1
|
Qiu D, Yan B, Xue H, Xu Z, Tan G, Liu Y. Perspectives of exosomal ncRNAs in the treatment of bone metabolic diseases: Focusing on osteoporosis, osteoarthritis, and rheumatoid arthritis. Exp Cell Res 2025; 446:114457. [PMID: 39986599 DOI: 10.1016/j.yexcr.2025.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Bone metabolic disorders, constituting a group of prevalent and grave conditions, currently have a scarcity of therapeutic alternatives. Over the recent past, exosomes have been at the forefront of research interest, owing to their nanoparticulate nature and potential for therapeutic intervention. ncRNAs are a class of heterogeneous transcripts that they lack protein-encoding capacity, yet they can modulate the expression of other genes through multiple mechanisms. Mounting evidence underscores the intricate role of exosomes as ncRNAs couriers implicated in the pathogenesis of bone metabolic disorders. In this review, we endeavor to elucidate recent insights into the roles of three ncRNAs - miRNAs, lncRNAs, and circRNAs - in bone metabolic ailments such as osteoporosis, osteoarthritis, and rheumatoid arthritis. Additionally, we examine the viability of exosomal ncRNAs as innovative, cell-free modalities in the diagnosis and therapeutic management of bone metabolic disorders. We aim to uncover the critical function of exosomal ncRNAs within the context of bone metabolic diseases.
Collapse
Affiliation(s)
- Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Binghan Yan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yajuan Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
| |
Collapse
|
2
|
Guo WY, Wu QM, Zeng HF, Chen YL, Xu J, Yu ZY, Shu YK, Yang XN, Zhang CH, He XZ, Mi JN, Chen S, Chen XM, Wu JQ, Yao HQ, Liu L, Pan HD. A sinomenine derivative alleviates bone destruction in collagen-induced arthritis mice by suppressing mitochondrial dysfunction and oxidative stress via the NRF2/HO-1/NQO1 signaling pathway. Pharmacol Res 2025; 215:107686. [PMID: 40088961 DOI: 10.1016/j.phrs.2025.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Bone destruction in rheumatoid arthritis (RA) leads to significant disability, yet effective treatments are limited. Sinomenine (Sino) demonstrates anti-arthritic and bone-protective effects but requires high doses. In this study, we developed a Sino derivative, SINX, and evaluated its efficacy in RA. Safety assessments in mice confirmed its suitability for further study. In vitro, SINX inhibited osteoclast differentiation by reducing TRAP-positive cells, disrupting F-actin ring formation, and suppressing bone resorption pits, alongside downregulating osteoclast-specific genes. It also showed strong anti-inflammatory properties by reducing inflammatory cytokine levels. In vivo, using a collagen-induced arthritis (CIA) mouse model, SINX improved bone integrity by reducing joint inflammation, maintaining trabecular bone density, and preventing erosion. Histological and micro-CT analyses confirmed its effects, including suppressed osteoclast activity and reduced bone resorption-related gene expression. Mechanistically, SINX ameliorated mitochondrial dysfunction, decreased ROS levels, and activated the NRF2/HO-1/NQO1 pathway, enhancing antioxidant defenses. Compared to Sino, SINX achieved similar results at lower doses. These findings highlight the potential of SINX as a safe, effective treatment for RA-related bone destruction.
Collapse
Affiliation(s)
- Wan-Yi Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Qi-Min Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Hao-Feng Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Yu-Lian Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Jie Xu
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Zhen-Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Yong-Kang Shu
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Xiao-Nan Yang
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Chuan-Hai Zhang
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Xi-Zi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Jia-Ning Mi
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Si Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Xiao-Man Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China
| | - Jia-Qi Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - He-Quan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province 510405, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao.
| |
Collapse
|
3
|
Galliera E, Massaccesi L, Mangiavini L, De Vecchi E, Villa F, Corsi Romanelli MM, Peretti GM. The Evaluation of New-Generation Biomarker sCD14ST Provides New Insight into COVID-19's Effect on Bone Remodeling. J Clin Med 2025; 14:979. [PMID: 39941649 PMCID: PMC11818815 DOI: 10.3390/jcm14030979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: The COVID-19 pandemic has increased interest in osteoimmunology because of the impact of SARS-CoV-2 on both the immune system and the bone microenvironment. Soluble CD14ST could influence the production of the osteoimmunological regulators of osteoclast differentiation. The aim of this study is to evaluate the role of sCD14ST in COVID-19's effects on bone remodeling-evaluating, in particular, the correlation with new-generation osteoimmunological biomarkers-and to acquire comprehensive knowledge of the effects of the disease on the immune and skeletal system. Methods: The serum level of sCD14ST was measured in COVID-19-positive and COVID-19-negative patients undergoing orthopedic surgery and correlated with the inflammatory and osteoimmunological biomarkers RANKL/OPG, FGF23, IL-6, C-reactive protein (CRP), procalcitonin (PCT), sRAGE, and SuPAR. Results: In our patients, sCD14ST showed a strong increase in COVID-19-positive patients, and a significant decrease in tandem with the infection resolution, confirming its diagnostic and prognostic value. sCD14ST was more clinically relevant than the two canonically inflammatory makers used in the clinical protocols, CRP and PCT, and displayed a good positive correlation with FGF23, RANKL/OPG, IL-6, and SuPAR and a negative correlation with sRAGE. Conclusions: Monitoring sCD14ST along with SuPAR may offer valuable insights into immune system dysregulation and bone-related complications in conditions characterized by inflammation. These soluble receptors represent important links between immune activation and bone metabolism, especially in the context of diseases like COVID-19, where the inflammatory response may impact bone fragility.
Collapse
Affiliation(s)
- Emanuela Galliera
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy; (L.M.); (L.M.); (E.D.V.); (F.V.); (G.M.P.)
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Luca Massaccesi
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy; (L.M.); (L.M.); (E.D.V.); (F.V.); (G.M.P.)
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy; (L.M.); (L.M.); (E.D.V.); (F.V.); (G.M.P.)
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Elena De Vecchi
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy; (L.M.); (L.M.); (E.D.V.); (F.V.); (G.M.P.)
| | - Francesca Villa
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy; (L.M.); (L.M.); (E.D.V.); (F.V.); (G.M.P.)
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Giuseppe Maria Peretti
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milan, Italy; (L.M.); (L.M.); (E.D.V.); (F.V.); (G.M.P.)
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
4
|
Liu Y, Deng F, Sun Y, Wang M, Bi Y, Jang P, Wang S, Guan W, Yan J, Zhang L, Kuang H, Yang B. Chromone components of Saposhnikovia divaricate attenuate rheumatoid arthritis development by inhibiting the inflammatory response. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118912. [PMID: 39369926 DOI: 10.1016/j.jep.2024.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikovia divaricata (Turcz.) Schisck., a traditional Chinese medicine (TCM), has historically been utilized in the clinical treatment of RA. It was initially documented in the 'Shennong Ben Cao Jing' as a superior quality, with the text stating: 'The herb is widely renowned for its efficacy in alleviating whole-body discomfort, bone pain, malaise, and promoting long-lasting vitality. Chromones (CHR) were identified as the primary active components in Saposhnikovia divaricata. However, the specific molecular mechanisms by which CHR impacts RA remain incompletely understood. AIM OF THE STUDY To explore the therapeutic efficacy of CHR, a class of compound derived from Saposhnikovia divaricata, in alleviating arthropathy and immune hyperactivity in a collagen-induced arthritis (CIA) mouse model. MATERIAL AND METHODS Surface plasmon resonance (SPR) molecular fishing and UHPLC-QTOF/MS technology were used to identify CHR in Saposhnikovia divaricata as an active ingredient for treating RA. A CIA mouse model was used to verify the anti-RA effect of CHR in vivo. The anti-RA efficacy of CHR in vivo was evaluated by body weight change, joint swelling, arthritis index, immune organ index, ankle joint disease, and immunoglobulin G (IgG) content. The mechanism of improving RA was further analyzed by a protein chip assay and verified by Western blotting. RESULTS CHR treatment reduced swelling, arthritis index, and IgG, IgG1, IgG2a, and IgG2b levels in CIA mice. Protein microarray indicated that CHR mitigated CIA-induced joint inflammation by inhibiting immune cell activation, reducing the expression of inflammatory factors and chemokines, potentially by modulating the rheumatoid arthritis pathway involving tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), and chemokines. This hypothesis was supported by the upregulation of bone morphogenetic proteins 3 (BMP3) and phospho-Smad2 (p-Smad2) proteins, coupled with the downregulation of interleukin-6 (IL-6), interleukin-1β (IL-1β), TNF-α, and IL-17A proteins in the joints of CHR-treated mice. CONCLUSION CHR shows promise as a potential therapeutic agent for RA, exerting its effects through anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Fanying Deng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Yan Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Min Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Yu Bi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Peng Jang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Jiujiang Yan
- Heilongjiang Zbd Pharmaceutical Co., Ltd. Harbin, 150046, China.
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150038, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, China; Traditional Chinese medicine (TCM), biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), China.
| |
Collapse
|
5
|
Ao Y, Lan Q, Yu T, Wang Z, Zhang J. Cellular senescence-associated genes in rheumatoid arthritis: Identification and functional analysis. PLoS One 2025; 20:e0317364. [PMID: 39820552 PMCID: PMC11737674 DOI: 10.1371/journal.pone.0317364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Rheumatoid arthritis (RA), a long-term autoinflammatory condition causing joint damage and deformities, involves a multifaceted pathogenesis with genetic, epigenetic, and immune factors, including early immune aging. However, its precise cause remains elusive. Cellular senescence, a hallmark of aging marked by a permanent halt in cell division due to damage and stress, is crucial in aging and related diseases. In our study, we analyzed RA microarray data from the Gene Expression Omnibus (GEO) and focused on cellular senescence genes from the CellAge database. We started by selecting five RA datasets from GEO. Next, we pinpointed 29 differentially expressed genes (DEGs) linked to cellular senescence in RA, aligning them with genes from CellAge. We explored the roles of these DEGs in cellular senescence through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We then pinpointed three key genes (DHX9, CYR61, and ITGB) using random forest and LASSO Cox regression machine learning techniques. An integrated diagnostic model was created using these genes. We also examined the variance in immune cell infiltration and immune checkpoint gene expression between RA and normal samples. Our methodology's predictive accuracy was confirmed in external validation cohorts. Subsequently, RA samples were classified into three distinct subgroups based on the cellular senescence-associated DEGs, and we compared their immune landscapes. Our findings reveal a significant impact of cellular senescence-related DEGs on immune cell infiltration in RA samples. Hence, a deeper understanding of cellular senescence in RA could offer new perspectives for diagnosis and treatment.
Collapse
Affiliation(s)
- You Ao
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, P. R. China
| | - Qing Lan
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, P. R. China
| | - Tianhua Yu
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, P. R. China
| | - Zhichao Wang
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, P. R. China
| | - Jing Zhang
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
6
|
Wang X, Pan L, Niu D, Zhou J, Shen M, Zeng Z, Gong W, Yang E, Tang Y, Cheng G, Sun C. Jingfang Granules alleviates the lipid peroxidation induced ferroptosis in rheumatoid arthritis rats by regulating gut microbiota and metabolism of short chain fatty acids. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119160. [PMID: 39608616 DOI: 10.1016/j.jep.2024.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, bone and cartilage damage, musculoskeletal pain, swelling, and stiffness. Inflammation is one of the key factors that induce RA. Jingfang Granule (JFG) is a traditional Chinese medicine (TCM) with significant anti-inflammatory effects. Clinical studies have confirmed that JFG can be used to treat RA, but the mechanism is still vague. PURPOSE This study was designed to evaluate the protective function and the mechanism of JFG on rats with RA. STUDY DESIGN AND METHODS Complete Freud's Adjuvant (CFA) was used to establish a rat RA model, and JFG or Diclofenac Sodium (Dic) was orally administered. Foot swelling and hematoxylin eosin (H&E) staining were used to test the therapeutic effect of JFG on RA treatment, while ELISA kits were used to detect serum cytokines. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) were used to evaluate oxidative stress levels. The integration of label-free proteomics, fecal short chain fatty acid (SCFA) targeted metabolomics, peripheral blood SCFA, medium and long chain fatty acid targeted metabolomics, and 16S rDNA sequencing of gut microbiota were used to screen the mechanism. Western blot technology was used to validate the results of multiple omics studies. Serum D-Lactic acid, lipopolysaccharide specific IgA antibody (LPS IgA), diamine oxidase (DAO), and colon Claudin 5 and ZO-1 were used to evaluate the intestinal barrier. RESULTS The results confirmed that JFG effectively protected rats from RA injury, which was confirmed by improved foot swelling and synovial pathology. At the same time, JFG reduced the levels of TNF-α, IL-1β, and IL-6 in serum by inhibiting the NLRP3 inflammasome signaling pathway and TLR4/NF-κB signaling pathway in synovial tissue. Multiple omics studies indicated that JFG increased the abundance of gut microbiota and regulated the number of gut bacteria, thereby increased the levels of Acetic acid, Propionic acid, and Butyric acid in the gut and serum of RA rats, which activated AMPK to regulate fatty acid metabolism and fatty acid biosynthesis, thereby inhibited lipid oxidative stress induced ferroptosis to improve tissue damage caused by RA. Meanwhile, JFG improved the intestinal barrier by upregulating the expresses of Claudin 5 and ZO-1, which was confirmed by low concentrations of D-Lactic acid, LPS-SIgA and DAO in serum. CONCLUSIONS This study confirmed that JFG improved the disturbance of fatty acid metabolism by modulating gut microbiota and the production of fecal SCFAs to activate AMPK, and then inhibited ferroptosis caused by lipid oxidative stress in synovium tissue and prevented AR injury. This study proposes for the first time to investigate the mechanism of JFG treatment for RA from the perspective of the "Gut-joint" axis, and provides a promising approach for the treatment of RA.
Collapse
Affiliation(s)
- Xiuwen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Jidong Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Wenqiao Gong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Enhua Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Yunfeng Tang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guoliang Cheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Chenghong Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| |
Collapse
|
7
|
Liu X, Chen X, Fei Y, Zhang J, Yue O, Wang X, Jiang H. Locally Injectable, ROS-Scavenging, and ROS-/pH-Responsive Polymeric-Micelles-Embedded Hydrogels for Precise Minimally Invasive and Long-Lasting Rheumatoid Therapy. Adv Healthc Mater 2025; 14:e2403579. [PMID: 39629502 DOI: 10.1002/adhm.202403579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Indexed: 01/29/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovitis, bone-erosion, and joint-destruction. Here, we developed a locally injectable, ROS-scavenging, and ROS-/pH-responsive drug-delivery platform (HC@PTM) by bio-compositing of aldolizing hyaluronic acid (HA) crosslinked with chitosan (CS), and ROS-triggered/eliminated micelles (PTM) coupled with the drug methotrexate(MTX). The PTM efficiently eradicate excessive ROS in RA-joints, precisely triggering drug-release within inflamed arthritic-sites and further confer exceptional antioxidant origins to HC@PTM. HC@PTM with outstanding shape-adaptability and self-repairing properties effectively conformed to irregular articular cartilage while resisting joint-induced deformations. Further, the platform's pH-responsive nature enables on-demand drug-release within acidic inflamed synovium, serving as a drug-reservoir for precise and sustained therapeutic effects. Extensive in vitro and in vivo investigations confirm HC@PTM's ability to induce M2 macrophage polarization, downregulate inflammatory factor expression, and ameliorate the RA-microenvironment, ultimately achieving synergistic therapeutic outcomes. This study represents significant advancements in precise and long-term RA-treatment through a minimally invasive approach, offering potential strategies for novel precision medicine.
Collapse
Affiliation(s)
- Xinhua Liu
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Xing Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Yifan Fei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Jiamin Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Ouyang Yue
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Xuechuan Wang
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Huie Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
8
|
Yu Z, Kou F, Gao Y, Gao F, Lyu CM, Wei H. A machine learning model for predicting abnormal liver function induced by a Chinese herbal medicine preparation (Zhengqing Fengtongning) in patients with rheumatoid arthritis based on real-world study. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:25-35. [PMID: 39721810 DOI: 10.1016/j.joim.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/20/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects the small joints of the whole body and degrades the patients' quality of life. Zhengqing Fengtongning (ZF) is a traditional Chinese medicine preparation used to treat RA. ZF may cause liver injury. In this study, we aimed to develop a prediction model for abnormal liver function caused by ZF. METHODS This retrospective study collected data from multiple centers from January 2018 to April 2023. Abnormal liver function was set as the target variable according to the alanine transaminase (ALT) level. Features were screened through univariate analysis and sequential forward selection for modeling. Ten machine learning and deep learning models were compared to find the model that most effectively predicted liver function from the available data. RESULTS This study included 1,913 eligible patients. The LightGBM model exhibited the best performance (accuracy = 0.96) out of the 10 learning models. The predictive metrics of the LightGBM model were as follows: precision = 0.99, recall rate = 0.97, F1_score = 0.98, area under the curve (AUC) = 0.98, sensitivity = 0.97 and specificity = 0.85 for predicting ALT < 40 U/L; precision = 0.60, recall rate = 0.83, F1_score = 0.70, AUC = 0.98, sensitivity = 0.83 and specificity = 0.97 for predicting 40 ≤ ALT < 80 U/L; and precision = 0.83, recall rate = 0.63, F1_score = 0.71, AUC = 0.97, sensitivity = 0.63 and specificity = 1.00 for predicting ALT ≥ 80 U/L. ZF-induced abnormal liver function was found to be associated with high total cholesterol and triglyceride levels, the combination of TNF-α inhibitors, JAK inhibitors, methotrexate + nonsteroidal anti-inflammatory drugs, leflunomide, smoking, older age, and females in middle-age (45-65 years old). CONCLUSION This study developed a model for predicting ZF-induced abnormal liver function, which may help improve the safety of integrated administration of ZF and Western medicine. Please cite this article as: Yu Z, Kou F, Gao Y, Lyu CM, Gao F, Wei H. A machine learning model for predicting abnormal liver function induced by a Chinese herbal medicine preparation (Zhengqing Fengtongning) in patients with rheumatoid arthritis based on real-world study. J Integr Med. 2025; 23(1): 25-35.
Collapse
Affiliation(s)
- Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya Gao
- Department of Pharmacy, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd., Beijing 100071, China
| | - Chun-Ming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Gholijani N, Azarpira N, Abolmaali SS, Tanideh N, Ravanrooy MH, Taki F, Daryabor G. Piperine and piperine-loaded albumin nanoparticles ameliorate adjuvant-induced arthritis and reduce IL-17 in rats. Exp Mol Pathol 2024; 140:104937. [PMID: 39353355 DOI: 10.1016/j.yexmp.2024.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
AIM Rheumatoid arthritis (RA) is one of the most common chronic, inflammatory, autoimmune diseases affecting mainly the joints. Piperine (PIP), an alkaloid found in black pepper, has anti-inflammatory properties and its use in drug delivery systems such as nanoparticles might be a treatment for RA. This study aims to evaluate the possible anti-inflammatory and anti-arthritic effects of PIP and its use in albumin nanoparticles as a possible approach for the treatment of Adjuvant-induced arthritis (AIA) rats. METHODS PIP-loaded Bovine Serum Albumin nanoparticles (PIP-BSA NPs) were prepared using a desolvation method. AIA rats were given intraperitoneal injections of either 40 mg PIP or 131 mg PIP-BSA NPs every two days until day 28 when animals were sacrificed. Clinical score, histopathology, X-ray radiography, and serum levels of pro-inflammatory cytokines such as IL-1β, IL-17, and TNF-α were evaluated. RESULTS PIP and PIP-BSA NPs significantly reduced clinical scores, and alleviated inflammation within the joints. PIP was superior to PIP-BSA NPs for the alleviation of fibrin deposition and periosteal reactions while bone inflammation and erosion were less severe in the case of PIP-BSA NPs. Besides, both of the treatments suppressed serum levels of IL-17 in AIA rats (p = 0.003 and p = 0.02; respectively). CONCLUSIONS PIP and PIP-BSA NPs effectively alleviate the severity of AIA and suppress inflammation. Due to the superiority of PIP in improving fibrin deposition and periosteal reactions and the efficacy of PIP-BSA NPs in suppressing bone inflammation and erosion, their simultaneous use might be investigated.
Collapse
Affiliation(s)
- Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira-Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Nanotechnology in Drug Delivery Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farzane Taki
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Triguero-Martínez A, Pardines M, Montes N, Ortiz AM, de la Iglesia-Cedeira A, Valero-Martínez C, Martín J, González-Álvaro I, Castañeda S, Lamana A. Genetic Variants in RANK and OPG Could Influence Disease Severity and Bone Remodeling in Patients with Early Arthritis. Life (Basel) 2024; 14:1109. [PMID: 39337893 PMCID: PMC11433004 DOI: 10.3390/life14091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to identify single-nucleotide polymorphisms (SNPs) in bone remodeling-related genes associated with disease severity and bone mineral density (BMD) in early arthritis (EA) patients. For this purpose, the genotyping of 552 SNPs located in gene regions of semaphorins 4b, 4d, 4f, DKK1, 2 and 3, sclerostin, OPG, RANK and RANKL was performed using Immunochip from Illumina Inc. in 268 patients from the Princesa Early Arthritis Register Longitudinal (PEARL) study. Measurements of BMD and disease activity were chosen as outcome variables to select SNPs of interest. The relationships of SNPs with the BMD of the forearm, lumbar spine and hip (Hologic-4500 QDR) were analyzed by linear regression adjusted for age, sex, body mass index and presence of anti-citrullinated peptide antibodies (ACPAs). The association of each SNP with activity variables was analyzed by linear regression, logistic regression or ordered logistic regression according to the variable, and multivariate models were adjusted for potentially confounding variables, such as age, sex and presence of ACPAs. These analyses showed that four SNPs located in the genes coding for RANK (TNFRSF11A) and OPG (TNFRSF11B) were significantly associated with clinical variables of severity. SNP rs1805034 located in exon 6 of TNFRSF11A, which causes a non-synonymous (A/V) mutation, showed significant association with BMD and therefore may be considered as a possible biomarker of severity in RA patients. SNPs in the OPG gene showed an association with serum OPG levels and predicted disease activity after two years of follow-up.
Collapse
Affiliation(s)
- Ana Triguero-Martínez
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Marisa Pardines
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Nuria Montes
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Ana María Ortiz
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | | | - Cristina Valero-Martínez
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine "Lopez-Neyra", CSIC, 18016 Granada, Spain
| | - Isidoro González-Álvaro
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006 Madrid, Spain
| | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
12
|
Zhang LB, Yan Y, Ma R, Li DX, Yin WF, Tao QW, Xu Y. Integrated phytochemistry and network pharmacology analysis to reveal effective substances and mechanisms of Bushen Quhan Zhiwang decoction in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117897. [PMID: 38336180 DOI: 10.1016/j.jep.2024.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Quhan Zhiwang decoction (BQZD), a formula in traditional Chinese medicine (TCM), effectively delays bone destruction in rheumatoid arthritis (RA) patients. However, its chemical constituents, absorbed components, and metabolites remain unrevealed, and its mechanism in treating bone destruction in RA needs further investigation. AIM OF THE STUDY Our objective is to identify the chemical constituents, absorbed components, and metabolites of BQZD and explore the potential mechanisms of BQZD in treating bone destruction in RA. MATERIALS AND METHODS This study systematically identified the chemical constituents, absorbed components, and metabolites of BQZD using ultra-performance liquid chromatography with Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring. The absorbed components and metabolites were subjected to network pharmacology analysis to predict the potential mechanisms of BQZD in treating bone destruction in RA. The in vivo anti-osteoclastogenic and underlying mechanism were further verified in collagen-induced arthritis (CIA) rats. RESULTS A total of 182 compounds were identified in BQZD, 27 of which were absorbed into plasma and organs and 42 metabolites were identified in plasma and organs. The KEGG analysis revealed that MAPK signaling pathway was highly prioritized. BQZD treatment attenuated paw swelling and the arthritis index; suppressed synovial hyperplasia, bone destruction, and osteoclast differentiation; and inhibited the levels of TNF-α, IL-1β, and IL-6 in CIA rats. Mechanically, BQZD significantly decreased the protein expression levels of TRAF6, NFATc1, p-JNK, and p-p38, which might be related to 9 absorbed components and 1 metabolite. CONCLUSION This study revealed the key active components and metabolites of BQZD. BQZD exhibits bone-protective effects via TRAF6/p38/JNK MAPK pathway, which may be associated with 9 absorbed components and 1 metabolite.
Collapse
Affiliation(s)
- Liu-Bo Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yu Yan
- Department of TCM Rheumatism, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Ru Ma
- Clinical Pharmacy Department & Xi'an Public Health Center, Xi'an, 710200, PR China
| | - Dong-Xu Li
- Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wei-Feng Yin
- Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Qing-Wen Tao
- Department of TCM Rheumatism, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Yuan Xu
- Department of TCM Rheumatism, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| |
Collapse
|
13
|
Zhou P, Meng X, Nie Z, Wang H, Wang K, Du A, Lei Y. PTEN: an emerging target in rheumatoid arthritis? Cell Commun Signal 2024; 22:246. [PMID: 38671436 PMCID: PMC11046879 DOI: 10.1186/s12964-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a critical tumor suppressor protein that regulates various biological processes such as cell proliferation, apoptosis, and inflammatory responses by controlling the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT) signaling pathway. PTEN plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Loss of PTEN may contribute to survival, proliferation, and pro-inflammatory cytokine release of fibroblast-like synoviocytes (FLS). Also, persistent PI3K signaling increases myeloid cells' osteoclastic potential, enhancing localized bone destruction. Recent studies have shown that the expression of PTEN protein in the synovial lining of RA patients with aggressive FLS is minimal. Experimental upregulation of PTEN protein expression could reduce the damage caused by RA. Nonetheless, a complete comprehension of aberrant PTEN drives RA progression and its interactions with other crucial molecules remains elusive. This review is dedicated to promoting a thorough understanding of the signaling mechanisms of aberrant PTEN in RA and aims to furnish pertinent theoretical support for forthcoming endeavors in both basic and clinical research within this domain.
Collapse
Affiliation(s)
- Pan Zhou
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Xingwen Meng
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Zhimin Nie
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Hua Wang
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Kaijun Wang
- Nanjing Tongshifeng Hospital, Nanjing, Jiangsu Province, China
| | - Aihua Du
- Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, Henan Province, China
| | - Yu Lei
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Jannasz I, Brzeziński J, Mańczak M, Sondej T, Targowski T, Rysz J, Olszewski R. Is the association between pulse wave velocity and bone mineral density the same for men and women? - A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 119:105309. [PMID: 38171030 DOI: 10.1016/j.archger.2023.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Brachial aortic Pulse Wave Velocity (baPWV) and bone mineral density (BMD) are important indicators of cardiovascular health and bone strength, respectively. However, the gender-specific association between baPWV and BMD remains unclear. The aim of our study is to evaluate the relationship between baPWV and BMD in men and women populations METHODS: A comprehensive search was conducted in electronic databases for relevant studies published between the 1th and 30rd of April 2023. Studies reporting the correlation between baPWV and BMD in both males and females were considered. A random-effects model was used to calculate pooled correlation coefficients (r). RESULTS Relevant data for both genders were found in six articles. In all publications included in the meta-analysis, the total number of studied individuals was 3800, with 2054 women and 1746 men. Pooled correlation coefficient was -0,24 (95 % CI: -0.34; -0.15) in women population, and -0.12 (95 %CI: -0.16, -0.06) in men. CONCLUSIONS Based on the published data, we found that baPWV is negatively correlated with bone density in women. However, in men we do not find such a relationship. These findings suggest the importance of considering gender-specific factors when assessing the cardiovascular and bone health relationship.
Collapse
Affiliation(s)
- Iwona Jannasz
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jakub Brzeziński
- Gerontology, Public Health and Education Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.
| | - Małgorzata Mańczak
- Gerontology, Public Health and Education Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tadeusz Sondej
- Faculty of Electronics, Military University of Technology, Warsaw, Poland
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Poland
| | - Robert Olszewski
- Gerontology, Public Health and Education Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland; Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
| |
Collapse
|
15
|
Yurkina DM, Romanova EA, Feoktistov AV, Soshnikova NV, Tvorogova AV, Yashin DV, Sashchenko LP. The Interaction of HMGB1 with the Proinflammatory TREM-1 Receptor Generates Cytotoxic Lymphocytes Active against HLA-Negative Tumor Cells. Int J Mol Sci 2024; 25:627. [PMID: 38203798 PMCID: PMC10779375 DOI: 10.3390/ijms25010627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
High mobility group protein (HMGB1) is secreted by myeloid cells and cells of damaged tissues during inflammation, causing inflammatory reactions through various receptors, including TLRS and RAGE. TREM-1 is considered to be one of the potential HMGB1 receptors. In this work, we have shown that the HMGB1 protein is able to bind to the TREM-1 receptor at high affinity both in solution and on the cell surface. This binding causes lymphocytes to release cytokines IL-2, IL-1b, IL-6, TNF and Ifny into the medium, which leads to the appearance of cytotoxic lymphocytes in PBMC capable of lysing HLA-negative tumor cells. Expanding the spectra of proinflammatory receptor ligands and understanding the mechanisms of their action is essential for the creation of new immunotherapy pathways.
Collapse
Affiliation(s)
- Daria M. Yurkina
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (L.P.S.)
| | - Elena A. Romanova
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (L.P.S.)
| | - Alexey V. Feoktistov
- Engelhardt Institute of Molecular Biology (RAS), Moscow 119334, Russia; (A.V.F.); (N.V.S.)
| | - Natalia V. Soshnikova
- Engelhardt Institute of Molecular Biology (RAS), Moscow 119334, Russia; (A.V.F.); (N.V.S.)
| | - Anna V. Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology (RAS), Moscow 119334, Russia;
| | - Denis V. Yashin
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (L.P.S.)
| | - Lidia P. Sashchenko
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (L.P.S.)
| |
Collapse
|
16
|
Zhang Y, Ma J, Bao X, Hu M, Wei X. The role of retinoic acid receptor-related orphan receptors in skeletal diseases. Front Endocrinol (Lausanne) 2023; 14:1302736. [PMID: 38027103 PMCID: PMC10664752 DOI: 10.3389/fendo.2023.1302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Bone homeostasis, depending on the balance between bone formation and bone resorption, is responsible for maintaining the proper structure and function of the skeletal system. As an important group of transcription factors, retinoic acid receptor-related orphan receptors (RORs) have been reported to play important roles in bone homeostasis by regulating the transcription of target genes in skeletal cells. On the other hand, the dysregulation of RORs often leads to various skeletal diseases such as osteoporosis, rheumatoid arthritis (RA), and osteoarthritis (OA). Herein, we summarized the roles and mechanisms of RORs in skeletal diseases, aiming to provide evidence for potential therapeutic strategies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jun Ma
- Department of Oral Anatomy and Physiology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xingfu Bao
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiaoxi Wei
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Song PZ, Wu N, Huo C, Wang XM. Correlation analysis and clinical significance of Musculoskeletal Ultrasound semi-quantitative grading with bone salt metabolism, Rheumatoid factor and Erythrocyte Sedimentation rate in patients with Rheumatoid Arthritis. Pak J Med Sci 2023; 39:1652-1656. [PMID: 37936767 PMCID: PMC10626069 DOI: 10.12669/pjms.39.6.7144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/19/2022] [Accepted: 06/27/2023] [Indexed: 11/09/2023] Open
Abstract
Objective To determine the correlation and clinical significance of musculoskeletal ultrasound semi-quantitative grading with bone salt metabolism, rheumatoid factor and erythrocyte sedimentation rate (ESR) in patients with rheumatoid arthritis. Methods This is a clinical comparative study. A total of 240 patients with rheumatoid arthritis admitted to Baoding NO.1 Central Hospital were selected according to the DAS28 score of rheumatoid arthritis, and were divided into four groups, with 60 cases in each group from May 2020 to May 2022. The differences and correlation of musculoskeletal ultrasound semi-quantitative grading, bone metabolism indicators, erythrocyte sedimentation rate and rheumatoid factor among the four groups were statistically analyzed. Results The scores of bone erosion, synovial hyperplasia, joint effusion and intrasynovial blood flow in Group-H were significantly higher than those in Group-R, L and M, with statistically significant differences(p=0.00). The procollagen Type-1 N-terminal propeptide(P1NP), bone-specific alkaline phosphatase(BALP) and osteoprotegerin(OPG) in Group-H were significantly lower than those in Group-R, L and M, with statistically significant differences(p=0.00); The tartrate-resistant acid phosphatase(TRAC) in Group-H was significantly higher than that in Group-R, L and M, with a statistically significant difference(p=0.00). The levels of RF and ESR in Group-H were significantly higher than those in Group-R, L and M, with statistically significant differences(p=0.00). Conclusion Musculoskeletal ultrasound semi-quantitative grading is correlated with the level of bone salt metabolism, rheumatoid factor and ESR in patients with rheumatoid arthritis. It can be combined with laboratory examination to objectively judge the severity of the course of rheumatoid arthritis.
Collapse
Affiliation(s)
- Pei-Ze Song
- Pei-ze Song, Dept. of Integrated Traditional Chinese and Western Medicine, Baoding NO.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| | - Nan Wu
- Nan Wu, Dept. of Integrated Traditional Chinese and Western Medicine, Baoding NO.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| | - Cong Huo
- Cong Huo, Dept. of Integrated Traditional Chinese and Western Medicine, Baoding NO.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| | - Xiao-Ming Wang
- Xiao-ming Wang, Dept. of Integrated Traditional Chinese and Western Medicine, Baoding NO.1 Central Hospital, Baoding 071000, Hebei, P.R. China
| |
Collapse
|
18
|
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J, Zhao DB. RhoA Promotes Synovial Proliferation and Bone Erosion in Rheumatoid Arthritis through Wnt/PCP Pathway. Mediators Inflamm 2023; 2023:5057009. [PMID: 38022686 PMCID: PMC10667059 DOI: 10.1155/2023/5057009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs) but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion, and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs. Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chao-Yue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Tan
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ya-Bing Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin-Yu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Sellin ML, Klinder A, Bergschmidt P, Bader R, Jonitz-Heincke A. IL-6-induced response of human osteoblasts from patients with rheumatoid arthritis after inhibition of the signaling pathway. Clin Exp Med 2023; 23:3479-3499. [PMID: 37280473 PMCID: PMC10618393 DOI: 10.1007/s10238-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL-) 6 is a critical factor in inflammatory processes of rheumatoid arthritis (RA). This is of high interest as the progression of RA may lead to the implantation of joint endoprostheses, which is associated with a pro-inflammatory increase in IL-6 in the periprosthetic tissue. Biological agents such as sarilumab have been developed to inhibit IL-6-mediated signaling. However, IL-6 signaling blockade should consider the inhibition of inflammatory processes and the regenerative functions of IL-6. This in vitro study investigated whether inhibiting IL-6 receptors can affect the differentiation of osteoblasts isolated from patients with RA. Since wear particles can be generated at the articular surfaces of endoprostheses leading to osteolysis and implant loosening, the potential of sarilumab to inhibit wear particle-induced pro-inflammatory processes should be investigated. Both in monocultures and indirect co-cultures with osteoclast-like cells (OLCs), human osteoblasts were stimulated with 50 ng/mL each of IL-6 + sIL-6R and in combination with sarilumab (250 nM) to characterize cell viability and osteogenic differentiation capacity. Furthermore, the influence of IL-6 + sIL-6R or sarilumab on viability, differentiation, and inflammation was evaluated in osteoblasts exposed to particles. Stimulation with IL-6 + sIL-6R and sarilumab did not affect cell viability. Except for the significant induction of RUNX2 mRNA by IL-6 + sIL-6R and a significant reduction with sarilumab, no effects on cell differentiation and mineralization could be detected. Furthermore, the different stimulations did not affect the osteogenic and osteoclastic differentiation of co-cultured cells. Compared to the osteoblastic monocultures, a decreased release of IL-8 was triggered in the co-culture. Among these, treatment with sarilumab alone resulted in the greatest reduction of IL-8. The co-culture also showed clearly increased OPN concentrations than the respective monocultures, with OPN secretion apparently triggered by the OLCs. Particle exposure demonstrated decreased osteogenic differentiation using different treatment strategies. However, sarilumab administration caused a trend toward a decrease in IL-8 production after stimulation with IL-6 + sIL-6R. The blockade of IL-6 and its pathway have no significant effect on the osteogenic and osteoclastic differentiation of bone cells derived from patients with RA. Nonetheless, observed effects on the reduced IL-8 secretion need further investigation.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Annett Klinder
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Philipp Bergschmidt
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
- Department for Orthopaedic Surgery, Trauma Surgery and Hand Surgery, Suedstadt Hospital Rostock, Suedring 81, 18059, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany.
| |
Collapse
|
20
|
He ZH, Zou JT, Chen X, Gong JS, Chen Y, Jin L, Liu YW, Rao SS, Yin H, Tan YJ, Wang Z, Du W, Li HM, Qian YX, Wang ZX, Wang YY, Wan TF, Luo Y, Zhu H, Chen CY, Xie H. Ångstrom-scale silver particles ameliorate collagen-induced and K/BxN-transfer arthritis in mice via the suppression of inflammation and osteoclastogenesis. Inflamm Res 2023; 72:2053-2072. [PMID: 37816881 DOI: 10.1007/s00011-023-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.
Collapse
Affiliation(s)
- Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Jing-Tao Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Ya Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Ling Jin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Teng-Fei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China
- Angmedicine Research Center, Central south university, Changsha, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China.
- Angmedicine Research Center, Central south university, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, China.
- Angmedicine Research Center, Central south university, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Marasco E, Fabbriciani G, Rotunno L, Longhi M, De Luca P, de Girolamo L, Colombini A. Identification of biomarkers in patients with rheumatoid arthritis responsive to DMARDs but with progressive bone erosion. Front Immunol 2023; 14:1254139. [PMID: 37809106 PMCID: PMC10551039 DOI: 10.3389/fimmu.2023.1254139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that may cause joint destruction and disability. The pharmacological treatment of RA aims at obtaining disease remission by effectively ceasing joint inflammation and arresting progressive bone erosions. Some patients present bone lesions accrual even after controlling joint inflammation with current therapies. Our study aimed to analyze lymphocyte subsets and levels of circulating cytokines in patients with RA with progressive bone erosions. Methods We enrolled 20 patients with a diagnosis of RA and 12 healthy donors (HD). Patients with RA were divided into patients with bone erosions (RA-BE+) and without bone erosions (RA-BE-). Lymphocyte subsets in peripheral blood were evaluated by flow cytometry. Circulating cytokines levels were evaluated by protein array. Results The distribution of lymphocyte subsets was not able to separate HD from AR patients and RA-BE+ and RA-BE- in cluster analysis. We observed a significant expansion of CXCR5- PD1+ T peripheral helper cells (Tph cells) and a reduction in both total memory B cells and switched memory B cells in RA patients compared to HD. We observed an expansion in the frequency of total B cells in RA-BE+ patients compared to RA-BE- patients. Unsupervised hierarchical clustering analysis of 39 cytokines resulted in a fairly good separation of HD from RA patients but not of RA-BE+ patients from RA-BE- patients. RA-BE+ patients showed significantly higher levels of IL-11 and IL-17A than RA-BE- patients. Conclusion We show that patients with progressive erosive disease are characterized by abnormalities in B cells and in cytokines with a proven role in bone reabsorption. Understanding the role played by B cells and the cytokine IL-11 and IL-17A in progressive erosive disease can help identify novel biomarkers of erosive disease and design treatment approaches aimed at halting joint damage in RA.
Collapse
Affiliation(s)
- Emiliano Marasco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
- Ph.D. Course “Immunology, Molecular Medicine and Applied Biotechnology”, University of Rome Tor Vergata, Rome, Italy
| | | | - Laura Rotunno
- Unit of Rheumatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Matteo Longhi
- Unit of Rheumatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
22
|
Zheng H, Xie X, Ling H, You X, Liang S, Lin R, Qiu R, Hou H. Transdermal drug delivery via microneedles for musculoskeletal systems. J Mater Chem B 2023; 11:8327-8346. [PMID: 37539625 DOI: 10.1039/d3tb01441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
As the population is ageing and lifestyle is changing, the prevalence of musculoskeletal (MSK) disorders is gradually increasing with each passing year, posing a serious threat to the health and quality of the public, especially the elderly. However, currently prevalent treatments for MSK disorders, mainly administered orally and by injection, are not targeted to the specific lesion, resulting in low efficacy along with a series of local and systemic adverse effects. Microneedle (MN) patches loaded with micron-sized needle array, combining the advantages of oral administration and local injection, have become a potentially novel strategy for the administration and treatment of MSK diseases. In this review, we briefly introduce the basics of MNs and focus on the main characteristics of the MSK systems and various types of MN-based transdermal drug delivery (TDD) systems. We emphasize the progress and broad applications of MN-based transdermal drug delivery (TDD) for MSK systems, including osteoporosis, nutritional rickets and some other typical types of arthritis and muscular damage, and in closing summarize the future prospects and challenges of MNs application.
Collapse
Affiliation(s)
- Haibin Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xuankun Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Haocong Ling
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Siyu Liang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| |
Collapse
|
23
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
24
|
Kikyo N. Circadian Regulation of Macrophages and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12307. [PMID: 37569682 PMCID: PMC10418470 DOI: 10.3390/ijms241512307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) represents one of the best examples of circadian fluctuations in disease severity. Patients with RA experience stiffness, pain, and swelling in afflicted joints in the early morning, which tends to become milder toward the afternoon. This has been primarily explained by the higher blood levels of pro-inflammatory hormones and cytokines, such as melatonin, TNFα, IL-1, and IL-6, in the early morning than in the afternoon as well as insufficient levels of anti-inflammatory cortisol, which rises later in the morning. Clinical importance of the circadian regulation of RA symptoms has been demonstrated by the effectiveness of time-of-day-dependent delivery of therapeutic agents in chronotherapy. The primary inflammatory site in RA is the synovium, where increased macrophages, T cells, and synovial fibroblasts play central roles by secreting pro-inflammatory cytokines, chemokines, and enzymes to stimulate each other, additional immune cells, and osteoclasts, ultimately leading to cartilage and bone erosion. Among these central players, macrophages have been one of the prime targets for the study of the link between circadian rhythms and inflammatory activities. Gene knockout experiments of various core circadian regulators have established that disruption of any core circadian regulators results in hyper- or hypoactivation of inflammatory responses by macrophages when challenged by lipopolysaccharide and bacteria. Although these stimulations are not directly linked to RA etiology, these findings serve as a foundation for further study by providing proof of principle. On the other hand, circadian regulation of osteoclasts, downstream effectors of macrophages, remain under-explored. Nonetheless, circadian expression of the inducers of osteoclastogenesis, such as TNFα, IL-1, and IL-6, as well as the knockout phenotypes of circadian regulators in osteoclasts suggest the significance of the circadian control of osteoclast activity in the pathogenesis of RA. More detailed mechanistic understanding of the circadian regulation of macrophages and osteoclasts in the afflicted joints could add novel local therapeutic options for RA.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Peng X, Yang Y, Guo C, He Q, Li Y, Gong T, Li J. A sustained-release phospholipid-based phase separation gel loaded with berberine for treating rheumatoid arthritis. Front Pharmacol 2023; 14:1210129. [PMID: 37547331 PMCID: PMC10397395 DOI: 10.3389/fphar.2023.1210129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Berberine (BBR) has a long history of use in the treatment of Rheumatoid arthritis (RA) and is considered one of the most promising natural product for the treatment of RA. However, oral administration of berberine has low bioavailability and requires frequent administration, resulting in poor patient compliance. In this study, we developed a BBR-loaded phospholipid-based phase separation gel (BBR-PPSG) to achieve sustained drug release and long-term therapeutic effect. The stability of BBR-PPSG was verified and it was found that it can be stored for a long time. The pharmacokinetic study on rats and rabbits showed that BBR-PPSG not only achieved 1-month of sustained release, but also significantly increased the area under the curve (AUC) by nearly 9-fold and prolonged the half-life (t1/2) by 10-fold. By constructing rat and rabbit models of RA, we also proved that BBR-PPSG administration once a month effectively alleviated joint swelling, and significantly reduce TNF-α levels in AIA rats and OIA rabbits. Histopathological analysis of rabbit joint sections revealed that after intra-articular injection of BBR-PPSG, the synovial cell layer remained intact, while in the model group, the synovial cells were significantly reduced and exhibited necrosis. MicroCT data analysis showed that the values of Tb.N and Tb. Sp in the BBR-PPSG group were significantly better than those in the model group (p < 0.05). This study addressed the limitations of frequent administration of BBR by developing a phospholipid-based phase separation gel system for berberine delivery, achieving long-term sustained release. The BBR-PPSG demonstrated good biocompatibility, simple preparation and excellent stability, thus holding potential as a novel pharmaceutical formulation for RA treatment.
Collapse
Affiliation(s)
- Xiong Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuping Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chenqi Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yan Li
- Sichuan Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Chengdu, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jia Li
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Pinto Tasende JA, Fernandez-Moreno M, Vazquez-Mosquera ME, Fernandez-Lopez JC, Oreiro-Villar N, De Toro Santos FJ, Blanco-García FJ. Increased synovial immunohistochemistry reactivity of TGF-β1 in erosive peripheral psoriatic arthritis. BMC Musculoskelet Disord 2023; 24:246. [PMID: 36997896 PMCID: PMC10061727 DOI: 10.1186/s12891-023-06339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Immune and non-immune cells contribute to the pathology of chronic arthritis, and they can contribute to tissue remodeling and repair as well as disease pathogenesis. The present research aimed to analyze inflammation and bone destruction/regeneration biomarkers in patients with psoriatic arthritis (PsA), rheumatoid arthritis (RA), osteoarthritis (OA), and ankylosing spondylitis (AS). METHODS Samples were obtained from the inflamed knee of patients with knee arthritis who had been referred for undergoing arthroscopies. The synovial membrane was processed for pathological description, IHC analysis, and quantification of mRNA expression ratio by qRT-PCR. Serum levels of TGF-β1, IL-23, IL-6, IL-17 A, IL-22, Dkk1, Sclerostin, BMP2, BMP4, Wnt1, and Wnt5a were measured by ELISA. All these data were analyzed and compared with the demographic, clinical, blood tests, and radiological characteristics of the patients. RESULTS The synovial membrane samples were obtained from 42 patients for IHC, extraction, and purification of RNA for synovial mRNA expression analysis, and serum for measuring protein levels from 38 patients. IHC reactivity for TGF-β1 in the synovial tissue was higher in patients with psoriatic arthritis (p 0.036) and was positively correlated with IL-17 A (r = 0.389, p = 0.012), and Dkk1 (r = 0.388, p = 0.012). Gene expression of the IL-17 A was higher in PsA patients (p = 0.018) and was positively correlated with Dkk1 (r = 0.424, p = 0.022) and negatively correlated with BMP2 (r = -0.396, p = 0.033) and BMP4 (r = -0.472, p = 0.010). It was observed that IHC reactivity for TGF-β1 was higher in patients with erosive PsA (p = 0.024). CONCLUSIONS The IHC reactivity of TGF-β1 in synovial tissue was higher in patients with erosive psoriatic arthritis, and TGF-β1 was in relation to higher levels of gene expression of IL-17 A and Dkk1.
Collapse
Affiliation(s)
- Jose A Pinto Tasende
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, 84 Xubias de Arriba Road, 15006, A Coruña, Spain.
| | - M Fernandez-Moreno
- INIBIC, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | | | - J C Fernandez-Lopez
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, 84 Xubias de Arriba Road, 15006, A Coruña, Spain
| | - N Oreiro-Villar
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, 84 Xubias de Arriba Road, 15006, A Coruña, Spain
| | - F J De Toro Santos
- Department of Rheumatology, Complexo Hospitalario Universitario de A Coruña, Universidade de A Coruña, A Coruña, Spain
| | - F J Blanco-García
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, Universidade de A Coruña, A Coruña, Spain
| |
Collapse
|
27
|
Wei J, Huang X, Zhang X, Chen G, Zhang C, Zhou X, Qi J, Zhang Y, Li X. Elevated fatty acid β-oxidation by leptin contributes to the proinflammatory characteristics of fibroblast-like synoviocytes from RA patients via LKB1-AMPK pathway. Cell Death Dis 2023; 14:97. [PMID: 36759597 PMCID: PMC9911755 DOI: 10.1038/s41419-023-05641-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Fibroblast-like synoviocytes (FLS) maintain chronic inflammation leading to joint destruction in rheumatoid arthritis (RA). Fatty acid β-oxidation (FAO) regulates cell function. Here, we aimed to investigate the effect of FAO enhanced by leptin on the characteristics of RA-FLS and elucidate the potential metabolic mechanism. Key enzymes involved in lipid metabolism were detected with qPCR in HSF, MH7A cell line and isolated RA-FLS treated with RA or healthy control (HC) serum. In some experiments, FAO inhibitor, etomoxir (ETO) or anti-leptin antibody were added into serum-treated RA-FLS. In other experiments, RA-FLS were stimulated with leptin together with ETO or AMP-activated protein kinase (AMPK) inhibitor compound C (CC) or silencing liver kinase B1 (LKB1). Cell proliferation, proinflammatory factor production, pro-angiogenesis, chemoattractive potential, FAO-related key enzymes, AMPK and LKB1 in FLS were analyzed. FAO-related key enzymes were evaluated in serum-treated RA-FLS with or without anti-leptin antibody. Related functions of leptin-stimulated RA-FLS were examined in the presence or absence of ETO. AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) in leptin-stimulated RA-FLS were tested with western blot. Activation of AMPK in leptin-stimulated RA-FLS was detected after silencing LKB1. We found that MH7A cell line and RA serum-treated FLS exhibited upregulated FAO, and ETO could inhibit the proinflammatory phenotypes of RA-FLS. The addition of anti-leptin antibody suppressed the elevation of FAO mediated by RA serum. More importantly, leptin promoted the proinflammatory characteristics of RA-FLS, which was reversed by ETO. Leptin activated AMPK by upregulating LKB1. CC impaired leptin-induced CPT-1A expression in RA-FLS. Our study uncovers that elevated FAO mediated by leptin drives abnormal function of RA-FLS and suggests leptin or FAO inhibition may serve as a promising therapeutic strategy for RA.
Collapse
Affiliation(s)
- Jing Wei
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinxin Huang
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xing Zhang
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Guanghong Chen
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Cheng Zhang
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinyang Zhou
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingjing Qi
- Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yan Zhang
- Department of Rheumatology, The Second Hospital Dalian Medical University, Dalian, China.
| | - Xia Li
- Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
28
|
Yang X, Xia H, Liu C, Wu Y, Liu X, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Jia R. The novel delivery-exosome application for diagnosis and treatment of rheumatoid arthritis. Pathol Res Pract 2023; 242:154332. [PMID: 36696804 DOI: 10.1016/j.prp.2023.154332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic degenerative disease characterized by persistent systemic synovitis, with a high risk of stiffness, pain, and swelling. It may affect the other extra-articular tissues. There is no ideal treatment for this disease at present, and it can only be controlled by medication to alleviate the prognosis. Exosomes are small vesicles secreted by various cells in the organism under normal or pathological conditions, and play a role in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and so on. Due to the adverse effects of conventional drugs and treatments in the treatment of RA, exosomes, as a nanocarrier with many advantages, can have a great impact on the loading of drugs for the treatment of RA. This article reviews the role of exosomes in the pathogenesis of RA and the progress of exosome-based therapy for RA.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, People's Republic of China; School of Life Science, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| |
Collapse
|
29
|
Xie W, Yang H, Guo C, Xie R, Yu G, Li Y. Integrated Network Pharmacology and Experimental Validation Approach to Investigate the Mechanisms of Stigmasterol in the Treatment of Rheumatoid Arthritis. Drug Des Devel Ther 2023; 17:691-706. [PMID: 36915642 PMCID: PMC10007868 DOI: 10.2147/dddt.s387570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease of the joints associated with systemic comorbidities. Sinomenium acutum is regarded as an effective traditional Chinese medicine (TCM) for the treatment of RA. Materials and Methods Based on network pharmacology and Gene Expression Omnibus (GEO) database, 33 RA-related differentially-expressed genes (DEGs) targeting active compounds of Sinomenium acutum were initially screened in our investigation. Results Gene Ontology (GO) and Kyoto encyclopaedia of genes and genome (KEGG) analyses found the important involvement of these DEGs in osteoclast differentiation, and finally 5 core DEGs, including NCF4, NFKB1, CYBA, IL-1β and NCF1 were determined through protein-protein interaction (PPI) network. We also identified the related active component of Sinomenium acutum include Stigmasterol. Finally, in order to experimentally verify these results, a rat model of collagen-induced arthritis (CIA) was established, and subsequently treated with Stigmasterol solution. Conclusion Similar to the healing effect of Indomethacin, Stigmasterol was observed to reduce the levels of inflammatory factors (IL-6 and IL-1β) and osteoclast differentiation-related factors (RANKL, ACP5 and Cathepsin K), which can also reduce the arthritis index score and alleviate the degree of pathological injury of rat ankle joints. The predictions and experimental data uncover the involvement of Stigmasterol, an active component of Sinomenium acutum, in regulation of osteoclast differentiation, exerting great medicinal potential in the treatment of RA.
Collapse
Affiliation(s)
- Wendong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Chun Guo
- Medical Innovation Experiment Center, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Rui Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Guoliang Yu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yifu Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
30
|
Filipović M, Flegar D, Aničić S, Šisl D, Kelava T, Kovačić N, Šućur A, Grčević D. Transcriptome profiling of osteoclast subsets associated with arthritis: A pathogenic role of CCR2 hi osteoclast progenitors. Front Immunol 2022; 13:994035. [PMID: 36591261 PMCID: PMC9797520 DOI: 10.3389/fimmu.2022.994035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The existence of different osteoclast progenitor (OCP) subsets has been confirmed by numerous studies. However, pathological inflammation-induced osteoclastogenesis remains incompletely understood. Detailed characterization of OCP subsets may elucidate the pathophysiology of increased osteoclast activity causing periarticular and systemic bone resorption in arthritis. In our study, we rely on previously defined OCP subsets categorized by the level of CCR2 expression as circulatory-like committed CCR2hi OCPs, which are substantially expanded in arthritis, and marrow-resident CCR2lo OCPs of immature phenotype and behavior. Methods In order to perform transcriptome characterization of those subsets in the context of collagen-induced arthritis (CIA), we sorted CCR2hi and CCR2lo periarticular bone marrow OCPs of control and arthritic mice, and performed next-generation RNA sequencing (n=4 for each group) to evaluate the differential gene expression profile using gene set enrichment analysis with further validation. Results A disparity between CCR2hi and CCR2lo subset transcriptomes (863 genes) was detected, with the enrichment of pathways for osteoclast differentiation, chemokine and NOD-like receptor signaling in the CCR2hi OCP subset, and ribosome biogenesis in eukaryotes and ribosome pathways in the CCR2lo OCP subset. The effect of intervention (CIA) within each subset was greater in CCR2hi (92 genes) than in CCR2lo (43 genes) OCPs. Genes associated with the osteoclastogenic pathway (Fcgr1, Socs3), and several genes involved in cell adhesion and migration (F11r, Cd38, Lrg1) identified the CCR2hi subset and distinguish CIA from control group, as validated by qPCR (n=6 for control mice, n=9 for CIA mice). The latter gene set showed a significant positive correlation with arthritis clinical score and frequency of CCR2hi OCPs. Protein-level validation by flow cytometry showed increased proportion of OCPs expressing F11r/CD321, CD38 and Lrg1 in CIA, indicating that they could be used as disease markers. Moreover, osteoclast pathway-identifying genes remained similarly expressed (Fcgr1) or even induced by several fold (Socs3) in preosteoclasts differentiated in vitro from CIA mice compared to pre-cultured levels, suggesting their importance for enhanced osteoclastogenesis of the CCR2hi OCPs in arthritis. Conclusion Our approach detected differentially expressed genes that could identify distinct subset of OCPs associated with arthritis as well as indicate possible therapeutic targets aimed to modulate osteoclast activity.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| |
Collapse
|
31
|
Zhang J, Lu Q, Xin L, Lou Y, Xiao W, Wang Z, Zhao L, Xiong Z. A liquid chromatography-mass spectrometry untargeted urinary metabonomics combined with quantitative analysis of seven amino acids biomarkers on yaobitong capsule in the intervention of rheumatoid arthritis rats. J Sep Sci 2022; 45:4209-4223. [PMID: 36200630 DOI: 10.1002/jssc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Yaobitong capsule is a compound preparation of traditional Chinese medicine that has been widely applied in disease treatment. To insight into the therapeutic effects of the yaobitong capsule on rheumatoid arthritis and its mechanisms, a liquid chromatography-mass spectrometry untargeted urine metabolomics method was established and validated, combined with the quantitative analysis of seven potential amino acid biomarkers in rat urine. The results showed that 35 potential biomarkers were found in untargeted metabonomics, which was related to amino acid metabolism, lipid metabolism, energy metabolism, and purine metabolism. Moreover, seven amino acid biomarkers, including proline, methionine, glutamic acid, histidine, lysine, cysteine, and glutamine, were further separated and quantified in multiple-reaction monitoring with a positive ionization mode. Then the linearity, standard curves, accuracy, precision, limit of quantitation, recovery, stability, carryover, and matrix effect of the quantitative method were examined. Finally, the validated method was successfully applied to investigate the urine samples of the control group, adjuvant-induced rheumatoid arthritis model group, yaobitong capsule-treatment group, and positive control group in rats. The contents of seven amino acids in different groups showed significant differences. Consequently, our findings revealed that the yaobitong capsule exerted therapeutic effects on rheumatoid arthritis rats by maintaining amino acid homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Qing Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, P. R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| |
Collapse
|
32
|
Zhang LB, Yan Y, He J, Wang PP, Chen X, Lan TY, Guo YX, Wang JP, Luo J, Yan ZR, Xu Y, Tao QW. Epimedii Herba: An ancient Chinese herbal medicine in the prevention and treatment of rheumatoid arthritis. Front Chem 2022; 10:1023779. [PMID: 36465876 PMCID: PMC9712800 DOI: 10.3389/fchem.2022.1023779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive inflammatory and systemic autoimmune disease resulting in severe joint destruction, lifelong suffering and considerable disability. Diverse prescriptions of traditional Chinese medicine (TCM) containing Epimedii Herba (EH) achieve greatly curative effects against RA. The present review aims to systemically summarize the therapeutic effect, pharmacological mechanism, bioavailability and safety assessment of EH to provide a novel insight for subsequent studies. The search terms included were "Epimedii Herba", "yinyanghuo", "arthritis, rheumatoid" and "Rheumatoid Arthritis", and relevant literatures were collected on the database such as Google Scholar, Pubmed, Web of Science and CNKI. In this review, 15 compounds from EH for the treatment of RA were summarized from the aspects of anti-inflammatory, immunoregulatory, cartilage and bone protective, antiangiogenic and antioxidant activities. Although EH has been frequently used to treat RA in clinical practice, studies on mechanisms of these activities are still scarce. Various compounds of EH have the multifunctional traits in the treatment of RA, so EH may be a great complementary medicine option and it is necessary to pay more attention to further research and development.
Collapse
Affiliation(s)
- Liu-Bo Zhang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jun He
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Pei-Pei Wang
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Lan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xuan Guo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ping Wang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Luo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ze-Ran Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing-Wen Tao
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
33
|
Santos-Moreno P, Rodríguez-Vargas GS, Martínez S, Ibatá L, Rojas-Villarraga A. Metabolic Abnormalities, Cardiovascular Disease, and Metabolic Syndrome in Adult Rheumatoid Arthritis Patients: Current Perspectives and Clinical Implications. Open Access Rheumatol 2022; 14:255-267. [PMID: 36388145 PMCID: PMC9642585 DOI: 10.2147/oarrr.s285407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 01/03/2024] Open
Abstract
AIM Rheumatoid arthritis is a prevalent worldwide disease, associated with an increased risk of multiple metabolic abnormalities that generate a higher disease burden. OBJECTIVE To gather the available evidence on the epidemiology, pathophysiology, current perspectives, clinical implications and prognosis of metabolic abnormalities in patients with rheumatoid arthritis. METHODS This is a narrative literature review. Search was conducted in PubMed, OVID, and Taylor & Francis databases, using the following MeSH terms: "Arthritis Rheumatoid", "Metabolic Diseases", and "Metabolic Syndrome". RESULTS This study describes the main metabolic manifestations of rheumatoid arthritis. Research has recognized that rheumatoid arthritis and metabolic abnormalities share pathophysiological mechanisms with an additive effect that increases cardiovascular risk. In that context, appropriate antirheumatic treatment can also impact on cardiovascular risk. CONCLUSION There are metabolic abnormalities in rheumatoid arthritis patients that increase cardiovascular risk. Therefore, it is crucial to evaluate cardiovascular risk to provide appropriate comprehensive management to reduce morbidity and mortality in patients with this disease.
Collapse
Affiliation(s)
| | | | - Susan Martínez
- Epidemiology, Epithink Health Consulting, Bogotá, Colombia
| | - Linda Ibatá
- Epidemiology, Epithink Health Consulting, Bogotá, Colombia
| | | |
Collapse
|
34
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
35
|
Hussein R, Aboukhamis I. The association of serum RANKL levels with disease activity and hematological parameters in Syrian patients with rheumatoid arthritis. Biochem Biophys Rep 2022; 32:101373. [PMID: 36304516 PMCID: PMC9593879 DOI: 10.1016/j.bbrep.2022.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Our study aims to detect whether the serum RANKL could be a novel potential biomarker for activity and diagnosis of rheumatoid arthritis (RA). It included fifty-eight of RA patients and thirty of equal age and sex matched controls. Disease activity was determined by using DAS28-ESR. Serum Levels of RANKL were assayed by ELISA and compared with parameters such as ESR, CRP, Rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (ACPA). The serum RANKL levels were higher in RA patients compared to controls. There was an increase in its levels mean among post-menopausal patients compared to post-menopausal healthy group. RANKL levels were also higher in ACPA positive patients than ACPA negative. Our study found a correlation between RANKL levels and some parameters: DAS28, ACPA, CRP, and symptom duration. There was a moderate inverse correlation between RANKL levels and BMD. By ROC curve, our results displayed that the best cut-off value of RANKL was 178.99 pg/ml (sensitivity 79.31%; specificity 90%) to differentiate between RA patients and controls. In conclusion, elevated serum RANKL can be used as an indicator of disease activity and a diagnostic new biomarker in patients with early RA. Rheumatoid arthritis (RA) is categorized by chronic synovitis leads to cartilage degradation, and bone erosions. RANKL/RANK/OPG pathway stimulates osteoclasts and bone resorption. ACPA are associated with bone erosions. Serum RANKL correlates disease activity of Rheumatoid Arthritis. Serum RANKL is an innovative indicator in of Rheumatoid Arthritis patients.
Collapse
Affiliation(s)
- Rama Hussein
- Department of Microbiology, Hematology and Immunology, Faculty of Pharmacy, Damascus University, Syria
- Corresponding author.
| | - Imad Aboukhamis
- Department of Microbiology, Hematology and Immunology, Faculty of Pharmacy, Damascus University, Syria
- Department of Hematology and Immunology, Faculty of Pharmacy, Damascus University, Syria
| |
Collapse
|
36
|
Deloch L, Filkova M, Tomcik M. Editorial: Osteoarticular-immunological interplay in response to disease and therapy. Front Immunol 2022; 13:1052196. [PMID: 36304462 PMCID: PMC9593043 DOI: 10.3389/fimmu.2022.1052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maria Filkova
- Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Maria Filkova,
| | - Michal Tomcik
- Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
37
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
38
|
Liu XH, Ding JY, Zhu ZH, Wu XC, Song YJ, Xu XL, Ding DF. Recent advances in enzyme-related biomaterials for arthritis treatment. Front Chem 2022; 10:988051. [PMID: 36051622 PMCID: PMC9424673 DOI: 10.3389/fchem.2022.988051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and rheumatoid arthritis are the two most common types. The high prevalence of arthritis causes severe burdens on individuals, society and the economy. Currently, the primary treatment of arthritis is to relieve symptoms, but the development of arthritis cannot be effectively prevented. Studies have revealed that the disrupted balance of enzymes determines the pathological changes in arthritis. In particular, the increased levels of matrix metalloproteinases and the decreased expression of endogenous antioxidant enzymes promote the progression of arthritis. New therapeutic strategies have been developed based on the expression characteristics of these enzymes. Biomaterials have been designed that are responsive when the destructive enzymes MMPs are increased or have the activities of the antioxidant enzymes that play a protective role in arthritis. Here, we summarize recent studies on biomaterials associated with MMPs and antioxidant enzymes involved in the pathological process of arthritis. These enzyme-related biomaterials have been shown to be beneficial for arthritis treatment, but there are still some problems that need to be solved to improve efficacy, especially penetrating the deeper layer of articular cartilage and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related nano-therapy is challenging and promising for arthritis treatment.
Collapse
Affiliation(s)
- Xin-Hao Liu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| | - Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| |
Collapse
|
39
|
Ouyang D, Ma YZ, Zou J, Wang YL, Chen Z, Yang YY, Zou B, Li X, Cao JZ. Effectiveness and Safety of Iguratimod Monotherapy or Combined With Methotrexate in Treating Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:911810. [PMID: 35991879 PMCID: PMC9389904 DOI: 10.3389/fphar.2022.911810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives: We aimed to estimate the effectiveness and safety of iguratimod (IGU) monotherapy or in combination with methotrexate (MTX) in treating rheumatoid arthritis (RA) to provide an evidence-primarily-based foundation for clinical application. Methods: We conducted a systematic review of the meta-analysis using eight databases and two clinical trial websites searching for randomized controlled trials (RCTs) from conception to 15 March 2022, based on outcomes of patients with RA treated with IGU. The evidence quality assessment of primary outcomes was evaluated by the GRADE tool, and RevMan 5.3 and StataMP 14.0 were used to perform this research. Results: A total of 4302 patients with RA from 38 RCTs was included in this research. Pooled results demonstrated as follows: 1) Compared with methotrexate (MTX) alone, IGU alone was superior in improving ACR20 and DAS28-ESR, while having no significant difference in ACR50 and ACR70 [ACR20: (RR 1.15, 95% CI 1.05–1.27, p = 0.004); ACR50: (RR 0.97, 95% CI 0.66–1.44, p = 0.88); ACR70: (RR 0.92, 95% CI 0.45–1.90, p = 0.83); DAS28-ESR: mean difference (MD) −0.15, 95% CI −0.27 to −0.03, p = 0.01]. 2) Compared with MTX alone, IGU + MTX was more effective in improving ACR20, ACR50, ACR70, and DAS28-ESR. [ACR20: (RR 1.24, 95% CI 1.14–1.35, p < 0.00001); ACR50: (RR 1.96, 95% CI 1.62–2.39, p <0.00001); ACR70: (RR 1.91, 95% CI 1.41–2.57, p < 0.0001)]; [DAS28-ESR: (MD) −1.43, 95% CI −1.73 to −1.12, p < 0.00001]. 3) Compared with MTX + leflunomide (LEF), ACR20, ACR50, ACR70, and DAS28-ESR of IGU + MTX had no significant difference [ACR20: (RR 1.06, 95% CI 0.94–1.19, p = 0.38); ACR50: (RR 1.10, 95% CI 0.66–1.84, p = 0.72); ACR70: (RR 1.20, 95% CI 0.45–3.20, p = 0.71); DAS28-ESR: (MD −0.02, 95% CI −0.13 to −0.10, p = 0.77)]. 4) Compared with MTX + hydroxychloroquine (HCQ), IGU + MTX was superior in improving DAS28-ESR (MD −2.16, 95% CI −2.53 to −1.79, p < 0.00001). 5) Compared with MTX + tripterygium glycosides (TGs), IGU + MTX was more effective in improving DAS28-ESR (MD −0.94, 95% CI −2.36 to 0.48, p = 0.19). 6) There were no significant differences in adverse events (AEs) between the groups of IGU vs. MTX (RR 0.96, 95% CI 0.71–1.31, p = 0.80), IGU + MTX vs. MTX (RR 1.10, 95% CI 0.90–1.35, p = 0.34), IGU + MTX vs. MTX + HCQ (RR 0.64, 95% CI 0.29–1.42, p = 0.27), and IGU + MTX vs. MTX + TGs (RR 0.75, 95% CI 0.28–2.02, p = 0.57). The incidence of AEs in the IGU + MTX group was lower than the MTX + LEF group (RR 0.83, 95% CI 0.71–0.98, p = 0.03). Conclusion: Compared to the MTX alone subgroup, IGU alone offers clear advantages in improving ACR20 and DAS28-ESR, despite the insufficient evidence for DAS28-ESR findings. IGU + MTX shows clear benefits in improving ACR20, ACR50, ACR70, and DAS28-ESR scores compared to standard therapies. When the intervention (IGU alone or IGU + MTX) lasted for 52 weeks, it demonstrated superior efficacy in improving ACR20 of patients without prominent adverse events. Notably, IGU or IGU + MTX has apparent advantages in improving ACR20 of first-visit RA, and IGU + MTX has obvious advantages in improving DAS28-ESR of refractory RA. Furthermore, IGU + MTX does not increase the risk of leukopenia, but it can decrease the risk of liver function tests (LFTs), regardless of the age or the stage of RA. Clinical Trial Registration:https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42022295217
Collapse
Affiliation(s)
- Dan Ouyang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuan Zhi Ma
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Zou
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yong Long Wang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yu Ying Yang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Bin Zou
- General Surgery Department, University of South China Affiliated Changsha Central Hospital, Changsha, China
| | - Xin Li
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Xin Li, ; Jian Zhong Cao,
| | - Jian Zhong Cao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Xin Li, ; Jian Zhong Cao,
| |
Collapse
|
40
|
Zou J, Zhu L, Yang J, Feng J, Li S, Luo J, Li M, Ren Y, Dong J, Zhang Y, Tian L. Correlation between vitamin D metabolites and rheumatoid arthritis with osteoporosis by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). J Bone Miner Metab 2022; 40:696-703. [PMID: 35648223 DOI: 10.1007/s00774-022-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Our aim is to study the correlation between vitamin D metabolites and osteoporosis in rheumatoid arthritis (RA) by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). At the same time, other influencing factors and serum biomarkers of osteoporosis in patients with RA were studied. MATERIALS AND METHODS Patients with RA admitted from January 2020 to December 2020 were selected at our hospital. The subjects were divided into the normal bone mineral density (BMD), osteopenia, and osteoporosis groups. The differences of vitamin D (VD) metabolites among groups were compared. The Pearson correlation coefficient was used to analyze the relationship between BMD and various parameters. The relationship between BMD and influencing factors was studied by a multiple linear regression equation. RESULTS A total of 287 patients with RA were included. RA patients with 25-hydroxy vitamin D [25(OH)D] deficiency accounted for 43.63% and 25(OH)D insufficient levels accounted for 31.37%. There were 31 cases (10.80%) in the normal BMD group, 161 cases (56.10%) in the osteopenia group, and 95 cases (33.10%) in the osteoporosis group. The BMD of L1-4 (T- score) was negatively correlated with age (P < 0.05), course of disease (P < 0.05), and erythrocyte sedimentation rate (ESR) (P < 0.05), and positively correlated with 25(OH)D3 (P < 0.05). The multiple linear regression model results showed that age and 25(OH)D3 were independent predictors of BMD; this explained 22.11% of the total variation. CONCLUSIONS VD deficiency and insufficient are common in RA patients. RA patients can be appropriately supplemented with VD. VD3 may be a better choice.
Collapse
Affiliation(s)
- Jinmei Zou
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Lungang Zhu
- Department of Emergency, Mianyang Central Hospital, Mianyang, China
| | - Jing Yang
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China.
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Siyin Li
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Jiaang Luo
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Min Li
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Yan Ren
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Jianling Dong
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Yu Zhang
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| | - Lan Tian
- Department of Rheumatology and Immunology, Mianyang Central Hospital, No.12 Changjiaxiang, Jingzhong Street, Fucheng District, Mianyang, 621000, China
| |
Collapse
|
41
|
Effects of the Interleukin-6 Receptor Blocker Sarilumab on Metabolic Activity and Differentiation Capacity of Primary Human Osteoblasts. Pharmaceutics 2022; 14:pharmaceutics14071390. [PMID: 35890286 PMCID: PMC9318132 DOI: 10.3390/pharmaceutics14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin (IL-) 6 is a key factor in the inflammatory processes of rheumatoid arthritis. Several biologic agents target the IL-6 signaling pathway, including sarilumab, a monoclonal antibody that blocks the IL-6 receptor and inhibits IL-6-mediated cis- and trans-signaling. A careful analysis of the IL-6 signaling blockade should consider not only inflammatory processes but also the regenerative functions of IL-6. The purpose of this study was to investigate whether inhibition of the IL-6 receptors affects differentiation of human primary osteoblasts (hOB). The effects of sarilumab on viability and the differentiation capacity in unstimulated osteoblasts as well as after stimulation with various IL-6 and sIL6-R concentrations were determined. Sarilumab treatment alone did not affect the differentiation or induction of inflammatory processes in hOB. However, the significant induction of alkaline phosphatase activity which was observed after exogenous IL-6/sIL-6R costimulation at the highest concentrations was reduced back to baseline levels by the addition of sarilumab. The IL-6 receptor blockade also decreased gene expression of mediators required for osteogenesis and bone matrix maintenance. Our results demonstrate that concomitant administration of the IL-6 receptor blocker sarilumab can inhibit IL-6/sIL-6R-induced osteogenic differentiation.
Collapse
|
42
|
Cheng F, Li H, Liu J, Yan F, Chen Y, Hu H. EZH2 regulates the balance between osteoclast and osteoblast differentiation to inhibit arthritis-induced bone destruction. Genes Immun 2022; 23:141-148. [PMID: 35581496 DOI: 10.1038/s41435-022-00174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) has been noted to contribute to the pathogenesis of autoimmune diseases. This study sought to investigate the mechanism of EZH2 in osteoclast (OCL) and osteoblast (OBL) differentiation (OCLD/OBLD) and bone destruction in RA. The animal model of collagen-induced arthritis (CIA) was established, followed by arthritis index (AI) scoring and histological staining, and measurements of inflammatory cytokines levels. The number of OCLs was detected via Tartrate-resistant acid phosphatase (TRAP) staining, and levels of OBL markers were determined by Western blot analysis. Trimethylated histone H3 at lysine 27 (H3K27me3) expression and its enrichment in the Ndrg2 promoter were detected. Collaborative experiments were performed with GSK-J1 or sh-Ndrg2 in CIA mice with EZH2 knockdown. EZH2 was upregulated while Ndrg2 was downregulated in knee joint tissues of CIA mice. Silencing EZH2 reduced AI scores, pathological injury of the knee joint, levels of inflammatory cytokines, and TRAP-positive cells, and increased protein levels of RUNX2 and BMP2. EZH2 promoted H3K27me3 level in the Ndrg2 promoter to inhibit Ndrg2 transcription. H3K27me3 upregulation or Ndrg2 downregulation reversed the role of silencing EZH2 in bone destruction. Overall, EZH2 repressed OBLD and promoted OCLD to aggravate bone destruction in CIA mice through H3K27me3/Ndrg2.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Huimin Li
- Department of Traditional Chinese and Western Medicine, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Jing Liu
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Fengfeng Yan
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Yu Chen
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Haiyan Hu
- Department of Traditional Chinese and Western Medicine, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China.
| |
Collapse
|
43
|
Tseng HW, Samuel SG, Schroder K, Lévesque JP, Alexander KA. Inflammasomes and the IL-1 Family in Bone Homeostasis and Disease. Curr Osteoporos Rep 2022; 20:170-185. [PMID: 35567665 PMCID: PMC9209354 DOI: 10.1007/s11914-022-00729-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Inflammasomes are multimeric protein structures with crucial roles in host responses against infections and injuries. The importance of inflammasome activation goes beyond host defense as a dysregulated inflammasome and subsequent secretion of IL-1 family members is believed to be involved in the pathogenesis of various diseases, some of which also produce skeletal manifestations. The purpose of this review is to summarize recent developments in the understanding of inflammasome regulation and IL-1 family members in bone physiology and pathology and current therapeutics will be discussed. RECENT FINDINGS Small animal models have been vital to help understand how the inflammasome regulates bone dynamics. Animal models with gain or loss of function in various inflammasome components or IL-1 family signaling have illustrated how these systems can impact numerous bone pathologies and have been utilized to test new inflammasome therapeutics. It is increasingly clear that a tightly regulated inflammasome is required not only for host defense but for skeletal homeostasis, as a dysregulated inflammasome is linked to diseases of pathological bone accrual and loss. Given the complexities of inflammasome activation and redundancies in IL-1 activation and secretion, targeting these pathways is at times challenging. Ongoing research into inflammasome-mediated mechanisms will allow the development of new therapeutics for inflammasome/IL-1 diseases.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Selwin Gabriel Samuel
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
44
|
Yoshikawa Y, Tamura A, Tsuda S, Domae E, Zhang S, Yui N, Ikeo T, Yoshizawa T. Calcium phosphate-adsorbable and acid-degradable carboxylated polyrotaxane consisting of β-cyclodextrins suppresses osteoclast resorptive activity. Dent Mater J 2022; 41:624-632. [PMID: 35584937 DOI: 10.4012/dmj.2021-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, the potential of β-cyclodextrin-thread acid-degradable polyrotaxane (AdPRX) has been emphasized as a therapeutic agent for cholesterol-related metabolic disorders. In this study, we investigated whether carboxymethyl carbamate-modified AdPRX (CMC-AdPRX) can be used for adsorption to calcium phosphate to treat bone diseases. We first synthesized CMC-AdPRX and used it to coat the calcium phosphate plate. RAW264.7 cells were then differentiated into osteoclasts via a receptor activator of nuclear factor-κB ligand, and the number of osteoclasts and the area of absorption lacunae were determined. The number of tartrate-resistant acid phosphatase-positive multinucleated cells was reduced on the CMC-AdPRX-coated plate. The area of the absorption lacunae was smaller with CMC-AdPRX than with AdPRX, which was not carboxy-modified. Our results suggest that CMC-AdPRX can adsorb to calcium phosphate and act on differentiated osteoclasts to suppress their functional expression.
Collapse
Affiliation(s)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Susumu Tsuda
- Department of Chemistry, Osaka Dental University
| | - Eisuke Domae
- Department of Biochemistry, Osaka Dental University
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takashi Ikeo
- Department of Biochemistry, Osaka Dental University
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
45
|
Tseng CC, Lin YZ, Lin CH, Hwang DY, Li RN, Tsai WC, Ou TT, Wu CC, Lin YC, Sung WY, Chen KY, Chang SJ, Yen JH. Genetic and epigenetic alterations of cyclic AMP response element modulator in rheumatoid arthritis. Eur J Clin Invest 2022; 52:e13715. [PMID: 34783021 DOI: 10.1111/eci.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Genetic and epigenetic factors are strongly associated with the autoimmune disease rheumatoid arthritis (RA). Cyclic AMP response element modulator (CREM), a gene related to immune system regulation, has been implicated in various immune-mediated inflammatory processes, although it remains unknown whether CREM is involved in RA. METHODS This study enrolled 278 RA patients and 262 controls. Three variants [rs12765063, rs17499247, rs1213386] were identified through linkage disequilibrium and expression quantitative trait locus analysis, and CREM transcript abundance was determined by quantitative real-time polymerase chain reaction. The identified variants were genotyped using the TaqMan Allelic Discrimination assay, and CREM promoter methylation was assessed by bisulphite sequencing. Differences between groups and correlations between variables were assessed with Student's t-tests and Pearson's correlation coefficients. Associations between phenotypes and genotypes were evaluated with logistic regression. RESULTS Rheumatoid arthritis patients exhibited increased CREM expression (p < .0001), which was decreased by methotrexate (p = .0223) and biologics (p = .0001), but could not be attributed to CREM variants. Interestingly, rs17499247 displayed a significant association with serositis (p = .0377), and rs1213386 increased the risk of lymphadenopathy (p = .0398). Furthermore, seven CpG sites showed decreased methylation in RA (p = .0477~ p < .0001). CONCLUSIONS Collectively, our results indicate that CREM hypomethylation and CREM upregulation occur in RA and that CREM variants are involved in the development of serositis and lymphadenopathy in RA. This study highlights the novel roles of CREM in RA pathophysiology.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Zhao Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hui Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chih Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Humanities and Education, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
46
|
Zhang W, Chen Y, Liu Q, Zhou M, Wang K, Wang Y, Nie J, Gui S, Peng D, He Z, Li Z. Emerging nanotherapeutics alleviating rheumatoid arthritis by readjusting the seeds and soils. J Control Release 2022; 345:851-879. [DOI: 10.1016/j.jconrel.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
|
47
|
Kitaura H, Marahleh A, Ohori F, Noguchi T, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int J Mol Sci 2022; 23:ijms23031481. [PMID: 35163403 PMCID: PMC8835906 DOI: 10.3390/ijms23031481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine expressed by macrophages, monocytes, and T cells, and its expression is triggered by the immune system in response to pathogens and their products, such as endotoxins. TNF-α plays an important role in host defense by inducing inflammatory reactions such as phagocytes and cytocidal systems activation. TNF-α also plays an important role in bone metabolism and is associated with inflammatory bone diseases. TNF-α binds to two cell surface receptors, the 55kDa TNF receptor-1 (TNFR1) and the 75kDa TNF receptor-2 (TNFR2). Bone is in a constant state of turnover; it is continuously degraded and built via the process of bone remodeling, which results from the regulated balance between bone-resorbing osteoclasts, bone-forming osteoblasts, and the mechanosensory cell type osteocytes. Precise interactions between these cells maintain skeletal homeostasis. Studies have shown that TNF-α affects bone-related cells via TNFRs. Signaling through either receptor results in different outcomes in different cell types as well as in the same cell type. This review summarizes and discusses current research on the TNF-α and TNFR interaction and its role in bone-related cells.
Collapse
|
48
|
Shi W, Deng Y, Zhao C, Xiao W, Wang Z, Xiong Z, Zhao L. Integrative serum metabolomic analysis for preventive effects of Yaobitong capsule in adjuvant-induced rheumatoid arthritis rat based on RP/HILIC-UHPLC-Q-TOF MS. Anal Biochem 2022; 637:114474. [PMID: 34801482 DOI: 10.1016/j.ab.2021.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Yaobitong capsule (YBTC) has been used for the prevention and treatment of inflammation-related lumbago and leg pain. However, its intervention mechanism still remains unclear. This study was aimed to evaluate the control efficiency of YBTC on adjuvant-induced rheumatoid arthritis (RA) rats by metabonomic method and to explore its possible anti-arthritis mechanism. Taking into account the complexity of endogenous metabolites in serum samples, an integrated metabolomics method based on RP/HILIC-UHPLC-Q-TOF MS was developed, to overcome the limitations of a single chromatographic in this study. The results showed that 32 potential biomarkers of arthritis were identified, primarily related to amino acid metabolism, glucose metabolism, lipid metabolism and nucleotide metabolism. Further receiver operating characteristic analysis revealed that the area under the curve of two down-regulated metabolites (3-Hydroxy-hexadecanoic acid, 2-Oxoarginine) and one up-regulated metabolite (l-Glutamic acid) among 32 biomarkers were 0.906, 0.969 and 1.000, respectively, indicating that high predictive ability of this method for RA. In this study, an integrated serum metabolomics method based on high-resolution mass spectrometry was successfully established for the first time to study the intervention mechanism of YBTC in RA, providing evidence regarding the clinical application of YBTC and a new insight for the prevention of RA in the future.
Collapse
Affiliation(s)
- Wei Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Yajie Deng
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Chenyang Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, Jiangsu, 222001, China
| | - Zhili Xiong
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China.
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China.
| |
Collapse
|
49
|
Yaobitong capsules reshape and rebalance the gut microbiota and metabolites of arthritic rats: An integrated study of microbiome and fecal metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123096. [PMID: 34998201 DOI: 10.1016/j.jchromb.2021.123096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Yaobitong capsule (YBTC), a Chinese medicine compound preparation, has been demonstrated to affect multiple pathways associated with inflammation and exhibit potential anti-arthritis effect. In this study, an integrated omic approach based on UHPLC-Q-TOF MS and 16S rRNA sequencing analyses was proposed to reveal the anti-arthritis effect and possible mechanism of YBTC. The AIA rat model showed that YBTC significantly alleviated the typical symptoms of AIA rats such as weight, spleen index and pro-inflammatory cytokines. Fecal metabolomics results identified 41 differential metabolites, which mainly referred to tryptophan, bile acid and fatty acid metabolism. The gut microbiota played a crucially important role in anti-inflammatory immunity, 16S rRNA results indicated that YBTC changed the community structure and alleviated the microecological imbalance caused by rheumatoid arthritis (RA). Further ROC curve analysis demonstrated that it was reliable to identify RA by using 5 metabolites and 3 microorganisms (AUC > 0.83). In summary, it was the first time that the preventive effect of YBTC in RA was confirmed. The secretion of the microbiota-mediated metabolites was significantly improved by YBTC, through its callback effect on the disturbed gut microbiota. Thus, we have indicated a potential novel strategy for the prevention of RA via evaluation of intervention effects of YBTC on AIA rat model.
Collapse
|
50
|
The Neuropeptide VIP Limits Human Osteoclastogenesis: Clinical Associations with Bone Metabolism Markers in Patients with Early Arthritis. Biomedicines 2021; 9:biomedicines9121880. [PMID: 34944693 PMCID: PMC8698638 DOI: 10.3390/biomedicines9121880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
We aimed to evaluate the direct action of VIP on crucial molecules involved in human osteoclast differentiation and function. We also investigated the relationship between VIP serum levels and bone remodeling mediators in early arthritis patients. The expression of VIP receptors and osteoclast gene markers in monocytes and in vitro differentiated osteoclasts was studied by real-time PCR. NFATc1 activity was measured using a TransAM® kit. Osteoclastogenesis was confirmed by quantification of tartrate-resistant acid phosphatase positive multinucleated cells. OsteoAssay® Surface Multiple Well Plate was used to evaluate bone-resorbing activity. The ring-shaped actin cytoskeleton and the VPAC1 and VPAC2 expression were analyzed by immunofluorescence. We described the presence of VIP receptors in monocytes and mature osteoclasts. Osteoclasts that formed in the presence of VIP showed a decreased expression of osteoclast differentiation gene markers and proteolytic enzymes involved in bone resorption. VIP reduced the resorption activity and decreased both β3 integrin expression and actin ring formation. Elevated serum VIP levels in early arthritis patients were associated with lower BMD loss and higher serum OPG concentration. These results demonstrate that VIP exerts an anti-osteoclastogenic action impairing both differentiation and resorption activity mainly through the negative regulation of NFATc1, evidencing its bone-protective effects in humans.
Collapse
|