1
|
Mangan M, Połtowicz K, Metges CC, Siwek M. Modulatory effects of in ovo delivery of galactooligosaccharide and Lactiplantibacillus plantarum on antioxidant capacity, gene expression, and selected plasma metabolite parameters of broiler chickens. J Appl Genet 2025; 66:421-434. [PMID: 39666172 PMCID: PMC12000254 DOI: 10.1007/s13353-024-00931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
A stable gut microbiota promotes a healthy gut and enhances immune function, antioxidant status, and metabolic activities in chickens. The present research work aimed to investigate the modulatory impacts of in ovo delivery of prebiotic and probiotic on oxidative stress, the intestinal transcriptome, and various plasma metabolites in chickens. Fertilized Ross 308 eggs were administered in ovo either with galactooligosaccharide (GOS) (3.5 mg/egg or Lactiplantibacillus plantarum (LP) 1 × 106/egg on the 12th day of egg incubation. Three hundred viable Ross 308 broiler hatching eggs in total were randomly assigned to four groups, namely, the negative control not injected group, the group receiving physiological saline injections as the positive control, GOS, and LP. The analysis of genes associated with immune functions, antioxidants, barrier functions, and free fatty acid receptors were determined via qPCR. The analysis of the selected plasma blood metabolites was performed automatically with Pentra C 400. The antioxidant capacity of the chickens' liver, breast muscle, and spleen was enhanced by the in ovo injection of GOS and LP. The immune-related gene expression levels were upregulated after in ovo stimulation with either GOS or LP which improved the gut health of broiler chickens. In addition, several genes related to gut barrier functions were upregulated, thus ensuring epithelial integrity. As for blood plasma metabolites, no adverse effects were observed. In summary, we report that in ovo stimulation with either GOS or LP stimulates the immune system and improves the antioxidant status and gut health of chickens with no negative impact on plasma blood metabolite indices.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakow-Ska 1, 32-083, Balice, Poland
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology (PBS), Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
2
|
Demirhan HK, Omer Oglou E, Aksoy ZB, Kiran F. Evaluation of the anti-inflammatory, antioxidant and regenerative effects of microbiota-derived postbiotics in human periodontal ligament mesenchymal stromal cells. Clin Oral Investig 2025; 29:262. [PMID: 40263129 PMCID: PMC12014813 DOI: 10.1007/s00784-025-06341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE This study investigates the regenerative and protective effects of postbiotics (cell-free supernatant) derived from the Lactiplantibacillus plantarum EIR/IF-1 strain on human periodontal ligament mesenchymal stromal cells (hPDL-MSCs). MATERIALS AND METHODS hPDL-MSCs were isolated from periodontal ligament tissues (PDL) of wisdom teeth using enzymatic digestion and subsequently characterized through immunophenotyping. The effect of postbiotics on the viability of hPDL-MSCs was assessed using the MTT assay and flow cytometry, while their impact on cell migration was evaluated via the scratch assay. Anti-inflammatory effects of postbiotics were investigated on lipopolysaccharide (LPS, derived from Porphyromonas gingivalis)-stimulated hPDL-MSCs through Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, the antioxidant effects of postbiotics were analyzed in hydrogen peroxide (H₂O₂)-induced hPDL-MSCs by measuring reactive oxygen species (ROS) levels using flow cytometry. The expression of collagen type I (COL1A1) gene was further assessed by quantitative reverse transcription PCR and immunofluorescence staining. RESULTS Treatment with postbiotics (250 µg/mL) significantly increased the viability and migration capability of hPDL-MSCs, while enhancing collagen production for PDL repair. Treatment with postbiotics for 24 h resulted in a 54.53 ± 2.01% reduction in intracellular ROS levels compared to untreated H2O2-induced hPDL-MSCs. Furthermore, postbiotics significantly decreased the production of pro-inflammatory cytokines (IL-8, IL-6, and IL-1β), and increased the anti-inflammatory cytokine IL-10 (2.67-fold) compared to untreated LPS-stimulated hPDL-MSCs. CONCLUSION Our findings indicate that postbiotics exhibit biological activity throughout all stages of the healing process, beginning with the modulation of the inflammatory response to LPS stimulation, followed by the promotion of cell migration, proliferation, and collagen synthesis. Given the unmet need for safe and adjuvant therapeutic approaches that promote comprehensive periodontal regeneration in periodontal diseases, this study presents postbiotics as a promising candidate. CLINICAL RELEVANCE Postbiotics could be integrated into regenerative therapies as a novel bioactive material to improve the healing and regenerative outcomes in periodontal defects by both controlling inflammation and stimulating tissue repair processes.
Collapse
Affiliation(s)
- Hazal Kibar Demirhan
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, 06110, Turkey
| | - Emine Omer Oglou
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, 06110, Turkey
| | | | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
| |
Collapse
|
3
|
Beglari S, Rezaie N, Jouriani FH, Khiavi EHAG, Aghamohammad S, Rohani M. Novel native probiotics with protective effects against nickel-induced kidney injury: a strategy for heavy metal toxicity. Biometals 2025:10.1007/s10534-025-00681-x. [PMID: 40188288 DOI: 10.1007/s10534-025-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Recent studies have shown that exposure to heavy metals, particularly Nickel, and exacerbates kidney diseases by increasing oxidative stress. Probiotics, recognized for their antioxidant properties, may provide a beneficial approach to mitigate this oxidative damage. This research aims to explore the efficacy of native probiotics in reducing oxidative stress in kidney tissues, potentially leading to improved protective strategies against the toxicity caused by heavy metals. In this study, forty male NMRI mice were exposed to Nickel to induce oxidative stress, followed by probiotic treatment to evaluate its potential protective effects. The impact of these interventions on the antioxidant system was assessed through Real-Time PCR analysis, which measured gene expression profiles in the kidney tissue of the mice. The study demonstrated that native probiotic strains effectively upregulated the expression of genes related to Nrf2 signaling pathway before exposing to oxidant agents. Despite the suppressive effects of Nickel exposure on these gene expressions, the subsequent administration of probiotics after Nickel resulted in a significant increase and enhancement of expression levels. This research underscores the detrimental effects of Nickel, a heavy metal, on kidney health while exploring the protective properties of probiotics, particularly their anti-oxidative effects. Given the substantial risks linked to heavy metal exposure, the integration of probiotics presents a promising strategy to alleviate oxidative stress, thereby potentially preventing various kidney disorders associated with this condition. The findings advocate for a dual approach of addressing heavy metal toxicity and enhancing kidney resilience through probiotic intervention.
Collapse
Affiliation(s)
- Shokufeh Beglari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Rebelo MB, Oliveira CS, Tavaria FK. Development of a Postbiotic-Based Orodispersible Film to Prevent Dysbiosis in the Oral Cavity. Front Biosci (Elite Ed) 2025; 17:26987. [PMID: 40150984 DOI: 10.31083/fbe26987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Oral diseases affect over three billion peopleand are among the most commonly observed infections worldwide. Recent studies have shown that controlling the ecology of the oralome is more effective in reducing the risk of caries than the complete removal of both harmful and beneficial microorganisms. This work aimed to develop a strategy for preventing dysbiosis in the oral cavity by applying a postbiotic-based orodispersible film. METHODS Lactiplantibacillus plantarum 226V and Lacticaseibacillus paracasei L26 were cultured in De Man-Rogosa-Sharpe (MRS) broth for 48 hours, followed by centrifugation and filtration. Then, the resultant postbiotics were then subjected to various dilutions (10% (v/v), 20% (v/v), 40% (v/v), 60% (v/v) and 100% (v/v)) and co-incubated with Streptococcus mutans. Antimicrobial efficacy, minimal inhibitory concentration, the time required to inhibit S. mutans growth, and antibiofilm properties of the postbiotics were assessed. Subsequently, an orodispersible film comprising polymers and plasticizers, namely Xanthan gum, maltodextrin, and glycerol, was developed as a vehicle for postbiotic delivery. Formulation optimization, physical property evaluation, and cytotoxicity against the TR146 human oral cell line (TR146 cell line) were conducted. RESULTS Postbiotics demonstrated antimicrobial and antibiofilm activity against S. mutans following 24-hour co-incubation. The minimal inhibitory concentration for combined postbiotics administration was 20% (v/v). Remarkably, 79.6 ± 8.15% inhibition of biofilm formation was achieved using 100% (v/v) of the postbiotic derived from L. plantarum 226V. Incorporating postbiotics did not compromise the dissolution time of orodispersible films, all exceeding 20 minutes. Furthermore, solubility improved following postbiotic addition, facilitating ease of handling. Importantly, postbiotic-impregnated orodispersible films were non-cytotoxic when exposed to the TR146 cell line. CONCLUSIONS These findings underscore the potential of orodispersible films loaded with postbiotics as a promising potential intervention for oral dysbiosis.
Collapse
Affiliation(s)
- Mariana B Rebelo
- CBQF-Centre for Biotechnology and Fine Chemistry-Associated Laboratory, Portuguese Catholic University, 4169-005 Porto, Portugal
| | - Cláudia S Oliveira
- CBQF-Centre for Biotechnology and Fine Chemistry-Associated Laboratory, Portuguese Catholic University, 4169-005 Porto, Portugal
| | - Freni K Tavaria
- CBQF-Centre for Biotechnology and Fine Chemistry-Associated Laboratory, Portuguese Catholic University, 4169-005 Porto, Portugal
| |
Collapse
|
5
|
Chen X, Yan L, Yang J, Xu C, Yang L. The impact of probiotics on oxidative stress and inflammatory markers in patients with diabetes: a meta-research of meta-analysis studies. Front Nutr 2025; 12:1552358. [PMID: 40123937 PMCID: PMC11926743 DOI: 10.3389/fnut.2025.1552358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Objective Probiotic supplementation has gained attention for its potential to modulate inflammatory and oxidative stress biomarkers, particularly in metabolic disorders. This meta-analysis evaluates the effects of probiotics on C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione (GSH), and nitric oxide (NO) in patients with diabetes. Methods A Meta-Research was conducted on 15 meta-analyses of unique 33 randomized controlled trials (RCTs) published between 2015 and 2022, involving 26 to 136 participants aged 26 to 66 years. Data were synthesized using standardized mean differences (SMD), with sensitivity analysis using a random-effect model. Results Probiotic supplementation significantly reduced CRP (SMD = -0.79, 95% CI: -1.19, -0.38), TNF-α (SMD = -1.35, 95% CI: -2.05, -0.66), and MDA levels (WMD: -0.82, 95% CI: -1.16, -0.47). Probiotics increased GSH (SMD = 1.00, 95% CI: 0.41, 1.59), TAC (SMD = 0.48, 95% CI: 0.27, 0.69), and NO (SMD = 0.60, 95% CI: 0.30, 0.91). Result on IL-6 was not significant (SMD = -0.29, 95% CI: -0.66, 0.09). Sensitivity analyses confirmed robustness. Conclusion Probiotics significantly improved inflammatory and oxidative stress biomarkers in patients with diabetes, with variations influenced by population and dosage. Future studies should explore novel probiotic strains and longer interventions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jie Yang
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Chenlong Xu
- Department of Laboratory Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Lv Yang
- Department of Laboratory Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| |
Collapse
|
6
|
Cannizzaro S, Maiorani C, Scribante A, Butera A. The Home Use of Probiotics and Paraprobiotics for the Maintenance of Tongue Eubiosis: A Case Report. Case Rep Dent 2025; 2025:5496240. [PMID: 39995944 PMCID: PMC11850065 DOI: 10.1155/crid/5496240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Aim: Halitosis is the unpleasant odor emitted from the oral cavity during exhalation and phonation. Using oral care products containing specific probiotics and paraprobiotics, combined with lifestyle changes, this study is aimed at resolving the patient's altered breath odor. Case Report: A 49-year-old male patient suffered from retronasal discharge, bacterial plaque on the back of his tongue, and bad breath. He underwent a professional oral hygiene session, received instructions in proper home oral hygiene techniques, and was advised on appropriate lifestyle changes. The use of oral care products based on probiotics and paraprobiotics was recommended. Sixty days later, the patient was reevaluated and was satisfied with the results, as his tongue had improved significantly, and he no longer experienced any bad sensations in his mouth. Conclusion: Systematic removal of bacterial biofilm and the use of probiotics and paraprobiotics can be useful in the prevention and treatment of halitosis.
Collapse
Affiliation(s)
- Salvatore Cannizzaro
- Academy of Advanced Technologies in Oral Hygiene Sciences (ATASIO), Siracusa, Italy
| | - Carolina Maiorani
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Foata F, Duboux S, Herzig S, Sizzano F, Thevenet J, Guy P, Rezzi S, Métairon S, Bourqui B, Montoliu I, Mercenier A, Bosco N. Identification and Biological Characterization of a Novel NRF2 Activator Molecule Released From the Membranes of Heat-Treated Bifidobacterium breve NCC 2950. Mol Nutr Food Res 2025:e202400770. [PMID: 39911038 DOI: 10.1002/mnfr.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". They represent an attractive alternative to probiotics as they could be used in a broader range of applications, where probiotic stability is limiting. To date knowledge on the mechanism of action of inanimate microorganisms is relatively scarce. In this study, we investigated the impact of heat treatment on NRF2 activation by several candidate probiotic strains from the Nestlé Culture Collection (NCC), including species encompassed in the Bifidobacterium genus and the Lactobacillaceae family. We identified an NRF2-activating bioactive molecule, 4-oxo-2-pentenoic acid (OPA), specifically released during heat treatment of Bifidobacterium breve NCC 2950. We explored cellular pathways that can be modulated by OPA, such as antiinflammatory signals and organismal defense against oxidative stress in zebrafish in vivo. We identified a new B. breve NCC 2950-derived postbiotic that, based on the mode of action, may have important applications for nutritional strategies to benefit human health.
Collapse
Affiliation(s)
- Francis Foata
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Stéphane Duboux
- Nestlé Institute of Food Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sébastien Herzig
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Federico Sizzano
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Jonathan Thevenet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Philippe Guy
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Serge Rezzi
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Bertrand Bourqui
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Ivan Montoliu
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Annick Mercenier
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
8
|
Rezaie N, Aghamohammad S, Khiavi EHAG, Talebi M, Pourshafie MR, Rohani M. The Analysis and Comparison of Anti-Inflammatory and Antioxidant Characteristics of Postbiotic and Paraprobiotic Derived From Novel Native Probiotic Cocktail in DSS-Induced Colitic Mice. Food Sci Nutr 2025; 13:e70034. [PMID: 39931269 PMCID: PMC11808210 DOI: 10.1002/fsn3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Oxidative stress, particularly when precipitated by the intake of a diet rich in fats, has the potential to induce an inflammatory state. Therefore, it is crucial to consider the administration of agents possessing antioxidant and anti-inflammatory properties for the benefit of these patients. The objective of this study was to investigate the ability of postbiotic and paraprobiotic substances to regulate oxidative stress and inflammation. We hypothesized that both postbiotics and paraprobiotics could demonstrated significant efficacy in reducing oxidative stress and inflammation, with distinct differences in their effectiveness. A total of 88 Lactobacillus and Bifidobacterium strains were assessed for antioxidant activity. Male C57BL/6 mice were divided into four groups: HFD + PBS, HFD + DSS, HFD + DSS + postbiotic, and HFD + DSS + paraprobiotic. Various parameters, including weight change, disease activity index, and gene expression analysis, as well as enzymes involved in oxidative activities and inflammation were evaluated after treatment with derivatives of six selected strains. In comparison with the groups exposed to DSS, mice treated with a combination of postbiotic and paraprobiotic alongside DSS exhibited a reduction in DSS-induced negative effects on both phenotypical characteristics and molecular indices, particularly the Nrf2- and NF-kB-related genes, with a notable focus on postbiotic. Based on the results, it can be inferred that despite the utilization of an unhealthy regime that may worsen oxidative stress and inflammation, the condition can be efficiently controlled by employing secure variations of probiotics, such as paraprobiotic and postbiotic components, with a particular emphasis on postbiotics.
Collapse
Affiliation(s)
- Niloofar Rezaie
- Department of BacteriologyPasteur Institute of IranTehranIran
| | | | | | - Malihe Talebi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Mahdi Rohani
- Department of BacteriologyPasteur Institute of IranTehranIran
| |
Collapse
|
9
|
Di Chiano M, Rocchetti MT, Spano G, Russo P, Allegretta C, Milior G, Gadaleta RM, Sallustio F, Pontrelli P, Gesualdo L, Avolio C, Fiocco D, Gallone A. Lactobacilli Cell-Free Supernatants Modulate Inflammation and Oxidative Stress in Human Microglia via NRF2-SOD1 Signaling. Cell Mol Neurobiol 2024; 44:60. [PMID: 39287687 PMCID: PMC11408562 DOI: 10.1007/s10571-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Microglia are macrophage cells residing in the brain, where they exert a key role in neuronal protection. Through the gut-brain axis, metabolites produced by gut commensal microbes can influence brain functions, including microglial activity. The nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the oxidative stress response in microglia, controlling the expression of cytoprotective genes. Lactobacilli-derived cell-free supernatants (CFSs) are postbiotics that have shown antioxidant and immunomodulatory effects in several in vitro and in vivo studies. This study aimed to explore the effects of lactobacilli CFSs on modulating microglial responses against oxidative stress and inflammation. HMC3 microglia were exposed to lipopolysaccaride (LPS), as an inflammatory trigger, before and after administration of CFSs from three human gut probiotic species. The NRF2 nuclear protein activation and the expression of NRF2-controlled antioxidant genes were investigated by immunoassay and quantitative RT-PCR, respectively. Furthermore, the level of pro- and anti-inflammatory cytokines was evaluated by immunoassay. All CFSs induced a significant increase of NRF2 nuclear activity in basal conditions and upon inflammation. The transcription of antioxidant genes, namely heme oxygenase 1, superoxide dismutase (SOD), glutathione-S transferase, glutathione peroxidase, and catalase also increased, especially after inflammatory stimulus. Besides, higher SOD1 activity was detected relative to inflamed microglia. In addition, CFSs pre-treatment of microglia attenuated pro-inflammatory TNF-α levels while increasing anti-inflammatory IL-10 levels. These findings confirmed that gut microorganisms' metabolites can play a relevant role in adjuvating the microglia cellular response against neuroinflammation and oxidative stress, which are known to cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | | | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Caterina Allegretta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giampaolo Milior
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005, Paris, France
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale Biostrutture e Biosistemi INBB, Viale delle Medaglie d'Oro, Roma, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Teng CY, Kao NJ, Nguyen NTK, Lin CI, Cross TWL, Lin SH. Effects of xylo-oligosaccharide on gut microbiota, brain protein expression, and lipid profile induced by high-fat diet. J Nutr Biochem 2024; 129:109640. [PMID: 38583497 DOI: 10.1016/j.jnutbio.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.
Collapse
Affiliation(s)
- Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ning-Jo Kao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Ngan Thi Kim Nguyen
- Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-I Lin
- Department of Nutrition and Health Sciences, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzu-Wen L Cross
- Departmen of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food Safety, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Choukroun E, Parnot M, Surmenian J, Gruber R, Cohen N, Davido N, Simonpieri A, Savoldelli C, Afota F, El Mjabber H, Choukroun J. Bone Formation and Maintenance in Oral Surgery: The Decisive Role of the Immune System-A Narrative Review of Mechanisms and Solutions. Bioengineering (Basel) 2024; 11:191. [PMID: 38391677 PMCID: PMC10886049 DOI: 10.3390/bioengineering11020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Based on the evidence of a significant communication and connection pathway between the bone and immune systems, a new science has emerged: osteoimmunology. Indeed, the immune system has a considerable impact on bone health and diseases, as well as on bone formation during grafts and its stability over time. Chronic inflammation induces the excessive production of oxidants. An imbalance between the levels of oxidants and antioxidants is called oxidative stress. This physio-pathological state causes both molecular and cellular damage, which leads to DNA alterations, genetic mutations and cell apoptosis, and thus, impaired immunity followed by delayed or compromised wound healing. Oxidative stress levels experienced by the body affect bone regeneration and maintenance around teeth and dental implants. As the immune system and bone remodeling are interconnected, bone loss is a consequence of immune dysregulation. Therefore, oral tissue deficiencies such as periodontitis and peri-implantitis should be regarded as immune diseases. Bone management strategies should include both biological and surgical solutions. These protocols tend to improve immunity through antioxidant production to enhance bone formation and prevent bone loss. This narrative review aims to highlight the relationship between inflammation, oxidation, immunity and bone health in the oral cavity. It intends to help clinicians to detect high-risk situations in oral surgery and to propose biological and clinical solutions that will enhance patients' immune responses and surgical treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Franck Afota
- Private Practice, 06000 Nice, France
- Head and Neck Institute, CHU, 06000 Nice, France
| | | | | |
Collapse
|
12
|
Wu W, Li G, Dong S, Huihan Chu C, Ma S, Zhang Z, Yuan S, Wu J, Guo Z, Shen Y, Wang J, Tang C. Bomidin attenuates inflammation of periodontal ligament stem cells and periodontitis in mice via inhibiting ferroptosis. Int Immunopharmacol 2024; 127:111423. [PMID: 38141410 DOI: 10.1016/j.intimp.2023.111423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
AIM Periodontitis is a prevalent oral immunoinflammatory condition that is distinguished by the compromised functionality of periodontal ligament stem cells (PDLSCs). Bomidin, a new recombinant antimicrobial peptide (AMP), exhibits antibacterial properties and modulates immune responses. Nevertheless, the precise anti-inflammatory impact of bomidin in periodontitis has yet to be fully elucidated. Thus, the study aimed to clarified the role of bomidin in modulating inflammation and its underlying mechanisms. METHODS TNF-α was applied to treating PDLSCs for establishing a cell model of periodontitis. Bomidin, RSL3, ML385 and cycloheximide were also used to treat PDLSCs. Transcriptome sequencing, RT-qPCR, western blot, immunofluorescence, immunohistochemistry, Fe2+ detection probe, molecular docking, Co-IP assay, ubiquitination assay and murine models of periodontitis were used. RESULTS Our study demonstrated that bomidin effectively suppressed inflammation in PDLSCs stimulated by TNF-α, through down-regulating the MAPK and NF-κB signaling pathways. Furthermore, bomidin exerted inhibitory effects on ferroptosis and activated the Keap1/Nrf2 pathway in the TNF-α group. There is a strong likelihood of bonding bomidin with Keap1 protein, which facilitated the degradation of Keap1 protein via the ubiquitin-proteasome pathway, leading to an enhanced translocation of Nrf2 protein to the nucleus. CONCLUSIONS Bomidin can directly bond to Keap1 protein, resulting in the degradation of Keap1 through the ubiquitin-proteasome pathway, thereby further activating the Keap1/Nrf2 pathway. The upregulation of the Keap1/Nrf2 signaling pathway was found to contribute to the suppression of ferroptosis, ultimately alleviating inflammation in treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuo Dong
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Catherine Huihan Chu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Ma
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shanshan Yuan
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zixiang Guo
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Shen
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
13
|
Herrera-Rocha KM, Manjarrez-Juanes MM, Larrosa M, Barrios-Payán JA, Rocha-Guzmán NE, Macías-Salas A, Gallegos-Infante JA, Álvarez SA, González-Laredo RF, Moreno-Jiménez MR. The Synergistic Effect of Quince Fruit and Probiotics ( Lactobacillus and Bifidobacterium) on Reducing Oxidative Stress and Inflammation at the Intestinal Level and Improving Athletic Performance during Endurance Exercise. Nutrients 2023; 15:4764. [PMID: 38004161 PMCID: PMC10675360 DOI: 10.3390/nu15224764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endurance exercise promotes damage at the intestinal level and generates a variety of symptoms related to oxidative stress processes, inflammatory processes, microbiota dysbiosis, and intestinal barrier damage. This study evaluated the effects of quince (Cydonia oblonga Mill.) and probiotics of the genera Lactobacillus and Bifidobacterium on intestinal protection and exercise endurance in an animal swimming model. Phytochemical characterization of the quince fruit demonstrated a total dietary fiber concentration of 0.820 ± 0.70 g/100 g and a fiber-bound phenolic content of 30,218 ± 104 µg/g in the freeze-dried fruit. UPLC-PDA-ESI-QqQ analyses identified a high content of polyphenol, mainly flavanols, hydroxycinnamic acids, hydroxybenzoic acids, flavonols, and, to a lesser extent, dihydrochalcones. The animal model of swimming was performed using C57BL/6 mice. The histological results determined that the consumption of the synbiotic generated intestinal protection and increased antioxidant (catalase and glutathione peroxidase enzymes) and anti-inflammatory (TNF-α and IL-6 and increasing IL-10) activities. An immunohistochemical analysis indicated mitochondrial biogenesis (Tom2) at the muscular level related to the increased swimming performance. These effects correlated mainly with the polyphenol content of the fruit and the effect of the probiotics. Therefore, this combination of quince and probiotics could be an alternative for the generation of a synbiotic product that improves exercise endurance and reduces the effects generated by the practice of high performance sports.
Collapse
Affiliation(s)
- Karen Marlenne Herrera-Rocha
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - María Magdalena Manjarrez-Juanes
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Mar Larrosa
- Department of Nutrition and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Alberto Barrios-Payán
- Laboratory of Experimental Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Vasco de Quiroga #15, Tlalpan, Ciudad de México 14080, Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Alejo Macías-Salas
- Hospital Santiago Ramón y Cajal, Departamento de Patología, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango 34079, Mexico
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Saul Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| |
Collapse
|
14
|
Babic M, Veljovic K, Popović N, Golic N, Radojkovic D, Stankovic M. Antioxidant effect of lactic acid bacteria in human bronchial epithelial cells exposed to cigarette smoke. J Appl Microbiol 2023; 134:lxad257. [PMID: 37951288 DOI: 10.1093/jambio/lxad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIMS Chronic lung diseases are a major and increasing global health problem, commonly caused by cigarette smoke. We aimed to explore the antioxidant effects of lactic acid bacteria (LAB) against cigarette smoke in bronchial epithelial cells. METHODS AND RESULTS The antioxidant effects of 21 heat-killed (HK) LAB strains were tested in cigarette smoke-stimulated BEAS-2B cells and 3-D bronchospheres organoids. We showed that HK Lactiplantibacillus plantarum BGPKM22 possesses antioxidant activity against cigarette smoke, resistance to hydrogen peroxide, and free radical neutralizing activity. We demonstrated that HK BGPKM22 inhibited cigarette smoke-induced expression of the Aryl hydrocarbon receptor (AhR) and Nuclear factor erythroid 2 related factor 2 (Nrf2) genes. The cell-free supernatant (SN) of BGPKM22 fully confirmed the effects of HK BGPKM22. CONCLUSIONS For the first time, we revealed that HK and SN of Lactip. plantarum BGPKM22 possess antioxidant activity and modulate AhR and Nrf2 gene expression in bronchial epithelial cells exposed to cigarette smoke.
Collapse
Affiliation(s)
- Mirjana Babic
- Laboratory for Molecular Biology, Group for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Katarina Veljovic
- Laboratory for Molecular Microbiology, Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Nikola Popović
- Laboratory for Molecular Microbiology, Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Natasa Golic
- Laboratory for Molecular Microbiology, Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Dragica Radojkovic
- Laboratory for Molecular Biology, Group for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Marija Stankovic
- Laboratory for Molecular Biology, Group for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| |
Collapse
|
15
|
Liu X, Hou Y, Yang M, Xin X, Deng Y, Fu R, Xiang X, Cao N, Liu X, Yu W, Yang B, Zhou Y. N-Acetyl-l-cysteine-Derived Carbonized Polymer Dots with ROS Scavenging via Keap1-Nrf2 Pathway Regulate Alveolar Bone Homeostasis in Periodontitis. Adv Healthc Mater 2023; 12:e2300890. [PMID: 37279380 DOI: 10.1002/adhm.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Indexed: 06/08/2023]
Abstract
Periodontitis is a type of chronic inflammatory oral disease characterized by the destruction of periodontal connective tissue and progressive alveolar bone resorption. As oxidative stress is the key cause of periodontitis in the early periodontal microenvironment, antioxidative therapy has been considered a viable treatment for periodontitis. However, more stable and effective reactive oxygen species (ROS)-scavenging nanomedicines are still highly needed due to the instability of traditional antioxidants. Herein, a new type of N-acetyl-l-cysteine (NAC)-derived red fluorescent carbonized polymer dots (CPDs) has been synthesized with excellent biocompatibility, which can serve as an extracellular antioxidant to scavenge ROS effectively. Moreover, NAC-CPDs can promote osteogenic differentiation in human periodontal ligament cells (hPDLCs) under H2 O2 stimulation. In addition, NAC-CPDs are capable of targeted accumulation in alveolar bone in vivo, reducing the level of alveolar bone resorption in periodontitis mice, as well as performing fluorescence imaging in vitro and in vivo. In terms of mechanism, NAC-CPDs may regulate redox homeostasis and promote bone formation in the periodontitis microenvironment by modulating the kelch-like ECH-associated protein l (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. This study provides a new strategy for the application of CPDs theranostic nanoplatform for periodontitis.
Collapse
Affiliation(s)
- Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yubo Hou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Xirui Xin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yu Deng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Ruobing Fu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xingchen Xiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Niuben Cao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xiaomeng Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Weixian Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
16
|
Lastres-Becker I. Special Issue "Role of NRF2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches II". Biomolecules 2023; 13:biom13050813. [PMID: 37238683 DOI: 10.3390/biom13050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This Special Issue (https://www [...].
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| |
Collapse
|
17
|
Lai D, Ma W, Wang J, Zhang L, Shi J, Lu C, Gu X. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis. J Periodontal Res 2023; 58:369-380. [PMID: 36691896 DOI: 10.1111/jre.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, which is a chronic inflammatory periodontal disease resulting in destroyed periodontal tissue, is the leading cause of tooth loss in adults. Many studies have found that inflammatory immune responses are involved in the risk of periodontal tissue damage. Therefore, we analyzed the association between immunity and periodontitis using bioinformatics methods to further understand this disease. MATERIALS AND METHODS First, the expression profiles of periodontitis and healthy samples were downloaded from the GEO database, including a training dataset GSE16134 and an external validation dataset GSE10334. Then, differentially expressed genes were identified using the limma package. Subsequently, immune cell infiltration was calculated by using the CIBERSORT algorithm. We further identified genes linking periodontitis and immunity from the ImmPort and DisGeNet databases. In addition, some of them were selected to construct a diagnostic model via a logistic stepwise regression analysis. RESULTS AND CONCLUSIONS Two hundred sixty differentially expressed genes were identified and found to be involved in responses to bacterial and immune-related processes. Subsequently, immune cell infiltration analysis demonstrates significant differences in the abundance of most immune cells between periodontitis and healthy samples, especially in plasma cells. These results suggested that immunity doses play a non-negligible role in periodontitis. Twenty-one genes linking periodontitis and immunity were further identified. And nine hub genes of them were identified that may be key genes involved in the development of periodontitis. Gene ontology analyses showed that these genes are involved in response to molecules of bacterial origin, cell chemotaxis, and response to chemokines. In addition, three genes of them were selected to construct a diagnostic model. And its good diagnostic performance was demonstrated by the receiver operating characteristic curves, with an area under the curve of 0.9424 for the training dataset and 0.9244 for the external validation dataset.
Collapse
Affiliation(s)
- Donglin Lai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhao Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jie Wang
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luzhu Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junfeng Shi
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
18
|
Karaca B, Haliscelik O, Gursoy M, Kiran F, Loimaranta V, Söderling E, Gursoy UK. Analysis of Chemical Structure and Antibiofilm Properties of Exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1 Postbiotics. Microorganisms 2022; 10:2200. [PMID: 36363792 PMCID: PMC9693231 DOI: 10.3390/microorganisms10112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
Previous studies have indicated that the exopolysaccharides of lactic acid bacteria exhibit antibiofilm activity against non-oral bacteria by preventing their initial adhesion to surfaces and by downregulating the expression of genes responsible for their biofilm formation. The aims of this study were to (1) characterize the exopolysaccharides (EPSs) of Lactobacillus plantarum EIR/IF-1 postbiotics, (2) test their antibiofilm effect on dual biofilms, and (3) evaluate their bacterial auto-aggregation, co-aggregation, and hydrocarbon-binding inhibitory activity. The EPSs were characterized by FTIR, HPLC, and thermogravimetric analysis. Bacterial auto- and co-aggregation were tested by Kolenbrander's method and hydrocarbon binding was tested by Rosenberg's method. Dual biofilms were formed by culturing Fusobacterium nucleatum ATCC 25586 with one of the following bacteria: Prevotella denticola ATCC 33185, P. denticola AHN 33266, Porphyromonas gingivalis ATCC 33277, P. gingivalis AHN 24155, and Filifactor alocis ATCC 35896. The EPSs contained fractions with different molecular weights (51 and 841 kDa) and monosaccharides of glucose, galactose, and fructose. The EPSs showed antibiofilm activity in all the biofilm models tested. The EPSs may have inhibited bacterial aggregation and binding to hydrocarbons by reducing bacterial hydrophobicity. In conclusion, the EPSs of L. plantarum EIR/IF-1, which consists of two major fractions, exhibited antibiofilm activity against oral bacteria, which can be explained by the inhibitory effect of EPSs on the auto-aggregation and co-aggregation of bacteria and their binding to hydrocarbons.
Collapse
Affiliation(s)
- Basar Karaca
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Ozan Haliscelik
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, 20521 Turku, Finland
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Eva Söderling
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
19
|
Xu J, Zhang X, Song Y, Zheng B, Wen Z, Gong M, Meng L. Heat-Killed Lacticaseibacillus paracasei Ameliorated UVB-Induced Oxidative Damage and Photoaging and Its Underlying Mechanisms. Antioxidants (Basel) 2022; 11:1875. [PMID: 36290598 PMCID: PMC9598452 DOI: 10.3390/antiox11101875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet B (UVB) radiation is a major environmental causative factor of skin oxidative damage and photoaging. Lacticaseibacillus paracasei is a well-known probiotic strain that can regulate skin health. The present study investigated the effects of heat-killed Lacticaseibacillus paracasei (PL) on UVB linked oxidative damage and photoaging in skin cells (Normal human dermal fibroblast (NHDF) cells and B16F10 murine melanoma cells). Results demonstrated that: (1) PL prevented UVB-induced cytotoxicity relating to decreased DNA damage in NHDF and B16F10 cells; (2) PL alleviated UVB-induced oxidative damage through increasing GSH content, as well as antioxidant enzyme activities and mRNA levels (except MnSOD activity and mRNA levels as well as CAT mRNA level) relating to the activation of Sirt1/PGC-1α/Nrf2 signaling in NHDF cells; (3) PL attenuated UVB-induced photoaging was noticed with a decrease in the percentage of SA-β-gal positive cells in NHDF cells model. Moreover, PL attenuated UVB-induced photoaging through exerting an anti-wrinkling effect by enhancing the type I collagen level relating to the inhibition (JNK, p38)/(c-Fos, c-Jun) of signaling in NHDF cells, and exerting an anti-melanogenic effect by suppressing tyrosinase and TYRP-1 activity and/or expressions relating to the inhibition of PKA/CREB/MITF signaling in B16F10 cells. In conclusion, PL could ameliorate UVB-induced oxidative damage and photoaging. Therefore, PL may be a potential antioxidant and anti-photoaging active ingredient for the cosmetic industry.
Collapse
Affiliation(s)
| | | | - Yan Song
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhengshun Wen
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|