1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Liu Q, Jia SX, Chi QN, Jin L, Chen XQ, Li J, Qi YK, Du SS. Efficient synthesis, stability-guided optimization and anticancer evaluation of bee venom peptide Melittin. Bioorg Chem 2025; 159:108344. [PMID: 40086188 DOI: 10.1016/j.bioorg.2025.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Natural cytotoxic peptides (NCPs) are emerging sources of novel anticancer chemotherapeutics. Especially, Melittin, which is the major component of bee venom and the first-in-class NCP, has been considered as a promising anticancer scaffold. Nevertheless, as a classical linear, cationic, amphipathic, and membrane-lytic peptide, Melittin may be easily degraded by proteases, suffering from poor stability, moderate anticancer durability, and severe hemolysis. In this study, applying the terminal modification and hybridization strategies, ten Melittin-based derivatives were designed, synthesized, and investigated for their anticancer potential. The robust and economic synthetic method, in vitro anticancer efficiency, time-kill kinetics, serum stability, anti-migration activity, hemolysis effects, and anticancer mechanism were explored. As expected, the Melittin-based derivatives exhibited highly potent cytotoxicity against all six tested cancer cell lines. In particular, compared with natural Melittin, the derived peptides LJ-5 containing both N-terminal acetylation and C-terminal hydrazidation, and LJ-6, the methotrexate MTX-GFLG-Melittin conjugate exhibited significantly improved proteolytic stability, more durable anticancer efficiency, higher anti-migration activity, as well as reduced hemolysis effects. Besides, it was further verified that LJ-5 and LJ-6 could efficiently disrupt the integrity of cancer cell membrane, localize to the mitochondria and rapidly reduce the mitochondrial membrane potential of cancer cells. Collectively, the economic synthetic method and stability-guided optimization were conducted on Melittin, affording hydrolysis-resistant LJ-5 and LJ-6 that may serve as anticancer candidates and useful references for further optimizations of cytotoxic peptides.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Xi Jia
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiao-Na Chi
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lan Jin
- National Glycoengineering Research Center and NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China
| | - Xin-Qi Chen
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiamin Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
3
|
Pedro G, Brasileiro FCDS, Ferreira RS, Bráz AMM, Laufer-Amorim R. Melittin inhibits proliferation, migration, and invasion in osteosarcoma cell lines using 2D and 3D models. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240053. [PMID: 40231306 PMCID: PMC11996085 DOI: 10.1590/1678-9199-jvatitd-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/08/2025] [Indexed: 04/16/2025] Open
Abstract
Background Osteosarcoma is the most common primary bone tumor in humans. It is a locally aggressive tumor at the primary site, with metastasis being the main cause of death in patients. Studies on dogs have gained prominence in oncology, as they are valuable spontaneous models of osteosarcoma. In the context of natural compounds, biotoxins are attracting increasing research interest as new therapeutic agents against cancer, such as melittin, that represents 40 to 50% of the dry weight of bee venom, and studies have already shown its antitumor effects. Methods We analyzed the anti-migratory and anti-invasive potential of melittin, with the wound healing and Transwell tests, apoptosis with Annexin V/IP and cell viability with the MTT test in 2D and 3D models. Results Melittin had a cytotoxic effect on osteosarcoma cell lines, with an IC50 between 1.5 and 2.5 µg/mL. In the wound healing test and Transwell test, melittin prevented cell migration and invasion, resulting in cell death due to iodide propidium marking in canine, murine and human cell lines. Melittin exhibited cytotoxicity in a 3D model of osteospheres, with a significantly higher IC50 in this type of culture, with values between 3.5 and 4.0 µg/mL. Conclusion We conclude that melittin has antitumor and antimetastatic properties in canine, murine and human osteosarcoma cell lines. Consequently, we believe that further research on this promising compound will facilitate its application in the development of therapeutic agents for osteosarcoma, ultimately contributing to improved survival outcomes for cancer patients.
Collapse
Affiliation(s)
- Giovana Pedro
- School of Veterinary Medicine and Animal Science, São Paulo State
University (UNESP), Botucatu, SP, Brazil
| | | | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Márcia Marques Bráz
- Flow Cytometry Laboratory, Applied Biotechnology Laboratory,
Clinical Hospital of Botucatu Medical School, Botucatu, SP, Brazil
| | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State
University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
4
|
Zhang D, Wang T, Zhang X, Xu Y, Ming J, Wang X, Liu Z, Li J, Su X. Synchronously Delivering Melittin and Evoking Ferroptosis via Tumor Microenvironment-Triggered Self-Destructive Metal-Organic Frameworks to Boost Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2500003. [PMID: 39989111 DOI: 10.1002/adhm.202500003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/13/2025] [Indexed: 02/25/2025]
Abstract
The primary goal of treating malignant tumors is to efficiently eliminate the primary tumor and prevent metastasis and recurrence. Unfortunately, the immunosuppressive tumor microenvironment (TME) is a significant obstacle to effective oncotherapy. Herein, a therapeutic strategy based on melittin (MLT) encapsulated in hyaluronic acid-modified metal-organic frameworks (MOFs) is pioneered, focusing on the safe delivery and TME-responsive release of MLT to reshaping the immunosuppressive TME and simultaneously activating the immune system to eradicate cancerous cells. Iron-based MOFs respond to glutathione and pH, degrade within a moderately acidic TME, and achieve tumor-specific release of MLT. Additionally, the iron-mediated Fenton reaction produces reactive oxygen species that augment oxidative stress, ultimately leading to tumor-specific ferroptosis, whereas MLT-induced membrane disruption promotes immunogenic cell death to activate the immune system. In combination with the immune checkpoint inhibitor anti-PD-L1, this nanodrug elicits potent antitumor immune responses, facilitating the infiltration of effector T cells and enhancing systemic antitumor T cell immunity to suppress both primary and distant tumors. This study demonstrates the tremendous potential of nanoscale self-destructive MOFs for the targeted transport and controlled release of MLT and reveals the promoting effect of combined MLT and ferroptosis delivery on cancer immunotherapy.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingting Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
| | - Xiaoxiao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhenfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingchao Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
5
|
Małek A, Strzemski M, Kapka-Skrzypczak L, Kurzepa J. Anticancer Activity of Melittin-Containing Bee Venom Fraction Against Glioblastoma Cells In Vitro. Int J Mol Sci 2025; 26:2376. [PMID: 40141020 PMCID: PMC11942036 DOI: 10.3390/ijms26062376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Previous observations indicating a lower incidence of various types of cancer in beekeepers suggest that greater exposure to stings reduces the risk of cancer development. However, it is not known which of the active compounds of the bee venom (BV) may be responsible for the observed properties. The aim of this study is to evaluate the anti-glioblastoma effect of the main BV fractions. In addition, the effect of BV fractions on the activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) was assessed. Commercially available BV was divided into three fractions containing one of the main BV components: apamin (fraction #1), phospholipase A2 (fraction #2), or melittin (fraction #3). The viability of glioblastoma lines (LN18 and LN229) compared to a physiological line (human MO3.13) was assessed using the MTT. MMP-2 and MMP-9 activity was assessed using gelatin zymography. Tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) levels in cell culture media were measured with the ELISA method. The fraction containing apamin did not show cytotoxic activity up to a concentration of 100 µg/mL. The fraction containing phospholipase A2 partially reduced the cells' viability at a concentration of 100 µg/mL. The greatest activity was demonstrated by the melittin-containing fraction which completely reduced the viability of glioma cells from a concentration of 2.5 μg/mL and inhibited the activity of the assessed metalloproteinases in a dose-dependent manner. After 72 h of incubation, the highest concentrations of TIMP-1 and TIMP-2 (approximately 150 ng/mL and 100 ng/mL, respectively) were observed in the LN229 line. In all tested lines, fraction #3, crude BV, and melittin reduced the secretion of both inhibitors into the medium in a dose-dependent manner. The melittin-containing fraction possessed anti-glioma properties in vitro, suggesting that melittin may be the main anticancer compound of BV.
Collapse
Affiliation(s)
- Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland;
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
6
|
Song W, Zhang Q, Cao Z, Jing G, Zhan T, Yuan Y, Kang N, Zhang Q. Targeting SERCA2 in Anti-Tumor Drug Discovery. Curr Drug Targets 2025; 26:1-16. [PMID: 39323343 DOI: 10.2174/0113894501325497240918042654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
SERCA2, a P-type ATPase located on the endoplasmic reticulum of cells, plays an important role in maintaining calcium balance within cells by transporting calcium from the cytoplasm to the endoplasmic reticulum against its concentration gradient. A multitude of studies have demonstrated that the expression of SERCA2 is abnormal in a wide variety of tumor cells. Consequently, research exploring compounds that target SERCA2 may offer a promising avenue for the development of novel anti-tumor drugs. This review has summarized the anti-tumor compounds targeting SERCA2, including thapsigargin, dihydroartemisinin, curcumin, galangin, etc. These compounds interact with SERCA2 on the endoplasmic reticulum membrane, disrupting intracellular calcium ion homeostasis, leading to tumor cell apoptosis, autophagy and cell cycle arrest, ultimately producing anti-tumor effects. Additionally, several potential research directions for compounds targeting SERCA2 as clinical anti-cancer drugs have been proposed in the review. In summary, SERCA2 is a promising anti-tumor target for drug discovery and development.
Collapse
Affiliation(s)
- Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyong Cao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Pareek A, Mehlawat K, Tripathi K, Pareek A, Chaudhary S, Ratan Y, Apostolopoulos V, Chuturgoon A. Melittin as a therapeutic agent for rheumatoid arthritis: mechanistic insights, advanced delivery systems, and future perspectives. Front Immunol 2024; 15:1510693. [PMID: 39759520 PMCID: PMC11695321 DOI: 10.3389/fimmu.2024.1510693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential. Hence, the review summarizes current insights into BV's composition, antiarthritic mechanism and pharmacological benefits, focusing on melittin. Constituting 50-60% of BV, melittin notably downregulates nuclear factor Kappa B (NF-κB) activity, inhibits MMP-1 and MMP-8, and diminishes tumor necrosis factor (TNF-α), all of which contribute to the mitigation of type 2 collagen degradation. Despite its potential, melittin exhibits hemolytic activity and can significantly affect cell membranes, limiting its application, which poses a challenge to its therapeutic use. To overcome these challenges, delivery techniques utilizing nanocarriers and modifications in amino acid sequencing have been developed. Recent advancements in delivery systems, including nanocarriers, transdermal patches, and nanoemulsions, aim to minimize toxicity, expanding its therapeutic utility for RA. This article explores these novel strategies, underlining the evolving role of melittin in RA management.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | | | | | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Duan X, Zou H, Yang J, Liu S, Xu T, Ding J. Melittin-incorporated nanomedicines for enhanced cancer immunotherapy. J Control Release 2024; 375:285-299. [PMID: 39216597 DOI: 10.1016/j.jconrel.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy is a rapidly developing and effective strategy for cancer therapy. Among various immunotherapy approaches, peptides have garnered significant attention due to their potent immunomodulatory effects. In particular, melittin emerged as a promising candidate to enhance cancer immunotherapy by inducing immunogenic cell death, promoting the maturation of antigen-presenting cells, activating T cells, enhancing the infiltration and cytotoxicity of effector lymphocytes, and modulating macrophage phenotypes for relieving immunosuppression. However, the clinical application of melittin is limited by poor targeting and systemic toxicity. To overcome these challenges, melittin has been incorporated into biomaterials and related nanotechnologies, resulting in extended circulation time in vivo, improved targeting, reduced adverse effects, and enhanced anti-cancer immunological action. This review provides an in-depth analysis of the immunomodulatory effects of melittin-incorporated nanomedicines and examines their development and challenges for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Xuefeng Duan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Haoyang Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
9
|
Vahidinia Z, Barati S, Azami Tameh A, Bagheri-Mohammadi S, Garshasebi A. Bee venom as a promising therapeutic strategy in central nervous system diseases. Neuropeptides 2024; 107:102451. [PMID: 38936137 DOI: 10.1016/j.npep.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Central nervous system (CNS) disorders are one of the leading health problems today, accounting for a large proportion of global morbidity and mortality. Most these disorders are characterized by high levels of oxidative stress and intense inflammatory responses in degenerated neuronal tissues. While extensive research has been conducted on CNS diseases, but few breakthroughs have been made in treatment methods. To date, there are no disease-modifying drugs available for CNS treatment, underscoring the urgent need for finding effective medications. Bee venom (BV), which is produced by honeybee workers' stingers, has been a subject of interest and study across various cultures. Over the past few decades, extensive research has focused on BV and its therapeutic potentials. BV consists a variety of substances, mainly proteins and peptides like melittin and phospholipase A2 (PLA2). Research has proven that BV is effective in various medical conditions, including pain, arthritis and inflammation and CNS disorders such as Multiple sclerosis, Alzheimer's disease and Parkinson's disease. This review provides a comprehensive overview of the existing knowledge concerning the therapeutic effects of BV and its primary compounds on various CNS diseases. Additionally, we aim to shed light on the potential cellular and molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Garshasebi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Nie S, Zhou J, Zheng X, Wei X, Zhang J, Shen X, Zhang W. CD133 ligand-enhanced etoposide-liposome complex for targeted killing of lung cancer cells. Biotechnol Prog 2024; 40:e3460. [PMID: 38558545 DOI: 10.1002/btpr.3460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Lung cancer has a high incidence rate and a low cure rate, hence the urgent need for effective treatment methods. Current lung cancer drugs have several drawbacks, including low specificity, poor targeting, drug resistance, and irreversible damage to normal tissues. Therefore, there is a need to develop a safe and effective new drug that can target and kill tumor cells. In this study, we combined nanotechnology and biotechnology to develop a CD133 ligand-modified etoposide-liposome complex (Lipo@ETP-CD133) for targeted therapy of lung cancer. The CD133 ligand targeted lung cancer stem cells, causing the composite material to aggregate at the tumor site, where high levels of ETP liposomes could exert a strong tumor-killing effect. Our research results demonstrated that this nano-drug had efficient targeting and tumor-killing effects, indicating its potential for clinical application.
Collapse
Affiliation(s)
- Shiwei Nie
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Junzheng Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Xiaodong Zheng
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Xudong Wei
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Jinrui Zhang
- Supply House, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Xiaojuan Shen
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Weimin Zhang
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| |
Collapse
|
11
|
Easwaran M, Abdelrahman F, Madasamy S, Venkidasamy B. Phage-delivered melittin for oral squamous cell Carcinoma: A potential therapeutic agent. Int Immunopharmacol 2024; 134:112163. [PMID: 38705763 DOI: 10.1016/j.intimp.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Affiliation(s)
- Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
12
|
Jafari Z, Sadeghi S, Dehaghi MM, Bigham A, Honarmand S, Tavasoli A, Hoseini MHM, Varma RS. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch Pharm (Weinheim) 2024; 357:e2300569. [PMID: 38251938 DOI: 10.1002/ardp.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi Dehaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Department of Chemistry, Centre of Excellence for Research in Sustainable Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
13
|
Honari P, Shahbazzadeh D, Behdani M, Pooshang Bagheri K. Highly in vitro anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer cells. Toxicon 2024; 241:107673. [PMID: 38432612 DOI: 10.1016/j.toxicon.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Development of promising medicines from natural sources, specially venom, is of highly necessitated to combat against life-threatening cancers. Non-small cell lung cancer (NSCLC) has a significant percentage of mortalities. Melittin, from bee venom, is a potent anticancer peptide but its toxicity has limited its therapeutic applications. Accordingly, this study aims to synthesize niosomes with suitable stability and capacity for carrying melittin as a drug. Additionally, it seeks to evaluate the anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer. METHODS The niosome was prepared by thin film hydration method. Cytotoxicity and apoptosis were assessed on A549, Calu-3, and MRC5 cells. Real-time PCR was used to determine expression of apoptotic and pro-apoptotic Bax, Bcl2, and Casp3 genes. Immunocytochemistry (ICC) was also used to confirm expression of the abovementioned genes. Furthermore, wound healing assay was performed to compare inhibition effects of melittin-loaded niosomes with free melittin on migration of cancer cells. RESULTS IC50 values of melittin-loaded niosomes for A549, Calu-3, and MRC5 cells were respectively 0.69 μg/mL, 1.02 μg/mL, and 2.56 μg/mL after 72 h. Expression level of Bax and Casp3 increased '10 and 8' and '9 and 10.5' fold in A549 and Calu-3, whereas Bcl2 gene expression decreased 0.19 and 0.18 fold in the mentioned cell lines. The cell migration inhibited by melittin-loaded niosomes. CONCLUSIONS Melittin-loaded niosomes had more anti-cancer effects and less toxicity on normal cells than free melittin. Furthermore, it induced apoptosis and inhibited cancer cells migration. Our results showed that melittin-loaded niosomes may be a drug lead and it has the potential to be future developed for lung cancer treatment.
Collapse
Affiliation(s)
- Pooyan Honari
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran.
| |
Collapse
|
14
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
15
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol 2024; 14:1321386. [PMID: 38298540 PMCID: PMC10827920 DOI: 10.3389/fmicb.2023.1321386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Jiangshui Yuan
- Department of Clinical Laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xueli Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
- Medical Ethics Committee Office, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Shicui Zhang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| |
Collapse
|
17
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
18
|
Jin X, Wu H, Yu J, Cao Y, Zhang L, Zhang Z, Lv H. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. J Control Release 2024; 365:802-817. [PMID: 38092255 DOI: 10.1016/j.jconrel.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmaceutics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jie Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanni Cao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lanyi Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Kong Y, Xu L, Cao J. Preparation of a Novel Multifunctional Cationic Liposome Drug-carrying System and its Functional Study on Lung Cancer. Anticancer Agents Med Chem 2024; 24:1085-1095. [PMID: 38803174 DOI: 10.2174/0118715206294695240522075454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Low-dose chemotherapy is a promising treatment strategy that may be improved by controlled delivery. OBJECTIVE This study aimed to design polyethylene glycol-stabilized bilayer-decorated magnetic Cationic Liposomes (CLs) as a drug delivery system for integrated functional studies of lung cancer cell therapy and imaging. METHODS A novel multifunctional folic acid targeting magnetic CLs docetaxel drug-loading system (FA-CLs-Fe- DOC) was prepared and tested for its physical properties, encapsulation rate and drug release performance. The feasibility of FA-CLs-Fe-DOC ability to inhibit tumor cells and act as an MRI contrast agent was investigated in vitro, and the target recognition and therapeutic ability of FA-CLs-Fe-DOC was studied in vivo. RESULTS FA-CLs-Fe-DOC had a particle size of 221.54 ± 6.42 nm and a potential of 28.64 ± 3.56 mv, with superparamagnetic properties and better stability. The encapsulation rate was 95.36 ± 1.63%, and the drug loading capacity was 9.52 ± 0.22%, which possessed the drug slow-release performance and low cytotoxicity and could effectively inhibit the proliferation of lung cancer cells, promoting apoptosis of lung cancer cells. MRI showed that it had the function of tracking and localization of lung cancer cells. In vivo experiments confirmed the targeted recognition property and therapeutic function of lung cancer cells. CONCLUSION In this study, we successfully prepared an FA-CLs-Fe-DOC capable of specifically targeting lung cancer cells with integrated functions of efficient lung cancer cell killing and imaging localization. This targeted drug packaging technology may provide a new strategy for the design of integrated carriers for targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Yi Kong
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan Province, P.R. China
| | - Li Xu
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan Province, P.R. China
| | - Jun Cao
- The First Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan Province, P.R. China
| |
Collapse
|
20
|
Meng JS, He Y, Yang HB, Zhou LP, Wang SY, Feng XL, Yahya Al-Shargi O, Yu XM, Zhu LQ, Ling CQ. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:72-82. [PMID: 38307819 DOI: 10.1016/j.joim.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.
Collapse
Affiliation(s)
- Jing-Shun Meng
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China; Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China; Department of Oncology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun He
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Heng-Bin Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Li-Ping Zhou
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Si-Yuan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xi-Lin Feng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Yantai Fuheng Biological Technology Co., Ltd., Yantai 264006, Shandong Province, China
| | - Omar Yahya Al-Shargi
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiao-Min Yu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li-Qing Zhu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Chang-Quan Ling
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China; Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
21
|
Li X, Li Z, Meng YQ, Qiao H, Zhai KR, Li ZQ, Wei SL, Li B. Melittin kills A549 cells by targeting mitochondria and blocking mitophagy flux. Redox Rep 2023; 28:2284517. [PMID: 38041592 PMCID: PMC11001274 DOI: 10.1080/13510002.2023.2284517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
Melittin, a naturally occurring polypeptide found in bee venom, has been recognized for its potential anti-tumor effects, particularly in the context of lung cancer. Our previous study focused on its impact on human lung adenocarcinoma cells A549, revealing that melittin induces intracellular reactive oxygen species (ROS) burst and oxidative damage, resulting in cell death. Considering the significant role of mitochondria in maintaining intracellular redox levels and ROS, we further examined the involvement of mitochondrial damage in melittin-induced apoptosis in lung cancer cells. Our findings demonstrated that melittin caused changes in mitochondrial membrane potential (MMP), triggered mitochondrial ROS burst (Figure 1), and activated the mitochondria-related apoptosis pathway Bax/Bcl-2 by directly targeting mitochondria in A549 cells (Figure 2). Further, we infected A549 cells using a lentivirus that can express melittin-Myc and confirmed that melittin can directly target binding to mitochondria, causing the biological effects described above (Figure 2). Notably, melittin induced mitochondrial damage while inhibiting autophagy, resulting in abnormal degradation of damaged mitochondria (Figure 5). To summarize, our study unveils that melittin targets mitochondria, causing mitochondrial damage, and inhibits the autophagy-lysosomal degradation pathway. This process triggers mitoROS burst and ultimately activates the mitochondria-associated Bax/Bcl-2 apoptotic signaling pathways in A549 cells.
Collapse
Affiliation(s)
- Xuan Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Zheng Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Hui Qiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ke-Rong Zhai
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Zhen-Qing Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Shi-Lin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| |
Collapse
|
22
|
Haque S, Hussain A, Joshi H, Sharma U, Sharma B, Aggarwal D, Rani I, Ramniwas S, Gupta M, Tuli HS. Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models. J Cancer Res Clin Oncol 2023; 149:17709-17726. [PMID: 37919474 DOI: 10.1007/s00432-023-05458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, 13306, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markendashwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
23
|
Yaacoub C, Wehbe R, Roufayel R, Fajloun Z, Coutard B. Bee Venom and Its Two Main Components-Melittin and Phospholipase A2-As Promising Antiviral Drug Candidates. Pathogens 2023; 12:1354. [PMID: 38003818 PMCID: PMC10674158 DOI: 10.3390/pathogens12111354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Viruses are known to infect most types of organisms. In humans, they can cause several diseases that range from mild to severe. Although many antiviral therapies have been developed, viral infections continue to be a leading cause of morbidity and mortality worldwide. Therefore, the discovery of new and effective antiviral agents is desperately needed. Animal venoms are a rich source of bioactive molecules found in natural goods that have been used since ancient times in alternative medicine to treat a variety of human diseases. Recently, and with the onset of the COVID-19 pandemic, scientists have regained their interest in the possible use of natural products, such as bee venom (BV), as a potential antiviral agent to treat viral infections. BV is known to exert many therapeutic activities such as anti-proliferative, anti-bacterial, and anti-inflammatory effects. However, there is limited discussion of the antiviral activity of BV in the literature. Therefore, this review aims to highlight the antiviral properties of BV and its two primary constituents, melittin (MEL) and phospholipase A2 (PLA2), against a variety of enveloped and non-enveloped viruses. Finally, the innovative strategies used to reduce the toxicity of BV and its two compounds for the development of new antiviral treatments are also considered.
Collapse
Affiliation(s)
- Carole Yaacoub
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
| | - Rim Wehbe
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
- Faculty of Sciences III, Department of Biology, Michel Slayman Tripoli Campus, Lebanese University, Tripoli 1352, Lebanon
| | - Bruno Coutard
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
24
|
Hussein MMA, Abdelfattah-Hassan A, Eldoumani H, Essawi WM, Alsahli TG, Alharbi KS, Alzarea SI, Al-Hejaili HY, Gaafar SF. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front Pharmacol 2023; 14:1258387. [PMID: 37808196 PMCID: PMC10552532 DOI: 10.3389/fphar.2023.1258387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background: We investigated the anti-cancer effect of carnosine-loaded niosomes (Car-NIO) and melittin-loaded niosomes (Mel-NIO) with olaparib in breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The thin film method was used for preparing the niosomes and characterized in terms of morphology, size, and polydispersity index (PDI). We further evaluated the impact of these peptides on breast cancer cells viability, RT-qPCR assays, malondialdehyde (MDA) activity, and cell cycle progression, to determine if these are linked to carnosine and melittin's anti-proliferative properties. Results: Car-NIO and Mel-NIO in vitro study inhibited cancer cell viability. They have also upregulated the expression of protein 53 (P53), BCL2-Associated X Protein (Bax), caspase-9, caspase-3, programmed cell death 4 (PDCD4), and Forkhead box O3 (FOXO3), while downregulated the expression of B-cell lymphoma 2 (Bcl2), poly (ADP-ribose) polymerase (PARP 1), and MicroRNA-183 (miRNA-183). The MCF-7 cells were arrested at the G2/M phase in Car-NIO, on the other hand, the MDA-MB-231 cells were arrested at the S phase. While the Mel-NIO and olaparib arrested the MCF-7 and MDA-MB-231 cells at the G0/1 phase. Conclusion: Our study successfully declared that Mel-NIO had more anti-cancer effects than Car-NIO in both MCF-7 and MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Mohamed M. A. Hussein
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa M. Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hassan Y. Al-Hejaili
- Pharmaceutical Care Department, King Salman Bin Abdulaziz Medical City, Ministry of Health, Medina, Saudi Arabia
| | - Sara F. Gaafar
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Yang JC, Lee J, Lim SJ, Kwak G, Park J. Molecularly Imprinted Chalcone-Branched Polyimide-Based Chemosensors with Stripe Nanopatterns for the Detection of Melittin. ACS Sens 2023; 8:2298-2308. [PMID: 37261931 DOI: 10.1021/acssensors.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a chalcone-branched polyimide (CB-PI) was synthesized by the Steglich esterification reaction for selective recognition of the toxic peptide melittin (MEL). MEL was immobilized on a nanopatterned poly(dimethylsiloxane) (PDMS) mold using a conventional surface modification technique to increase binding sites. A stripe-nanopatterned thin CB-PI film was formed on a quartz crystal (QC) substrate by simultaneously performing microcontact printing and ultraviolet (UV) light dimerization using a MEL-immobilized mold. The surface morphology changes and dimensions of the molecularly imprinted polymer (MIP) films with stripe nanopatterns (S-MIP) were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The sensing signals (Δf and Qe) of the S-MIP sensor were investigated upon adsorption in a 100-μL dilute plasma solution containing 30 μg/mL MEL, and its reproducibility, reuse, stability, and durability were investigated. The S-MIP sensor showed high sensitivity (5.49 mL/mg) and coefficient of determination (R2 = 0.999), and the detection limit (LOD) and the quantification limit (LOQ) were determined as 0.3 and 1.1 μg/mL, respectively. In addition, the selectivity coefficients (k*) calculated from the selectivity tests were 2.7-5.7, 2.1-4.3, and 2.8-4.6 for bovine serum albumin (BSA), immunoglobulin G (IgG), and apamin (APA), respectively. Our results indicate that the nanopatterned MIP sensors based on CB-PI demonstrate great potential as a sensing tool for the quantitative analysis of biomolecules.
Collapse
Affiliation(s)
- Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Seok Jin Lim
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Yang WJ, Ma R, Wei S, Sun W, Xu W, Wang L. An injectable nanocomposite alginate-Ca 2+ hydrogel for melittin-assisted Ca 2+-overload and photothermal cancer therapy. Chem Commun (Camb) 2023. [PMID: 37338396 DOI: 10.1039/d3cc01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
An injectable nanocomposite alginate-Ca2+ hydrogel embedded with melittin and polyaniline nanofibers was fabricated for Ca2+-overload and photothermal combination cancer therapy. Melittin disrupts the cell membranes and enhances Ca2+ influx significantly, improving Ca2+-overload treatment, while the polyaniline nanofibers endow the hydrogel with glutathione (GSH) depletion and photothermal ability.
Collapse
Affiliation(s)
- Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Ruixiang Ma
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Shibing Wei
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Wenping Sun
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Wenya Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
27
|
Sun M, Wu Y, Zhou Z, Liu S, Mao S, Li G. Co-delivery of EGCG and melittin with self-assembled fluoro-nanoparticles for enhanced cancer therapy. Aging (Albany NY) 2023; 15:204769. [PMID: 37277118 PMCID: PMC10292896 DOI: 10.18632/aging.204769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE Melittin (MPI) is a potential anticancer peptide due to its abilities of antitumor and immunomodulatory functions. Epigallocatechin-3-Ogallate (EGCG), a major extract of green tea, has shown great affinity for various types of biological molecules, especially for peptide/protein drugs. The aim of this study is to prepare a fluoro- nanoparticle (NP) formed by self-assembly of fluorinated EGCG (FEGCG) and MPI, and evaluate the effect of fluorine modification on MPI delivery and their synergistic antitumor effect. METHODS Characterization of FEGCG@MPI NPs was determined by dynamic light scattering (DLS) and transmission electron microscope (TEM). Biology functions of FEGCG@MPI NPs were detected by hemolysis effect, cytotoxicity, apoptosis, cellular uptake with confocal microscopy and flow cytometry. The protein expression levels of Bcl-2/Bax, IRF, STATT-1, P-STAT-1, and PD-L1 were determined via western blotting. A transwell assay and wound healing assay were used to detect the cell migration and invasion. The antitumor efficacy of FEGCG@MPI NPs was demonstrated in a subcutaneous tumor model. RESULTS Fluoro-nanoparticles could be formed by self-assembly of FEGCG and MPI, and fluorine modification on EGCG could ameliorate the side effect and delivery of MPI. The promoted therapeutics of FEGCG@MPI NPs could be achieved by regulating PD-L1 and apoptosis signaling, which might involve pathways of IRF, STAT-1/pSTAT-1, PD-L1, Bcl-2, and Bax in vitro. Moreover, FEGCG@MPI NPs could significantly inhibit the growth of tumor in vivo. CONCLUSIONS FEGCG@MPI NPs may offer a potential platform and promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yue Wu
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| | - Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College Nanjing, Nanjing 210008, Jiangsu Province, P.R. China
| | - Siyuan Liu
- Department of Hepatobiliary Surgery, Nanjing Medical University Nanjing, Nanjing 211166, Jiangsu Province, P.R. China
| | - Shuai Mao
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Affiliate Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, P.R. China
| |
Collapse
|
28
|
Bahreyni A, Liu H, Mohamud Y, Xue YC, Fan YM, Zhang YL, Luo H. A combination of genetically engineered oncolytic virus and melittin-CpG for cancer viro-chemo-immunotherapy. BMC Med 2023; 21:193. [PMID: 37226233 DOI: 10.1186/s12916-023-02901-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Immunotherapy has emerged as an efficient therapeutic approach for cancer management. However, stimulation of host immune system against cancer cells often fails to achieve promising clinical outcomes mainly owing to the immunosuppressive characteristics of the tumor microenvironment (TME). Combination therapeutics that can trigger sustained immunogenic cell death (ICD) have provided new opportunities for cancer treatment. METHODS In this study, we designed and applied an ICD inducer regimen, including a genetically engineered oncolytic virus (miRNA-modified coxsackieviruses B3, miR-CVB3), a pore-forming lytic peptide (melittin, found in bee venom), and a synthetic toll-like receptor 9 ligand (CpG oligodeoxynucleotides), for breast cancer and melanoma treatment. We compared the anti-tumor efficacy of miR-CVB3 and CpG-melittin (CpGMel) alone and in combination (miR-CVB3 + CpGMel) and investigated possible mechanisms involved. RESULTS We demonstrated that miR-CVB3 + CpGMel had no major impact on viral growth, while enhancing the cellular uptake of CpGMel in vitro. We further showed that combination therapy led to significant increases in tumor cell death and release of damage-associated molecular patterns compared with individual treatment. In vivo studies in 4T1 tumor-bearing Balb/c mice revealed that both primary and distant tumors were significantly suppressed, and the survival rate was significantly prolonged after administration of miR-CVB3 + CpGMel compared with single treatment. This anti-tumor effect was accompanied by increased ICD and immune cell infiltration into the TME. Safety analysis showed no significant pathological abnormalities in Balb/c mice. Furthermore, the developed therapeutic regimen also demonstrated a great anti-tumor activity in B16F10 melanoma tumor-bearing C57BL/6 J mice. CONCLUSIONS Overall, our findings indicate that although single treatment using miR-CVB3 or CpGMel can efficiently delay tumor growth, combining oncolytic virus-based therapy can generate even stronger anti-tumor immunity, leading to a greater reduction in tumor size.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yiyun Michelle Fan
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Endowment Lands, Canada
| | - Yizhuo Lyanne Zhang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Endowment Lands, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
29
|
Ben Trad F, Delacotte J, Guille-Collignon M, Lemaître F, Arbault S, Sojic N, Burlina F, Labbé E, Buriez O. Electrochemiluminescence Imaging of Liposome Permeabilization by an Antimicrobial Peptide: Melittin. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:58-65. [PMID: 39474301 PMCID: PMC11504585 DOI: 10.1021/cbmi.3c00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/13/2025]
Abstract
The permeabilization of liposomes by melittin, an antimicrobial peptide (AMP), has been studied by an electrochemiluminescence (ECL) imaging strategy. The methodology consisted first of encapsulating ECL reagents in sealed giant asymmetrical liposomes (100 μm in diameter) made of DOPG/DOPC phospholipids (i.e., 1,2-dioleoyl-sn-glycerol-3-phospho-(1'-rac-glycerol) sodium salt/1,2-dioleolyl-sn-glycero-3-phosphocholine). Then liposomes were placed on an indium tin oxide electrode coated with poly-l-lysine to avoid any membrane poration/permeabilization through polarization of the electrode surface. Finally, the addition of melittin (from 10 μM to 100 nM in concentration) enabled the permeabilization of the lipid membrane followed by the liposome content release and subsequent light generation through the ECL reagents oxidation processes. Interestingly, at a melittin concentration of 10 μM, two successive leakages occurring on the same liposome could be imaged. Combination of ECL and photoluminescence imaging allowed comprehensive monitoring of the permeabilization and content release of a single liposome. This ECL imaging approach opens interesting perspectives to characterize the instant release of vesicle content upon permeabilization by AMPs or other membrane-active species.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR,
Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jérôme Delacotte
- PASTEUR,
Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Manon Guille-Collignon
- PASTEUR,
Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Lemaître
- PASTEUR,
Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Stéphane Arbault
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Neso Sojic
- Univ.
Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400 Talence, France
| | - Fabienne Burlina
- Sorbonne
Université, Ecole Normale Supérieure, PSL University,
CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Eric Labbé
- PASTEUR,
Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR,
Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
30
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
31
|
Maffeis V, Hürlimann D, Krywko-Cendrowska A, Schoenenberger CA, Housecroft CE, Palivan CG. A DNA-Micropatterned Surface for Propagating Biomolecular Signals by Positional on-off Assembly of Catalytic Nanocompartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202818. [PMID: 35869606 DOI: 10.1002/smll.202202818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Signal transduction is pivotal for the transfer of information between and within living cells. The composition and spatial organization of specified compartments are key to propagating soluble signals. Here, a high-throughput platform mimicking multistep signal transduction which is based on a geometrically defined array of immobilized catalytic nanocompartments (CNCs) that consist of distinct polymeric nanoassemblies encapsulating enzymes and DNA or enzymes alone is presented. The dual role of single entities or tandem CNCs in providing confined but communicating spaces for complex metabolic reactions and in protecting encapsulated compounds from denaturation is explored. To support a controlled spatial organization of CNCs, CNCs are patterned by means of DNA hybridization to a microprinted glass surface. Specifically, CNC-functionalized DNA microarrays are produced where individual reaction compartments are kept in close proximity by a distinct geometrical arrangement to promote effective communication. Besides a remarkable versatility and robustness, the most prominent feature of this platform is the reversibility of DNA-mediated CNC-anchoring which renders it reusable. Micropatterns of polymer-based nanocompartment assemblies offer an ideal scaffold for the development of the next generation responsive and communicative soft-matter analytical devices for applications in catalysis and medicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Agata Krywko-Cendrowska
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
32
|
Liu C, Liao Y, Liu L, Xie L, Liu J, Zhang Y, Li Y. Application of injectable hydrogels in cancer immunotherapy. Front Bioeng Biotechnol 2023; 11:1121887. [PMID: 36815890 PMCID: PMC9935944 DOI: 10.3389/fbioe.2023.1121887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is a revolutionary and promising approach to cancer treatment. However, traditional cancer immunotherapy often has the disadvantages of limited immune response rate, poor targeting, and low treatment index due to systemic administration. Hydrogels are drug carriers with many advantages. They can be loaded and transported with immunotherapeutic agents, chemical anticancer drugs, radiopharmaceuticals, photothermal agents, photosensitizers, and other therapeutic agents to achieve controlled release of drugs, extend the retention time of drugs, and thus successfully trigger anti-tumor effects and maintain long-term therapeutic effects after administration. This paper reviews recent advances in injectable hydrogel-based cancer immunotherapy, including immunotherapy alone, immunotherapy with combination chemotherapy, radiotherapy, phototherapy, and DNA hydrogel-based immunotherapy. Finally, we review the potential and limitations of injectable hydrogels in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Junbo Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumao Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Hwang YN, Kwon IS, Na HH, Park JS, Kim KC. Dual Cytotoxic Responses Induced by Treatment of A549 Human Lung Cancer Cells with Sweet Bee Venom in a Dose-Dependent Manner. J Pharmacopuncture 2022; 25:390-395. [PMID: 36628342 PMCID: PMC9806155 DOI: 10.3831/kpi.2022.25.4.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Sweet bee venom (sBV) is purified from Apis mellifera, containing a high level of melittin-its main component. It has been used as a therapeutic agent for pain relief and anti-inflammation, as well as for treating neuronal abnormalities. Recently, there have been studies on the therapeutic application of sBV for anticancer treatment. In the present study, we investigated the pharmacological effect of sBV treatment in A549 human lung cancer cells. Methods We used microscopic analysis to observe the morphological changes in A549 cells after sBV treatment. The MTT assay was used to examine the cytotoxic effect after dose-dependent sBV treatment. Molecular changes in sBV were evaluated by the expression of apoptosis marker proteins using western blot analysis. Results Microscopic analysis suggested that the growth inhibitory effect occurred in a dose-dependent manner; however, cell lysis occurred at a concentration over 20 μg/mL of sBV. The MTT assay indicated that sBV treatment exhibited a growth inhibitory effect at a concentration over 5 μg/mL. On fluorescence activated cell sorting analysis, G0 dead cells were observed after G1 arrest at treatment concentrations up to 10 μg/mL. However, rapid cell rupture was observed at a concentration of 20 μg/mL. Western blot analysis demonstrated that sBV treatment modulated the expression of multiple cell death-related proteins, including cleaved-PARP, cleaved-caspase 9, p53, Bcl2, and Bax. Conclusion sBV induced cell death in A549 human lung cancer cells at a pharmacological concentration, albeit causing hemolytic cell death at a high concentration.
Collapse
Affiliation(s)
- Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea,Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea,Corresponding Author Keun-Cheol Kim, Department of Biological Sciences, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak Rd, Chuncheon 24341, Republic of Korea, Tel: +82-33-250-8532, E-mail:
| |
Collapse
|
34
|
Fahmy UA, Badr-Eldin SM, Aldawsari HM, Alhakamy NA, Ahmed OAA, Radwan MF, Eid BG, Sayed SRM, El Sherbiny GA, Abualsunun W. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells. Drug Deliv 2022; 29:1863-1877. [PMID: 35708464 PMCID: PMC9225738 DOI: 10.1080/10717544.2022.2072544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer (PC) frequency and incidence have grown rapidly in recent years. One of the most serious problems with PC is the existence of asymptotic manifestations, which frequently delays early detection, and until the diagnosis is established, tumor cells progress to the metastatic stage. Another significant concern with PC is the scarcity of well-defined pharmacotherapeutic drugs. The aim of this study was to develop an efficient nanocarrier system to augment the efficacy of raloxifene (RLX) against PC cells. As a result, the current investigation was carried out in order to give an effective treatment method, in which an optimum RLX loaded phospholipid-based vesicles with melittin (PL-MEL) was chosen using experimental design software, with particle size, zeta potential and entrapment efficiency % as dependent variables. Furthermore, anticancer activity against PANC1 cells was assessed. The optimized nanovesicle parameters were 172.5 nm for the measured size, zeta potential of -0.69 mV, and entrapment efficiency of 76.91% that were in good agreement with the expected ones. RLX-raw, plain formula, and optimized RLX-PL-MEL showed IC50 concentrations of 26.07 ± 0.98, 9.166 ± 0.34, and 1.24 ± 0.05 µg/mL, respectively. Furthermore, cell cycle analysis revealed that the nanovesicle was most effective in the G2-M phase, whereas Bax, and Bcl-2 estimates revealed that optimized RLX formula had the highest apoptotic activity among treatments investigated. However, as compared to RLX alone or plain formula alone, the optimized formula demonstrated higher expression of TNFα and Bax while a significant reduction of Bcl-2 and NF-κB expression was observed. mitochondrial membrane potential (MMP) analysis confirmed the apoptosis as well as the anticancer effect of the optimized formula. Thus, the present study results showed an improvement in the anti-PC effects of the RLX with phospholipid conjugated melittin, making it a novel treatment approach against PC.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Radwan
- Department of Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaban R. M. Sayed
- College of Science, Electron Microscope Unit, King Saud University, Riyadh, Saudi Arabia
| | - Gamal A. El Sherbiny
- Department of Pharmacology, Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Walaa Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Lu S, Lin J, Jin J, Zhang L, Guan Y, Chen H, Wu Y, Zhang W, Luan X. Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential. Expert Opin Drug Discov 2022; 17:1407-1423. [PMID: 36503335 DOI: 10.1080/17460441.2023.2157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increasing evidence suggests that intratumor microbiota are an intrinsic component in the tumor microenvironment across multiple cancer types, and that there is a close relationship between microbiota and tumor progression. Therefore, how to address the interaction between bacteria and malignances has become a growing concern. Tachyplesin I (TPI), a peptide with dual antimicrobial and antitumor effects, holds great promise as a therapeutic alternative for the aforementioned diseases, with the advantage of broad-spectrum activities, quick killing efficacy, and a low tendency to induce resistance. AREAS COVERED This review comprehensively summarizes the pharmacological mechanisms of TPI with an emphasis on its antimicrobial and antitumor potential. Furthermore, it presents advances in TPI derivatives and gives a perspective on their future development. The article is based on literature searches using PubMed and SciFinder to retrieve the most up-to-date information of TPI. EXPERT OPINION Bacterial infections and cancer both pose a serious threat to health due to their symbiotic interactions and drug resistance. TPI is anticipated to be a novel agent to control pathogenic bacteria and various tumors through multiple mechanisms of action. Indeed, the continuous advancements in chemical modification and innovative applications of TPI give hope for future improvements in therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Yingyun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Municipality, Shanghai, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China.,School of Pharmacy, Naval Medical University, Municipality, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| |
Collapse
|
36
|
Li X, Zhu S, Li Z, Meng Y, Huang S, Yu Q, Li B. Melittin induces ferroptosis and ER stress-CHOP-mediated apoptosis in A549 cells. Free Radic Res 2022; 56:398-410. [PMID: 36194238 DOI: 10.1080/10715762.2022.2131551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melittin is a natural polypeptide present in bee venom, with significant anti-tumor activity. Melittin has been reported to induce cell death in lung carcinoma cell line A549 cells, suggesting an excellent potential for treating lung cancer. However, the core mechanism underlying melittin-induced cell death in A549 cells remains unclear. This work reports that melittin induces reactive oxygen species (ROS) burst, upregulates intracellular Fe2+ levels, disrupts the glutathione-glutathione peroxidase 4 antioxidant system, and increases lipid peroxide accumulation, eventually inducing cell death, indicating that ferroptosis may be involved in the antitumor effects of melittin in A549 cells. Furthermore, A549 cells treated with the ferroptosis inhibitors ferrostatin-1 and deferoxamine demonstrated that these inhibitors could reverse the cell death induced by melittin, further confirming that melittin induces A549 cell death via ferroptosis. Furthermore, the results also illustrated that melittin activated the endoplasmic reticulum (ER) stress-CHOP (C/EBP homologous protein) apoptotic signal, closely associated with high-level intracellular ROS. The ER stress inhibitor, 4-Phenyl butyric acid, was used to confirm that ER stress-CHOP apoptotic signaling is another molecular mechanism of melittin-induced A549 cell death. Thus, our results demonstrate that ferroptosis and ER stress-CHOP signaling are key molecular mechanisms of melittin-induced cell death in lung cancer.Key policy highlightsMelittin upregulates intracellular Fe2+ levels, leading to the accumulation of lipid peroxides in A549 cells.Melittin disrupts the glutathione-glutathione peroxidase 4 antioxidant system in A549 cells.Melittin induces activation of endoplasmic reticulum stress-C/EBP homologous protein apoptosis signal.Ferroptosis and ER stress are the core molecular mechanisms underlying melittin-induced apoptosis in A549 cells.
Collapse
Affiliation(s)
- Xuan Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University 730030, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, 730030, Lanzhou, China
| | - Zheng Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University 730030, Lanzhou, China
| | - Yuqi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University 730030, Lanzhou, China
| | - Sujie Huang
- School of Basic Medical Sciences, Lanzhou University, 730030, Lanzhou, China
| | - Qiyao Yu
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University 730030, Lanzhou, China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University 730030, Lanzhou, China
| |
Collapse
|
37
|
Wu P, Zhang H, Sun M, Mao S, He Q, Shi Y, Deng Y, Dong Z, Xu Q, Zhao C, Zhang W, Sun B. Manipulating Offense and Defense Signaling to Fight Cold Tumors with Carrier-Free Nanoassembly of Fluorinated Prodrug and siRNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203019. [PMID: 35918816 DOI: 10.1002/adma.202203019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Chemoimmunotherapy has shown great potential to activate an immune response, but the immunosuppressive microenvironment associated with T cell exhaustion remains a challenge in cancer therapy. The proper immune-modulatory strategy to provoke a robust immune response is to simultaneously regulate T-cell exhaustion and infiltration. Here, a new kind of carrier-free nanoparticle is developed to simultaneously deliver chemotherapeutic drug (doxorubicin, DOX), cytolytic peptide (melittin, MPI), and anti-TOX small interfering RNA (thymocyte selection-associated high mobility group box protein, TOX) using a fluorinated prodrug strategy. In this way, the enhanced immunogenic cell death (ICD) induced by the combination of DOX and MPI can act as "offense" signaling to increase CD8+ T-cell infiltration, while the decreased TOX expression interfered with siTOX can serve as "defense" signaling to mitigate CD8+ T-cell exhaustion. As a result, the integration of DOX, MPI, and siTOX in such a bifunctional system produced a potent antitumor immune response in liver cancer and metastasis, making it a promising delivery platform and effective strategy for converting "cold" tumors into "hot" ones.
Collapse
Affiliation(s)
- Pengkai Wu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Shuai Mao
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Qifeng He
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Yuze Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Yexuan Deng
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Zhongjun Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P.R. China
| |
Collapse
|
38
|
Li Y, Ruan S, Guo J, He Z, Xia Q, Wu T, Wang Z, Li Z, Hu H, Jing Q, Hou X, He Y, Zhang B, Feng N, Zhang Y. B16F10 Cell Membrane-Based Nanovesicles for Melanoma Therapy Are Superior to Hyaluronic Acid-Modified Nanocarriers. Mol Pharm 2022; 19:2840-2853. [PMID: 35850109 DOI: 10.1021/acs.molpharmaceut.2c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some cancer cell membrane (CCM)-derived nanovesicles show strong homing effects and are used for targeted cancer therapy. By co-constructing the B16F10 cell membrane with a PEGylated phospholipid membrane, a new nanocarrier with a composite nanocrown structure was developed, which can evade immune recognition and actively target homologous melanoma. The nanocrowns have an encapsulation efficiency of more than 90% for paclitaxel and showed no significant difference (p > 0.05) from the PEGylated phospholipid membrane vesicles. Compared with the hyaluronic acid-modified PEGylated phospholipid membrane vesicles, the biomimetic nanocrowns enhanced the escape of nanovesicles from reticuloendothelial cells in vitro and extended the circulation time in vivo; moreover, the nanocrowns showed superior melanoma-targeted drug delivery capability and improved anticancer effects of paclitaxel as demonstrated by the inhibition of B16F10 cell proliferation and induction of apoptosis by interfering with microtubule formation. In contrast, the modification of hyaluronic acid did not increase the targeting capacity or antitumor effects of the nanocrowns, confirming that the superior targeting capacity was mediated by the exposed homologous CCMs rather than by hyaluronic acid. Our results demonstrate the potential of using biomimetic nanocrowns for active melanoma-targeted therapy.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200050, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingwen Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongmei Hu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Jing
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Beibei Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
39
|
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 2022; 22:895-909. [PMID: 35687355 DOI: 10.1080/14712598.2022.2088277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hossein Olfati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Zhang Y, Chang L, Bao H, Wu X, Liu H, Gou S, Zhang J, Ni J. Constructing New Acid-Activated Anticancer Peptide by Attaching a Desirable Anionic Binding Partner Peptide. J Drug Target 2022; 30:973-982. [PMID: 35502656 DOI: 10.1080/1061186x.2022.2070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Improving the cell selectivity of anticancer peptides (ACPs) is a major hurdle in their clinical utilization. In this study, a new acid-activated ACP was designed by conjugating a cationic ACP LK to its anionic binding partner peptide (LEH) via a disulfide linker to trigger antitumor activity at acidic pH while masking its killing activity at normal pH. Three anionic binding peptides containing different numbers of glutamic acid (Glu) and histidine were engineered to obtain an efficient acid-activated ACP. The conjugates LK-LEH2 and LK-LEH3 exhibited 6.1 and 8.0-fold higher killing activity at pH 6.0 relative to at pH 7.4, respectively, suggesting their excellent pH-dependent antitumor activity; and their cytotoxicity was 10-fold lower than that of LK. However, LK-LEH4 had no pH-responsive killing effect. Interestingly, increasing the number of Glu from 2 to 4 increased the pH-response of the physical mixture of LK and LEH; conversely, they weakly decreased the cytotoxicity of LK, suggesting that the conjugate connection was required to achieve excellent pH dependence while maintaining minimum toxicity. LK-LEH2 and LK-LEH3 were more enzymatically stable than LK, indicating their potential for in vivo application. Our work provided a basis for designing promising ACPs with good selectivity and low toxicity.
Collapse
Affiliation(s)
- Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hexin Bao
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyan Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingying Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|