1
|
Hsu CY, Ismaeel GL, Kadhim O, Hadi ZD, Alubiady MHS, Alasheqi MQ, Ali MS, Ramadan MF, Al-Abdeen SHZ, Muzammil K, Balasim HM, Alawady AH. Beyond the brain: Reelin's emerging role in cancer pathways. Pathol Res Pract 2025; 269:155901. [PMID: 40068281 DOI: 10.1016/j.prp.2025.155901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
The glycoprotein Reelin is essential for neuronal migration during embryonic development and is involved in various cellular processes. It interacts with specific lipoprotein receptors to regulate neuronal migration and synaptic plasticity. Recent research has expanded our understanding of Reelin's functions, revealing its involvement in processes such as cell proliferation, activation, migration, platelet aggregation, and vascular development. Reelin's influence extends beyond neurodevelopment, with abnormal expression observed in several cancer types. This suggests a potential connection between Reelin dysregulation and tumor formation. Altered Reelin levels correlate with increased tumor aggressiveness, metastatic potential, and poor patient outcomes. In cancer, Reelin affects key cellular processes including proliferation, migration, and invasion. Evidence indicates that Reelin modulates important signaling pathways like PI3K/Akt and MAPK, contributing to the development of cancer hallmarks. Its interactions with integrins and matrix metalloproteinases imply a role in shaping the tumor microenvironment, thereby influencing cancer progression. These findings highlight Reelin's dual significance in neurodevelopment and cancer biology. Further investigation into Reelin's complex functions could lead to new diagnostic tools and therapeutic approaches, potentially advancing cancer treatment through targeted research on its signaling mechanisms. This review provides a condensed overview of Reelin's multifaceted roles in both neurodevelopment and cancer.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Oras Kadhim
- Department of Anesthesia Techniques, Al-Manara College For Medical Sciences, Maysan, Iraq
| | - Zaid Dahnoon Hadi
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | | | | | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Hussien Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Brida KL, Day JJ. Molecular and genetic mechanisms of plasticity in addiction. Curr Opin Neurobiol 2025; 93:103032. [PMID: 40311544 DOI: 10.1016/j.conb.2025.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Drugs of abuse result in well-characterized changes in synapse function and number in brain reward regions such as the nucleus accumbens. However, recent reports demonstrate that only a small fraction of neurons in the nucleus accumbens are activated in response to psychostimulants such as cocaine. While these "ensemble" neurons are marked by drug-related transcriptional changes in immediate early genes, the mechanisms that ultimately link these early changes to enduring molecular alterations in the same neurons are less clear. In this review, we 1) describe potential mechanisms underlying regulation of diverse plasticity-related gene programs across drug-activated ensembles, 2) discuss factors conferring ensemble recruitment bias within seemingly homogeneous populations, and 3) speculate on the role of chromatin and epigenetic modifiers in gating metaplastic state transitions that contribute to addiction.
Collapse
Affiliation(s)
- Kasey L Brida
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Khan SM, Wang AZ, Desai RR, McCornack CR, Sun R, Dahiya SM, Foltz JA, Sherpa ND, Leavitt L, West T, Wang AF, Krbanjevic A, Choi BD, Leuthardt EC, Patel B, Charest A, Kim AH, Dunn GP, Petti AA. Mapping the spatial architecture of glioblastoma from core to edge delineates niche-specific tumor cell states and intercellular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647096. [PMID: 40235981 PMCID: PMC11996482 DOI: 10.1101/2025.04.04.647096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Treatment resistance in glioblastoma (GBM) is largely driven by the extensive multi-level heterogeneity that typifies this disease. Despite significant progress toward elucidating GBM's genomic and transcriptional heterogeneity, a critical knowledge gap remains in defining this heterogeneity at the spatial level. To address this, we employed spatial transcriptomics to map the architecture of the GBM ecosystem. This revealed tumor cell states that are jointly defined by gene expression and spatial localization, and multicellular niches whose composition varies along the tumor core-edge axis. Ligand-receptor interaction analysis uncovered a complex network of intercellular communication, including niche- and region-specific interactions. Finally, we found that CD8 positive GZMK positive T cells colocalize with LYVE1 positive CD163 positive myeloid cells in vascular regions, suggesting a potential mechanism for immune evasion. These findings provide novel insights into the GBM tumor microenvironment, highlighting previously unrecognized patterns of spatial organization and intercellular interactions, and novel therapeutic avenues to disrupt tumor-promoting interactions and overcome immune resistance.
Collapse
|
4
|
Calvo-Jiménez E, Stam K, Jossi A, Jossin Y. GRASPs link Reelin to the Golgi during neocortical development to control neuronal migration and dendritogenesis. Commun Biol 2025; 8:572. [PMID: 40188221 PMCID: PMC11972360 DOI: 10.1038/s42003-025-08014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Reelin serves as a crucial regulator of brain organogenesis, playing a significant role in neuronal positioning and dendritogenesis. At subcellular level, it influences the translocation and remodeling of the Golgi apparatus. Despite its importance, the mechanisms by which Reelin governs the Golgi during neuronal migration and dendrite formation remain largely unknown. This study reveals that Reelin promotes de novo translation of Golgi Re-Assembly Stacking Proteins (GRASPs), which are essential for the functions of Reelin on cortical neurons. Downregulation of GRASPs in migrating excitatory neurons of the embryonic neocortex leads to disoriented cells during the multipolar phase of migration and an aberrant leading process length during locomotion. Postnatally, it results in mislocalized neurons displaying a disorganized Golgi structure and an improperly oriented, underdeveloped apical dendrite. Our findings position GRASPs and their role in Golgi morphology modulation as novel contributors to the Reelin-mediated processes during embryonic development of the mammalian neocortex.
Collapse
Affiliation(s)
- Elisa Calvo-Jiménez
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kirsten Stam
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Angélique Jossi
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
5
|
van Battum EY, van den Munkhof MH, Pasterkamp RJ. Novel insights into the regulation of neuron migration by axon guidance proteins. Curr Opin Neurobiol 2025; 92:103012. [PMID: 40184989 DOI: 10.1016/j.conb.2025.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Neural circuit development requires precisely coordinated guidance of migrating neurons to their targets within the nervous system. A diverse array of molecular cues has been implicated in neuron migration, including signals originally identified for their ability to dictate the trajectories of growing axons, i.e. axon guidance proteins. These proteins are now known to have pleiotropic effects affecting different stages of neuron migration, from promoting cell mobility to acting as stop signals. In this review, we discuss recent advances in our understanding of how canonical axon guidance proteins influence migrating neurons with a particular focus on recent insights into how neuron migration is controlled in the GnRH system and cortex, and the multifunctional role of Netrin-1. At the molecular level, tight control of receptor expression and crosstalk, and interactions with the extracellular matrix have recently been implicated in neuron migration control.
Collapse
Affiliation(s)
- Eljo Y van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
6
|
Brida KL, Jorgensen ET, Robert A Phillips Iii, Newman CE, Tuscher JJ, Morring EK, Zipperly ME, Ianov L, Montgomery KD, Tippani M, Hyde TM, Maynard KR, Martinowich K, Day JJ. Reelin marks cocaine-activated striatal neurons, promotes neuronal excitability, and regulates cocaine reward. SCIENCE ADVANCES 2025; 11:eads4441. [PMID: 40138397 DOI: 10.1126/sciadv.ads4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Drugs of abuse activate defined neuronal populations in reward structures such as the nucleus accumbens (NAc), which promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, mechanisms that dictate NAc neuronal recruitment remain unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling and targeted in situ detection to identify Reln (encoding the secreted glycoprotein, Reelin) as a marker of cocaine-activated neuronal populations within the rat NAc. A CRISPR interference approach enabling selective Reln knockdown in the adult NAc altered expression of calcium signaling genes, promoted a transcriptional trajectory consistent with loss of cocaine sensitivity, and decreased MSN excitability. Behaviorally, Reln knockdown prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. These results identify Reelin as a critical mechanistic link between neuronal activation and cocaine-induced behavioral adaptations.
Collapse
Affiliation(s)
- Kasey L Brida
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily T Jorgensen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Phillips Iii
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine E Newman
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily K Morring
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
8
|
Bu F, Zhong J, Guan R. Biomarkers in glioblastoma and degenerative CNS diseases: defining new advances in clinical usefulness and therapeutic molecular target. Front Mol Biosci 2025; 12:1506961. [PMID: 40171042 PMCID: PMC11959069 DOI: 10.3389/fmolb.2025.1506961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Discovering biomarkers is central to the research and treatment of degenerative central nervous system (CNS) diseases, playing a crucial role in early diagnosis, disease monitoring, and the development of new treatments, particularly for challenging conditions like degenerative CNS diseases and glioblastoma (GBM). Methods This study analyzed gene expression data from a public database, employing differential expression analyses and Gene Co-expression Network Analysis (WGCNA) to identify gene modules associated with degenerative CNS diseases and GBM. Machine learning methods, including Random Forest, Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine - Recursive Feature Elimination (SVM-RFE), were used for case-control differentiation, complemented by functional enrichment analysis and external validation of key genes. Results Ninety-five commonly altered genes related to degenerative CNS diseases and GBM were identified, with RELN and GSTO2 emerging as significant through machine learning screening. Receiver operating characteristic (ROC) analysis confirmed their diagnostic value, which was further validated externally, indicating their elevated expression in controls. Conclusion The study's integration of WGCNA and machine learning uncovered RELN and GSTO2 as potential biomarkers for degenerative CNS diseases and GBM, suggesting their utility in diagnostics and as therapeutic targets. This contributes new perspectives on the pathogenesis and treatment of these complex conditions.
Collapse
Affiliation(s)
- Fan Bu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jifa Zhong
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| |
Collapse
|
9
|
Dražić Maras E, Kelam N, Racetin A, Haque E, Dražić M, Vukojević K, Katsuyama Y, Saraga-Babić M, Filipović N. Autophagy markers expression pattern in developing liver of the yotari (dab1 -/-) mice and humans. Acta Histochem 2025; 127:152224. [PMID: 39647211 DOI: 10.1016/j.acthis.2024.152224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. Several negative autophagy regulators have been discovered, including epidermal growth factor receptor (EGFR), mediated by activation of the PI3K/Akt/mTOR signaling pathway. Disabled-1 (Dab1) is one of the mediating adaptor factors of PI3K/Akt/mTOR signaling pathways. We investigated the potential impact of Dab1 on autophagy-related markers (LC3B, LAMP2A, HSC70, and GRP78) in the developing liver by using a model of yotari mice and compared it with autophagy marker expression in human liver development. Mouse embryos were obtained at gestation days 13.5 and 15.5 (E13.5 and E15.5), and a total of 5 normal human conceptuses were obtained between gestation days 5 and 10. Histological sections were analyzed by immunohistochemistry. The highest expression of the early endosome-forming factor LC3B and the microautophagy factor LAMP2a was observed at the transition from embryonic to early fetal phase, whereas the expression of the chaperones HSC 70 and GRP78 was highest at embryonic phase. The expression patterns of three of these factors in mouse liver were different from those in human liver: the expression of LC3B was high at E13.5, that of HSC 70 at 15.5, whereas the expression of GRP78 did not change significantly. On the other hand, the expression pattern of LAMP2a was similar to that in human development and was higher at E15.5 than at E13.5. Moreover, knockout of Dab1 resulted in significantly lower expression of LC3B and LAMP2a in mouse embryo livers (at E13.5), indicating a possible role of Dab1 in regulating autophagy during embryonic development in the liver.
Collapse
Affiliation(s)
- Edita Dražić Maras
- Infectious Diseases Department, University Hospital of Split, Split 21000, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Ejazul Haque
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Maja Dražić
- Department of Internal Medicine, Cardiology, General Hospital Knin, Knin 22300, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia.
| |
Collapse
|
10
|
Silva-Hurtado TJ, Giua G, Lassalle O, Makrini-Maleville L, Strauss B, Wager-Miller J, Freyermuth JM, Mackie K, Valjent E, Manzoni OJ, Chavis P. Reelin Deficiency and Synaptic Impairment in the Adolescent Prefrontal Cortex Following Initial Synthetic Cannabinoid Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100426. [PMID: 39926699 PMCID: PMC11804564 DOI: 10.1016/j.bpsgos.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 02/11/2025] Open
Abstract
Background Adolescent cannabinoid exposure can have long-lasting effects on the brain, particularly in the prefrontal cortex, where the reelin protein plays a crucial role in neural organization. Chronic cannabinoid exposure leads to reelin deficiency and behavioral abnormalities, but the underlying mechanisms remain unclear. With the increasing use of synthetic cannabinoids (SCs) among young people, understanding these effects is crucial. Methods We examined the cellular and synaptic consequences of initial SC exposure in adolescent male mice 1 day after a single in vivo exposure to WIN 55,212-2. Our approach combined immunohistochemistry, Western blots, conditional CB1 receptor (CB1R) knockout mouse lines, quantitative polymerase chain reaction, and ex vivo electrophysiology to investigate the effects of SC on reelin expression and synaptic plasticity. Additionally, single-molecule fluorescent in situ hybridization profiling was used to identify cellular coexpression patterns of reelin and CB1Rs. Results Our findings indicate that a single exposure to SC decreased reelin expression in specific prefrontal cortex layers accompanied by disrupted proteolytic fragmentation but not changes in messenger RNA expression. Single-molecule fluorescent in situ hybridization profiling revealed a strong coexpression of CB1R and reelin. Furthermore, our pharmacological and genetic approaches demonstrated that CB1Rs in GABAergic (gamma-aminobutyric acidergic) neurons mediate the SC-induced decrease in reelin. This decrease in reelin results in a reduction in long-term potentiation, phenocopying reelin haploinsufficient mice. Notably, we restored long-term potentiation by infusing reelin bilaterally, establishing a functional link between reelin depletion and synaptic deficits. Conclusions These findings provide new insights into the neural consequences of adolescent cannabinoid consumption and highlight the critical role of reelin in the cellular mechanisms associated with SC initiation during adolescence.
Collapse
Affiliation(s)
- Thenzing J. Silva-Hurtado
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Gabriele Giua
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Olivier Lassalle
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Leila Makrini-Maleville
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Benjamin Strauss
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Jim Wager-Miller
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Ken Mackie
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Emmanuel Valjent
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Olivier J.J. Manzoni
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Pascale Chavis
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| |
Collapse
|
11
|
Zensho K, Miyazaki I, Isse A, Misawa I, Masai K, Oka M, Tsukahara H, Asanuma M. Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development. Pediatr Res 2025:10.1038/s41390-025-03920-6. [PMID: 39939521 DOI: 10.1038/s41390-025-03920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats. METHODS We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n = 7 embryos/stage), quantitative real-time PCR (n = 6), and in situ hybridization (n = 11-15). RESULTS The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells. CONCLUSIONS Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders. IMPACT Our study elucidates spatiotemporal expression patterns of endogenous DYX1C1 predominantly in the primitive cortical zone (PCZ), outermost layer of the cortical plate (CP) during cerebral cortex development, particularly peaked at E15.5. We revealed the spatial relationship between DYX1C1-positive and reelin-expressing Cajal-Retzius (CR) cells, and co-localize with neuronal markers expressed during cerebral cortex development, indicating its contribution to neuronal migration and cortical layer formation. DYX1C1-positive cells mainly in the PCZ possess shorter primary cilia than DYX1C1-negative cells, suggesting the completion of migration.
Collapse
Affiliation(s)
- Kazumasa Zensho
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Pediatrics, Okayama University Hospital, Okayama, 700-8558, Japan
- Department of Pediatrics, Kurashiki Medical Center, Okayama, 710-8522, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Aika Isse
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Ichika Misawa
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Makio Oka
- Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
12
|
Valderrama-Mantilla AI, Martín-Cuevas C, Gómez-Garrido A, Morente-Montilla C, Crespo-Facorro B, García-Cerro S. Shared molecular signature in Alzheimer's disease and schizophrenia: A systematic review of the reelin signaling pathway. Neurosci Biobehav Rev 2025; 169:106032. [PMID: 39894421 DOI: 10.1016/j.neubiorev.2025.106032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
The Reelin signaling pathway, particularly the RELN-APOER2-DAB1 complex, has emerged as a key contributor to the neuropathology of Alzheimer's disease (AD) and Schizophrenia (SZ). Despite being distinct clinical conditions, these disorders exhibit similar patterns of cognitive decline, including early disruptions in synaptic function and memory impairments. Notably, individuals with SZ have a 2-4 fold increased risk of developing AD or other dementias, highlighting potential shared molecular mechanisms, and positioning Reelin as a pivotal link between them. This systematic review explores the role of Reelin and its signaling components across these disorders. In AD, Reelin disruption correlates with hallmark features such as Tau hyperphosphorylation, amyloid-beta accumulation, and cognitive deficits. In SZ, alterations in Reelin signaling, including epigenetic modifications affecting RELN expression, are linked to disruptions in neuronal development and synaptic plasticity, particularly in the parietal and prefrontal cortices. Additionally, genomic studies reveal specific RELN variants and allelic imbalances that may influence disease severity and treatment response in SZ, suggesting RELN's role as a potential biomarker for therapeutic outcomes. Region-specific Reelin alterations in both AD and SZ suggest differing impacts yet underscore a potential common molecular origin. Our findings highlight the Reelin pathway as a molecular convergence point, warranting further investigation as a therapeutic and diagnostic target for AD, SZ, and potentially other neuropsychiatric disorders. The interplay between genetic and epigenetic regulation of RELN may provide novel insights into neurodegeneration, with implications for personalized intervention strategies in AD and SZ.
Collapse
Affiliation(s)
| | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain.
| | - Ana Gómez-Garrido
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain.
| | - Cristina Morente-Montilla
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain.
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain; Department of Psychiatry, School of Medicine, University of Seville, Manuel Siurot AV, Seville 41013, Spain.
| | - Susana García-Cerro
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain.
| |
Collapse
|
13
|
Hattori M. Regulatory mechanism of Reelin activity: a platform for exploiting Reelin as a therapeutic agent. Front Mol Neurosci 2025; 18:1546083. [PMID: 39931643 PMCID: PMC11808024 DOI: 10.3389/fnmol.2025.1546083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Reelin is a secreted glycoprotein that was initially investigated in the field of neuronal development. However, in recent decades, its role in the adult brain has become increasingly important, and it is now clear that diminished Reelin function is involved in the pathogenesis and progression of neuropsychiatric and neurodegenerative disorders, including schizophrenia and Alzheimer's disease (AD). Reelin activity is regulated at multiple steps, including synthesis, posttranslational modification, secretion, oligomerization, proteolytic processing, and interactions with extracellular molecules. Moreover, the differential use of two canonical receptors and the presence of non-canonical receptors and co-receptors add to the functional diversity of Reelin. In this review, I summarize recent findings on the molecular mechanisms of Reelin activity. I also discuss possible strategies to enhance Reelin's function. A complete understanding of Reelin function and its regulatory mechanisms in the adult central nervous system could help ameliorate neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Zhang Y, Liu T, Pan F, Li Y, Wang D, Pang J, Sang H, Xi Y, Shi L, Liu Z. Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1356-1372. [PMID: 39745486 DOI: 10.1021/acs.jafc.4c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.17% methionine, w/w) improved working memory and reduced neuronal damage exclusively in 4-month-old male APP/PS1 AD mice. Transcriptomic analysis revealed the activation of serum- and glucose-corticoid-regulated kinase 1 (SGK1) and peroxisome proliferator-activated receptor α (PPARα) pathways. Furthermore, metabolomics demonstrated increased serum indole-3-propionic acid (IPA) levels and an enhanced expression of gut barrier proteins Claudin-1 and MUC2 in male mice. MR significantly altered the gut microbiota composition, notably increasing indole-producing bacteria such as Lactobacillus reuteri (L. reuteri). Multiomics integration linked L. reuteri, IPA, and PPARα signaling to improved cognitive outcomes. Molecular docking and RT-qPCR analyses confirmed IPA's interaction with PPARα, leading to the activation of neuroprotective targets (Bdnf, Pparα, Acsbg1, Scd2, and Scd3). These results highlight the role of methionine restriction in modulating gut microbiota and metabolites, offering a promising dietary approach to managing neurodegenerative diseases with sex-specific effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yiju Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture/Forestry Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Da Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haojie Sang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
15
|
Seyfoori A, Liu K, Caruncho HJ, Walter PB, Akbari M. Tumoroid-On-a-Plate (ToP): Physiologically Relevant Cancer Model Generation and Therapeutic Screening. Adv Healthc Mater 2025; 14:e2402060. [PMID: 39538973 DOI: 10.1002/adhm.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Employing three-dimensional (3D) in vitro models, including tumor organoids and spheroids, stands pivotal in enhancing cancer therapy. These models bridge the gap between two-dimensional (2D) cell cultures and complex in vivo environments and offer versatile tools for comprehensive studies into cancer progression, drug responses, and tailored therapies. This study introduces the Tumoroid-on-a-Plate (ToP) device, an innovative ope-surface microfluidic platform designed to create predictive 3D models of solid tumors. The ToP device combines tumor mass, stromal cells, and extracellular matrix (ECM) components, to closely replicate the microenvironment of glioblastoma (GBM) and pancreatic adenocarcinoma (PDAC). Using the advanced ToP model and testing various GBM ECM compositions such as collagen and Rreelin within the model, we can assess how specific elements affect GBM invasiveness. The ToP in vitro model also enables screening chemotherapeutics such as temozolomide and iron-chelators in a single and binary treatment setting on the complex ECM-embedded tumoroids to evaluate their toxicity on GBM and PDAC models viability and apoptosis. Furthermore, co-culturing PDAC tumoroids with human-derived fibroblasts reveals the pro-invasive influence of stromal elements on tumor growth and drug response. This research underscores the value of advanced 3D models like ToP in advancing the understanding of cancer complexity and therapy responses.
Collapse
Affiliation(s)
- Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Apricell Biotechnology Inc., Victoria, BC, V8P 1T5, Canada
| | - Kaiwen Liu
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Apricell Biotechnology Inc., Victoria, BC, V8P 1T5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C4, Canada
| | - Patrick B Walter
- Department of Biology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
16
|
Zhang Q, Fujita M. Why nature evolved GPI-anchored proteins: unique structure characteristics enable versatile cell surface functions. Glycobiology 2024; 34:cwae089. [PMID: 39530348 PMCID: PMC11632373 DOI: 10.1093/glycob/cwae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
It remains a mystery why nature evolved the unique structural characteristics of GPI-anchored proteins (GPI-APs) and continues to sustain the complex, energy-intensive process of synthesizing these proteins. GPI-APs, despite their small size, rely on the coordinated activity of nearly 30 genes for their synthesis and remodeling, raising important evolutionary questions. The biological advantages of GPI-APs lie in their ability to rapidly redistribute across the cell membrane, localize within lipid rafts, utilize unique intracellular trafficking pathways, and function as both membrane-bound and soluble proteins. These properties allow GPI-APs to participate in diverse cellular processes such as synaptic plasticity, immune regulation, and signal transduction, highlighting their indispensable roles. Additionally, the shedding capability of GPI-APs extends their functional reach, adding further versatility to their biological roles. This review not only summarizes these key insights but also explores the broader implications of GPI-APs in cell signaling and disease. By understanding the evolutionary necessity of GPI-APs, we can better appreciate their complexity and potential as therapeutic targets.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 305-8577, Japan
| | - Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
17
|
Sun P, Feng S, Yu H, Wang X, Fang Y. Two hub genes of bipolar disorder, a bioinformatics study based on the GEO database. IBRO Neurosci Rep 2024; 17:122-130. [PMID: 39157463 PMCID: PMC11326958 DOI: 10.1016/j.ibneur.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Bipolar disorder is a mood illness that affects many people. It has a high recurrence frequency and will cause significant damage to the patient's social function. At present, the pathogenesis of BD is not clear. The National Center for Biotechnology Information (NCBI) established and maintained the Gene Expression Omnibus (GEO) database, a gene expression database. For bioinformatics analysis, researchers can obtain expression data from the internet. At present, the samples of the dataset used in the research of BD are mostly from brain tissue, and the data containing blood samples are rarely used. GEO databases (GSE46416, GSE5388, and GSE5389) were used to retrieve public data, and utilizing the online tool GEO2R, differentially expressed genes (DEGs) were retrieved. The common DEGs between the samples of patients with BD and the samples of the normal population were screened by Venn diagrams. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to perform functional annotation and pathway enrichment analysis of DEGs. A protein-protein interaction network (PPI) was built to investigate hub genes on this basis. There were 117 up-regulated DEGs and 38 down-regulated DEGs discovered, with two hub genes [SRC, CDKN1A] among the up-regulated DEGs. These two hub genes were also highly enriched in the oxytocin signaling pathway, proteoglycans in cancer and bladder cancer, according to KEGG analysis. The results of the receiver operating characteristic curve (ROC) of SRC and CDKN1A in the three datasets strongly suggested that SRC and CDKN1A were potential diagnostic markers of BD. The results strongly suggest that SRC and CDKN1A are related to the pathogenesis of BD.
Collapse
Affiliation(s)
- Ping Sun
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Qingdao Mental Health Center, Qingdao, Shandong Province 266034, China
| | - Shunkang Feng
- Qingdao Mental Health Center, Qingdao, Shandong Province 266034, China
| | - Hui Yu
- Qingdao Mental Health Center, Qingdao, Shandong Province 266034, China
| | - Xiaoxiao Wang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
- State Key Laboratory of Neuroscience, Shanghai Institue for Biological Sciences, CAS, Shanghai 200031, China
| |
Collapse
|
18
|
Widaja E, Pawitan JA. Integrating epigenetic modification and stem cell therapy strategies: A novel approach for advancing Alzheimer's disease treatment - A literature review. NARRA J 2024; 4:e935. [PMID: 39816083 PMCID: PMC11731673 DOI: 10.52225/narra.v4i3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development. These alterations further enact transcriptional changes relevant to the signature AD pathologies of amyloid-β deposition, tau protein malfunctioning, neuroinflammation, and neuronal death. Here, we discuss the feasibility of targeting these epigenetic alterations as a new treatment strategy due to the reversibility of epigenetics and their ability to correct faulty gene expression. We also review the combined promise of stem cell therapies and epigenetic modulation in neurodegeneration, inflammation and cognitive decline. This combined approach may provide a multifaceted strategy to slow disease progression, replace lost neurons, and restore neural function. Despite challenges, including ethical, financial, and methodological barriers, ongoing research in epigenetic modulation and stem cell therapy holds promise for pioneering therapies in AD.
Collapse
Affiliation(s)
- Edhijanto Widaja
- Master's Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Regenerative Medicine and Research Institute of Mandaya Hospital Group, Tangerang, Indonesia
| | - Jeanne A. Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo Central Hospital, Jakarta, Indonesia
| |
Collapse
|
19
|
Godovalova O, Proshchina A, Kharlamova A, Barabanov V, Krivova Y, Junemann O, Shahina M, Saveliev S. Heterogeneity in the formation of primary and secondary visual fields during human prenatal development. Biol Res 2024; 57:93. [PMID: 39609712 PMCID: PMC11603890 DOI: 10.1186/s40659-024-00576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
The human neocortex has a huge surface area with unique cytoarchitectonics, most of which is concealed in sulci. Some cytoarchitectonic fields are associated with macroscopic landmarks. In particular, the primary visual field 17 is associated with the calcarine sulcus. During the prenatal development of the human brain, neocortical gyri and sulci undergo changes and modifications after primary formation. To explore the morphogenetic processes in visual fields during the formation of the primary (provisional) and secondary (permanent) sulci, the occipital lobe of the human fetal brain was studied using immunohistochemical methods. The distribution of various glial and neuronal markers (S-100, β-III-tubulin, NeuN, reelin) in the calcarine sulcus and parietooccipital sulcus was compared. The heterogeneity in the formation of primary and secondary visual fields was demonstrated. The study revealed that the development of the primary visual field 17, linked with the calcarine sulcus, preceded the development of a shared anlage of fields 18 and 19 linked with the parietooccipital sulcus. The functional differentiation of the primary visual field begins during the period of thalamic afferent ingrowth. This process coincides with the temporal smoothing of the calcarine sulcus, indicating a simultaneous progression of functional specialization and structural modifications. At the late fetal period, cortical plate of gyri and sulci banks showed higher NeuN-labeling than inside the sulcus in the same cytoarchitectonic field.
Collapse
Affiliation(s)
- Olga Godovalova
- Avsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, Moscow, 117418, Russia.
| | - Alexandra Proshchina
- Avsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, Moscow, 117418, Russia
| | - Anastasia Kharlamova
- Avsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, Moscow, 117418, Russia
| | - Valeriy Barabanov
- Avsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, Moscow, 117418, Russia
| | - Yuliya Krivova
- Avsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, Moscow, 117418, Russia
| | - Olga Junemann
- The National Research Council Institute CNR-NANOTEC, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marina Shahina
- Krasnopolsky Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka Street, 22A, Moscow, 101000, Russia
| | - Sergey Saveliev
- Avsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, Moscow, 117418, Russia
| |
Collapse
|
20
|
Kohno T, Nakagawa I, Taniguchi A, Heng F, Hattori M. Biochemical characterizations of the central fragment of human Reelin and identification of amino acid residues involved in its secretion. J Biochem 2024; 176:385-393. [PMID: 39167799 DOI: 10.1093/jb/mvae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Secreted protein Reelin is implicated in neuropsychiatric disorders and its supplementation ameliorates neurological symptoms in mouse disease models. Recombinant human Reelin protein may be useful for the treatment of human diseases, but its properties remain uncharacterized. Here, we report that full-length human Reelin was well secreted from transfected cells and was able to induce Dab1 phosphorylation. Unexpectedly, the central fragment of human Reelin was much less secreted than that of mouse Reelin. Three residues in the sixth Reelin repeat contributed to the secretion inefficiency, and their substitutions with mouse residues increased the secretion without affecting its biological activity. Our findings help efficient production of human Reelin protein for the supplementation therapy.
Collapse
Affiliation(s)
- Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Ikuma Nakagawa
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Airi Taniguchi
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Fang Heng
- Department of Pharmaceutical Analyses, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
21
|
Uzan-Yulzari A, Turjeman S, Moadi L, Getselter D, Sharon E, Rautava S, Isolauri E, Khatib S, Elliott E, Koren O. A gut reaction? The role of the microbiome in aggression. Brain Behav Immun 2024; 122:301-312. [PMID: 39128572 DOI: 10.1016/j.bbi.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Recent research has unveiled conflicting evidence regarding the link between aggression and the gut microbiome. Here, we compared behavior profiles of control, germ-free (GF), and antibiotic-treated mice, as well as re-colonized GF mice to understand the impact of the gut microbiome on aggression using the resident-intruder paradigm. Our findings revealed a link between gut microbiome depletion and higher aggression, accompanied by notable changes in urine metabolite profiles and brain gene expression. This study extends beyond classical murine models to humanized mice to reveal the clinical relevance of early-life antibiotic use on aggression. Fecal microbiome transplant from infants exposed to antibiotics in early life (and sampled one month later) into mice led to increased aggression compared to mice receiving transplants from unexposed infants. This study sheds light on the role of the gut microbiome in modulating aggression and highlights its potential avenues of action, offering insights for development of therapeutic strategies for aggression-related disorders.
Collapse
Affiliation(s)
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lelyan Moadi
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Efrat Sharon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samuli Rautava
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland; Department of Pediatrics, University of Helsinki and New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Erika Isolauri
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland; Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Soliman Khatib
- Department of Natural Compounds and Analytical Chemistry, Migal-Galilee Research Institute, Kiryat Shmona, Israel; Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Lagani GD, Sha M, Lin W, Natarajan S, Kankkunen M, Kistler SA, Lampl N, Waxman H, Harper ER, Emili A, Beffert U, Ho A. Beyond Glycolysis: Aldolase A Is a Novel Effector in Reelin-Mediated Dendritic Development. J Neurosci 2024; 44:e0072242024. [PMID: 39227156 PMCID: PMC11484552 DOI: 10.1523/jneurosci.0072-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with noncanonical receptors and unidentified coreceptors; however, the effects of which are less understood. Using high-throughput tandem mass tag (TMT) liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomics and gene set enrichment analysis (GSEA), we identified both shared and unique intracellular pathways activated by Reelin through its canonical and noncanonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway cross talk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the noncanonical Reelin pathway including protein translation, mRNA metabolic process, and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin-binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development.
Collapse
Affiliation(s)
- Gavin D Lagani
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Mingqi Sha
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Sahana Natarajan
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Marcus Kankkunen
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Sabrina A Kistler
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Noah Lampl
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Hannah Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Evelyn R Harper
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Manning LK, Winkenwerder E, Baskind L, Eager KLM, Willet CE, Porebski B, O'Rourke BA, Tammen I, Gimeno M, Pinczowski P. A novel missense variant in the RELN gene in sheep with lissencephaly and cerebellar hypoplasia. Vet Pathol 2024:3009858241283501. [PMID: 39394905 DOI: 10.1177/03009858241283501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Lissencephaly and cerebellar hypoplasia (LCH) represents a spectrum of congenital developmental malformations of the cerebral cortex and cerebellum, mostly occurring as inherited conditions caused by variants in an increasingly recognized number of genes. LCH has been identified in three Dorset-cross lambs with congenital neurological signs in Australia. Lambs were unable to walk and had reduced vision, and one lamb developed a hypermetric gait and intention tremors. Grossly, the lambs had diffuse pachygyria with reduction in white matter, mild bilateral ventriculomegaly of the lateral ventricles, and a markedly hypoplastic cerebellum. Histologically, there was disorganization of neurons within the cerebral cortex and hippocampus. The cerebellar vermis had disorganized, thin, and hypocellular gray matter with frequent ectopic Purkinje cells, while identifiable folia were largely absent within the hemispheres. Luxol fast blue stain and glial fibrillary acidic protein, neuronal nuclear protein, synaptophysin, and neuron-specific enolase immunohistochemistry confirmed the thickened, disorganized cerebral cortical gray matter and reduced white matter. Within the cerebellum, immunohistochemistry demonstrated marked dysplasia. Whole-genome sequencing analysis and prediction of variant effects identified a missense variant of interest in the candidate gene reelin (RELN; NC_040255.1:g.50288685C>T; NM_001306121.1:c.7088G>A; NP_001293050.1:p.(R2363H)) with a deleterious Sorting Intolerant from Tolerant (SIFT) score. Sanger sequencing identified that the variant segregated with LCH disease in the 3 affected individuals, their sire, and 6 unaffected flock members. The NP_001293050.1: p.(R2363H) substitution is predicted to decrease the stability of the protein (ΔΔG = -1.55 kcal/mol). Pathological and genetic findings are consistent with previously described phenotypes of RELN variants in Churra sheep, dogs, and humans.
Collapse
Affiliation(s)
- Leah K Manning
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Emily Winkenwerder
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Louise Baskind
- South East Local Land Services, Braidwood, NSW, Australia
| | - Katie L M Eager
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Cali E Willet
- The University of Sydney, Camperdown, NSW, Australia
| | - Ben Porebski
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Brendon A O'Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
| | - Imke Tammen
- The University of Sydney, Camden, NSW, Australia
| | - Marina Gimeno
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
- The University of Sydney, Camden, NSW, Australia
| | - Pedro Pinczowski
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW, Australia
| |
Collapse
|
24
|
Hakizimana O, Hitayezu J, Uyisenga JP, Onohuean H, Palmeira L, Bours V, Alagbonsi AI, Uwineza A. Genetic etiology of autism spectrum disorder in the African population: a scoping review. Front Genet 2024; 15:1431093. [PMID: 39391062 PMCID: PMC11464363 DOI: 10.3389/fgene.2024.1431093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted. Methods Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population. Result In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population. Conclusion There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Collapse
Affiliation(s)
- Olivier Hakizimana
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
| | - Jeanne P. Uyisenga
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Abdullateef Isiaka Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annette Uwineza
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
25
|
Zhang JW, Zhou HQ, Zhu Z, Ding YY, He Y, Wei XL, Xiao CF, Li YF, Lin WP, Yin DM. Adolescent administration of ketamine impairs excitatory synapse formation onto parvalbumin-positive GABAergic interneurons in mouse prefrontal cortex. Biochem Biophys Res Commun 2024; 725:150272. [PMID: 38901224 DOI: 10.1016/j.bbrc.2024.150272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Hai-Qian Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Zhen Zhu
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Yang-Yang Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Ying He
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Xiao-Lian Wei
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Chen-Fan Xiao
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Yun-Fei Li
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Wei-Peng Lin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
26
|
Park HR, Cai M, Yang EJ. Herbal Formula Extract Ameliorates Anxiety and Cognitive Impairment via Regulation of the Reelin/Dab-1 Pathway in a Murine Model of Post-Traumatic Stress Disorder. Pharmaceutics 2024; 16:1150. [PMID: 39339187 PMCID: PMC11434737 DOI: 10.3390/pharmaceutics16091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
We investigated the effects of epigenetic modifications on post-traumatic stress disorder (PTSD) using a novel combination of herbal medicines from Panax ginseng, Astragalus membranaceus, Atractylodes macrocephala, and Glycyrrhiza uralensis. The herbal formula extract (HFE) (250 mg/kg) was administered orally once daily for 14 days to determine its effects on PTSD in mice by combining prolonged stress and foot shock. The open field and Y-maze tests determined the effect of HFE on PTSD-induced anxiety and cognition. Hippocampal neuronal plastic changes and molecular mechanism were verified. Treatment with HFE decreased anxiety-like behavior and enhanced cognition. Moreover, it reduced the number of PTSD-related hilar ectopic granule cells in the dentate gyrus (DG). PTSD mice showed reduced neuronal plasticity of doublecortin+ cells in the DG, which was restored by HFE treatment. HFE reversed PTSD-induced inhibition of the Reelin/Dab1 pathway, a critical signaling cascade involved in brain development, and regulated Reelin methylation. Furthermore, DNA methylation, methyl-CpG binding protein 2, and DNA methyltransferase 1, which were elevated in the hippocampus of PTSD mice, were restored following HFE treatment. HFE increased the expression of synaptic plasticity-related factors in the hippocampus of PTSD mice. Our findings suggest that HFE can facilitate PTSD treatment by alleviating behavioral abnormalities through the restoration of hippocampal dysfunction via regulation of the Reelin/Dab-1 pathway and DNA methylation in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
27
|
Mwachaka PM, Gichangi P, Abdelmalek A, Odula P, Ogeng'o J. Impact of varying maternal dietary folate intake on cerebellar cortex histomorphology and cell density in offspring rats. Int J Dev Neurosci 2024; 84:406-422. [PMID: 38773676 DOI: 10.1002/jdn.10337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
The cerebellum has a long, protracted developmental period that spans from the embryonic to postnatal periods; as a result, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is crucial for foetal and early postnatal brain development; however, its effects on cerebellar growth and development are unknown. The aim of this study was to examine the effects of maternal folate intake on the histomorphology and cell density of the developing cerebellum. Twelve adult female rats (rattus norvegicus) were randomly assigned to one of four premixed diet groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg) or folate supra-supplemented (40 mg/kg). The rats started their diets 14 days before mating and consumed them throughout pregnancy and lactation. On postnatal days 1, 7, 21 and 35, five pups from each group were sacrificed, and their brains were processed for light microscopic analysis. Histomorphology and cell density of the external granule, molecular, Purkinje and internal granule layers were obtained. The folate-deficient diet group had smaller, dysmorphic cells and significantly lower densities of external granule, molecular, Purkinje and internal granule cells. Although the folate-enriched groups had greater cell densities than the controls, the folate-supplemented group had considerably higher cell densities than the supra-supplemented group. The folate supra-supplemented group had ectopic Purkinje cells in the internal granule cell layer. These findings imply that a folate-deficient diet impairs cellular growth and reduces cell density in the cerebellar cortex. On the other hand, folate supplementation increases cell densities, but there appears to be an optimal dose of supplementation since excessive folate levels may be detrimental.
Collapse
Affiliation(s)
| | - Peter Gichangi
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Adel Abdelmalek
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Paul Odula
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Julius Ogeng'o
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
28
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
29
|
Fuentealba LM, Pizarro H, Marzolo MP. OCRL1 Deficiency Affects the Intracellular Traffic of ApoER2 and Impairs Reelin-Induced Responses. Biomolecules 2024; 14:799. [PMID: 39062513 PMCID: PMC11274606 DOI: 10.3390/biom14070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lowe Syndrome (LS) is a rare X-linked disorder characterized by renal dysfunction, cataracts, and several central nervous system (CNS) anomalies. The mechanisms underlying the neurological dysfunction in LS remain unclear, albeit they share some phenotypic characteristics similar to the deficiency or dysfunction of the Reelin signaling, a relevant pathway with roles in CNS development and neuronal functions. In this study, we investigated the role of OCRL1, an inositol polyphosphate 5-phosphatase encoded by the OCRL gene, mutated in LS, focusing on its impact on endosomal trafficking and receptor recycling in human neuronal cells. Specifically, we tested the effects of OCRL1 deficiency in the trafficking and signaling of ApoER2/LRP8, a receptor for the ligand Reelin. We found that loss of OCRL1 impairs ApoER2 intracellular trafficking, leading to reduced receptor expression and decreased levels at the plasma membrane. Additionally, human neurons deficient in OCRL1 showed impairments in ApoER2/Reelin-induced responses. Our findings highlight the critical role of OCRL1 in regulating ApoER2 endosomal recycling and its impact on the ApoER2/Reelin signaling pathway, providing insights into potential mechanisms underlying the neurological manifestations of LS.
Collapse
Affiliation(s)
| | | | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810128, Chile; (L.M.F.); (H.P.)
| |
Collapse
|
30
|
González Maciel A, Rosas López LE, Romero-Velázquez RM, Ramos-Morales A, Ponce-Macotela M, Calderón-Guzmán D, Trujillo-Jiménez F, Alfaro-Rodríguez A, Reynoso-Robles R. Postnatal zinc deficiency due to giardiasis disrupts hippocampal and cerebellar development. PLoS Negl Trop Dis 2024; 18:e0012302. [PMID: 38950061 PMCID: PMC11244800 DOI: 10.1371/journal.pntd.0012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/12/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 μm; HGINV 37 ± 5 μm; WB 28 ± 3 μm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.
Collapse
Affiliation(s)
- Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Laura Elizabeth Rosas López
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Rosa María Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Andrea Ramos-Morales
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Martha Ponce-Macotela
- Laboratory of Experimental Parasitology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - David Calderón-Guzmán
- Laboratory of Neuroscience, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | | | - Alfonso Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
31
|
Wang Z, Wu T, Hu H, Alabed AAA, Cui G, Sun L, Sun Z, Wang Y, Li P. Plasma exosomes carrying mmu-miR-146a-5p and Notch signalling pathway-mediated synaptic activity in schizophrenia. J Psychiatry Neurosci 2024; 49:E265-E281. [PMID: 39209459 PMCID: PMC11374447 DOI: 10.1503/jpn.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schizophrenia is characterized by a complex interplay of genetic and environmental factors, leading to alterations in various molecular pathways that may contribute to its pathogenesis. Recent studies have shown that exosomal microRNAs could play essential roles in various brain disorders; thus, we sought to explore the potential molecular mechanisms through which microRNAs in plasma exosomes are involved in schizophrenia. METHODS We obtained sequencing data sets (SUB12404730, SUB12422862, and SUB12421357) and transcriptome sequencing data sets (GSE111708, GSE108925, and GSE18981) from mouse models of schizophrenia using the Sequence Read Archive and the Gene Expression Omnibus databases, respectively. We performed differential expression analysis on mRNA to identify differentially expressed genes. We conducted Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to determine differentially expressed genes. Subsequently, we determined the intersection of differentially expressed microRNAs in plasma exosomes and in prefrontal cortex tissue. We retrieved downstream target genes of mmu-miR-146a-5p from TargetScan and used Cytoscape to visualize and map the microRNA-target gene regulatory network. We conducted in vivo experiments using MK-801-induced mouse schizophrenia models and in vitro experiments using cultured mouse neurons. The role of plasma exosomal miR-146a-5p in schizophrenia was validated using a cell counting kit, detection of lactate dehydrogenase, dual-luciferase assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis. RESULTS Differential genes were mainly enriched in synaptic regulation-related functions and pathways and were associated with neuronal degeneration. We found that mmu-miR-146a-5p was highly expressed in both prefrontal cortical tissue and plasma exosomes, which may be transferred to lobe cortical vertebral neurons, leading to the synergistic dysregulation of gene network functions and, therefore, promoting schizophrenia development. We found that mmu-miR-146a-5p may inhibit the Notch signalling pathway-mediated synaptic activity of mouse pyramidal neurons in the lobe cortex by targeting NOTCH1, which in turn could promote the onset and development of schizophrenia in mice. LIMITATIONS The study's findings are based on animal models and in vitro experiments, which may not fully replicate the complexity of human schizophrenia. CONCLUSION Our findings suggest that mmu-miR-146a-5p in plasma-derived exosomes may play an important role in the pathogenesis of schizophrenia. Our results provide new insights into the underlying molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zhichao Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Tong Wu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Houjia Hu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Alabed Ali A Alabed
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Guangcheng Cui
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Lei Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Zhenghai Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Yuchen Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Ping Li
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| |
Collapse
|
32
|
Brida KL, Jorgensen ET, Phillips RA, Newman CE, Tuscher JJ, Morring EK, Zipperly ME, Ianov L, Montgomery KD, Tippani M, Hyde TM, Maynard KR, Martinowich K, Day JJ. Reelin marks cocaine-activated striatal ensembles, promotes neuronal excitability, and regulates cocaine reward. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599348. [PMID: 38948801 PMCID: PMC11212904 DOI: 10.1101/2024.06.17.599348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Drugs of abuse activate defined neuronal ensembles in brain reward structures such as the nucleus accumbens (NAc), which are thought to promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, the mechanisms that sculpt NAc ensemble participation are largely unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling to identify expression of the secreted glycoprotein Reelin (encoded by the Reln gene) as a marker of cocaine-activated neuronal ensembles within the rat NAc. Multiplexed in situ detection confirmed selective expression of the immediate early gene Fos in Reln+ neurons after cocaine experience, and also revealed enrichment of Reln mRNA in Drd1 + medium spiny neurons (MSNs) in both the rat and human brain. Using a novel CRISPR interference strategy enabling selective Reln knockdown in the adult NAc, we observed altered expression of genes linked to calcium signaling, emergence of a transcriptional trajectory consistent with loss of cocaine sensitivity, and a striking decrease in MSN intrinsic excitability. At the behavioral level, loss of Reln prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. Together, these results identify Reelin as a critical mechanistic link between ensemble participation and cocaine-induced behavioral adaptations.
Collapse
|
33
|
Sasun AR, Sharath HV. Role of Physiotherapy in Pediatric Lissencephaly: A Case Report and Therapeutic Insights. Cureus 2024; 16:e62901. [PMID: 39040723 PMCID: PMC11262781 DOI: 10.7759/cureus.62901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
Type 1 lissencephaly is a genetic disorder of chromosomal abnormality. This case report glimpses at the physiotherapy rehabilitation for a two-year-old male brought by his parents with complaints of being unable to move his upper and lower limbs, delayed milestones as compared to his peer group, and difficulty in swallowing. Physiotherapy rehabilitation included Rood's approach to neurodevelopmental techniques, hippotherapy, vestibular ball rehabilitation exercises, oral sensorimotor stimulation, and tactile stimulation. The protocol lasted for 12 weeks. At the end of the rehabilitation, there was a significant improvement in the tone of the muscles and delayed developmental milestones. Through this case report, we conclude about the importance of genetic counseling to the parents of genetic disorders babies. We ought to improve awareness about the pivotal role of physiotherapy in managing such disorders. We conclude that physiotherapy significantly improved the symptoms and improved the quality of life of patients with type 1 lissencephaly.
Collapse
Affiliation(s)
- Anam R Sasun
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - H V Sharath
- Department of Paediatric Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| |
Collapse
|
34
|
Hamad MIK, Rabaya O, Jbara A, Daoud S, Petrova P, Ali BR, Allouh MZ, Herz J, Förster E. Reelin Regulates Developmental Desynchronization Transition of Neocortical Network Activity. Biomolecules 2024; 14:593. [PMID: 38786001 PMCID: PMC11118507 DOI: 10.3390/biom14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Mohammed Z. Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 5323, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| |
Collapse
|
35
|
Li Z, Wang F, He Z, Guo Q, Zhang J, Liu S. RELN gene-related drug-resistant epilepsy with periventricular nodular heterotopia treated with radiofrequency thermocoagulation: a case report. Front Neurol 2024; 15:1366776. [PMID: 38601336 PMCID: PMC11004351 DOI: 10.3389/fneur.2024.1366776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
An increasing number of gene mutations associated with epilepsy have been identified, some linked to gray matter heterotopia-a common cause of drug-resistant epilepsy. Current research suggests that gene mutation-associated epilepsy should not be considered a contraindication for surgery in epilepsy patients. At present, stereoelectroencephalography-guided radiofrequency thermocoagulation is an important method to treat periventricular nodular heterotopia-associated drug-resistant epilepsy. We present a case of drug-resistant epilepsy, accompanied by periventricular nodular heterotopia and a heterozygous mutation of the RELN gene, successfully treated with radiofrequency thermocoagulation, resulting in a favorable outcome.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fuli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidong He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qi Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Calvier L, Alexander A, Marckx AT, Kounnas MZ, Durakoglugil M, Herz J. Safety of Anti-Reelin Therapeutic Approaches for Chronic Inflammatory Diseases. Cells 2024; 13:583. [PMID: 38607022 PMCID: PMC11011630 DOI: 10.3390/cells13070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Austin T. Marckx
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Murat Durakoglugil
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Zhang J, Zhao R, Lin S, Yang D, Lu S, Liu Z, Gao Y, Zhang Y, Hou B, Xi C, Liu J, Bing J, Pang E, Lin K, Zeng S. Comparison of genes involved in brain development: insights into the organization and evolution of the telencephalic pallium. Sci Rep 2024; 14:6102. [PMID: 38480729 PMCID: PMC10937912 DOI: 10.1038/s41598-024-51964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.
Collapse
Affiliation(s)
- Jiangyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Shiying Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Genetic Engineering Drugs and Biological Technology, Beijing Normal University, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Zenan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yuanyuan Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yiyun Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Bing Hou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
38
|
Heydari B, Mashayekhi F, Kashani MHG. Effect of in ovo feeding of folic acid on Disabled-1 and gga-miR-182-5p expression in the cerebral cortex of chick embryo. J Anim Physiol Anim Nutr (Berl) 2024; 108:285-290. [PMID: 37814386 DOI: 10.1111/jpn.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Folate (vitamin B9) has been shown to reduce the prevalence of neural tube defects (NTDs). Many genes comprising Disabled-1 (DAB1) and miRNAs have been shown to play important role in normal brain development. Reelin-signalling has been shown to play key role in regulating of neuronal migration during brain development. The aim of this study was to evaluate the effects of in ovo administration of folic acid (FA) on DAB1 and gga-miR-182-5p expression in the cerebral cortex of chick embryo. A total number of 30 hatching eggs were used in this study. The number of 10 eggs were injected into the yolk sac with FA (150 µg/egg), 10 eggs by normal saline (sham group) on embryonic day 11 and 10 eggs were left without injection as control. Then the cerebral cortices were collected on E19 and the expression of DAB1 and gga-miR-182-5p was studied by Real-Time PCR. The results showed that DAB1 expression in the cerebral cortex of FA-treated, sham and control were 2.51 ± 0.13, 1.01 ± 0.04 and 1.03 ± 0.04 fold changes, respectively, and this amount for gga-miR-182-5p were 0.54 ± 0.03, 1.09 ± 0.07 and 1.00 ± 0.06-fold change respectively. Statistical analysis showed that there is a significant increase in DAB1 and a decrease in gga-miR-182-5p expression in FA injected cerebral cortex as compared either with either SHAM or control (p < 0.0001). But, no significant change in DAB1 and gga-miR-182-5p expression was observed between sham and the control group (p = 0.99 and p = 0.57 respectively). It is concluded that in ovo feeding of FA increases DAB1 and decreases gga-miR-182-5p expression in the developing chick cerebral cortex.
Collapse
Affiliation(s)
- Behnaz Heydari
- Department of Cellular and Molecular Biology, Damghan University, Damghan, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
39
|
Allen J, Dames SS, Foldi CJ, Shultz SR. Psychedelics for acquired brain injury: a review of molecular mechanisms and therapeutic potential. Mol Psychiatry 2024; 29:671-685. [PMID: 38177350 DOI: 10.1038/s41380-023-02360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Shannon S Dames
- Psychedelic-Assisted Therapy Post-Graduate Program, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
40
|
BİTMEZ B, ÇEVRELİ B, KAŞIKÇI E. Effect of thymol on oxidative stress and reelin signaling pathway in Alzheimer's disease model. Turk J Biol 2024; 48:70-79. [PMID: 38665779 PMCID: PMC11042864 DOI: 10.55730/1300-0152.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/27/2024] [Accepted: 02/01/2024] [Indexed: 04/28/2024] Open
Abstract
Background/aim The purpose of this study was to investigate how thymol affects cognitive functions and the levels of MDA, GSH, Aβ1-42, ApoE, reelin, and LRP8 in an AD model induced in male Wistar albino rats with the application of D-galactose (D-gal) and aluminum chloride (AlCl3). Materials and methods In this work, 3-month-old male Wistar albino rats were used. Group 1 served as the Control, Group 2 received 0.5 mL/day saline + 0.5 mL/day sunflower oil, Group 3 was administered 200 mg/kg/day AlCl3 + 60 mg/kg/day D-gal, Group 4 received 30 mg/kg/day thymol, and Group 5 was administered 200 mg/kg/day AlCl3 + 60 mg/kg/day D-gal + 30 mg/kg/day thymol. At the end of the 10-week experimental period, behavioral and memory tests were performed. GSH and MDA levels were measured in the obtained serum and brain tissue samples, while Aβ1-42, ApoE, reelin, and LRP8 levels were measured in brain tissue samples. Statistical analyses were performed using ANOVA test in Graphpad Prism V8.3 program. A p-value <0.05 was considered significant in intergroup analyses. Results When the novel object recognition test (NORT) results were evaluated, the Alzheimer + thymol (ALZ+TYM) group showed a significant increase in the recognition index (RI) and discrimination index (DI) compared to the Alzheimer (ALZ) group at the 24th hour. Thymol reduced working memory errors (WME), reference memory errors (RME), and maze completion time at 48, 72, and 96 hours when evaluated in terms of spatial memory in rats with Alzheimer's disease. Furthermore, Aβ1-42 and ApoE levels were increased in the ALZ group compared to the control (C), while reelin and LRP8 levels were decreased in the ALZ group compared to the C group. Conclusion The data we obtained suggest that thymol may play an effective role in cognitive processes against AD and have an anti-Alzheimer's disease effect.
Collapse
Affiliation(s)
- Barış BİTMEZ
- Department of Molecular Biology, Faculty of Engineering and Natural Sciences, Uskudar University, İstanbul,
Turkiye
| | - Burcu ÇEVRELİ
- Neuropsychopharmacology Research and Application Center, Uskudar Univesity, İstanbul,
Turkiye
| | - Emel KAŞIKÇI
- Department of Molecular Biology, Faculty of Engineering and Natural Sciences, Uskudar University, İstanbul,
Turkiye
| |
Collapse
|
41
|
Skalniak A, Trofimiuk-Müldner M, Surmiak M, Totoń-Żurańska J, Jabrocka-Hybel A, Hubalewska-Dydejczyk A. Whole-Exome Screening and Analysis of Signaling Pathways in Multiple Endocrine Neoplasia Type 1 Patients with Different Outcomes: Insights into Cellular Mechanisms and Possible Functional Implications. Int J Mol Sci 2024; 25:1065. [PMID: 38256138 PMCID: PMC10816043 DOI: 10.3390/ijms25021065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by tumors in multiple organs. Although being a dominantly inherited monogenic disease, disease phenotypes are unpredictable and differ even among members of the same family. There is growing evidence for the role of modifier genes in the alteration of the course of this disease. However, genome-wide screening data are still lacking. In our study, we addressed the different outcomes of the disease, focusing on pituitary and adrenocortical tumors. By means of exome sequencing we identified the affected signaling pathways that segregated with those symptoms. Most significantly, we identified damaging alterations in numerous structural genes responsible for cell adhesion and migration. Additionally, in the case of pituitary tumors, genes related to neuronal function, survival, and morphogenesis were repeatedly identified, while in patients with adrenocortical tumors, TLR10, which is involved in the regulation of the innate immunity, was commonly modified. Our data show that using exome screening, it is possible to find signatures which correlate with the given clinical MEN1 outcomes, providing evidence that studies addressing modifier effects in MEN1 are reasonable.
Collapse
Affiliation(s)
- Anna Skalniak
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| | - Małgorzata Trofimiuk-Müldner
- Department of Endocrinology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.T.-M.); (A.J.-H.); (A.H.-D.)
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| | - Justyna Totoń-Żurańska
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agata Jabrocka-Hybel
- Department of Endocrinology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.T.-M.); (A.J.-H.); (A.H.-D.)
| | - Alicja Hubalewska-Dydejczyk
- Department of Endocrinology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.T.-M.); (A.J.-H.); (A.H.-D.)
| |
Collapse
|
42
|
Lagani GD, Lin W, Natarajan S, Lampl N, Harper ER, Emili A, Beffert U, Ho A. Beyond Glycolysis: Aldolase A is a Novel Effector in Reelin Mediated Dendritic Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575269. [PMID: 38260505 PMCID: PMC10802565 DOI: 10.1101/2024.01.12.575269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with non-canonical receptors and unidentified co-receptors; however, the effects of which are less understood. Using high-throughput tandem mass tag LC-MS/MS-based proteomics and gene set enrichment analysis, we identified both shared and unique intracellular pathways activated by Reelin through its canonical and non-canonical signaling in primary murine neurons during dendritic growth and arborization. We observed pathway crosstalk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the non-canonical Reelin pathway including protein translation, mRNA metabolic process and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for actin remodeling and dendritic development. Significance Reelin is an extracellular glycoprotein and exerts its function primarily by binding to the canonical lipoprotein receptors Apoer2 and Vldlr. Reelin is best known for its role in neuronal migration during prenatal brain development. Reelin also signals through a non-canonical pathway outside of Apoer2/Vldlr; however, these receptors and signal transduction pathways are less defined. Here, we examined Reelin's role during dendritic outgrowth in primary murine neurons and identified shared and distinct pathways activated by canonical and non-canonical Reelin signaling. We also found aldolase A as a novel effector of Reelin signaling, that functions independently of its known metabolic role, highlighting Reelin's influence on actin dynamics and neuronal structure and growth.
Collapse
|
43
|
Halvorson CS, Sánchez-Lafuente CL, Johnston JN, Kalynchuk LE, Caruncho HJ. Molecular Mechanisms of Reelin in the Enteric Nervous System and the Microbiota-Gut-Brain Axis: Implications for Depression and Antidepressant Therapy. Int J Mol Sci 2024; 25:814. [PMID: 38255890 PMCID: PMC10815176 DOI: 10.3390/ijms25020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.
Collapse
Affiliation(s)
- Ciara S. Halvorson
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Carla Liria Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Jenessa N. Johnston
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| |
Collapse
|
44
|
Xie J, Wang Y, Ye C, Li XJ, Lin L. Distinctive Patterns of 5-Methylcytosine and 5-Hydroxymethylcytosine in Schizophrenia. Int J Mol Sci 2024; 25:636. [PMID: 38203806 PMCID: PMC10779130 DOI: 10.3390/ijms25010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (J.X.); (Y.W.); (C.Y.); (X.-J.L.)
| |
Collapse
|
45
|
Reive BS, Lau V, Sánchez-Lafuente CL, Henri-Bhargava A, Kalynchuk LE, Tremblay MÈ, Caruncho HJ. The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer's Disease. J Alzheimers Dis 2024; 100:1099-1119. [PMID: 38995785 PMCID: PMC11380287 DOI: 10.3233/jad-240088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) accounts for most dementia cases, but we lack a complete understanding of the mechanisms responsible for the core pathology associated with the disease (e.g., amyloid plaque and neurofibrillary tangles). Inflammation has been identified as a key contributor of AD pathology, with recent evidence pointing towards Reelin dysregulation as being associated with inflammation. Here we describe Reelin signaling and outline existing research involving Reelin signaling in AD and inflammation. Research is described pertaining to the inflammatory and immunological functions of Reelin before we propose a mechanism through which inflammation renders Reelin susceptible to dysregulation resulting in the induction and exacerbation of AD pathology. Based on this hypothesis, it is predicted that disorders of both inflammation (including peripheral inflammation and neuroinflammation) and Reelin dysregulation (including disorders associated with upregulated Reelin expression and disorders of Reelin downregulation) have elevated risk of developing AD. We conclude with a description of AD risk in various disorders involving Reelin dysregulation and inflammation.
Collapse
Affiliation(s)
- Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Victor Lau
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexandre Henri-Bhargava
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Vancouver Island Health Authority, Victoria, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
46
|
Wen J, Nasrallah IM, Abdulkadir A, Satterthwaite TD, Yang Z, Erus G, Robert-Fitzgerald T, Singh A, Sotiras A, Boquet-Pujadas A, Mamourian E, Doshi J, Cui Y, Srinivasan D, Skampardoni I, Chen J, Hwang G, Bergman M, Bao J, Veturi Y, Zhou Z, Yang S, Dazzan P, Kahn RS, Schnack HG, Zanetti MV, Meisenzahl E, Busatto GF, Crespo-Facorro B, Pantelis C, Wood SJ, Zhuo C, Shinohara RT, Gur RC, Gur RE, Koutsouleris N, Wolf DH, Saykin AJ, Ritchie MD, Shen L, Thompson PM, Colliot O, Wittfeld K, Grabe HJ, Tosun D, Bilgel M, An Y, Marcus DS, LaMontagne P, Heckbert SR, Austin TR, Launer LJ, Espeland M, Masters CL, Maruff P, Fripp J, Johnson SC, Morris JC, Albert MS, Bryan RN, Resnick SM, Fan Y, Habes M, Wolk D, Shou H, Davatzikos C. Genomic loci influence patterns of structural covariance in the human brain. Proc Natl Acad Sci U S A 2023; 120:e2300842120. [PMID: 38127979 PMCID: PMC10756284 DOI: 10.1073/pnas.2300842120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science, Department of Neurology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ilya M. Nasrallah
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Ahmed Abdulkadir
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Theodore D. Satterthwaite
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Zhijian Yang
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Guray Erus
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Timothy Robert-Fitzgerald
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ashish Singh
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Aleix Boquet-Pujadas
- Biomedical Imaging Group, Department of Biomedical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Elizabeth Mamourian
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jimit Doshi
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Yuhan Cui
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Dhivya Srinivasan
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ioanna Skampardoni
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jiong Chen
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Gyujoon Hwang
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mark Bergman
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Yogasudha Veturi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Zhen Zhou
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Rene S. Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hugo G. Schnack
- Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX Ut, Netherlands
| | - Marcus V. Zanetti
- Institute of Psychiatry, Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo05508-070, Brazil
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Heinrich Heine University, Düsseldorf40204, Germany
| | - Geraldo F. Busatto
- Institute of Psychiatry, Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo05508-070, Brazil
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocio, School of Medicine, University of Sevilla,Sevilla41004, Spain
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stephen J. Wood
- Orygen and the Centre for Youth Mental Health, Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Chuanjun Zhuo
- Key Laboratory of Real Tine Tracing of Brain Circuits in Psychiatry and Neurology, Department of Psychiatry, Tianjin Medical University, Tianjin300070, China
| | - Russell T. Shinohara
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich 80539, Germany
| | - Daniel H. Wolf
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Department of Radiology, Indiana University School of Medicine, Indianapolis, IN46202-3082
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Paul M. Thompson
- Imaging Genetics Center, Department of Neurology, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Olivier Colliot
- Institut du Cerveau, Sorbonne Université, Paris75013, France
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medicine Greifswald, Greifswald17475, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medicine Greifswald, Greifswald17475, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore21224, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore21224, MD
| | - Daniel S. Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, MO63110
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA98195
| | - Thomas R. Austin
- Department of Epidemiology, University of Washington, Seattle, WA98195
| | - Lenore J. Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Washington, MD20817
| | - Mark Espeland
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Divisions of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC27101
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health, Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Jurgen Fripp
- Health and Biosecurity, Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD4029, Australia
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Institute, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - John C. Morris
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO63110
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - R. Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore21224, MD
| | - Yong Fan
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - David Wolk
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Neurology, University of Pennsylvania, Philadelphia, PA19104
| | - Haochang Shou
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Christos Davatzikos
- AI in Biomedical Imaging Laboratory, Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
47
|
Fang Y, Cui Y, Yin Z, Hou M, Guo P, Wang H, Liu N, Cai C, Wang M. Comprehensive systematic review and meta-analysis of the association between common genetic variants and autism spectrum disorder. Gene 2023; 887:147723. [PMID: 37598788 DOI: 10.1016/j.gene.2023.147723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is neurodevelopmental disorder characterized by stereotyped behavior and deficits in communication and social interactions. To date, numerous studies have investigated the associations between genetic variants and ASD risk. However, the results of these published studies lack a clear consensus. In the present study, we performed a systematic review on the association between genetic variants and ASD risk. Meanwhile, we conducted a meta-analysis on available data to identify the association between the single nucleotide polymorphisms (SNPs) of candidate genes and ASD risk. METHODS We systematically searched public databases including English and Chinese from their inception to August 1, 2022. Two independent reviewers extracted data and assessed study quality. Odds ratio and 95 % confidence interval were used as effect indexes to evaluate the association between the SNPs of candidate genes and the risk of ASD. Heterogeneity was explored through subgroup, sensitivity, and meta-regression analyses. Publication bias was assessed by using Egger's and Begg's tests for funnel plot asymmetry. In addition, TSA analysis were performed to confirm the study findings. RESULTS We summarized 84 SNPs of 32 candidate genes from 81 articles included in the study. Subsequently, we analyzed 16 SNPs of eight genes by calculating pooled ORs, and identified eight significant SNPs of contactin associated protein 2 (CNTNAP2), methylentetrahydrofolate reductase (MTHFR), oxytocin receptor (OXTR), and vitamin D receptor (VDR). Results showed that seven SNPs, including the CNTNAP2 rs2710102 (homozygote, heterozygote, dominant and allelic models) and rs7794745 (heterozygote and dominant models), MTHFR C677T (homozygote, heterozygote, dominant, recessive and allelic models) and A1298C (dominant and allelic models), OXTR rs2254298 (homozygote and recessive models), VDR rs731236 (homozygote, dominant, recessive and allelic models) and rs2228570 (homozygote and recessive models), were showed to be correlated with an increased ASD risk. By contrast, the VDR rs7975232 was correlated with a decreased the risk of ASD under the homozygote and allelic models. CONCLUSION Our study summarized research evidence on the genetic variants of ASD and provides a broad and detailed overview of ASD risk genes. The C677T and A1298C polymorphisms of MTHFR, rs2710102 and rs7794745 polymorphisms of CNTNAP2, rs2254298 polymorphism of OXTR, and rs731236 and rs2228570 polymorphisms of VDR were genetic risk factors. The rs7975232 polymorphism of VDR was a genetic protective factor for ASD. Our study provides novel clues to clinicians and healthcare decision-makers to predict ASD susceptibility.
Collapse
Affiliation(s)
- Yulian Fang
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mengzhu Hou
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Nan Liu
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute of Environment and Health, South China Hospital, Medical School, Shenzhen 518116, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Mingbang Wang
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong 518116, China; Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
48
|
Markiewicz R, Markiewicz-Gospodarek A, Borowski B, Trubalski M, Łoza B. Reelin Signaling and Synaptic Plasticity in Schizophrenia. Brain Sci 2023; 13:1704. [PMID: 38137152 PMCID: PMC10741648 DOI: 10.3390/brainsci13121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Recent research emphasizes the significance of studying the quality of life of schizophrenia patients, considering the complex nature of the illness. Identifying neuronal markers for early diagnosis and treatment is crucial. Reelin (RELN) stands out among these markers, with genetic studies highlighting its role in mental health. Suppression of RELN expression may contribute to cognitive deficits by limiting dendritic proliferation, affecting neurogenesis, and leading to improper neuronal circuits. Although the physiological function of reelin is not fully understood, it plays a vital role in hippocampal cell stratification and neuroglia formation. This analysis explores reelin's importance in the nervous system, shedding light on its impact on mental disorders such as schizophrenia, paving the way for innovative therapeutic approaches, and at the same time, raises the following conclusions: increased methylation levels of the RELN gene in patients with a diagnosis of schizophrenia results in a multiple decrease in the expression of reelin, and monitoring of this indicator, i.e., methylation levels, can be used to monitor the severity of symptoms in the course of schizophrenia.
Collapse
Affiliation(s)
- Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, 4 Staszica St., 20-081 Lublin, Poland;
| | | | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (B.B.); (M.T.)
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (B.B.); (M.T.)
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
49
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
50
|
Chen N, Liu S, Qin D, Guan D, Chen Y, Hou C, Zheng S, Wang L, Chen X, Chen W, Zhang L. Fate tracking reveals differences between Reelin + hepatic stellate cells (HSCs) and Desmin + HSCs in activation, migration and proliferation. Cell Prolif 2023; 56:e13500. [PMID: 37246473 PMCID: PMC10693182 DOI: 10.1111/cpr.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
The activation of hepatic stellate cells (HSCs) is the main cause of liver fibrogenesis in response to different etiologies of chronic liver injuries. HSCs are heterogeneous, but the lack of specific markers to distinguish different HSC subset hinders the development of targeted therapy for liver fibrosis. In this study, we aim to reveal new HSC subsets by cell fate tracking. We constructed a novel ReelinCreERT2 transgenic mouse model to track the fate of cells expressing Reelin and their progeny (Reelin+ cells). And we investigated the property of Reelin+ cells, such as differentiation and proliferation, in hepatotoxic (carbon tetrachloride; CCl4 ) or cholestatic (bile duct ligation; BDL) liver injury models by immunohistochemistry. Our study revealed that Reelin+ cells were a new HSC subset. In terms of activation, migration, and proliferation, Reelin+ HSCs displayed different properties from Desmin+ HSCs (total HSCs) in cholestatic liver injury model but shared similar properties to total HSCs in hepatotoxic liver injury model. Besides, we did not find evidence that Reelin+ HSCs transdifferentiated into hepatocytes or cholangiocytes through mesenchymal-epithelial transition (MET). In this study, our genetic cell fate tracking data reveal that ReelinCreERT2-labelled cells are a new HSC subset, which provides new insights into targeted therapy for liver fibrosis.
Collapse
Affiliation(s)
- Ning Chen
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Shenghui Liu
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Dian Guan
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Yaqing Chen
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Chenjiao Hou
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Songyun Zheng
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijingChina
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijingChina
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|