1
|
Chang L, Ran K, Wu F, Tian Y, Wang Y, Liu L, Wu X, Ouyang X, Li B, Ba Z, Gou S, Zhong C, Liu H, Zhang Y, Ni J. A new short pH-responsive anticancer peptide derived by intramolecular charge shielding strategy. Eur J Med Chem 2025; 291:117662. [PMID: 40267874 DOI: 10.1016/j.ejmech.2025.117662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
The pH-responsive anticancer peptides (ACPs) have been regarded as a new generation of prospective antitumor candidates due to their selectivity. However, the successful utilizations have been hampered by their narrow therapeutic index, poor stability and long sequence. Here, a new type of short pH-responsive ACPs was constructed by smart intramolecular charge shielding in histidine-rich peptide LH. This design would not depend on the introduction of additional anionic binding peptide, which might be an effective method for appreciably shortening the sequence of pH-responsive ACPs while improving their safety and stability. As expected, 2E-K stood out from the acquired peptides as it exhibited a considerable pH-dependent antitumor activity concomitant with remarkably improved therapeutic selectivity (14.5-fold increase) and extended serum half-life (3.6-fold enhancement) compared to LH. Experimental results showed that acid-activated 2E-K could efficiently induce tumor cell death by rapid membrane damage. Notably, the in vivo experiments further confirmed its excellent antitumor efficacy and low toxicity when compared with PTX, which demonstrating its superiority for in vivo application. In conclusion, our work opened a new avenue for developing short pH-responsive ACPs as promising alternative drugs in cancer treatment.
Collapse
Affiliation(s)
- Linlin Chang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kaixin Ran
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Fengzhan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Tian
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuxia Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Linfeng Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, 999078, PR China.
| |
Collapse
|
2
|
Rinaldi R, Laurino S, Salvia R, Russi S, De Stefano F, Galasso R, Sgambato A, Scieuzo C, Falco G, Falabella P. Biological Activity of Peptide Fraction Derived from Hermetia illucens L. (Diptera: Stratiomyidae) Larvae Haemolymph on Gastric Cancer Cells. Int J Mol Sci 2025; 26:1885. [PMID: 40076512 PMCID: PMC11899352 DOI: 10.3390/ijms26051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, characterised by poor prognosis and limited responsiveness to chemotherapy. There is a need for new and more effective anticancer agents. Antimicrobial peptides (AMPs) represent a promising class of biomolecules for this purpose. Naturally occurring in the innate immune system, these peptides can also exert cytotoxic effects against cancer cells, earning them the designation of "anticancer peptides" (ACPs). They have the potential to be a viable support for current chemotherapy schedules due to their selectivity against cancer cells and minor propensity to induce chemoresistance in cells. Insects are an excellent source of AMPs. Among them, due to its ability to thrive in hostile and microorganism-rich environments, we isolated a peptide fraction from Hermetia illucens L. (Diptera: Stratiomyidae) haemolymph to evaluate a possible anticancer activity. We tested Peptide Fractions (PFs) against AGS and KATO III gastric cancer cell lines. Data obtained indicated that PFs, especially those resulting from Escherichia coli and Micrococcus flavus infection (to boost immune response), were able to inhibit tumour cell growth by inducing apoptosis or cell cycle arrest in a cell line-specific manner. These results support further investigation into the use of antimicrobial peptides produced from insects as possible anticancer agents.
Collapse
Affiliation(s)
- Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Simona Laurino
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sabino Russi
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Federica De Stefano
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Rocco Galasso
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Lucchetti D, Rinaldi R, Artemi G, Salvia R, De Stefano F, Scieuzo C, Falabella P, Sgambato A. Peptide Fractions Extracted from the Hemolymph of Hermetia illucens Inhibit Growth and Motility and Enhance the Effects of Traditional Chemotherapeutics in Human Colorectal Cancer Cells. Int J Mol Sci 2025; 26:1891. [PMID: 40076518 PMCID: PMC11899838 DOI: 10.3390/ijms26051891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer is a leading cause of death worldwide, characterized by uncontrolled cell growth and multiple mutations. Chemotherapy is often associated with harmful side effects, and cancer cells may become resistant through various mechanisms. New approaches, which are able to address both the toxicity and resistance issues of chemotherapy, are of primary importance in cancer research. Antimicrobial peptides (AMPs), naturally occurring molecules in the innate immune system of all living organisms, have a wide spectrum of cytotoxic activities against cancer cells and could be a promising alternative to actual chemotherapeutics. Here, we tested peptide fractions, rich in AMPs, extracted from the hemolymph of the larvae of the insect Hermetia illucens on the HT29 and HCT116 human colorectal cancer cells, observing cell growth inhibition by cell accumulation in the G2/M phase and increased apoptosis. Furthermore, the peptide extract induced a significant cytoskeleton reorganization, resulting in reduced motility. These effects were more evident with the peptide fractions obtained from the Escherichia coli-infected larvae. The peptide fractions also enhanced the effects of traditional chemotherapeutics. Overall, the results obtained suggest the presence of biologically active molecules in the hemolymph of H. illucens larvae, confirming that insect-derived peptides are a promising research area in oncology.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (G.A.)
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| | - Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy
| | - Giulia Artemi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (G.A.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Spinoff XFlies S.R.L., University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Federica De Stefano
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Spinoff XFlies S.R.L., University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Spinoff XFlies S.R.L., University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (G.A.)
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| |
Collapse
|
4
|
Hong LQ, Ho TNT, Cu ST, Ngan LT, Tran NQ, Dang TT. Effective Strategies in Designing Chitosan-hyaluronic Acid Nanocarriers: From Synthesis to Drug Delivery Towards Chemotherapy. Curr Drug Deliv 2025; 22:41-62. [PMID: 38310441 DOI: 10.2174/0115672018275983231207101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 02/05/2024]
Abstract
The biomedical field faces an ongoing challenge in developing more effective anti-cancer medication due to the significant burden that cancer poses on human health. Extensive research has been conducted on the utilization of natural polysaccharides in nanomedicine owing to their properties of biocompatibility, biodegradability, non-immunogenicity, and non-toxicity. These characteristics make them a potent drug delivery system for cancer therapy. The chitosan hyaluronic acid nanoparticle (CSHANp) system, consisting of chitosan and hyaluronic acid nanoparticles, has exhibited considerable potential as a nanocarrier for various cancer drugs, rendering it one of the most auspicious systems presently accessible. The CSHANps demonstrate remarkable drug loading capacity, precise control over drug release, and exceptional selectivity towards cancer cells. These properties enhance the therapeutic effectiveness against cancerous cells. This article aims to provide a comprehensive analysis of CSHANp, focusing on its characteristics, production techniques, applications, and future prospects.
Collapse
Affiliation(s)
- Long-Quy Hong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Son T Cu
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Lien Tuyet Ngan
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Xu X, Yu YB. Role of antimicrobial peptides in gastrointestinal diseases: Recent advances. Shijie Huaren Xiaohua Zazhi 2024; 32:865-871. [DOI: 10.11569/wcjd.v32.i12.865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 12/28/2024] Open
Abstract
Gastrointestinal diseases, especially gastrointestinal inflammation and tumors, affect millions of people world-wide, adversely affecting the health and quality of life of individuals. In recent years, with the continuous advances of relevant research, the diagnosis and treatment of gastrointestinal diseases have made great progress. However, traditional therapies still have drawbacks such as poor efficacy and side effects. Antimicrobial peptides, as part of the innate immune defense of many organisms, not only have broad-spectrum antibacterial activity and immune modulating function, which can assist in maintaining homeostasis within the gastrointestinal tract, but also can specifically kill tumor cells, showing good prospects in the treatment of gastrointestinal diseases. In this review, we briefly outline the related studies on the role of antimicrobial peptides in gastrointestinal diseases in the last decade, and discuss the application potential and challenges that they face.
Collapse
Affiliation(s)
- Xia Xu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250000, Shandong Province, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250000, Shandong Province, China
| |
Collapse
|
6
|
Wang Y, Wang Y, Sun T, Xu J. Bacteriocins in Cancer Treatment: Mechanisms and Clinical Potentials. Biomolecules 2024; 14:831. [PMID: 39062544 PMCID: PMC11274894 DOI: 10.3390/biom14070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a severe threat to human health. Although conventional chemotherapy remains a cornerstone of cancer treatment, its significant side effects and the growing issue of drug resistance necessitate the urgent search for more efficient and less toxic anticancer drugs. In recent years, bacteriocins, antimicrobial peptides of microbial origin, have garnered significant attention due to their targeted antitumor activity. This unique activity is mainly attributed to their cationic and amphiphilic nature, which enables bacteriocins to specifically kill tumor cells without harming normal cells. When involving non-membrane-disrupting mechanisms, such as apoptosis induction, cell cycle blockade, and metastasis inhibition, the core mechanism of action is achieved by disrupting cell membranes, which endows bacteriocins with low drug resistance and high selectivity. However, the susceptibility of bacteriocins to hydrolysis and hemolysis in vivo limits their clinical application. To overcome these challenges, structural optimization of bacteriocins or their combination with nanotechnology is proposed for future development. This review aims to study the mechanism of action and current research status of bacteriocins as anticancer treatments, thus providing new insights for their clinical development and application.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
7
|
Wu X, Tian Y, Ran K, Yao J, Wang Y, Ouyang X, Mao W, Zhang J, Li B, Yang P, Ba Z, Liu H, Gou S, Zhong C, Zhang Y, Ni J. Rational design of a new short anticancer peptide with good potential for cancer treatment. Eur J Med Chem 2024; 273:116519. [PMID: 38795519 DOI: 10.1016/j.ejmech.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Anticancer peptides (ACPs) have regarded as a new generation of promising antitumor drugs due to the unique mode of action. The main challenge is to develop potential anticancer peptides with satisfied antitumor activity and low toxicity. Here, a series of new α-helical anticancer peptides were designed and synthesized based on the regular repeat motif KLLK. The optimal peptides 14E and 14Aad were successfully derived from the new short α-helical peptide KL-8. Our results demonstrated that 14E and 14Aad had good antitumor activity and low toxicity, exhibiting excellent selectivity index. This result highlighted that the desirable modification position and appropriate hydrophobic side-chain structure of acidic amino acids played critical roles in regulating the antitumor activity/toxicity of new peptides. Further studies indicated that they could induce tumor cell death via the multiple actions of efficient membrane disruption and intracellular mechanisms, displaying apparent superiority in combination with PTX. In addition, the new peptides 14E and 14Aad showed excellent antitumor efficacy in vivo and low toxicity in mice compared to KL-8 and PTX. Particularly, 14Aad with the longer side chain at the 14th site exhibited the best therapeutic performance. In conclusion, our work provided a new avenue to develop promising anticancer peptides with good selectivity for tumor therapy.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Tian
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Ran
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia Yao
- The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuxia Wang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
8
|
Alhammadi SHA, Baby B, Antony P, Jobe A, Humaid RSM, Alhammadi FJA, Vijayan R. Modeling the Binding of Anticancer Peptides and Mcl-1. Int J Mol Sci 2024; 25:6529. [PMID: 38928234 PMCID: PMC11203456 DOI: 10.3390/ijms25126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.
Collapse
Affiliation(s)
- Shamsa Husain Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Raghad Salman Mohammed Humaid
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatema Jumaa Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Yang X, Hua C, Lin L, Ganting Z. Antimicrobial peptides as potential therapy for gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2831-2841. [PMID: 37249612 DOI: 10.1007/s00210-023-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Since conventional therapy faces limitations in the field of different cancers as well as gastrointestinal cancers, that decrease the survival rate of patients, there is an urgent need to find new effective therapeutic approaches without the adverse effects of the traditional agents. Antimicrobial peptides (AMPs) attract much attention and are well known for their role in innate immunity. These peptides, in addition to their antimicrobial activity, exhibit strong anticancer potential against various types of malignancy. AMPs specifically target tumor cells and have selective toxicity for these cells without affecting normal cells. Here we aim to comprehensively overview the current knowledge in the field of using AMPs as novel therapeutic agents for gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| | - Cui Hua
- Tangshan Fengnan District Traditional Chinese Medicine Hospital, Tangshan, 063000, China.
| | - Lin Lin
- Tangshan Hongci Hospital, Tangshan, 063000, China
| | - Zhao Ganting
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
11
|
Outman A, Bouhrim M, Hountondji C, Noman OM, Alqahtani AS, Gressier B, Nedjar N, Eto B. Obtaining New Candidate Peptides for Biological Anticancer Drugs from Enzymatic Hydrolysis of Human and Bovine Hemoglobin. Int J Mol Sci 2023; 24:15383. [PMID: 37895063 PMCID: PMC10607105 DOI: 10.3390/ijms242015383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Enzymatic hydrolysis of bovine and human hemoglobin generates a diversity of bioactive peptides, mainly recognized for their antimicrobial properties. However, antimicrobial peptides stand out for their ability to specifically target cancer cells while preserving rapidly proliferating healthy cells. This study focuses on the production of bioactive peptides from hemoglobin and evaluates their anticancer potential using two distinct approaches. The first approach is based on the use of a rapid screening method aimed at blocking host cell protein synthesis to evaluate candidate anticancer peptides, using Lepidium sativum seed germination as an indicator. The results show that: (1) The degree of hydrolysis (DH) significantly influences the production of bioactive peptides. DH levels of 3 to 10% produce a considerably stronger inhibition of radicle growth than DH 0 (the native form of hemoglobin), with an intensity three to four times greater. (2) Certain peptide fractions of bovine hemoglobin have a higher activity than those of human hemoglobin. (3) The structural characteristics of peptides (random coil or alpha helix) play a crucial role in the biological effects observed. (4) The α137-141 peptide, the target of the study, was the most active of the fractions obtained from bovine hemoglobin (IC50 = 29 ± 1 µg/mL) and human hemoglobin (IC50 = 48 ± 2 µg/mL), proving to be 10 to 15 times more potent than the other hemoglobin fractions, attributed to its strong antimicrobial potential. The second approach to assessing anticancer activity is based on the preliminary in vitro analysis of hydrolysates and their peptide fractions, with a focus on the eL42 protein. This protein is of major interest due to its overexpression in all cancer cells, making it an attractive potential target for the development of anticancer molecules. With this in mind, astudy was undertaken using a method for labeling formylase (formyl-methionyl-tRNA transformylase (FMTS)) with oxidized tRNA. This approach was chosen because of the similarities in the interaction between formylase and the eL42 protein with oxidized tRNA. The results obtained not only confirmed the previous conclusions but also reinforced the hypothesis that the inhibition of protein synthesis plays a key role in the anticancer mechanism of these peptides. Indeed, the data suggest that samples containing α137-141 peptide (NKT) and total hydrolysates may have modulatory effects on the interaction between FMTS and oxidized tRNA. This observation highlights the possibility that the latter could influence molecular binding mechanisms, potentially resulting in a competitive situation where the ability of substrate tRNA to bind efficiently to ribosomal protein is compromised in their presence. Ultimately, these results suggest the feasibility of obtaining candidate peptides for biological anticancer drugs from both human and bovine hemoglobin sources. These scientific advances show new hope in the fight against cancer, which affects a large number of people around the world.
Collapse
Affiliation(s)
- Ahlam Outman
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France; (A.O.); (M.B.)
- UMR Transfrontalière BioEcoAgro N_1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, 59000 Lille, France
| | - Mohamed Bouhrim
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France; (A.O.); (M.B.)
| | - Codjo Hountondji
- Laboratoire Enzymologie de l’ARN (UR6-UPMC), Université Paris Sorbonne, 75252 Paris, France;
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, P.O. Box 2457, Riyadh 11451, Saudi Arabia (A.S.A.)
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, P.O. Box 2457, Riyadh 11451, Saudi Arabia (A.S.A.)
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France;
| | - Naïma Nedjar
- UMR Transfrontalière BioEcoAgro N_1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, 59000 Lille, France
| | - Bruno Eto
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France; (A.O.); (M.B.)
| |
Collapse
|
12
|
Hussein MMA, Abdelfattah-Hassan A, Eldoumani H, Essawi WM, Alsahli TG, Alharbi KS, Alzarea SI, Al-Hejaili HY, Gaafar SF. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front Pharmacol 2023; 14:1258387. [PMID: 37808196 PMCID: PMC10552532 DOI: 10.3389/fphar.2023.1258387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background: We investigated the anti-cancer effect of carnosine-loaded niosomes (Car-NIO) and melittin-loaded niosomes (Mel-NIO) with olaparib in breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The thin film method was used for preparing the niosomes and characterized in terms of morphology, size, and polydispersity index (PDI). We further evaluated the impact of these peptides on breast cancer cells viability, RT-qPCR assays, malondialdehyde (MDA) activity, and cell cycle progression, to determine if these are linked to carnosine and melittin's anti-proliferative properties. Results: Car-NIO and Mel-NIO in vitro study inhibited cancer cell viability. They have also upregulated the expression of protein 53 (P53), BCL2-Associated X Protein (Bax), caspase-9, caspase-3, programmed cell death 4 (PDCD4), and Forkhead box O3 (FOXO3), while downregulated the expression of B-cell lymphoma 2 (Bcl2), poly (ADP-ribose) polymerase (PARP 1), and MicroRNA-183 (miRNA-183). The MCF-7 cells were arrested at the G2/M phase in Car-NIO, on the other hand, the MDA-MB-231 cells were arrested at the S phase. While the Mel-NIO and olaparib arrested the MCF-7 and MDA-MB-231 cells at the G0/1 phase. Conclusion: Our study successfully declared that Mel-NIO had more anti-cancer effects than Car-NIO in both MCF-7 and MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Mohamed M. A. Hussein
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa M. Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hassan Y. Al-Hejaili
- Pharmaceutical Care Department, King Salman Bin Abdulaziz Medical City, Ministry of Health, Medina, Saudi Arabia
| | - Sara F. Gaafar
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Morbiato L, Quaggia C, Menilli L, Dalla Torre C, Barbon A, De Zotti M. Synthesis, Conformational Analysis and Antitumor Activity of the Naturally Occurring Antimicrobial Medium-Length Peptaibol Pentadecaibin and Spin-Labeled Analogs Thereof. Int J Mol Sci 2023; 24:13396. [PMID: 37686199 PMCID: PMC10487733 DOI: 10.3390/ijms241713396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Peptaibols are proteolysis-resistant, membrane-active peptides. Their remarkably stable helical 3D-structures are key for their bioactivity. They can insert themselves into the lipid bilayer as barrel staves, or lay on its surface like carpets, depending on both their length and the thickness of the lipid bilayer. Medium-length peptaibols are of particular interest for studying the peptide-membrane interaction because their length allows them to adopt either orientation as a function of the membrane thickness, which, in turn, might even result in an enhanced selectivity. Electron paramagnetic resonance (EPR) is the election technique used to this aim, but it requires the synthesis of spin-labeled medium-length peptaibols, which, in turn, is hampered by the poor reactivity of the Cα-tetrasubstituted residues featured in their sequences. After several years of trial and error, we are now able to give state-of-the-art advice for a successful synthesis of nitroxide-containing peptaibols, avoiding deleted sequences, side reactions and difficult purification steps. Herein, we describe our strategy and itsapplication to the synthesis of spin-labeled analogs of the recently discovered, natural, medium-length peptaibol pentadecaibin. We studied the antitumor activity of pentadecaibin and its analogs, finding potent cytotoxicity against human triple-negative breast cancer and ovarian cancer. Finally, our analysis of the peptide conformational preferences and membrane interaction proved that pentadecaibinspin-labeling does not alter the biological features of the native sequence and is suitable for further EPR studies. The nitroxide-containing pentadecaibins, and their synthetic strategy described herein, will help to shed light on the mechanism of the peptide-membrane interaction of medium-length peptaibols.
Collapse
Affiliation(s)
- Laura Morbiato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Celeste Quaggia
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Luca Menilli
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Chiara Dalla Torre
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| |
Collapse
|
14
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
15
|
Li N, Jiang X, Ma X, Qiu X, Chang H, Qiao Y, Luo H, Zhang Q. Antimicrobial peptides CS-piscidin-induced cell death involves activation of RIPK1/PARP, and modification with myristic acid enhances its stability and tumor-targeting capability. Discov Oncol 2023; 14:38. [PMID: 37000327 PMCID: PMC10066050 DOI: 10.1007/s12672-023-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Ovarian cancer (OC) is a highly lethal gynecological malignancy, often diagnosed at advanced stages with limited treatment options. Here, we demonstrate that the antimicrobial peptide CS-piscidin significantly inhibits OC cell proliferation, colony formation, and induces cell death. Mechanistically, CS-piscidin causes cell necrosis by compromising the cell membrane. Furthermore, CS-piscidin can activate Receptor-interacting protein kinase 1 (RIPK1) and induce cell apoptosis by cleavage of PARP. To improve tumor targeting ability, we modified CS-piscidin by adding a short cyclic peptide, cyclo-RGDfk, to the C-terminus (CS-RGD) and a myristate to the N-terminus (Myr-CS-RGD). Our results show that while CS-RGD exhibits stronger anti-cancer activity than CS-piscidin, it also causes increased cytotoxicity. In contrast, Myr-CS-RGD significantly improves drug specificity by reducing CS-RGD toxicity in normal cells while retaining comparable antitumor activity by increasing peptide stability. In a syngeneic mouse tumor model, Myr-CS-RGD demonstrated superior anti-tumor activity compared to CS-piscidin and CS-RGD. Our findings suggest that CS-piscidin can suppress ovarian cancer via multiple cell death forms and that myristoylation modification is a promising strategy to enhance anti-cancer peptide performance.
Collapse
Affiliation(s)
- Ning Li
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xingmei Jiang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Xiaoju Qiu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - HuangHuang Chang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Hui Luo
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
16
|
Chang L, Wu X, Ran K, Tian Y, Ouyang X, Liu H, Gou S, Zhang Y, Ni J. One New Acid-Activated Hybrid Anticancer Peptide by Coupling with a Desirable pH-Sensitive Anionic Partner Peptide. ACS OMEGA 2023; 8:7536-7545. [PMID: 36873017 PMCID: PMC9979329 DOI: 10.1021/acsomega.2c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Anticancer peptides (ACPs) are promising antitumor resources, and developing acid-activated ACPs as more effective and selective antitumor drugs would represent new progress in cancer therapy. In this study, we designed a new class of acid-activated hybrid peptides LK-LE by altering the charge shielding position of the anionic binding partner LE based on the cationic ACP LK and investigated their pH response, cytotoxic activity, and serum stability, in hoping to achieve a desirable acid-activatable ACP. As expected, the obtained hybrid peptides could be activated and exhibit a remarkable antitumor activity by rapid membrane disruption at acidic pH, whereas its killing activity could be alleviated at normal pH, showing a significant pH response compared with LK. Importantly, this study found that the peptide LK-LE3 with the charge shielding in the N-terminal of LK displayed notably low cytotoxicity and more stability, demonstrating that the position of charge masking is extremely important for the improvement of peptide toxicity and stability. In short, our work opens a new avenue to design promising acid-activated ACPs as potential targeting agents for cancer treatment.
Collapse
Affiliation(s)
- Linlin Chang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kaixin Ran
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Tian
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Research
Unit of Peptide Science, Chinese Academy
of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Institute
of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
17
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
18
|
Zhang Y, Wang C, Zhang W, Li X. Bioactive peptides for anticancer therapies. BIOMATERIALS TRANSLATIONAL 2023; 4:5-17. [PMID: 37206303 PMCID: PMC10189813 DOI: 10.12336/biomatertransl.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
Cancer is a serious concern in public health worldwide. Numerous modalities including surgery, radiotherapy, and chemotherapy, have been used for cancer therapies in clinic. Despite progress in anticancer therapies, the usage of these methods for cancer treatment is often related to deleterious side effects and multidrug resistance of conventional anticancer drugs, which have prompted the development of novel therapeutic methods. Anticancer peptides (ACPs), derived from naturally occurring and modified peptides, have received great attention in these years and emerge as novel therapeutic and diagnostic candidates for cancer therapies, because of several advantages over the current treatment modalities. In this review, the classification and properties of ACPs, the mode of action and mechanism of membrane disruption, as well as the natural sources of bioactive peptides with anticancer activities were summarised. Because of their high efficacy for inducing cancer cell death, certain ACPs have been developed to work as drugs and vaccines, evaluated in varied phases of clinical trials. We expect that this summary could facilitate the understanding and design of ACPs with increased specificity and toxicity towards malignant cells and with reduced side effects to normal cells.
Collapse
|
19
|
Antitumor Activity and Mechanism of Action of the Antimicrobial Peptide AMP-17 on Human Leukemia K562 Cells. Molecules 2022; 27:molecules27228109. [PMID: 36432210 PMCID: PMC9697079 DOI: 10.3390/molecules27228109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most common malignant diseases in the world. Hence, there is an urgent need to search for novel drugs with antitumor activity against cancer cells. AMP-17, a natural antimicrobial peptide derived from Musca domestica, has antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and fungi. However, its antitumor activity and potential mechanism of action in cancer cells remain unclear. In this study, we focused on evaluating the in vitro antitumor activity and mechanism of AMP-17 on leukemic K562 cells. The results showed that AMP-17 exhibited anti-proliferative activity on K562 cells with an IC50 value of 58.91 ± 3.57 μg/mL. The membrane integrity of K562 was disrupted and membrane permeability was increased after AMP-17 action. Further observation using SEM and TEM images showed that the cell structure of AMP-17-treated cells was disrupted, with depressions and pore-like breaks on the cell surface, and vacuolated vesicles in the cytoplasm. Furthermore, further mechanistic studies indicated that AMP-17 induced excessive production of reactive oxygen species and calcium ions release in K562 cells, which led to disturbance of mitochondrial membrane potential and blocked ATP synthesis, followed by activation of Caspase-3 to induce apoptosis. In conclusion, these results suggest that the antitumor activity of AMP-17 may be achieved by disrupting cell structure and inducing apoptosis. Therefore, AMP-17 is expected to be a novel potential agent candidate for leukemia treatment.
Collapse
|
20
|
Kaur J, Raza K, Preet S. Organogel mediated co-delivery of nisin and 5-fluorouracil: a synergistic approach against skin cancer. J Microencapsul 2022; 39:609-625. [PMID: 36472891 DOI: 10.1080/02652048.2022.2149871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The present study aimed to develop topical combinatorial therapy of nisin and 5-fluorouracil in a single nanosized formulation against skin cancer. METHODS Nisin and 5-fluorouracil were encapsulated in an organogel system (NF-OG) and investigated for morphology, physicochemical properties, cytotoxicity, encapsulation and release. NF-OG was evaluated against DMBA/TPA murine skin cancer in terms of tumour statistics, histoarchitecture, TUNEL and M1/M2 macrophages. RESULTS The optimised NF-OG formulation exhibited particle size of 185.1 ± 11.24 nm, zeta potential of -7.93 ± 0.60 mV, offered substantial drug loading and temporal release. NF-OG therapy led to improved cytotoxicity of nisin and 5-FU against B16-F10 cells, significant decrease in tumour volume (84.983 mm3) in treated group as compared to untreated group (490.482 mm3) accompanied by restoration of histoarchitecture and repolarization of macrophages. CONCLUSION The study yielded a promising delivery system exhibiting potent anticancer activity and forms the bases for further applications in clinical settings.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Biophysics, Basic Medical Sciences Block II, South Campus, Panjab University, Chandigarh, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences Block II, South Campus, Panjab University, Chandigarh, India
| |
Collapse
|
21
|
Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed Pharmacother 2022; 153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
|
22
|
Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. Polycationic peptide R7-G-Aβ25-35 selectively induces cell death in leukemia Jurkat T cells through speedy mitochondrial depolarization, and CASPASE-3 -independent mechanism. Biochem Biophys Rep 2022; 31:101300. [PMID: 35755270 PMCID: PMC9214795 DOI: 10.1016/j.bbrep.2022.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Background Methods Results Conclusion Polycationic arginine (R) residue bound Aβ25-35 peptide is cytotoxic to Jurkat cells. R7-G-Aβ25-35 is more effective killing leukemia cells than Aβ25-35-G-R7. R7-G-Aβ25-35 induces alteration of cell metabolism, and reduces cell proliferation. R7-G-Aβ25-35 provokes loss of ΔΨm and produces high amount of ROS. R7-G-Aβ25-35 is harmless to normal proliferative mesenchymal stromal cells.
Collapse
|
23
|
Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14071378. [PMID: 35890274 PMCID: PMC9320687 DOI: 10.3390/pharmaceutics14071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody–drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide–drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.
Collapse
|
24
|
Bakare OO, Gokul A, Fadaka AO, Wu R, Niekerk LA, Barker AM, Keyster M, Klein A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules 2022; 27:3703. [PMID: 35744828 PMCID: PMC9229691 DOI: 10.3390/molecules27123703] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
The quest for an extraordinary array of defense strategies is imperative to reduce the challenges of microbial attacks on plants and animals. Plant antimicrobial peptides (PAMPs) are a subset of antimicrobial peptides (AMPs). PAMPs elicit defense against microbial attacks and prevent drug resistance of pathogens given their wide spectrum activity, excellent structural stability, and diverse mechanism of action. This review aimed to identify the applications, features, production, expression, and challenges of PAMPs using its structure-activity relationship. The discovery techniques used to identify these peptides were also explored to provide insight into their significance in genomics, transcriptomics, proteomics, and their expression against disease-causing pathogens. This review creates awareness for PAMPs as potential therapeutic agents in the medical and pharmaceutical fields, such as the sensitive treatment of bacterial and fungal diseases and others and their utilization in preserving crops using available transgenic methods in the agronomical field. PAMPs are also safe to handle and are easy to recycle with the use of proteases to convert them into more potent antimicrobial agents for sustainable development.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 121001, Ogun State, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Bio labels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa;
| | - Ruomou Wu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (R.W.); (L.-A.N.); (A.M.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
25
|
Cheah YH, Liu CY, Yip BS, Wu CL, Peng KL, Cheng JW. Strategy to Enhance Anticancer Activity and Induced Immunogenic Cell Death of Antimicrobial Peptides by Using Non-Nature Amino Acid Substitutions. Biomedicines 2022; 10:biomedicines10051097. [PMID: 35625834 PMCID: PMC9138567 DOI: 10.3390/biomedicines10051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
There is an urgent and imminent need to develop new agents to fight against cancer. In addition to the antimicrobial and anti-inflammatory activities, many antimicrobial peptides can bind to and lyse cancer cells. P-113, a 12-amino acid clinically active histatin-rich peptide, was found to possess anti-Candida activities but showed poor anticancer activity. Herein, anticancer activities and induced immunogenic cancer cell death of phenylalanine-(Phe-P-113), β-naphthylalanine-(Nal-P-113), β-diphenylalanine-(Dip-P-113), and β-(4,4′-biphenyl)alanine-(Bip-P-113) substituted P-113 were studied. Among these peptides, Nal-P-113 demonstrated the best anticancer activity and caused cancer cells to release potent danger-associated molecular patterns (DAMPs), such as reactive oxygen species (ROS), cytochrome c, ATP, and high-mobility group box 1 (HMGB1). These results could help in developing antimicrobial peptides with better anticancer activity and induced immunogenic cell death in therapeutic applications.
Collapse
Affiliation(s)
- Yu-Huan Cheah
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Chun-Yu Liu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Bak-Sau Yip
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Kuang-Li Peng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Correspondence: ; Tel.: +886-3-5742763; Fax: +886-3-5715934
| |
Collapse
|
26
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23010524. [PMID: 35008951 PMCID: PMC8745237 DOI: 10.3390/ijms23010524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.
Collapse
|