1
|
Hussein J, El-Bana MA, Mohamed RA, Omara E, Medhat D. Ceramide and DNA damage in liver fibrosis: Exploring the implications of eicosapentaenoic acid encapsulation in cellulose nanocrystals. Prostaglandins Other Lipid Mediat 2025; 178:106985. [PMID: 40118443 DOI: 10.1016/j.prostaglandins.2025.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Ceramide plays a crucial role in promoting liver fibrosis by inducing apoptosis and inflammation in hepatocytes. Oxidative stress accelerates fibrosis by elevating levels of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), an indicator for the damage of DNA. We aimed to evaluate the efficacy of eicosapentaenoic acid encapsulated in cellulose nanocrystals (EPA-CNC) in inhibiting ceramide accumulation and reducing urinary 8-OHdG levels, thus providing protective effects against the progression of liver fibrosis. In this study, twenty-four adult male Wistar albino rats were allocated into a negative control group, a group with liver fibrosis induced by diethylnitrosamine (DEN), and a group with DEN-induced liver fibrosis treated simultaneously with EPA-CNC. Key parameters assessed included liver paraoxonase-1 (PON-1), plasma interleukin-6 (IL-6), plasma ceramide, liver hydroxyproline (Hyp) content, and urinary 8-OHdG. DEN-induced liver fibrosis led to a significant increase in inflammatory markers, including ceramide, IL-6, and notably urinary 8-OHdG. This was accompanied by a decrease in PON-1 activity and increased collagen deposition in liver tissues (Hyp content). Histopathological analysis revealed a substantial loss of liver architecture, with inflammation and fibrosis surrounding necrotic areas. In contrast, treatment with encapsulated EPA-CNC resulted in a significant decrease in plasma ceramide, IL-6, liver Hyp content, and urinary 8-OHdG levels, along with an improvement in liver PON-1 activity. Histopathological findings showed nearly normal liver architecture. In conclusion, increased levels of ceramide and urinary 8-OHdG could serve as indicators of ongoing hepatocellular damage due to their positive correlations with fibrotic markers. Encapsulated EPA-CNC may offer a promising approach for halting oxidative stress and inflammation in liver fibrosis.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt
| | - Mona A El-Bana
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt
| | - Rehab A Mohamed
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt
| | - Enayat Omara
- Pathology Department, National Research Centre, Giza 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt.
| |
Collapse
|
2
|
Wang HN, Wang Y, Zhang SY, Bai L. Emerging roles of the acid sphingomyelinase/ceramide pathway in metabolic and cardiovascular diseases: Mechanistic insights and therapeutic implications. World J Cardiol 2025; 17:102308. [DOI: 10.4330/wjc.v17.i2.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic diseases have emerged as a leading cause of mortality from non-communicable diseases, posing a significant global public health challenge. Although the association between ceramides (Cers) and metabolic diseases is well-established, the role of the acid sphingomyelinase (ASMase)/Cer pathway in these diseases remains underexplored. This review synthesizes recent research on the biological functions, regulatory mechanisms, and targeted therapies related to the ASMase/Cer pathway in metabolic conditions, including obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. The effects of the ASMase/Cer pathway on metabolic disease-related indicators, such as glycolipid metabolism, insulin resistance, inflammation, and mitochondrial homeostasis are elucidated. Moreover, this article discusses the therapeutic strategies using ASMase/Cer inhibitors for inverse prevention and treatment of these metabolic diseases in light of the possible efficacy of blockade of the ASMase/Cer pathway in arresting the progression of metabolic diseases. These insights offered herein should provide insight into the contribution of the ASMase/Cer pathway to metabolic diseases and offer tools to develop therapeutic interventions for such pathologies and their severe complications.
Collapse
Affiliation(s)
- Hong-Ni Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Ye Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Si-Yao Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
3
|
Ni Y, Chen X, Jia Y, Chen L, Zhou M. Lipidomic profiling of serum and liver tissue reveals hepatoprotective mechanism of taxifolin in rats with CCl 4-induced subacute hepatic injury based on LC-MS/MS. J Nutr Biochem 2025; 136:109788. [PMID: 39454836 DOI: 10.1016/j.jnutbio.2024.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Currently, the hepatoprotective activity of taxifolin, a flavonoid isolated from Pseudotsuga taxifolia, has been reported in many animal models. However, whether the protective effect of taxifolin on the liver is related to its effect on lipidomics is unclear. Based on the significant therapeutic effect of taxifolin on CCl4 induced subacute hepatic injury, we observed the intervention of taxifolin by lipidomics. The results demonstrate that taxifolin can effectively reverse the damage caused by CCl4, which including hepatocyte vacuolization and necrosis. Lipomic profiling based on liquid chromatography-mass spectrometry showed that taxifolin was able to restore lipidomic changes caused by CCl4, including the levels of lysophosphatidylserine (LPS), phosphatidylcholine (PC), coenzyme (Co), phosphatidylglyceride (PG), phosphatidylserine (PS), dimethylphosphatidylethanolamine (dMePE), ceramide (Cer), sphingosine (So), triglycerides (TG), and monogalactosyl diacylglycerol (MGDG) in the rat liver, and phosphatidylcarbinol (PMe) and phosphatidylethanolamine (PE), plant sphingosine (phSM), glucose ceramide (CerG1), TG, and diglycerides (DG) in serum. Spearman's correlation analysis showed that CerG1, phSM, PE, and PMe in serum, and Cer, dMePE, PG, PS, So, TG, and MGDG in liver were positively correlated with serum levels of aspartate transaminase, alanine transaminase, and liver index; while TG, DG in serum, and Co, LPS, PC in liver were negatively correlated with the parameters. In total, 43 and 34 lipid molecules were altered by taxifolin treatment in the liver and serum, respectively, mainly including glycerophosphoglycerols, glycerophosphocholines, glycerophosphoethanolamines, and linoleic acids and derivatives. Our findings help to provide novel insights into the mechanism of the hepatoprotective effect of taxifolin from a lipidomics approach.
Collapse
Affiliation(s)
- Yiming Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinghua Chen
- Jinshan Hospital Afflicted to Fudan University, Shanghai, China
| | - Yiqun Jia
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Ranjit A, Lee CB, Tenora L, Mettu VS, Pal A, Alt J, Slusher BS, Rais R. Pharmacokinetic Evaluation of Neutral Sphinghomyelinase2 (nSMase2) Inhibitor Prodrugs in Mice and Dogs. Pharmaceutics 2024; 17:20. [PMID: 39861669 PMCID: PMC11768932 DOI: 10.3390/pharmaceutics17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC50 = 30 nM). Although promising, DPTIP exhibits poor pharmacokinetics (PKs) with a low oral bioavailability (%F < 5), and a short half-life (t1/2 ≤ 0.5 h). To address these limitations, we previously developed DPTIP prodrugs by masking its phenolic hydroxyl group, demonstrating improved plasma exposure in mice. Recognizing that species-specific metabolic differences can influence prodrug PK, we expanded our studies to evaluate selected prodrugs in both mice and dogs. Methods: The scaleup of selected prodrugs was completed and two additional valine- ester based prodrugs were synthesized. Mice were dosed prodrugs via peroral route (10 mg/kg equivalent). For dog studies DPTIP was dosed via intravenous (1 mg/kg) or peroral route (2 mg/kg) and prodrugs were given peroral at a dose 2 mg/kg DPTIP equivalent. Plasma samples were collected at predetermined points and analyzed using developed LC/MS-MS methods. Results: In mice, several of the tested prodrugs showed similar or improved plasma exposures compared to DPTIP. However, in dog studies, the double valine ester prodrug 9, showed significant improvement with an almost two-fold increase in DPTIP plasma exposure (AUC0-t = 1352 vs. 701 pmol·h/mL), enhancing oral bioavailability from 8.9% to 17.3%. Conclusions: These findings identify prodrug 9 as a promising candidate for further evaluation and underscore the critical role of species-specific differences in prodrug PKs.
Collapse
Affiliation(s)
- Arina Ranjit
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chae Bin Lee
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lukáš Tenora
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Vijaya Saradhi Mettu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Rentschler S, Doss S, Kaiser L, Weinschrott H, Kohl M, Deigner HP, Sauer M. Metabolic Biomarkers of Liver Failure in Cell Models and Patient Sera: Toward Liver Damage Evaluation In Vitro. Int J Mol Sci 2024; 25:13739. [PMID: 39769500 PMCID: PMC11677895 DOI: 10.3390/ijms252413739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recent research has concentrated on the development of suitable in vitro cell models for the early identification of hepatotoxicity during drug development in order to reduce the number of animal models and to obtain a better predictability for hepatotoxic reactions in humans. The aim of the presented study was to identify translational biomarkers for acute liver injury in human patients that can serve as biomarkers for hepatocellular injury in vivo and in vitro in simple cell models. Therefore, 188 different metabolites from patients with acute-on-chronic liver failure before and after liver transplantation were analyzed with mass spectrometry. The identified potential metabolic biomarker set, including acylcarnitines, phosphatidylcholines and sphingomyelins, was used to screen primary and permanent hepatocyte culture models for their ability to model hepatotoxic responses caused by different drugs with known and unknown hepatotoxic potential. The results obtained suggest that simple in vitro cell models have the capability to display metabolic responses in biomarkers for liver cell damage in course of the treatment with different drugs and therefore can serve as a basis for in vitro models for metabolic analysis in drug toxicity testing. The identified metabolites should further be evaluated for their potential to serve as a metabolic biomarker set indicating hepatocellular injury in vitro as well as in vivo.
Collapse
Affiliation(s)
- Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Sandra Doss
- Fraunhofer Institute IZI (Leipzig), Department Rostock, Schillingallee 68, 18057 Rostock, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Helga Weinschrott
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Martin Sauer
- Fraunhofer Institute IZI (Leipzig), Department Rostock, Schillingallee 68, 18057 Rostock, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Schillingallee 35, 18057 Rostock, Germany
- Center for Anesthesiology and Intensive Care Medicine, Hospital of Magdeburg, Birkenallee 34, 39130 Magdeburg, Germany
| |
Collapse
|
6
|
Li J, Wu B, Fan G, Huang J, Li Z, Cao F. Lc-ms-based untargeted metabolomics reveals potential mechanisms of histologic chronic inflammation promoting prostate hyperplasia. PLoS One 2024; 19:e0314599. [PMID: 39715183 DOI: 10.1371/journal.pone.0314599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Chronic prostatitis may be a risk factor for developing proliferative changes in the prostate, although the underlying mechanisms are not entirely comprehended. MATERIALS AND METHODS Fifty individual prostate tissues were examined in this study, consisting of 25 patients diagnosed with prostatic hyperplasia combined with histologic chronic inflammation and 25 patients diagnosed with prostatic hyperplasia alone. We employed UPLC-Q-TOF-MS-based untargeted metabolomics using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to identify differential metabolites that can reveal the mechanisms that underlie the promotion of prostate hyperplasia by histologic chronic inflammation. Selected differential endogenous metabolites were analyzed using bioinformatics and subjected to metabolic pathway studies. RESULTS Nineteen differential metabolites, consisting of nine up-regulated and ten down-regulated, were identified between the two groups of patients. These groups included individuals with combined histologic chronic inflammation and those with prostatic hyperplasia alone. Glycerolipids, glycerophospholipids, and sphingolipids were primarily the components present. Metabolic pathway enrichment was conducted on the identified differentially expressed metabolites. Topological pathway analysis revealed the differential metabolites' predominant involvement in sphingolipid, ether lipid, and glycerophospholipid metabolism. The metabolites involved in sphingolipid metabolism were Sphingosine, Cer (d18:1/24:1), and Phytosphingosine. The metabolites involved in ether lipid metabolism were Glycerophosphocholine and LysoPC (O-18:0/0:0). The metabolites involved in glycerophospholipid metabolism were LysoPC (P-18:0/0:0) and Glycerophosphocholine. with Impact > 0. 1 and FDR < 0. 05, the most important metabolic pathway was sphingolipid metabolism. CONCLUSIONS In conclusion, our findings suggest that patients with prostate hyperplasia and combined histologic chronic inflammation possess distinctive metabolic profiles. These differential metabolites appear to play a significant role in the pathogenesis of histologic chronic inflammation-induced prostate hyperplasia, primarily through the regulation of sphingolipids and glycerophospholipids metabolic pathways. The mechanism by which histologic chronic inflammation promotes prostate hyperplasia was elucidated through the analysis of small molecule metabolites. These findings support the notion that chronic prostatitis may contribute to an increased risk of prostate hyperplasia.
Collapse
Affiliation(s)
- Jiale Li
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Beiwen Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Guorui Fan
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Jie Huang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Fenghong Cao
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
Wang S, Jiang H, Hu M, Gong Y, Zhou H. Evolutionary conservation analysis of human sphingomyelin metabolism pathway genes. Heliyon 2024; 10:e40810. [PMID: 39698091 PMCID: PMC11652929 DOI: 10.1016/j.heliyon.2024.e40810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Sphingomyelin is an important member of the sphingolipid family and was first reported more than a century ago. It has been demonstrated that sphingomyelin plays a crucial role in compositing cell membranes and signaling pathways. Despite extensive functional studies on the sphingolipid metabolism pathway genes, one intriguing question remains: how does the emergence of these genes during evolution correlate with the acquisition of new functions in different species? By employing an evolutionary conservation analysis, the sequence of occurrence of biological processes during evolutionary history can be elucidated. Here we summarize and analyze the conservation status of the genes involved in sphingomyelin metabolism.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Huan Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Moran Hu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
8
|
Park WJ, Oh E, Kim Y. Protaetia brevitarsis larvae extract protects against lipopolysaccharides-induced ferroptosis and inflammation by inhibiting acid sphingomyelinase. Nutr Res Pract 2024; 18:602-616. [PMID: 39398879 PMCID: PMC11464277 DOI: 10.4162/nrp.2024.18.5.602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Inflammation and ferroptosis are implicated in various diseases and lipopolysaccharides (LPS) have been linked with these disorders. Recently, many edible insects, such as Gryllus bimaculatus, Protaetia brevitarsis larvae (PB) and Tenebrio molitor larvae, have been recommended as alternative foods because they contain lots of nutritional sources. In this study, we explored the potential of PB extract in preventing LPS-induced inflammation and ferroptosis in Hep3B cells. MATERIALS/METHODS PB powder was extracted using 70% ethanol and applied to Hep3B cells. Co-treatment with LPS was conducted to induce ferroptosis and inflammation. The anti-inflammatory and anti-ferroptosis mechanisms of the PB extract were confirmed using Western blot, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction analysis. RESULTS PB extract effectively prevented LPS-induced cell death and restored LPS-induced inflammatory cytokine production, NF-κB signaling, endoplasmic reticulum (ER) stress and ferroptosis. Interestingly, PB extract reduced LPS-induced ceramide increase and acid sphingomyelinase (ASMase) expression. The use of the ASMase inhibitor, desipramine, also demonstrated a reduction in these pathways, highlighting the pivotal role of ASMase in inflammation and ferroptosis. Treatment with each inhibitor revealed that ferroptosis causes ER stress and that NF-κB and MAP kinase pathways are involved in inflammation. CONCLUSION PB emerges as a potential functional food with inhibitory effects on LPS-induced inflammation and ferroptosis, making it a promising candidate for nutritional interventions.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Eunyoung Oh
- Interdisciplinary Program in Sustainable Living System, Graduate School, Korea University, Seoul 02841, Korea
- Department of Human Ecology, Graduate School, Korea University, Seoul 02841, Korea
| | - Yookyung Kim
- Department of Human Ecology, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
10
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
11
|
Clark AM, Yu D, Neiswanger G, Zhu D, Zou J, Maschek JA, Burgoyne T, Yang J. Disruption of CFAP418 interaction with lipids causes widespread abnormal membrane-associated cellular processes in retinal degenerations. JCI Insight 2024; 9:e162621. [PMID: 37971880 PMCID: PMC10906455 DOI: 10.1172/jci.insight.162621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in the retina. We show that CFAP418 protein binds to the lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein associations, which subsequently causes mitochondrial defects and membrane-remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations which is associated with other known causative genes of these diseases.
Collapse
Affiliation(s)
- Anna M. Clark
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Grace Neiswanger
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Daniel Zhu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - J. Alan Maschek
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
- Department of Otolaryngology, and
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
13
|
Liu Y, Zhao Y, Liu Q, Li B, Daniel PV, Chen B, Wu Z. Effects of apolipoprotein H downregulation on lipid metabolism, fatty liver disease, and gut microbiota dysbiosis. J Lipid Res 2024; 65:100483. [PMID: 38101620 PMCID: PMC10818206 DOI: 10.1016/j.jlr.2023.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Apolipoprotein H (APOH) downregulation can cause hepatic steatosis and gut microbiota dysbiosis. However, the mechanism by which APOH-regulated lipid metabolism contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) remains undetermined. Herein, we aim to explore the regulatory effect of APOH, mediated through various pathways, on metabolic homeostasis and MASLD pathogenesis. We analyzed serum marker levels, liver histopathology, and cholesterol metabolism-related gene expression in global ApoH-/- C57BL/6 male mice. We used RNA sequencing and metabolomic techniques to investigate the association between liver metabolism and bacterial composition. Fifty-two differentially expressed genes were identified between ApoH-/- and WT mice. The mRNA levels of de novo lipogenesis genes were highly upregulated in ApoH-/- mice than in WT mice. Fatty acid, glycerophospholipid, sterol lipid, and triglyceride levels were elevated, while hyodeoxycholic acid levels were significantly reduced in the liver tissues of ApoH-/- mice than in those of WT mice. Microbial beta diversity was lower in ApoH-/- mice than in WT mice, and gut microbiota metabolic functions were activated in ApoH-/- mice. Moreover, ApoH transcripts were downregulated in patients with MASLD, and APOH-related differential genes were enriched in lipid metabolism. Open-source transcript-level data from human metabolic dysfunction-associated steatohepatitis livers reinforced a significant association between metabolic dysfunction-associated steatohepatitis and APOH downregulation. In conclusion, our studies demonstrated that APOH downregulation aggravates fatty liver and induces gut microbiota dysbiosis by dysregulating bile acids. Our findings offer a novel perspective on APOH-mediated lipid metabolic dysbiosis and provide a valuable framework for deciphering the role of APOH in fatty liver disease.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China.
| | - Yiqun Zhao
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China
| | - Qiusong Liu
- Department of Tumor and Vascular Interventional Radiology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - P Vineeth Daniel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Binbin Chen
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China
| | - Zeyi Wu
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
14
|
Yu B, Hu M, Jiang W, Ma Y, Ye J, Wu Q, Guo W, Sun Y, Zhou M, Xu Y, Wu Z, Wang Y, Lam SM, Shui G, Gu J, Li JZ, Fu Z, Gong Y, Zhou H. Ceramide d18:1/24:1 as a potential biomarker to differentiate obesity subtypes with unfavorable health outcomes. Lipids Health Dis 2023; 22:166. [PMID: 37794463 PMCID: PMC10548646 DOI: 10.1186/s12944-023-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The criteria for metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) remain controversial. This research aimed to identify a potential biomarker to differentiate the subtypes of obesity. METHODS The study conducted a lipidomic evaluation of ceramide in the serum of 77 Chinese adults who had undergone hyperinsulinemic-euglycemic clamps. These adults were divided into three groups according to the clinical data: normal weight control group (N = 21), MHO (N = 20), and MUO (N = 36). RESULTS The serum Cer d18:1/24:1 level in the MHO group was lower than that in the MUO group. As the Cer d18:1/24:1 level increased, insulin sensitivity decreased, and the unfavorable parameters increased in parallel. Multivariate logistic regression analysis revealed that serum Cer d18:1/24:1 levels were independently correlated with MUO in obesity. Individuals with higher levels of Cer d18:1/24:1 also had an elevated risk of cardiovascular disease. Most ceramide subtype levels increased in obesity compared to normal-weight individuals, but the levels of serum Cer d18:0/18:0 and Cer d18:1/16:0 decreased in obesity. CONCLUSIONS The relationships between ceramide subtypes and metabolic profiles might be heterogeneous in populations with different body weights. Cer d18:1/24:1 could be a biomarker that can be used to differentiate MUO from MHO, and to better predict who will develop unfavorable health outcomes among obese individuals. TRIAL REGISTRATION The First Affiliated Hospital of Nanjing Medical University's Institutional Review Board authorized this study protocol, and all participants provided written informed consent (2014-SR-003) prior to study entry.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Moran Hu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzi Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yizhe Ma
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingya Ye
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinyi Wu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Guo
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoulu Wu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Gu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - John Zhong Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenzhen Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yingyun Gong
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
17
|
Mir IH, Thirunavukkarasu C. The relevance of acid sphingomyelinase as a potential target for therapeutic intervention in hepatic disorders: current scenario and anticipated trends. Arch Toxicol 2023; 97:2069-2087. [PMID: 37248308 PMCID: PMC10226719 DOI: 10.1007/s00204-023-03529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Acid sphingomyelinase (ASMase) serves as one of the most remarkable enzymes in sphingolipid biology. ASMase facilitates the hydrolysis of sphingomyelin, yielding ceramide and phosphorylcholine via the phospholipase C signal transduction pathway. Owing to its prominent intervention in apoptosis, ASMase, and its product ceramide is now at the bleeding edge of lipid research due to the coalesced efforts of several research institutions over the past 40 years. ASMase-catalyzed ceramide synthesis profoundly alters the physiological properties of membrane structure in response to a broad range of stimulations, orchestrating signaling cascades for endoplasmic reticulum stress, autophagy, and lysosomal membrane permeabilization, which influences the development of hepatic disorders, such as steatohepatitis, hepatic fibrosis, drug-induced liver injury, and hepatocellular carcinoma. As a result, the potential to modulate the ASMase action with appropriate pharmaceutical antagonists has sparked a lot of curiosity. This article emphasizes the fundamental mechanisms of the systems that govern ASMase aberrations in various hepatic pathologies. Furthermore, we present an insight into the potential therapeutic agents used to mitigate ASMase irregularities and the paramountcy of such inhibitors in drug repurposing.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| | | |
Collapse
|
18
|
Lallement J, Raho I, Merlen G, Rainteau D, Croyal M, Schiffano M, Kassis N, Doignon I, Soty M, Lachkar F, Krempf M, Van Hul M, Cani PD, Foufelle F, Amouyal C, Le Stunff H, Magnan C, Tordjmann T, Cruciani-Guglielmacci C. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159333. [PMID: 37224999 DOI: 10.1016/j.bbalip.2023.159333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.
Collapse
Affiliation(s)
- Justine Lallement
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Ilyès Raho
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Biochemistry Department, Paris, France
| | - Mikael Croyal
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Melody Schiffano
- Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Maud Soty
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | | | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | - Chloé Amouyal
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris Saclay, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | |
Collapse
|
19
|
Gamal M, Tallima H, Azzazy HME, Abdelnaser A. Impact of HepG2 Cells Glutathione Depletion on Neutral Sphingomyelinases mRNA Levels and Activity. Curr Issues Mol Biol 2023; 45:5005-5017. [PMID: 37367067 DOI: 10.3390/cimb45060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 06/28/2023] Open
Abstract
Liver cancer is a prevalent form of cancer worldwide. While research has shown that increasing sphingomyelin (SM) hydrolysis by activating the cell surface membrane-associated neutral sphingomyelinase 2 (nSMase2) can control cell proliferation and apoptosis, the role of total glutathione depletion in inducing tumor cell apoptosis via nSMase2 activation is still under investigation. Conversely, glutathione-mediated inhibition of reactive oxygen species (ROS) accumulation is necessary for the enzymatic activity of nSMase1 and nSMase3, increased ceramide levels, and cell apoptosis. This study evaluated the effects of depleting total glutathione in HepG2 cells using buthionine sulfoximine (BSO). The study assessed nSMases RNA levels and activities, intracellular ceramide levels, and cell proliferation using RT-qPCR, Amplex red neutral sphingomyelinase fluorescence assay, and colorimetric assays, respectively. The results indicated a lack of nSMase2 mRNA expression in treated and untreated HepG2 cells. Depletion of total glutathione resulted in a significant increase in mRNA levels but a dramatic reduction in the enzymatic activity of nSMase1 and nSMase3, a rise in ROS levels, a decrease in intracellular levels of ceramide, and an increase in cell proliferation. These findings suggest that total glutathione depletion may exacerbate liver cancer (HCC) and not support using total glutathione-depleting agents in HCC management. It is important to note that these results are limited to HepG2 cells, and further studies are necessary to determine if these effects will also occur in other cell lines. Additional research is necessary to explore the role of total glutathione depletion in inducing tumor cell apoptosis.
Collapse
Affiliation(s)
- Marie Gamal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
20
|
Gaudioso Á, Moreno-Huguet P, Casas J, Schuchman EH, Ledesma MD. Modulation of Dietary Choline Uptake in a Mouse Model of Acid Sphingomyelinase Deficiency. Int J Mol Sci 2023; 24:ijms24119756. [PMID: 37298714 DOI: 10.3390/ijms24119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder caused by mutations in the gene-encoding acid sphingomyelinase (ASM). ASMD impacts peripheral organs in all patients, including the liver and spleen. The infantile and chronic neurovisceral forms of the disease also lead to neuroinflammation and neurodegeneration for which there is no effective treatment. Cellular accumulation of sphingomyelin (SM) is a pathological hallmark in all tissues. SM is the only sphingolipid comprised of a phosphocholine group linked to ceramide. Choline is an essential nutrient that must be obtained from the diet and its deficiency promotes fatty liver disease in a process dependent on ASM activity. We thus hypothesized that choline deprivation could reduce SM production and have beneficial effects in ASMD. Using acid sphingomyelinase knock-out (ASMko) mice, which mimic neurovisceral ASMD, we have assessed the safety of a choline-free diet and its effects on liver and brain pathological features such as altered sphingolipid and glycerophospholipid composition, inflammation and neurodegeneration. We found that the choline-free diet was safe in our experimental conditions and reduced activation of macrophages and microglia in the liver and brain, respectively. However, there was no significant impact on sphingolipid levels and neurodegeneration was not prevented, arguing against the potential of this nutritional strategy to assist in the management of neurovisceral ASMD patients.
Collapse
Affiliation(s)
- Ángel Gaudioso
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Wang Y, Sun Z, Zang G, Zhang L, Wang Z. Role of ceramides in diabetic foot ulcers (Review). Int J Mol Med 2023; 51:26. [PMID: 36799149 PMCID: PMC9943538 DOI: 10.3892/ijmm.2023.5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder, which if not managed properly, can lead to serious health problems over time and impose significant financial burden on the patient, their family and society as a whole. The study of this disease and the underlying biological mechanism is gaining momentum. Multiple pieces of conclusive evidence show that ceramides are involved in the occurrence and development of diabetes. The present review focuses on the function of ceramides, a type of sphingolipid signaling molecule, to provide a brief description of ceramides and their metabolism, discuss the significant roles of ceramides in the healthy skin barrier, and speculate on the potential involvement of ceramides in the pathogenesis and development of diabetic foot ulcers (DFUs). Understanding these aspects of this disease more thoroughly is crucial to establish how ceramides contribute to the etiology of diabetic foot infections and identify possible therapeutic targets for the treatment of DFUs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
22
|
Wang Z, Wang X, Wang Y, Liu Y, Wang X, Song Y, Xu J, Xue C. Lipidomics approach in alcoholic liver disease mice with sphingolipid metabolism disorder: Alleviation using sea cucumber phospholipids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Lind L, Ahmad S, Elmståhl S, Fall T. The metabolic profile of waist to hip ratio-A multi-cohort study. PLoS One 2023; 18:e0282433. [PMID: 36848351 PMCID: PMC9970070 DOI: 10.1371/journal.pone.0282433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The genetic background of general obesity and fat distribution is different, pointing to separate underlying physiology. Here, we searched for metabolites and lipoprotein particles associated with fat distribution, measured as waist/hip ratio adjusted for fat mass (WHRadjfatmass), and general adiposity measured as percentage fat mass. METHOD The sex-stratified association of 791 metabolites detected by liquid chromatography-mass spectrometry (LC-MS) and 91 lipoprotein particles measured by nuclear magnetic spectroscopy (NMR) with WHRadjfatmass and fat mass were assessed using three population-based cohorts: EpiHealth (n = 2350) as discovery cohort, with PIVUS (n = 603) and POEM (n = 502) as replication cohorts. RESULTS Of the 193 LC-MS-metabolites being associated with WHRadjfatmass in EpiHealth (false discovery rate (FDR) <5%), 52 were replicated in a meta-analysis of PIVUS and POEM. Nine metabolites, including ceramides, sphingomyelins or glycerophosphatidylcholines, were inversely associated with WHRadjfatmass in both sexes. Two of the sphingomyelins (d18:2/24:1, d18:1/24:2 and d18:2/24:2) were not associated with fat mass (p>0.50). Out of 91, 82 lipoprotein particles were associated with WHRadjfatmass in EpiHealth and 42 were replicated. Fourteen of those were associated in both sexes and belonged to very-large or large HDL particles, all being inversely associated with both WHRadjfatmass and fat mass. CONCLUSION Two sphingomyelins were inversely linked to body fat distribution in both men and women without being associated with fat mass, while very-large and large HDL particles were inversely associated with both fat distribution and fat mass. If these metabolites represent a link between an impaired fat distribution and cardiometabolic diseases remains to be established.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Shafqat Ahmad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Tove Fall
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Korsmo HW, Kadam I, Reaz A, Bretter R, Saxena A, Johnson CH, Caviglia JM, Jiang X. Prenatal Choline Supplement in a Maternal Obesity Model Modulates Offspring Hepatic Lipidomes. Nutrients 2023; 15:965. [PMID: 36839327 PMCID: PMC9963284 DOI: 10.3390/nu15040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring. Our results demonstrate that maternal HF+CS increased relative abundance of a subclass of phospholipids called plasmalogens in the offspring liver at both embryonic day 17.5 and after 6 weeks of postnatal HF feeding. Consistent with the role of plasmalogens as sacrificial antioxidants, HF+CS embryos were presumably protected with lower oxidative stress. After postnatal HF feeding, the maternal HF+CS male offspring also had higher relative abundance of both sphingomyelin d42:2 and its side chain, nervonic acid (FA 24:1). Nervonic acid is exclusively metabolized in the peroxisome and is tied to plasmalogen synthesis. Altogether, this study demonstrates that under the influence of obesogenic diet, maternal CS modulates the fetal and postnatal hepatic lipidome of male offspring, favoring plasmalogen synthesis, an antioxidative response that may protect the mouse liver from damages due to HF feeding.
Collapse
Affiliation(s)
- Hunter W. Korsmo
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Isma’il Kadam
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Aziza Reaz
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Rachel Bretter
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College of the City University of New York, New York, NY 11210, USA
| | | | - Jorge Matias Caviglia
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
25
|
Tallima H, El Ridi R. Mechanisms of Arachidonic Acid In Vitro Tumoricidal Impact. Molecules 2023; 28:molecules28041727. [PMID: 36838715 PMCID: PMC9966399 DOI: 10.3390/molecules28041727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
To promote the potential of arachidonic acid (ARA) for cancer prevention and management, experiments were implemented to disclose the mechanisms of its tumoricidal action. Hepatocellular, lung, and breast carcinoma and normal hepatocytes cell lines were exposed to 0 or 50 μM ARA for 30 min and then assessed for proliferative capacity, surface membrane-associated sphingomyelin (SM) content, neutral sphingomyelinase (nSMase) activity, beta 2 microglobulin (β2 m) expression, and ceramide (Cer) levels. Reactive oxygen species (ROS) content and caspase 3/7 activity were evaluated. Exposure to ARA for 30 min led to impairment of the tumor cells' proliferative capacity and revealed that the different cell lines display remarkably similar surface membrane SM content but diverse responses to ARA treatment. Arachidonic acid tumoricidal impact was shown to be associated with nSMase activation, exposure of cell surface membrane β2 m to antibody binding, and hydrolysis of SM to Cer, which accumulated on the cell surface and in the cytosol. The ARA and Cer-mediated inhibition of tumor cell viability appeared to be independent of ROS generation or caspase 3/7 activation. The data were compared and contrasted to findings reported in the literature on ARA tumoricidal mechanisms.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
26
|
Lin Z, Li H, He C, Yang M, Chen H, Yang X, Zhuo J, Shen W, Hu Z, Pan L, Wei X, Lu D, Zheng S, Xu X. Metabolomic biomarkers for the diagnosis and post-transplant outcomes of AFP negative hepatocellular carcinoma. Front Oncol 2023; 13:1072775. [PMID: 36845695 PMCID: PMC9947281 DOI: 10.3389/fonc.2023.1072775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Background Early diagnosis for α-fetoprotein (AFP) negative hepatocellular carcinoma (HCC) remains a critical problem. Metabolomics is prevalently involved in the identification of novel biomarkers. This study aims to identify new and effective markers for AFP negative HCC. Methods In total, 147 patients undergoing liver transplantation were enrolled from our hospital, including liver cirrhosis patients (LC, n=25), AFP negative HCC patients (NEG, n=44) and HCC patients with AFP over 20 ng/mL (POS, n=78). 52 Healthy volunteers (HC) were also recruited in this study. Metabolomic profiling was performed on the plasma of those patients and healthy volunteers to select candidate metabolomic biomarkers. A novel diagnostic model for AFP negative HCC was established based on Random forest analysis, and prognostic biomarkers were also identified. Results 15 differential metabolites were identified being able to distinguish NEG group from both LC and HC group. Random forest analysis and subsequent Logistic regression analysis showed that PC(16:0/16:0), PC(18:2/18:2) and SM(d18:1/18:1) are independent risk factor for AFP negative HCC. A three-marker model of Metabolites-Score was established for the diagnosis of AFP negative HCC patients with an area under the time-dependent receiver operating characteristic curve (AUROC) of 0.913, and a nomogram was then established as well. When the cut-off value of the score was set at 1.2895, the sensitivity and specificity for the model were 0.727 and 0.92, respectively. This model was also applicable to distinguish HCC from cirrhosis. Notably, the Metabolites-Score was not correlated to tumor or body nutrition parameters, but difference of the score was statistically significant between different neutrophil-lymphocyte ratio (NLR) groups (≤5 vs. >5, P=0.012). Moreover, MG(18:2/0:0/0:0) was the only prognostic biomarker among 15 metabolites, which is significantly associated with tumor-free survival of AFP negative HCC patients (HR=1.160, 95%CI 1.012-1.330, P=0.033). Conclusion The established three-marker model and nomogram based on metabolomic profiling can be potential non-invasive tool for the diagnosis of AFP negative HCC. The level of MG(18:2/0:0/0:0) exhibits good prognosis prediction performance for AFP negative HCC.
Collapse
Affiliation(s)
- Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Huigang Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Chiyu He
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Hao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Wei Shen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhihang Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China,Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Xiao Xu,
| |
Collapse
|
27
|
Alarcón-Vila C, Insausti-Urkia N, Torres S, Segalés-Rovira P, Conde de la Rosa L, Nuñez S, Fucho R, Fernández-Checa JC, García-Ruiz C. Dietary and genetic disruption of hepatic methionine metabolism induce acid sphingomyelinase to promote steatohepatitis. Redox Biol 2023; 59:102596. [PMID: 36610223 PMCID: PMC9827379 DOI: 10.1016/j.redox.2022.102596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Alcoholic (ASH) and nonalcoholic. (NASH).steatohepatitis are advanced.stages.of.fatty.liver.disease.Methionine adenosyltransferase 1A (MAT1A) plays a key role in hepatic methionine metabolism and germline Mat1a deletion in mice promotes NASH. Acid sphingomyelinase (ASMase) triggers hepatocellular apoptosis and liver fibrosis and has been shown to downregulate MAT1A expression in the context of fulminant liver failure. Given the role of ASMase in steatohepatitis development, we investigated the status of ASMase in Mat1a-/- mice and the regulation of ASMase by SAM/SAH. Consistent with its role in NASH, Mat1a-/- mice fed a choline-deficient (CD) diet exhibited macrosteatosis, inflammation, fibrosis and liver injury as well as reduced total and mitochondrial GSH levels. Our data uncovered an increased basal expression and activity of ASMase but not neutral SMase in Mat1a-/- mice, which further increased upon CD feeding. Interestingly, adenovirus-mediated shRNA expression targeting ASMase reduced ASMase activity and protected Mat1a-/- mice against CD diet-induced NASH. Similar results were observed in CD fed Mat1a-/- mice by pharmacological inhibition of ASMase with amitriptyline. Moreover, Mat1a/ASMase double knockout mice were resistant to CD-induced NASH. ASMase knockdown protected wild type mice against NASH induced by feeding a diet deficient in methionine and choline. Furthermore, Mat1a-/- mice developed acute-on-chronic ASH and this outcome was ameliorated by amitriptyline treatment. In vitro data in primary mouse hepatocytes revealed that decreased SAM/SAH ratio increased ASMase mRNA level and activity. MAT1A and ASMase mRNA levels exhibited an inverse correlation in liver samples from patients with ASH and NASH. Thus, disruption of methionine metabolism sensitizes to steatohepatitis by ASMase activation via decreased SAM/SAH. These findings imply that MAT1A deletion and ASMase activation engage in a self-sustained loop of relevance for steatohepatitis.
Collapse
Affiliation(s)
- Cristina Alarcón-Vila
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Naroa Insausti-Urkia
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Sandra Torres
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Paula Segalés-Rovira
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Laura Conde de la Rosa
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Susana Nuñez
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Raquel Fucho
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Jose C Fernández-Checa
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain; University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA.
| | - Carmen García-Ruiz
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain; University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Xiao X, Kennelly JP, Ferrari A, Clifford BL, Whang E, Gao Y, Qian K, Sandhu J, Jarrett KE, Brearley-Sholto MC, Nguyen A, Nagari RT, Lee MS, Zhang S, Weston TA, Young SG, Bensinger SJ, Villanueva CJ, de Aguiar Vallim TQ, Tontonoz P. Hepatic nonvesicular cholesterol transport is critical for systemic lipid homeostasis. Nat Metab 2023; 5:165-181. [PMID: 36646756 PMCID: PMC9995220 DOI: 10.1038/s42255-022-00722-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/10/2022] [Indexed: 01/18/2023]
Abstract
In cell models, changes in the 'accessible' pool of plasma membrane (PM) cholesterol are linked with the regulation of endoplasmic reticulum sterol synthesis and metabolism by the Aster family of nonvesicular transporters; however, the relevance of such nonvesicular transport mechanisms for lipid homeostasis in vivo has not been defined. Here we reveal two physiological contexts that generate accessible PM cholesterol and engage the Aster pathway in the liver: fasting and reverse cholesterol transport. During fasting, adipose-tissue-derived fatty acids activate hepatocyte sphingomyelinase to liberate sequestered PM cholesterol. Aster-dependent cholesterol transport during fasting facilitates cholesteryl ester formation, cholesterol movement into bile and very low-density lipoprotein production. During reverse cholesterol transport, high-density lipoprotein delivers excess cholesterol to the hepatocyte PM through scavenger receptor class B member 1. Loss of hepatic Asters impairs cholesterol movement into feces, raises plasma cholesterol levels and causes cholesterol accumulation in peripheral tissues. These results reveal fundamental mechanisms by which Aster cholesterol flux contributes to hepatic and systemic lipid homeostasis.
Collapse
Affiliation(s)
- Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Paul Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bethan L Clifford
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Whang
- Pediatric Gastroenterology, Hepatology and Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin Qian
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rohith T Nagari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Min Sub Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sicheng Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Ke JT, Zhang H, Bu YH, Gan PR, Chen FY, Dong XT, Wang Y, Wu H. Metabonomic analysis of abnormal sphingolipid metabolism in rheumatoid arthritis synovial fibroblasts in hypoxia microenvironment and intervention of geniposide. Front Pharmacol 2022; 13:969408. [PMID: 35935818 PMCID: PMC9353937 DOI: 10.3389/fphar.2022.969408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a joint hypoxia microenvironment. Our previous untargeted metabolomics study found that sphingolipid (SPL) metabolism was abnormal in the joint synovial fluid samples from adjuvant arthritis (AA) rats. Geniposide (GE), an iridoid glycoside component of the dried fruit of Gardenia jasminoides Ellis, is commonly used for RA treatment in many Asian countries. At present, the mechanism of GE in the treatment of RA, especially in the joint hypoxia microenvironment, is not entirely clear from the perspective of SPL metabolism. The purpose of this research was to explore the potential mechanism of abnormal SPL metabolism in RA joint hypoxia microenvironment and the intervention effect of GE, through the untargeted metabolic analysis based on the ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Arthritis index, foot swelling and histopathology were used to assess whether the AA rat model was successfully established. The SPLs extracts collected from AA rats’ synovial tissue, serum and rheumatoid arthritis synovial fibroblasts (RASFs, MH7A cells, hypoxia/normoxia culture) were analyzed by metabolomics and lipdomics approach based on UPLC-Q-TOF/MS, to identify potential biomarkers associated with disorders of GE regulated RA sphingolipid metabolism. As a result, 11 sphingolipid metabolites related to RA were screened and identified. Except for galactosylceramide (d18:1/20:0), GE could recover the change levels of the above 10 sphingolipid biomarkers in varying degrees. Western blotting results showed that the changes in ceramide (Cer) level regulated by GE were related to the down-regulation of acid-sphingomyelinase (A-SMase) expression in synovial tissue of AA rats. To sum up, this research examined the mechanism of GE in the treatment of RA from the perspective of SPL metabolism and provided a new strategy for the screening of biomarkers for clinical diagnosis of RA.
Collapse
Affiliation(s)
- Jiang-Tao Ke
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan-Hong Bu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Pei-Rong Gan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Fang-Yuan Chen
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xin-Tong Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Yan Wang, ; Hong Wu,
| | - Hong Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Yan Wang, ; Hong Wu,
| |
Collapse
|
30
|
Increased acid sphingomyelinase levels in pediatric patients with obesity. Sci Rep 2022; 12:10996. [PMID: 35768443 PMCID: PMC9243121 DOI: 10.1038/s41598-022-14687-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
The level of secretory acid sphingomyelinase (S-ASM), a key enzyme in the sphingolipid metabolism, is elevated in a variety of human diseases, including in the serum of obese adults. Alterations in S-ASM were also found to induce morphological changes in erythrocytes. Consequently, the inhibition of S-ASM by functional Inhibitors of ASM (FIASMA) may have broad clinical implications. The purpose of this study was to assess S-ASM activity in pediatric patients with obesity and healthy matched controls, as well as to investigate the erythrocyte morphology using transmission electron microscopy. We recruited 46 obese patients (mean age 11 ± 2.9 years) and 44 controls (mean age 10.8 ± 2.9 years). S-ASM activity was significantly higher (Wilcoxon signed-rank test p-value: 0.004) in obese patients (mean 396.4 ± 49.7 pmol/ml/h) than in controls (mean 373.7 ± 23.1 pmol/ml/h). No evidence of morphological differences in erythrocytes was found between the two populations. We then carried out a case–control study based on the spontaneous reporting system database to compare FIASMAs with NON-FIASMAs in terms of weight gain risk. Children who received FIASMA had a significantly lower frequency of weight gain reports than patients who took NON-FIASMA agents (p < 0.001). Our findings suggest there is an intriguing possibility that S-ASM may play a role in pediatric obesity. This pilot study could serve as the basis for future studies in this interesting field of research.
Collapse
|
31
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|
32
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
33
|
Yang J, Wang M, Yang D, Yan H, Wang Z, Yan D, Guo N. Integrated lipids biomarker of the prediabetes and type 2 diabetes mellitus Chinese patients. Front Endocrinol (Lausanne) 2022; 13:1065665. [PMID: 36743922 PMCID: PMC9897314 DOI: 10.3389/fendo.2022.1065665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Dyslipidemia is a hallmark of T2DM, and as such, analyses of lipid metabolic profiles in affected patients have the potential to permit the development of an integrated lipid metabolite-based biomarker model that can facilitate early patient diagnosis and treatment. METHODS Untargeted and targeted lipidomics approaches were used to analyze serum samples from newly diagnosed 93 Chinese participants in discovery cohort and 440 in validation cohort via UHPLC-MS and UHPLC-MS/MS first. The acid sphingomyelinase protein expression was analyzed by Western blot. RESULTS AND DISCUSSION Through these analyses, we developed a novel integrated biomarker signature composed of LPC 22:6, PC(16:0/20:4), PE(22:6/16:0), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2), TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2). The area under the curve (AUC) values for this integrated biomarker signature for prediabetes and T2DM patients were 0.841 (cutoff: 0.565) and 0.894 (cutoff: 0.633), respectively. Furthermore, theresults of western blot analysis of frozen adipose tissue from 3 week (prediabetes) and 12 week (T2DM) Goto-Kakizaki (GK) rats also confirmed that acid sphingomyelinase is responsible for significant disruptions in ceramide and sphingomyelin homeostasis. Network analyses of the biomarkers associated with this biosignature suggested that the most profoundly affected lipid metabolism pathways in the context of diabetes include de novo ceramide synthesis, sphingomyelin metabolism, and additional pathways associated with phosphatidylcholine synthesis. Together, these results offer new biological insights regarding the role of serum lipids in the context of insidious T2DM development, and may offer new avenues for future diagnostic and/or therapeutic research.
Collapse
Affiliation(s)
- Jiaying Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Mei Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Wang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| |
Collapse
|
34
|
Ren Y, Zhao J, Xu M, Wang Y, Bai L, Jiang Y, Liu S, Chen Y, Duan Z, Zheng S. Association between serum sphingolipids and necroinflammation of liver tissue pathology in chronic hepatitis B. Int J Med Sci 2022; 19:2080-2086. [PMID: 36483591 PMCID: PMC9724247 DOI: 10.7150/ijms.75820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background & Aims: Accurately identifying liver necroinflammation was essential for the timely implementation of antiviral therapy in chronic hepatitis B(CHB) patients. The sphingolipids were involved in various chronic inflammatory processes. This study aimed to evaluate the association between serum sphingolipids and liver necroinflammation in CHB patients. Methods: The study prospectively enrolled patients with a diagnosis of chronic hepatitis B who were subsequently treated with nucleos(t)ide analogs (NAs). Liver biopsy was performed at baseline and 5-year follow-up, and serum sphingolipid levels were measured by ultra-high-performance liquid chromatography tandem mass spectrometry. Results: A total of 70 CHB patients were enrolled with baseline liver necroinflammation of 27(38.6%) G1, 23(32.9%) G2, and 20(28.6%) G ≥ 3, respectively. A total of 126 liver biopsies were performed on the study population over a 5-year period, of which 80 (63.5%) G<2 and 46 (36.5%) G≥2. Serum ALT, ALP, SM d16:0/16:1, SM d16:0/17:1, SM d18:0/17:0 and Cer d18:2/22:0 showed significant differences between two groups (P<0.01). Multivariate analysis showed that serum ALT (OR 1.006, 95% CI: 1.000-1.011), SM d16:0/16:1 (OR 1.552, 95% CI: 1.150-2.093), Cer d18:2/22:0 (OR 0.003, 95% CI: 0.000-0.173) were associated with G ≥ 2. In the subgroup of patients with normal serum ALT, serum Cer d18:2/22:0 was lower in patients with G ≥ 2 than that with G < 2. After 5 years, alleviated inflammation was accompanied by decreased serum SM d16:0/16:1 and increased serum Cer d18:2/22:0 in patients with baseline G ≥ 2. Conclusions: Lower serum Cer d18:2/22:0 could reflect hepatic necroinflammation (G ≥ 2) in CHB patients including those with normal serum ALT, and its elevation predicts the inflammation improvement after NAs treatment.
Collapse
Affiliation(s)
- Yan Ren
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Jing Zhao
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Manman Xu
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Yang Wang
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Li Bai
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Yingying Jiang
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Shuang Liu
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Yu Chen
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Zhongping Duan
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Sujun Zheng
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| |
Collapse
|
35
|
Tanase DM, Gosav EM, Petrov D, Jucan AE, Lacatusu CM, Floria M, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets. Diagnostics (Basel) 2021; 11:2053. [PMID: 34829402 PMCID: PMC8621166 DOI: 10.3390/diagnostics11112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (ATS) are worldwide known diseases with increased incidence and prevalence. These two are driven and are interconnected by multiple oxidative and metabolic functions such as lipotoxicity. A gamut of evidence suggests that sphingolipids (SL), such as ceramides, account for much of the tissue damage. Although in humans they are proving to be accurate biomarkers of adverse cardiovascular disease outcomes and NAFLD progression, in rodents, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of metabolic driven diseases such as diabetes, ATS, and hepatic steatosis. In this narrative review, we discuss the pathways which generate the ceramide synthesis, the potential use of circulating ceramides as novel biomarkers in the development and progression of ATS and related diseases, and their potential use as therapeutic targets in NAFDL-ATS development which can further provide new clues in this field.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Daniela Petrov
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alina Ecaterina Jucan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
36
|
Albi E, Alessenko AV. Nuclear sphingomyelin in neurodegenerative diseases. Neural Regen Res 2021; 16:2028-2029. [PMID: 33642390 PMCID: PMC8343301 DOI: 10.4103/1673-5374.308087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
37
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
38
|
Phospholipases: From Structure to Biological Function. Biomolecules 2021; 11:biom11030428. [PMID: 33803937 PMCID: PMC8001435 DOI: 10.3390/biom11030428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
|
39
|
Jiang J, Shi Y, Cao J, Lu Y, Sun G, Yang J. Role of ASM/Cer/TXNIP signaling module in the NLRP3 inflammasome activation. Lipids Health Dis 2021; 20:19. [PMID: 33612104 PMCID: PMC7897379 DOI: 10.1186/s12944-021-01446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. METHODS Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. RESULTS Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. CONCLUSION This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.
Collapse
Affiliation(s)
- Jianjun Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yining Shi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Youjin Lu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|