| | - Vijay Thiruvenkatam
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj - 382355, Gandhinagar, India
| | - Monisha Banerjee
- Department of Zoology, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India
| | - Abha Bishnoi
- Department of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India.
| |
Collapse
|
15
|
Albu PC, Pîrțac A, Motelica L, Nechifor AC, Man GT, Grosu AR, Tanczos SK, Grosu VA, Nechifor G. Reduction in Olfactory Discomfort in Inhabited Premises from Areas with Mofettas through Cellulosic Derivative-Polypropylene Hollow Fiber Composite Membranes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4437. [PMID: 39274826 PMCID: PMC11396629 DOI: 10.3390/ma17174437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Hydrogen sulfide is present in active or extinct volcanic areas (mofettas). The habitable premises in these areas are affected by the presence of hydrogen sulfide, which, even in low concentrations, gives off a bad to unbearable smell. If the living spaces considered are closed enclosures, then a system can be designed to reduce the concentration of hydrogen sulfide. This paper presents a membrane-based way to reduce the hydrogen sulfide concentration to acceptable limits using a cellulosic derivative-propylene hollow fiber-based composite membrane module. The cellulosic derivatives considered were: carboxymethyl-cellulose (NaCMC), P1; cellulose acetate (CA), P2; methyl 2-hydroxyethyl-cellulose (MHEC), P3; and hydroxyethyl-cellulose (HEC), P4. In the permeation module, hydrogen sulfide is captured with a solution of cadmium that forms cadmium sulfide, usable as a luminescent substance. The composite membranes were characterized by SEM, EDAX, FTIR, FTIR 2D maps, thermal analysis (TG and DSC), and from the perspective of hydrogen sulfide air removal performance. To determine the process performances, the variables were as follows: the nature of the cellulosic derivative-polypropylene hollow fiber composite membrane, the concentration of hydrogen sulfide in the polluted air, the flow rate of polluted air, and the pH of the cadmium nitrate solution. The pertraction efficiency was highest for the sodium carboxymethyl-cellulose (NaCMC)-polypropylene hollow fiber membrane, with a hydrogen sulfide concentration in the polluted air of 20 ppm, a polluted air flow rate (QH2S) of 50 L/min, and a pH of 2 and 4. The hydrogen sulfide flux rates, for membrane P1, fall between 0.25 × 10-7 mol·m2·s-1 for the values of QH2S = 150 L/min, CH2S = 20 ppm, and pH = 2 and 0.67 × 10-7 mol·m-2·s-1 for the values of QH2S = 50 L/min, CH2S = 60 ppm, and pH = 2. The paper proposes a simple air purification system containing hydrogen sulfide, using a module with composite cellulosic derivative-polypropylene hollow fiber membranes.
Collapse
Affiliation(s)
- Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), National Institute of Physics and Nuclear Engineering (IFIN) Horia Hulubei, 023465 Măgurele, Romania
| | - Andreia Pîrțac
- Analytical Chemistry and Environmental Engineering Department, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Ludmila Motelica
- National Research Center for Micro and Nanomaterials, Department of Science and Engineering of Nanomaterials and Oxide Materials, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Geani Teodor Man
- Analytical Chemistry and Environmental Engineering Department, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI, 240050 Râmnicu-Vâlcea, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 061071 Bucharest, Romania
| | - Gheorghe Nechifor
- National Research Center for Micro and Nanomaterials, Department of Science and Engineering of Nanomaterials and Oxide Materials, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
16
|
Liang XY, Wang Y, Zhu YW, Zhang YX, Yuan H, Liu YF, Jin YQ, Gao W, Ren ZG, Ji XY, Wu DD. Role of hydrogen sulfide in dermatological diseases. Nitric Oxide 2024; 150:18-26. [PMID: 38971520 DOI: 10.1016/j.niox.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
Collapse
Affiliation(s)
- Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Guang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
17
|
Lian J, Chen Y, Zhang Y, Guo S, Wang H. The role of hydrogen sulfide regulation of ferroptosis in different diseases. Apoptosis 2024:10.1007/s10495-024-01992-z. [PMID: 38980600 DOI: 10.1007/s10495-024-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.
Collapse
Affiliation(s)
- Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shiyun Guo
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
18
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
19
|
Zhang Y, Zhao H, Fu X, Wang K, Yang J, Zhang X, Wang H. The role of hydrogen sulfide regulation of pyroptosis in different pathological processes. Eur J Med Chem 2024; 268:116254. [PMID: 38377826 DOI: 10.1016/j.ejmech.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Pyroptosis is one kind of programmed cell death in which the cell membrane ruptures and subsequently releases cell contents and pro-inflammatory cytokines including IL-1β and IL-18. Pyroptosis is caused by many types of pathological stimuli, such as hyperglycemia (HG), oxidative stress, and inflammation, and is mediated by gasdermin (GSDM) protein family. Increasing evidence indicates that pyroptosis plays an important role in multiple diseases, such as cancer, kidney diseases, inflammatory diseases, and cardiovascular diseases. Therefore, the regulation of pyroptosis is crucial for the occurrence, development, and treatment of many diseases. Hydrogen sulfide (H2S) is a biologically active gasotransmitter following carbon monoxide (CO) and nitrogen oxide (NO) in mammalian tissues. So far, three enzymes, including 3-mercaptopyruvate sulphurtransferase (3-MST), cystathionine γ- Lyase (CSE), and Cystine β-synthesis enzyme (CBS), have been found to catalyze the production of endogenous H2S in mammals. H2S has been reported to have multiple biological functions including anti-inflammation, anti-oxidative stress, anti-apoptosis and so on. Hence, H2S is involved in various physiological and pathological processes. In recent years, many studies have demonstrated that H2S plays a critical role by regulating pyroptosis in various pathological processes, such as ischemia-reperfusion injury, alcoholic liver disease, and diabetes cardiomyopathy. However, the relevant mechanism has not been completely understood. Therefore, elucidating the mechanism by which H2S regulates pyroptosis in diseases will help understand the pathogenesis of multiple diseases and provide important new avenues for the treatment of many diseases. Here, we reviewed the progress of H2S regulation of pyroptosis in different pathological processes, and analyzed the molecular mechanism in detail to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kexiao Wang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Jiahao Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | | | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
20
|
Pang PP, Zhang HY, Zhang DC, Tang JX, Gong Y, Guo YC, Zheng CB. Investigating the impact of protein S-sulfhydration modification on vascular diseases: A comprehensive review. Eur J Pharmacol 2024; 966:176345. [PMID: 38244760 DOI: 10.1016/j.ejphar.2024.176345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
The post-translational modification of cysteine through redox reactions, especially S-sulfhydration, plays a critical role in regulating protein activity, interactions, and spatial arrangement. This review focuses on the impact of protein S-sulfhydration on vascular function and its implications in vascular diseases. Dysregulated S-sulfhydration has been linked to the development of vascular pathologies, including aortic aneurysms and dissections, atherosclerosis, and thrombotic diseases. The H2S signaling pathway and the enzyme cystathionine γ-lyase (CSE), which is responsible for H2S generation, are identified as key regulators of vascular function. Additionally, potential therapeutic targets for the treatment of vascular diseases, such as the H2S donor GYY4137 and the HDAC inhibitor entinostat, are discussed. The review also emphasizes the antithrombotic effects of H2S in regulating platelet aggregation and thrombosis. The aim of this review is to enhance our understanding of the function and mechanism of protein S-sulfhydration modification in vascular diseases, and to provide new insights into the clinical application of this modification.
Collapse
Affiliation(s)
- Pan-Pan Pang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Hong-Ye Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Ding-Cheng Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Jia-Xiang Tang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Yu Gong
- Yunnan Provincial Hospital of Infection Disease/ Yunnan AIDS Care Center/ Yunnan Mental Health Center, Kunming, 650301, China
| | - Yu-Chen Guo
- University of Sydney Pharmacy School, Sydney, 2006, Australia
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China; Yunnan Vaccine Laboratory, Kunming, 650500, China.
| |
Collapse
|
21
|
Hamadamin PS, Maulood KA. Exploring the anticancer potential of hydrogen sulfide and BAY‑876 on clear cell renal cell carcinoma cells: Uncovering novel mutations in VHL and KDR genes among ccRCC patients. Mol Clin Oncol 2024; 20:21. [PMID: 38332991 PMCID: PMC10851183 DOI: 10.3892/mco.2024.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
The aim of the present study was to determine the cytotoxic effect of BAY-876 and NaSH alone or in combination with sunitinib against the 786-O cell line (renal adenocarcinoma). The IC50 of sunitinib, BAY-876 and NaSH were estimated. Cells were cultured in a 96-well plate and then different concentration of each drug alone was exposed for different incubation time; afterwards, cell cytotoxicity was measured using Cell Counting Kit-8 kit. The IC50 for each drug was used in next experiment to determine the influence of drug combinations. Furthermore, to observe the effect of mutations of few driver genes in development of clear cell renal cell carcinoma (ccRCC), direct sanger sequencing was used to find single nucleotide polymorphisms in exon 1 and exon 13 of tumor suppressor gene Von Hippel Lindau (VHL) and kinase insert domain receptor (KDR) genes respectively in ccRCC formalin fixed paraffin embedded block samples. The results revealed that the IC50 for sunitinib (after 72 h), BAY-876 (after 96 h) and NaSH (after 48 h) was 5.26, 53.56 and 692 µM respectively. The cytotoxic effect of sunitinib and BAY-876, sunitinib and NaSH combinations after 24- and 48-h incubation respectively was significantly higher (P<0.05) compared with the control group as well as to sunitinib group alone. These results proved that each of BAY-876 and NaSH have anticancer effect; thus, they could be used in future for ccRCC treatment purpose. Furthermore, direct sequencing results demonstrated unrecorded mutations of VHL and KDR genes is 43.7 and 31.5% of cases respectively. These findings confirmed the leading role of VHL gene in development of ccRCC and the crucial role of KDR gene in angiogenesis and drug resistance.
Collapse
Affiliation(s)
- Peshraw Salih Hamadamin
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan 44002, Iraq
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan 44001, Iraq
| | - Kalthum Asaf Maulood
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan 44002, Iraq
| |
Collapse
|
22
|
Ye J, Salti T, Zanditenas E, Trebicz-Geffen M, Benhar M, Ankri S. Impact of Reactive Sulfur Species on Entamoeba histolytica: Modulating Viability, Motility, and Biofilm Degradation Capacity. Antioxidants (Basel) 2024; 13:245. [PMID: 38397843 PMCID: PMC10886169 DOI: 10.3390/antiox13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive sulfur species (RSS) like hydrogen sulfide (H2S) and cysteine persulfide (Cys-SSH) emerged as key signaling molecules with diverse physiological roles in the body, depending on their concentration and the cellular environment. While it is known that H2S and Cys-SSH are produced by both colonocytes and by the gut microbiota through sulfur metabolism, it remains unknown how these RSS affect amebiasis caused by Entamoeba histolytica, a parasitic protozoan that can be present in the human gastrointestinal tract. This study investigates H2S and Cys-SSH's impact on E. histolytica physiology and explores potential therapeutic implications. Exposing trophozoites to the H2S donor, sodium sulfide (Na2S), or to Cys-SSH led to rapid cytotoxicity. A proteomic analysis of Cys-SSH-challenged trophozoites resulted in the identification of >500 S-sulfurated proteins, which are involved in diverse cellular processes. Functional assessments revealed inhibited protein synthesis, altered cytoskeletal dynamics, and reduced motility in trophozoites treated with Cys-SSH. Notably, cysteine proteases (CPs) were significantly inhibited by S-sulfuration, affecting their bacterial biofilm degradation capacity. Immunofluorescence microscopy confirmed alterations in actin dynamics, corroborating the proteomic findings. Thus, our study reveals how RSS perturbs critical cellular functions in E. histolytica, potentially influencing its pathogenicity and interactions within the gut microbiota. Understanding these molecular mechanisms offers novel insights into amebiasis pathogenesis and unveils potential therapeutic avenues targeting RSS-mediated modifications in parasitic infections.
Collapse
Affiliation(s)
- Jun Ye
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Talal Salti
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Moran Benhar
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| |
Collapse
|
23
|
Bentke-Imiolek A, Szlęzak D, Zarzycka M, Wróbel M, Bronowicka-Adamska P. S-Allyl-L-Cysteine Affects Cell Proliferation and Expression of H 2S-Synthetizing Enzymes in MCF-7 and MDA-MB-231 Adenocarcinoma Cell Lines. Biomolecules 2024; 14:188. [PMID: 38397425 PMCID: PMC10886539 DOI: 10.3390/biom14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
S-allyl-L-cysteine (SAC) is a sulfur compound present in fresh garlic. The reference literature describes its anticancer, antioxidant and neuroprotective effects. Breast cancer is infamously known as one of the most commonly diagnosed malignancies among women worldwide. Its morbidity and mortality make it reasonable to complete and expand knowledge on this cancer's characteristics. Hydrogen sulfide (H2S) and its naturally occurring donors are well-known investigation subjects for diverse therapeutic purposes. This study was conducted to investigate the SAC antiproliferative potential and effect on three enzymes involved in H2S metabolism: 3-mercaptopyruvate sulfurtransferase (MPST), cystathionine γ-lyase (CTH), and cystathionine β-synthase (CBS). We chose the in vitro cellular model of human breast adenocarcinomas: MCF-7 and MDA-MB-231. The expression of enzymes after 2, 4, 6, 8, and 24 h incubation with 2.24 mM, 3.37 mM, and 4.50 mM SAC concentrations was examined. The number of living cells was determined by the MTS assay. Changes in cellular plasma membrane integrity were measured by the LDH test. Expression changes at the protein level were analyzed using Western blot. A significant decrease in viable cells was registered for MCF-7 cells after all incubation times upon 4.50 mM SAC exposure, and after 6 and 24 h only in MDA-MB-231 upon 4.50 mM SAC. In both cell lines, the MPST gene expression significantly increased after the 24 h incubation with 4.50 mM SAC. S-allyl-L-cysteine had opposite effects on changes in CTH and CBS expression in both cell lines. In our research model, we confirmed the antiproliferative potential of SAC and concluded that our studies provided current information about the increase in MPST gene expression mediated by S-allyl-L-cysteine in the adenocarcinoma in vitro cellular model for the MCF-7 and MDA-MB-231 cell lines. Further investigation of this in vitro model can bring useful information regarding sulfur enzyme metabolism of breast adenocarcinoma and regulating its activity and expression (gene silencing) in anticancer therapy.
Collapse
Affiliation(s)
- Anna Bentke-Imiolek
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 7 Kopernika Street, 31-034 Kraków, Poland; (D.S.); (M.Z.); (M.W.); (P.B.-A.)
| | | | | | | | | |
Collapse
|
24
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells 2023; 12:2684. [PMID: 38067112 PMCID: PMC10705518 DOI: 10.3390/cells12232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
25
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
26
|
Zhao H, Zhang Y, Fu X, Chen C, Khattak S, Wang H. The double-edged sword role of hydrogen sulfide in hepatocellular carcinoma. Front Pharmacol 2023; 14:1280308. [PMID: 37886126 PMCID: PMC10598729 DOI: 10.3389/fphar.2023.1280308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
With an increasing worldwide prevalence, hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver in the world. It is also the primary reason for cancer-related death in the world. The pathogenesis of HCC is complex, such as DNA methylation changes, immune regulatory disorders, cell cycle disorders, chromosomal instability, and so on. Although many studies have been conducted on HCC, the molecular mechanisms of HCC are not completely understood. At present, there is no effective treatment for HCC. Hydrogen sulfide (H2S) has long been regarded as a toxic gas with the smell of rotten eggs, but recent studies have shown that it is an important gasotransmitter along with carbon monoxide (CO) and nitric oxide (NO). Increasing evidence indicates that H2S has multiple biological functions, such as anti-inflammation, anti-apoptosis, anti-oxidative stress, and so on. Recently, a lot of evidence has shown that H2S has a "double-edged sword" effect in HCC, but the mechanism is not fully understood. Here, we reviewed the progress on the role and mechanism of H2S in HCC in recent years, hoping to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Chaoren Chen
- School of Nursing and Health, Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
27
|
Wu M, Wang S, Hai W, Lu X, Li P. Development of a H 2S-responsive NIR Fluorescent Probe for H 2S Detection and H 2S Releasing Monitoring From Prodrug. J Fluoresc 2023; 33:1853-1860. [PMID: 36867290 DOI: 10.1007/s10895-023-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
H2S was deemed as a toxic gradient in the realm of food and environment but plays pivotal pathophysiological roles in organisms. H2S instabilities and disturbances are always responsible for multiple disorders. We fabricated a H2S-responsive NIR fluorescent probe (HT) for H2S detection and evaluation both in vitro and in vivo. HT exhibited rapid H2S response within 5 min, accompanied with visible color change and NIR fluorescence generation, and the fluorescent intensities were linearly correlated with corresponding H2S concentrations. When HT was incubated with A549 cells, the intracellular H2S and H2S fluctuations could be monitored ore rotundo via the responsive fluorescence. Meanwhile, when HT was co-administrated with H2S prodrug ADT-OH, the H2S release from ADT-OH could be visualized and monitored to evaluate its release efficacy.
Collapse
Affiliation(s)
- Muyu Wu
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Siwen Wang
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wangxi Hai
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xinmiao Lu
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Peiyong Li
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
28
|
Chavada J, Muneshwar KN, Ghulaxe Y, Wani M, Sarda PP, Huse S. Antibiotic Resistance: Challenges and Strategies in Combating Infections. Cureus 2023; 15:e46013. [PMID: 37900415 PMCID: PMC10602366 DOI: 10.7759/cureus.46013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
From a broader perspective, antibiotic or antimicrobial resistance is still evolving and spreading internationally. Infectious diseases have become more complex and often impossible to cure, increasing morbidity and mortality. Despite the failure of conventional, standard antimicrobial therapy, no new class of antibiotics has been developed in the last 20 years, which results in various cutting-edge and other tactics that can be used to encounter these disease-causing microorganisms with antibiotic resistance. In the continued fight against bacterial infections, there is an urgent requirement for new antibiotics and other antimicrobials. Antibiotic resistance is inevitable, and pharmaceutical companies consistently show little interest in funding novel antibiotic research. Some methods are being used as a possible replacement for conventional antibiotics. Combination therapy, methods that target the proteins or enzymes that cause antimicrobial resistance and bacterial resistance, systems for delivery of the drug, physicochemical approaches, and informal ways, such as the CRISPR-Cas system, are some of these approaches. These various approaches influence how multi-drug-resistant organisms are handled in human clinical settings.
Collapse
Affiliation(s)
- Jay Chavada
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Yash Ghulaxe
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mohit Wani
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Prayas P Sarda
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreyash Huse
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
29
|
Hansen AW, Venkatachalam KV. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 2023; 35:101529. [PMID: 37601447 PMCID: PMC10439400 DOI: 10.1016/j.bbrep.2023.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO32-), thiosulfate (S2O32-), and sulfate (SO42-), which are produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the role of the gut microbiome in human sulfur metabolism.
Collapse
Affiliation(s)
- Austin W. Hansen
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | | |
Collapse
|
30
|
Yang H, Tan M, Gao Z, Wang S, Lyu L, Ding H. Role of Hydrogen Sulfide and Hypoxia in Hepatic Angiogenesis of Portal Hypertension. J Clin Transl Hepatol 2023; 11:675-681. [PMID: 36969894 PMCID: PMC10037502 DOI: 10.14218/jcth.2022.00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of portal hypertension remains unclear, and is believed to involve dysfunction of liver sinusoidal endothelial cells (LSEC), activation of hepatic stellate cells (HSC), dysregulation of endogenous hydrogen sulfide (H2S) synthesis, and hypoxia-induced angiogenic responses. H2S, a novel gas transmitter, plays an important role in various pathophysiological processes, especially in hepatic angiogenesis. Inhibition of endogenous H2S synthase by pharmaceutical agents or gene silencing may enhance the angiogenic response of endothelial cells. Hypoxia-inducible factor-1 (HIF-1) is the main transcription factor of hypoxia, which induces hepatic angiogenesis through up-regulation of vascular endothelial growth factor (VEGF) in HSC and LSEC. H2S has also been shown to be involved in the regulation of VEGF-mediated angiogenesis. Therefore, H2S and HIF-1 may be potential therapeutic targets for portal hypertension. The effects of H2S donors or prodrugs on the hemodynamics of portal hypertension and the mechanism of H2S-induced angiogenesis are promising areas for future research.
Collapse
Affiliation(s)
- Huaxiang Yang
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Mingjie Tan
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhuqing Gao
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shanshan Wang
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Cell Biology Laboratory, Beijing Institute of Hepatology, Beijing, China
| | - Lingna Lyu
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Protection by Means of Perinatal Oral Sodium Thiosulfate Administration against Offspring Hypertension in a Rat Model of Maternal Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:1344. [PMID: 37507884 PMCID: PMC10376339 DOI: 10.3390/antiox12071344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hydrogen sulfide (H2S) and related reactive sulfur species are implicated in chronic kidney disease (CKD) and hypertension. Offspring born to CKD-afflicted mothers could develop hypertension coinciding with disrupted H2S and nitric oxide (NO) signaling pathways as well as gut microbiota. Thiosulfate, a precursor of H2S and an antioxidant, has shown anti-hypertensive effects. This study aimed to investigate the protective effects of sodium thiosulfate (STS) in a rat model of maternal CKD-induced hypertension. Before mating, CKD was induced through feeding 0.5% adenine chow for 3 weeks. Mother rats were given a vehicle or STS at a dosage of 2 g/kg/day in drinking water throughout gestation and lactation. Perinatal STS treatment protected 12-week-old offspring from maternal CKD-primed hypertension. The beneficial effects of STS could partially be explained by the enhancement of both H2S and NO signaling pathways and alterations in gut microbiota. Not only increasing beneficial microbes but maternal STS treatment also mediates several hypertension-associated intestinal bacteria. In conclusion, perinatal treatment with STS improves maternal CKD-primed offspring hypertension, suggesting that early-life RSS-targeting interventions have potential preventive and therapeutic benefits, awaiting future translational research.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
32
|
Xu C, Zhang Y, Sun H, Ai J, Ren M. Development of a two-photon fluorescent probe for imaging hydrogen sulfide (H 2S) in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1948-1952. [PMID: 37017111 DOI: 10.1039/d3ay00375b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present a new two-photon fluorescent probe (T-HS) for the detection of H2S. With the addition of hydrogen sulfide, the absorption and fluorescence spectra of the probe show regular changes. The probe exhibited favorable properties, such as large turn-on fluorescence signal, good selectivity and low cytotoxicity. Moreover, the probe T-HS was successfully used for the fluorescence imaging of H2S in live cells and zebrafish.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jindong Ai
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
33
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
34
|
Xia Y, Zhang W, He K, Bai L, Miao Y, Liu B, Zhang X, Jin S, Wu Y. Hydrogen sulfide alleviates lipopolysaccharide-induced myocardial injury through TLR4-NLRP3 pathway. Physiol Res 2023; 72:15-25. [PMID: 36545872 PMCID: PMC10069815 DOI: 10.33549/physiolres.934928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
To investigate the effect of hydrogen sulfide (H2S) on myocardial injury in sepsis-induced myocardial dysfunction (SIMD), male C57BL/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg, i.p.) to induce cardiac dysfunction without or with the H2S donor sodium hydrosulfide (NaHS) (50 µmol/kg, i.p.) administration 3 h after LPS injection. Six hours after the LPS injection, echocardiography, cardiac hematoxylin and eosin (HE) staining, myocardial damage and inflammatory biomarkers and Western blot results were analyzed. In mice, the administration of LPS decreased left ventricular ejection fraction (LVEF) by 30 % along with lowered H2S levels (35 % reduction). It was observed that cardiac troponin I (cTnI), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) levels were all increased (by 0.22-fold, 2000-fold and 0.66-fold respectively). HE staining revealed structural damage and inflammatory cell infiltration in the myocardial tissue after LPS administration. Moreover, after 6 h of LPS treatment, toll-like receptor 4 (TLR4) and nod-like receptor protein 3 (NLRP3) expressions were up-regulated 2.7-fold and 1.6-fold respectively. When compared to the septic mice, NaHS enhanced ventricular function (by 0.19-fold), decreased cTnI, TNF-alpha, and IL-1beta levels (by 11 %, 33 %, and 16 % respectively) and downregulated TLR4 and NLRP3 expressions (by 64 % and 31 % respectively). Furthermore, NaHS did not further improve cardiac function and inflammation in TLR4-/- mice or mice in which NLRP3 activation was inhibited by MCC950, after LPS injection. In conclusion, these findings imply that decreased endogenous H2S promotes the progression of SIMD, whereas exogenous H2S alleviates SIMD by inhibiting inflammation via the TLR4-NLRP3 pathway suppression.
Collapse
Affiliation(s)
- Y Xia
- Department of Physiology, Hebei Medical University, Hebei, China. ;
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
36
|
Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 2023; 20:109-125. [PMID: 35931887 PMCID: PMC9362470 DOI: 10.1038/s41569-022-00741-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
37
|
Zhao H, Fu X, Zhang Y, Yang Y, Wang H. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases. Front Pharmacol 2023; 14:1172147. [PMID: 37124222 PMCID: PMC10133551 DOI: 10.3389/fphar.2023.1172147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important organelle for protein translation, folding and translocation, as well as the post-translational modification and assembly of newly synthesized secreted proteins. When the excessive accumulation of misfolded and/or unfolded proteins exceeds the processing capacity of ER, ER stress is triggered. The integrated intracellular signal cascade, namely the unfolded protein response, is induced to avoid ER stress. ER stress is involved in many pathological and physiological processes including myocardial diseases. For a long time, hydrogen sulfide (H2S) has been considered as a toxic gas with the smell of rotten eggs. However, more and more evidences indicate that H2S is an important gas signal molecule after nitric oxide and carbon monoxide, and regulates a variety of physiological and pathological processes in mammals. In recent years, increasing studies have focused on the regulatory effects of H2S on ER stress in myocardial diseases, however, the mechanism is not very clear. Therefore, this review focuses on the role of H2S regulation of ER stress in myocardial diseases, and deeply analyzes the relevant mechanisms so as to lay the foundation for the future researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Yihan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang,
| |
Collapse
|
38
|
Muñoz-Vargas MA, Rodríguez-Ruiz M, González-Gordo S, Palma JM, Corpas FJ. Analysis of Plant L-Cysteine Desulfhydrase (LCD) Isozymes by Non-denaturing Polyacrylamide Gel Electrophoresis. Methods Mol Biol 2023; 2642:233-240. [PMID: 36944882 DOI: 10.1007/978-1-0716-3044-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that achieves different regulatory functions in animal and plant cells. The cytosolic enzyme L-cysteine desulfhydrase (LCD; EC 4.4.1.28) catalyzes the conversion of cysteine (L-Cys) to pyruvate and ammonium with the concomitant generation of H2S, this enzyme being considered one of the main sources of H2S in higher plants. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a specific assay for LCD activity, the present protocol allows identifying diverse LCD isozymes present in different organs (roots, shoots, leaves, and fruits) and plant species including pea, garlic, Arabidopsis, and pepper.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
| |
Collapse
|
39
|
Chen H, Guan X, Liu Q, Yang L, Guo J, Gao F, Qi Y, Wu X, Zhang F, Tian X. Co-assembled Nanocarriers of De Novo Thiol-Activated Hydrogen Sulfide Donors with an RGDFF Pentapeptide for Targeted Therapy of Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53475-53490. [PMID: 36413755 DOI: 10.1021/acsami.2c14570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen sulfide releasing agents (or H2S donors) have been recognized gasotransmitters with potent cytoprotective and anticancer properties. However, the clinical application of H2S donors has been hampered by their fast H2S-release, instability, and lack of tumor targeting, despite the unclear molecular mechanism of H2S action. Here we rationally designed an amphiphilic pentapeptide (RGDFF) to coassemble with the de novo designed thiol-activated H2S donors (CL2/3) into nanocarriers for targeted therapy of non-small-cell lung cancer, which has been proved as a one-stone-three-birds strategy. The coassembly approach simply solved the solubility issue of CL2/3 by the introduction of electron-donating groups (phenyl rings) to slow down the H2S release while dramatically improving their biocompatible interface, circulation time, slow release of H2S, and tumor targeting. Experimental results confirmed that as-prepared coassembled nanocarriers can significantly induce the intrinsic apoptotic, effectively arrest cell cycle at the G2/M phase, inhibit H2S-producing enzymes, and lead to mitochondrial dysfunction by increasing intracellular ROS production in H1299 cells. The mouse tumorigenesis experiments further confirmed the in vivo anticancer effects of the coassembled nanocarriers, and such treatment made tumors more sensitive to radiotherapy then improved the prognosis of tumor-bearing mice, which holds great promise for developing a new combined approach for NSCLC.
Collapse
Affiliation(s)
- Hong Chen
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiaoying Guan
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Qianqian Liu
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Longcui Yang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiongting Wu
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Zhang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Xiumei Tian
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| |
Collapse
|
40
|
Berthou M, Clarot I, Gouyon J, Steyer D, Monat MA, Boudier A, Pallotta A. Thiol sensing: From current methods to nanoscale contribution. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
42
|
The Role of Hydrogen Sulfide Targeting Autophagy in the Pathological Processes of the Nervous System. Metabolites 2022; 12:metabo12090879. [PMID: 36144282 PMCID: PMC9502065 DOI: 10.3390/metabo12090879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is an important cellular process, involving the transportation of cytoplasmic contents in the double membrane vesicles to lysosomes for degradation. Autophagy disorder contributes to many diseases, such as immune dysfunction, cancers and nervous system diseases. Hydrogen sulfide (H2S) is a volatile and toxic gas with a rotten egg odor. For a long time, it was considered as an environmental pollution gas. In recent years, H2S is regarded as the third most important gas signal molecule after NO and CO. H2S has a variety of biological functions and can play an important role in a variety of physiological and pathological processes. Increasingly more evidences show that H2S can regulate autophagy to play a protective role in the nervous system, but the mechanism is not fully understood. In this review, we summarize the recent literatures on the role of H2S in the pathological process of the nervous system by regulating autophagy, and analyze the mechanism in detail, hoping to provide the reference for future related research.
Collapse
|
43
|
Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 2022; 36:e24655. [PMID: 35949048 PMCID: PMC9459344 DOI: 10.1002/jcla.24655] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high‐healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. Methods To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. Results Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno‐antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. Conclusion This review highlighted and discussed immuno‐antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- David Chinemerem Nwobodo
- Department of Microbiology, Renaissance University, Enugu, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Malachy Chigozie Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Clement Oliseloke Anie
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University Abraka, Abraka, Nigeria
| | | | - Joseph Chinedu Ikem
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Madonna University, Elele, Nigeria
| | - Uchenna Victor Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Hydrogen Sulfide Suppresses Skin Fibroblast Proliferation via Oxidative Stress Alleviation and Necroptosis Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7434733. [PMID: 35774378 PMCID: PMC9239837 DOI: 10.1155/2022/7434733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Keloid is a common dermatofibrotic disease with excessive skin fibroblast proliferation. Hydrogen sulfide (H2S) as the third gasotransmitter improves fibrosis of various organs and tissues. Our study is aimed at investigating the effects and possible mechanisms of H2S on skin fibroblast proliferation. Scar tissues from six patients with keloid and discarded skin tissue from six normal control patients were collected after surgery, respectively. Plasma H2S content and skin H2S production in patients with keloid were measured. Keloid fibroblasts and transforming growth factor-β1- (TGF-β1, 10 ng/mL) stimulated normal skin fibroblasts were pretreated with H2S donor as NaHS (50 μM) for 4 h. Cell migration after scratch was assessed. The expressions of α-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), collagen I, and collagen III were detected by immunofluorescence, real-time PCR, and/or Western blot. Intracellular superoxide anion and mitochondrial superoxide were evaluated by dihydroethidium (DHE) and MitoSOX staining, respectively. Mitochondrial membrane potential was detected by JC-1 staining. Apoptotic cells were detected by TDT-mediated dUTP nick end labeling (TUNEL). The expressions of receptor interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) were measured by Western blot. We found that H2S production was impaired in both the plasma and skin of patients with keloid. In keloid fibroblasts and TGF-β1-stimulated normal skin fibroblasts, exogenous H2S supplementation suppressed the expressions of α-SMA, PCNA, collagen I, and collagen III, reduced intracellular superoxide anion and mitochondrial superoxide, improved the mitochondrial membrane potential, decreased the positive rate of TUNEL staining, and inhibited RIPK1 and RIPK3 expression as well as MLKL phosphorylation. Overall, H2S suppressed skin fibroblast proliferation via oxidative stress alleviation and necroptosis inhibition.
Collapse
|
45
|
Hydrogen Sulfide Plays an Important Role by Regulating Endoplasmic Reticulum Stress in Diabetes-Related Diseases. Int J Mol Sci 2022; 23:ijms23137170. [PMID: 35806174 PMCID: PMC9266787 DOI: 10.3390/ijms23137170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) plays important roles in protein synthesis, protein folding and modification, lipid biosynthesis, calcium storage, and detoxification. ER homeostasis is destroyed by physiological and pharmacological stressors, resulting in the accumulation of misfolded proteins, which causes ER stress. More and more studies have shown that ER stress contributes to the pathogenesis of many diseases, such as diabetes, inflammation, neurodegenerative diseases, cancer, and autoimmune diseases. As a toxic gas, H2S has, in recent years, been considered the third most important gas signal molecule after NO and CO. H2S has been found to have many important physiological functions and to play an important role in many pathological and physiological processes. Recent evidence shows that H2S improves the body’s defenses to many diseases, including diabetes, by regulating ER stress, but its mechanism has not yet been fully understood. We therefore reviewed recent studies of the role of H2S in improving diabetes-related diseases by regulating ER stress and carefully analyzed its mechanism in order to provide a theoretical reference for future research.
Collapse
|
46
|
Calvo G, Céspedes M, Casas A, Di Venosa G, Sáenz D. Hydrogen sulfide decreases photodynamic therapy outcome through the modulation of the cellular redox state. Nitric Oxide 2022; 125-126:57-68. [PMID: 35728762 DOI: 10.1016/j.niox.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a non-surgical treatment that has been approved for its human medical use in many cancers. PDT involves the interaction of a photosensitizer (PS) with light. The amino acid 5- aminolevulinic acid (ALA) can be used as a pro-PS, leading to the synthesis of Protoporphyrin IX. Hydrogen sulfide (H2S) is an endogenously produced gas that belongs to the gasotransmitter family, which can diffuse through biological membranes and have relevant physiological effects such as cardiovascular functions, vasodilatation, inflammation, cell cycle and neuro-modulation. It was also proposed to have cytoprotective effects. We aimed to study the modulatory effects of H2S on ALAPDT in the mammary adenocarcinoma cell line LM2. Exposure of the cells to NaHS (donor of H2S) in concentrations up to 10 mM impaired the response to ALA-PDT in a dose-dependent manner. The addition of 3 doses of NaHS showed the highest effect. This decreased response to the photodynamic treatment was correlated to an increase in the GSH levels, catalase activity, a dose dependent reduction of PpIX and increased intracellular ALA, decreased levels of oxidized proteins and a decrease of PDT-induced ROS. NaHS also reduced the levels of singlet oxygen in an in vitro assay. H2S also protected other cells of different origins against PDT mediated by ALA and other PSs. These results suggest that H2S has a role in the modulation of the redox state of the cells, and thus impairs the response to ALA-PDT through multifactor pathways. These findings could contribute to developing new strategies to improve the effectiveness of PDT particularly mediated by ALA or other ROS-related treatments.
Collapse
Affiliation(s)
- Gustavo Calvo
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Céspedes
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Casas
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones Sobre Porfirinas y Porfirias - CIPYP, U.B.A.-CONICET, Hospital de Clínicas Gral. José de San Martín. Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
47
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
48
|
Haftek M, Abdayem R, Guyonnet-Debersac P. Skin Minerals: Key Roles of Inorganic Elements in Skin Physiological Functions. Int J Mol Sci 2022; 23:ijms23116267. [PMID: 35682946 PMCID: PMC9181837 DOI: 10.3390/ijms23116267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
As odd as it may seem at first glance, minerals, it is what we are all about…or nearly. Although life on Earth is carbon-based, several other elements present in the planet’s crust are involved in and often indispensable for functioning of living organisms. Many ions are essential, and others show supportive and accessory qualities. They are operative in the skin, supporting specific processes related to the particular situation of this organ at the interface with the environment. Skin bioenergetics, redox balance, epidermal barrier function, and dermal remodeling are amongst crucial activities guided by or taking advantage of mineral elements. Skin regenerative processes and skin ageing can be positively impacted by adequate accessibility, distribution, and balance of inorganic ions.
Collapse
Affiliation(s)
- Marek Haftek
- CNRS Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), UMR5305 CNRS–University of Lyon1, 69367 Lyon, France
- Correspondence:
| | - Rawad Abdayem
- L’Oréal Research and Innovation, 94550 Chevilly-Larue, France;
| | | |
Collapse
|
49
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
50
|
Hemoglobin I from Lucina pectinata on Collagen Scaffold: A Prospective Hydrogen Sulfide Scavenger. J CHEM-NY 2022. [DOI: 10.1155/2022/5101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S), independently of being a toxic gas with a characteristic smell of rotten eggs, is a crucial signaling molecule with significant physiological functions. Given the rapid diffusivity of the gas, it is a challenge to develop robust sensors and biomarkers to quantify free or bound H2S. In addition, there is the need to further develop a robust biosystem to efficiently trap or scavenge H2S from different producing environments. The work presented here uses recombinant met-aquo rHbI (rHbI-H2O) immobilization techniques on collagen to determine its ability to bind H2S due to its high affinity (
M-1). The hemeprotein will function as a scavenger on this scaffold system. UV-Vis absorption and UV-Vis diffuse reflectance (%R) spectroscopy of rHbI-H2O and rHbI-sulfide (rHbI-H2S) complex in solution and collagen scaffold demonstrated that the heme chromophore retains its reactivity and properties. UV-Vis diffuse reflectance measurements, transformed using the Kubelka-Munk function (K-M function), show a linear correlation (
and 0.9916) of rHbI-H2O and rHbI-H2S within concentrations from 1 μM to 35 μM for derivatives. The extraordinary affinity of rHbI-H2O for H2S suggests recombinant met-aquo HbI in a collagen scaffold is an excellent scavenger moiety for hydrogen sulfide. These findings give insight into H2S trapping using the rHbI-H2O-collagen scaffold, where the rHbI-H2S concentration can be determined. Future pathways are to work toward the development of a met-aquo rHbI collagen solution capable of being printed as single drops on polymer, cotton or chromatographic paper. Upon exposure of these matrixes to H2S, the rHbI-H2S complex is formed and its concentration determined using UV-Vis diffuse reflectance technique.
Collapse
|