1
|
Ozsahin I, Wang X, Zhou L, Xi K, Hojjati SH, Tanzi E, Maloney T, Fung EK, Dyke JP, Chen K, Pahlajani S, McIntire LB, Costa AP, Dartora WJ, Razlighi QR, Glodzik L, Li Y, Chiang GC, Rusinek H, de Leon MJ, Butler TA. Divergent neurodegeneration associations with choroid plexus volume and degree of calcification in cognitively normal APOE ε4 carriers and non-carriers. Sci Rep 2025; 15:12818. [PMID: 40229453 PMCID: PMC11997051 DOI: 10.1038/s41598-025-97409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Choroid plexus (CP), best known for producing CSF, also regulate inflammation and clear metabolic waste to maintain brain homeostasis. CP dysfunction is implicated in Alzheimer's Disease (AD), with MRI studies showing CP enlargement in AD. The basis for CP enlargement is unknown. We hypothesized that calcium deposition within CP, which increases with aging and in certain neurodegenerative conditions, might underlie pathologic CP enlargement and be linked to neurodegeneration. In 166 cognitively normal participants, we used multimodal imaging to examine CP structure (MRI-measured overall volume, CT-measured calcium volume), PET-measured Aβ, age, and APOE genotype as predictors of neurodegeneration, indexed as hippocampal volume. CP enlargement was associated with reduced hippocampal volume, particularly in APOE4 carriers. CP calcium was not independently associated with hippocampal volume. However, a significant interaction revealed APOE4 genotype-specific associations between CP calcium and neurodegeneration, with APOE4 carriers showing greater hippocampal volumes in association with greater CP calcium-opposite to our hypothesis. Results suggest that a factor other than calcium drives pathologic CP enlargement associated with neurodegeneration, with this factor especially important in APOE4 carriers. Candidate factors include lipids and inflammatory cells, which are known to accumulate in CP and be regulated by APOE. Our findings highlight CP as a critical locus for studying AD pathogenesis and the mechanisms by which APOE4 promotes AD.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
- Operational Research Center in Healthcare, Near East University, Near East Boulevard, Nicosia/TRNC, 99138, Mersin 10, Turkey.
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Kewei Chen
- Banner Alzheimer Institute, Arizona State University, 901 E Willetta St, Phoenix, AZ, 85006, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ana Paula Costa
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William Jones Dartora
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, 660 1st Avenue, New York, NY, 10016, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Cantone AF, Burgaletto C, Di Benedetto G, Gaudio G, Giallongo C, Caltabiano R, Broggi G, Bellanca CM, Cantarella G, Bernardini R. Rebalancing Immune Interactions within the Brain-Spleen Axis Mitigates Neuroinflammation in an Aging Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:15. [PMID: 39918606 PMCID: PMC11805801 DOI: 10.1007/s11481-025-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide, characterized by accumulation of amyloid-β protein and hyperphosphorylated tau protein in the brain. Neuroinflammation, resulting from chronic activation of brain-resident innate immune cells as well as enhanced peripheral leukocyte access across the blood-brain barrier, crucially affects AD progression. In this context, TNFSF10, a cytokine substantially expressed in the AD brain, has been shown to modulate both the innate and the adaptive branches of the immune response in AD-related neuroinflammation. In this study, we explored whether a TNFSF10-neutralizing treatment could represent a tool to re-balance the overall overshooting inflammatory response in a mouse model of AD. Specifically, 3xTg-AD mice were treated sub-chronically with an anti-TNFSF10 monoclonal antibody for three months, and were then sacrificed at 15 months. TNFSF10 neutralization reduced the expression of the inflammatory marker CD86, inversely related to levels of the anti-inflammatory marker CD206 in the brain of 3xTg-AD mice, suggesting a switch of microglia towards a neuroprotective phenotype. Similar results were observed in the splenic macrophage population. Moreover, flow cytometry revealed a significant decrease of CD4+CD25+FOXP3+ T regulatory cells as well as reduced number of CD11b+LY6Chigh proinflammatory monocytes in both the brain and the spleen of 3xTg-AD mice treated with anti-TNFSF10 monoclonal antibody. Finally, the treatment resulted in lower count of splenic CD4+ and CD8+ T cells expressing PD1. The data suggest that TNFSF10 system-targeted treatment effectively restrain overshooting central and peripheral inflammation by rebalancing the overall immune response, mitigating the progression of AD pathology.
Collapse
Affiliation(s)
- Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy.
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| |
Collapse
|
3
|
Rodrigues ABM, Passetti F, Guimarães ACR. Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis. Neuroinformatics 2025; 23:10. [PMID: 39836313 DOI: 10.1007/s12021-024-09713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.
Collapse
Affiliation(s)
| | - Fabio Passetti
- Instituto Carlos Chagas - Fiocruz/Paraná, Curitiba, PR, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Satyanarayanan SK, Han Z, Xiao J, Yuan Q, Yung WH, Ke Y, Chang RCC, Zhu MH, Su H, Su KP, Qin D, Lee SMY. Frontiers of Neurodegenerative Disease Treatment: Targeting Immune Cells in Brain Border Regions. Brain Behav Immun 2025; 123:483-499. [PMID: 39378973 DOI: 10.1016/j.bbi.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Neurodegenerative diseases (NDs) demonstrate a complex interaction with the immune system, challenging the traditional view of the brain as an "immune-privileged" organ. Microglia were once considered the sole guardians of the brain's immune response. However, recent research has revealed the critical role of peripheral immune cells located in key brain regions like the meninges, choroid plexus, and perivascular spaces. These previously overlooked cells are now recognized as contributors to the development and progression of NDs. This newfound understanding opens doors for pioneering therapeutic strategies. By targeting these peripheral immune cells, we may be able to modulate the brain's immune environment, offering an alternative approach to treat NDs and circumvent the challenges posed by the blood-brain barrier. This comprehensive review will scrutinize the latest findings on the complex interactions between these peripheral immune cells and NDs. It will also critically assess the prospects of targeting these cells as a ground-breaking therapeutic avenue for these debilitating disorders.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Jingwei Xiao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Faculty of Medicine Building, Hong Kong, China
| | - Maria Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Hong Kong, China
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Courtney Y, Hochstetler A, Lehtinen MK. Choroid Plexus Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:193-220. [PMID: 39383438 PMCID: PMC11884907 DOI: 10.1146/annurev-pathmechdis-051222-114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
This review examines the roles of the choroid plexus (ChP) in central nervous system (CNS) pathology, emphasizing its involvement in disease mechanisms and therapeutic potential. Structural changes in the human ChP have been reported across various diseases in case reports and descriptive work, but studies have yet to pin down the physiological relevance of these changes. We highlight primary pathologies of the ChP, as well as their significance in neurologic disorders, including stroke, hydrocephalus, infectious diseases, and neurodegeneration. Synthesizing recent research, this review positions the ChP as a critical player in CNS homeostasis and pathology, advocating for enhanced focus on its mechanisms to unlock new diagnostic and treatment strategies and ultimately improve patient outcomes in CNS diseases. Whether acting as a principal driver of disease, a gateway for pathogens into the CNS, or an orchestrator of neuroimmune processes, the ChP holds tremendous promise as a therapeutic target to attenuate a multitude of CNS conditions.
Collapse
Affiliation(s)
- Ya'el Courtney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Hochstetler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Perera C, Cruz R, Shemesh N, Carvalho T, Thomas DL, Wells J, Ianuș A. Non-invasive MRI of blood-cerebrospinal fluid-barrier function in a mouse model of Alzheimer's disease: a potential biomarker of early pathology. Fluids Barriers CNS 2024; 21:97. [PMID: 39633378 PMCID: PMC11616325 DOI: 10.1186/s12987-024-00597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Choroid plexus (CP) or blood-cerebrospinal fluid-barrier (BCSFB) is a unique functional tissue which lines the brain's fluid-filled ventricles, with a crucial role in CSF production and clearance. BCSFB dysfunction is thought to contribute to toxic protein build-up in neurodegenerative disorders, including Alzheimer's disease (AD). However, the dynamics of this process remain unknown, mainly due to the paucity of in-vivo methods for assessing CP function. METHODS We harness recent developments in Arterial Spin Labelling MRI to measure water delivery across the BCSFB as a proxy for CP function, as well as cerebral blood flow (CBF), at different stages of AD in the widely used triple transgenic mouse model (3xTg), with ages between 8 and 32 weeks. We further compared the MRI results with Y-maze behaviour testing, and histologically validated the expected pathological changes, which recapitulate both amyloid and tau deposition. RESULTS Total BCSFB-mediated water delivery is significantly higher in 3xTg mice (> 50%) from 8 weeks (preclinical stage), an increase which is not explained by differences in ventricular volumes, while tissue parameters such as CBF and T1 are not different between groups at all ages. Behaviour differences between the groups were observed starting at 20 weeks, especially in terms of locomotion, with 3xTg animals showing a significantly smaller number of arm entries in the Y-maze. CONCLUSIONS Our work strongly suggests the involvement of CP in the early stages of AD, before the onset of symptoms and behavioural changes, providing a potential biomarker of pathology.
Collapse
Affiliation(s)
- Charith Perera
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - Tânia Carvalho
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Andrada Ianuș
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal.
- King's College London, School of Biomedical Engineering and Imaging Sciences, Imaging Physics and Engineering Research Department; Cancer Imaging Research Department, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
7
|
Nasr El-Din WA, Abdel Fattah IO. L-arginine mitigates choroid plexus changes in Alzheimer's disease rat model via oxidative/inflammatory burden and behavioral modulation. Tissue Cell 2024; 91:102572. [PMID: 39326233 DOI: 10.1016/j.tice.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Aging is a risk factor for Alzheimer's disease (AD), leading to choroid plexus (CP) alterations. This study aimed to explore the possible therapeutic mechanisms of ARG on AD-induced CP changes. Sprague-Dawley rats were divided into 6 groups (n = 7 per group): adult, adult+ARG, aged, aged+ARG, aged+AD, and aged+AD+ARG groups. Evaluations were for Y-maze test, serum levels of oxidative/inflammatory markers, and serum and cerebrospinal fluid (CSF) markers of AD, histopathology, immunohistochemistry, and histomorphometry. The aged+AD group demonstrated a significant decline in maze test parameters, total antioxidant capacity (TAC), brain-derived neurotrophic factor (BDNF) levels, and vascular endothelial growth factor (VEGF) immunoexpression, while tumour necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), beta-amyloid (Aβ) levels and amyloid protein precursor (APP), and heat shock protein90 (HSP90) immunoexpressions were significantly increased. Sections of this group showed flat epitheliocytes, congested capillaries, connective tissue expansion, and degenerated endothelium. These parameters were modulated by ARG administration, via increased levels of TAC (1.37 vs 2.17 mmol/L), (p = 0.018) BDNF (serum: 48.50 vs 78.41; CSF: 4.07 vs 7.11 pg/ml) (p< 0.001), and VEGF (0.07 vs 0.26 OD) (p< 0.001), in addition to decreased levels of TNF-α (86.63 vs 41.39 pg/ml) (p< 0.001), IL-1β (96.04 vs 39.57 pg/ml) (p< 0.001), Aβ (serum: 67.40 vs 47.30; CSF: 189.26 vs 169.84 pg/ml) (p< 0.001), and HSP90 (0.54 vs 0.13 OD) (p< 0.001). In conclusion, ARG ameliorates the AD-associated CP changes, including histopathological, oxidative/inflammatory, and AD markers, and VEGF and HSP90 immunohistochemical alterations. Dietary ARG consumption is recommended to avoid AD progression in the elderly.
Collapse
Affiliation(s)
- Wael Amin Nasr El-Din
- Department of Anatomy, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain; Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Islam Omar Abdel Fattah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
8
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Delvenne A, Vandendriessche C, Gobom J, Burgelman M, Dujardin P, De Nolf C, Tijms BM, Teunissen CE, Schindler SE, Verhey F, Ramakers I, Martinez-Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, De Roeck E, Popp J, Peyratout G, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vandenbroucke RE, Vos SJB. Involvement of the choroid plexus in Alzheimer's disease pathophysiology: findings from mouse and human proteomic studies. Fluids Barriers CNS 2024; 21:58. [PMID: 39020361 PMCID: PMC11256635 DOI: 10.1186/s12987-024-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, USA
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zürich, Zurich, Switzerland
| | | | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, UK
- Johnson and Johnson Medical Ltd., Wokingham, UK
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- H. Lundbeck A/S, Valby, Denmark
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
11
|
Jiang J, Zhuo Z, Wang A, Li W, Jiang S, Duan Y, Ren Q, Zhao M, Wang L, Yang S, Awan MUN, Liu Y, Xu J. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum. Alzheimers Res Ther 2024; 16:149. [PMID: 38961406 PMCID: PMC11221040 DOI: 10.1186/s13195-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aβ42, Aβ40, Aβ42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aβ42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aβ42 and Aβ40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aβ42 and Aβ40 levels with MMSE scores (19.08% and 36.57%), and Aβ42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aβ42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aβ42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhizheng Zhuo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
12
|
Pearson MJ, Wagstaff R, Williams RJ. Choroid plexus volumes and auditory verbal learning scores are associated with conversion from mild cognitive impairment to Alzheimer's disease. Brain Behav 2024; 14:e3611. [PMID: 38956818 PMCID: PMC11219301 DOI: 10.1002/brb3.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Mild cognitive impairment (MCI) can be the prodromal phase of Alzheimer's disease (AD) where appropriate intervention might prevent or delay conversion to AD. Given this, there has been increasing interest in using magnetic resonance imaging (MRI) and neuropsychological testing to predict conversion from MCI to AD. Recent evidence suggests that the choroid plexus (ChP), neural substrates implicated in brain clearance, undergo volumetric changes in MCI and AD. Whether the ChP is involved in memory changes observed in MCI and can be used to predict conversion from MCI to AD has not been explored. METHOD The current study used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to investigate whether later progression from MCI to AD (progressive MCI [pMCI], n = 115) or stable MCI (sMCI, n = 338) was associated with memory scores using the Rey Auditory Verbal Learning Test (RAVLT) and ChP volumes as calculated from MRI. Classification analyses identifying pMCI or sMCI group membership were performed to compare the predictive ability of the RAVLT and ChP volumes. FINDING The results indicated a significant difference between pMCI and sMCI groups for right ChP volume, with the pMCI group showing significantly larger right ChP volume (p = .01, 95% confidence interval [-.116, -.015]). A significant linear relationship between the RAVLT scores and right ChP volume was found across all participants, but not for the two groups separately. Classification analyses showed that a combination of left ChP volume and auditory verbal learning scores resulted in the most accurate classification performance, with group membership accurately predicted for 72% of the testing data. CONCLUSION These results suggest that volumetric ChP changes appear to occur before the onset of AD and might provide value in predicting conversion from MCI to AD.
Collapse
Affiliation(s)
- Michael J. Pearson
- Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Ruth Wagstaff
- Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | | |
Collapse
|
13
|
Ueno M, Chiba Y, Murakami R, Miyai Y, Matsumoto K, Wakamatsu K, Nakagawa T, Takebayashi G, Uemura N, Yanase K, Ogino Y. Transporters, Ion Channels, and Junctional Proteins in Choroid Plexus Epithelial Cells. Biomedicines 2024; 12:708. [PMID: 38672064 PMCID: PMC11048166 DOI: 10.3390/biomedicines12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The choroid plexus (CP) plays significant roles in secreting cerebrospinal fluid (CSF) and forming circadian rhythms. A monolayer of epithelial cells with tight and adherens junctions of CP forms the blood-CSF barrier to control the movement of substances between the blood and ventricles, as microvessels in the stroma of CP have fenestrations in endothelial cells. CP epithelial cells are equipped with several kinds of transporters and ion channels to transport nutrient substances and secrete CSF. In addition, junctional components also contribute to CSF production as well as blood-CSF barrier formation. However, it remains unclear how junctional components as well as transporters and ion channels contribute to the pathogenesis of neurodegenerative disorders. In this manuscript, recent findings regarding the distribution and significance of transporters, ion channels, and junctional proteins in CP epithelial cells are introduced, and how changes in expression of their epithelial proteins contribute to the pathophysiology of brain disorders are reviewed.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yumi Miyai
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Toshitaka Nakagawa
- Division of Research Instrument and Equipment, Research Facility Center, Kagawa University, Kagawa 761-0793, Japan;
| | - Genta Takebayashi
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (G.T.); (N.U.); (K.Y.); (Y.O.)
| |
Collapse
|
14
|
Alves VC, Figueiro-Silva J, Trullas R, Ferrer I, Carro E. Olfactory Receptor OR2K2 Expression in Human Choroid Plexus as a Potential Marker in Early Sporadic Alzheimer's Disease. Genes (Basel) 2024; 15:385. [PMID: 38540444 PMCID: PMC10970182 DOI: 10.3390/genes15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
Epithelial cells comprising the choroid plexus (CP) form a crucial barrier between the blood and the cerebrospinal fluid, thereby assuming a central position in brain homeostasis and signaling. Mounting evidence suggests that the impairment of CP function may be a significant contributor to Alzheimer's disease (AD) pathogenesis. CP function relies on the expression of specific receptors, and the potential involvement of olfactory receptors (ORs) and taste receptors (TASRs) in chemical surveillance within the CP is being investigated. Previous studies have implicated ORs and TASRs in neurodegenerative disorders like AD, although the direct evidence of their expression in the human CP remains to be established. In this study, we conducted a transcriptomic analysis encompassing eleven ORs and TASRs in the CP, comparing samples from healthy age-matched controls to those from patients with AD spanning Braak stages I to VI. Among these receptors, a striking finding emerged-OR2K2 exhibited robust expression, with a statistically significant upregulation noted at Braak stage I. Surprisingly, at the protein level, OR2K2 showed a significant decrease in both Braak stage I and VI. Additionally, we identified CP epithelial cells as the source of OR2K2 expression, where it colocalized with autophagy markers LC3 and p62. We postulate that OR2K2 could be subjected to degradation by autophagy in the early stages of AD, triggering a compensatory mechanism that leads to increased OR2K2 mRNA transcription. This study uncovers a potential role for OR2K2 in AD pathogenesis, offering a novel perspective on the intricate dynamics at play in this neurodegenerative disorder.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, 8952 Zurich, Switzerland;
- Department of Molecular Life Science, University of Zurich, 8952 Zurich, Switzerland
| | - Ramon Trullas
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isidre Ferrer
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, 08908 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
15
|
Abubaker M, Greaney A, Newport D, Mulvihill JJE. Characterization of primary human leptomeningeal cells in 2D culture. Heliyon 2024; 10:e26744. [PMID: 38434413 PMCID: PMC10906397 DOI: 10.1016/j.heliyon.2024.e26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Maintaining the integrity of brain barriers is critical for a healthy central nervous system. While extensive research has focused on the blood-brain barrier (BBB) of the brain vasculature and blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus, the barriers formed by the meninges have not received as much attention. These membranes create a barrier between the brain and cerebrospinal fluid (CSF), as well as between CSF and blood. Recent studies have revealed that this barrier has been implicated in the development of neurological and immunological disorders. In order to gain a deeper comprehension of the functioning and significance of the meningeal barriers, sophisticated models of these barriers, need to be created. The aim of this paper is to investigate the characteristics of commercially available primary leptomeningeal cells (LMCs) that form the meningeal barriers, in a cultured environment, including their morphology, proteomics, and barrier properties, and to determine whether passaging of these cells affects their behaviour in comparison to their in vivo state. The results indicate that higher passage numbers significantly alter the morphology and protein localisation and expression of the LMCs. Furthermore, the primary cell culture co-stained for S100A6 and E-cadherin suggesting it is a co-culture of both pial and arachnoid cells. Additionally, cultured LMCs showed an increase in vimentin and cytokeratin expression and a lack of junctional proteins localisation on the cell membrane, which could suggest loss of epithelial properties due to culture, preventing barrier formation. This study shows that the LMCs may be a co-culture of pial and arachnoid cells, that the optimal LMC passage range is between passages two and five for experimentation and that the primary human LMCs form a weak barrier when in culture.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - Aisling Greaney
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - David Newport
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
16
|
Bravi B, Melloni EMT, Paolini M, Palladini M, Calesella F, Servidio L, Agnoletto E, Poletti S, Lorenzi C, Colombo C, Benedetti F. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. Brain Behav Immun 2024; 116:52-61. [PMID: 38030049 DOI: 10.1016/j.bbi.2023.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Depressed patients exhibit altered levels of immune-inflammatory markers both in the peripheral blood and in the cerebrospinal fluid (CSF) and inflammatory processes have been widely implicated in the pathophysiology of mood disorders. The Choroid Plexus (ChP), located at the base of each of the four brain ventricles, regulates the exchange of substances between the blood and CSF and several evidence supported a key role for ChP as a neuro-immunological interface between the brain and circulating immune cells. Given the role of ChP as a regulatory gate between periphery, CSF spaces and the brain, we compared ChP volumes in patients with bipolar disorder (BP) or major depressive disorder (MDD) and healthy controls, exploring their association with history of illness and levels of circulating cytokines. Plasma levels of inflammatory markers and MRI scans were acquired for 73 MDD, 79 BD and 72 age- and sex-matched healthy controls (HC). Patients with either BD or MDD had higher ChP volumes than HC. With increasing age, the bilateral ChP volume was larger in patients, an effect driven by the duration of illness; while only minor effects were observed in HC. Right ChP volumes were proportional to higher levels of circulating cytokines in the clinical groups, including IFN-γ, IL-13 and IL-17. Specific effects in the two diagnostic groups were observed when considering the left ChP, with positive association with IL-1ra, IL-13, IL-17, and CCL3 in BD, and negative associations with IL-2, IL-4, IL-1ra, and IFN-γ in MDD. These results suggest that ChP could represent a reliable and easy-to-assess biomarker to evaluate the brain effects of inflammatory status in mood disorders, contributing to personalized diagnosis and tailored treatment strategies.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Calesella
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Servidio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Elena Agnoletto
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
17
|
Bolshakov AP, Gerasimov K, Dobryakova YV. Alzheimer's Disease: An Attempt of Total Recall. J Alzheimers Dis 2024; 101:1043-1061. [PMID: 39269841 DOI: 10.3233/jad-240620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This review is an attempt to compile existing hypotheses on the mechanisms underlying the initiation and progression of Alzheimer's disease (AD), starting from sensory impairments observed in AD and concluding with molecular events that are typically associated with the disease. These events include spreading of amyloid plaques and tangles of hyperphosphorylated tau and formation of Hirano and Biondi bodies as well as the development of oxidative stress. We have detailed the degenerative changes that occur in several neuronal populations, including the cholinergic neurons in the nucleus basalis of Meynert, the histaminergic neurons in the tuberomammillary nucleus, the serotonergic neurons in the raphe nuclei, and the noradrenergic neurons in the locus coeruleus. Furthermore, we discuss the potential role of iron accumulation in the brains of subjects with AD in the disease progression which served as a basis for the idea that iron chelation in the brain may mitigate oxidative stress and decelerate disease development. We also draw attention to possible role of sympathetic system and, more specifically, noradrenergic neurons of the superior cervical ganglion in triggering of the disease. We also explore the alternative possibility of compensatory protective changes that may occur in these neurons to support cholinergic function in the forebrain of subjects with AD.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Gerasimov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Russian National Research Medical University, Moscow, Russia
| | - Yulia V Dobryakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Loonen AJ. Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain Behav Immun Health 2023; 33:100687. [PMID: 37810262 PMCID: PMC10550815 DOI: 10.1016/j.bbih.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The term extrapyramidal disorders is most often used for conditions such as Parkinson's disease or Huntington's disease, but also refers to a group of extrapyramidal side effects of antipsychotics (EPS), such as tardive dyskinesia (TD). After a brief description of some clinical features of TD, this article summarizes the relatively scarce results of research on a possible link between mainly cytokine levels and TD. This data was found by systematically searching Pubmed and Embase. The limitations of these types of studies are a major obstacle to interpretation. After describing relevant aspects of the neuroinflammatory response and the neuroanatomical backgrounds of EPS, a new hypothesis for the origin of TD is presented with emphasis on dysfunctions in the striosomal compartment of the striatum and the dorsal diencephalic connection system (DDCS). It is postulated that (partly immunologically-induced) increase in oxidative stress and the dopamine-dependent immune response in classic TD proceed primarily via the DDCS, which itself is activated from evolutionarily older parts of the forebrain. Neuroinflammatory responses in the choroid plexus of the third ventricle may contribute due to its proximity to the habenula. It is concluded that direct evidence for a possible role of inflammatory processes in the mechanism of TD is still lacking because research on this is still too much of a niche, but there are indications that warrant further investigation.
Collapse
Affiliation(s)
- Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| |
Collapse
|
19
|
Nutter CA, Kidd BM, Carter HA, Hamel JI, Mackie PM, Kumbkarni N, Davenport ML, Tuyn DM, Gopinath A, Creigh PD, Sznajder ŁJ, Wang ET, Ranum LPW, Khoshbouei H, Day JW, Sampson JB, Prokop S, Swanson MS. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1. Brain 2023; 146:4217-4232. [PMID: 37143315 PMCID: PMC10545633 DOI: 10.1093/brain/awad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Johanna I Hamel
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Philip M Mackie
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayha Kumbkarni
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jacinda B Sampson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Ota M, Sato N, Nakaya M, Shigemoto Y, Kimura Y, Chiba E, Yokoi Y, Tsukamoto T, Matsuda H. Relationship between the tau protein and choroid plexus volume in Alzheimer's disease. Neuroreport 2023; 34:546-550. [PMID: 37384934 DOI: 10.1097/wnr.0000000000001923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Tau protein accumulation in the brain is thought to be one of the causes of Alzheimer's disease (AD). Recent studies found that the choroid plexus (CP) has a role in β-amyloid and tau protein clearance in the brain. We evaluated the relationships between CP volume and the ß-amyloid and tau protein depositions. Participants were 20 patients with AD and 35 healthy subjects who underwent MRI and PET scanning using the ß-amyloid tracer 11C-PiB and the tau/inflammatory tracer 18F-THK5351. We computed the volume of the CP and estimated the relationships between the CP volume and ß-amyloid and tau protein/inflammatory deposition by Spearman's correlation test. The CP volume was significantly positively correlated with both the standardized uptake value ratio (SUVR) of 11C-PiB and the SUVR of 18F-THK5351 in all participants. The CP volume was also significantly positively correlated with the SUVR of 18F-THK5351in patients with AD. Our data suggested that the volume of the CP was a good biomarker for the evaluation of tau deposition and neuroinflammation.
Collapse
Affiliation(s)
- Miho Ota
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Ibaraki
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Moto Nakaya
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Emiko Chiba
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Yuma Yokoi
- Department of Psychiatry, National Center of Neurology and Psychiatry
- Department of Educational Promotion, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo and
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima City, Fukushima, Japan
| |
Collapse
|
21
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
22
|
Nott A, Holtman IR. Genetic insights into immune mechanisms of Alzheimer's and Parkinson's disease. Front Immunol 2023; 14:1168539. [PMID: 37359515 PMCID: PMC10285485 DOI: 10.3389/fimmu.2023.1168539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Microglia, the macrophages of the brain, are vital for brain homeostasis and have been implicated in a broad range of brain disorders. Neuroinflammation has gained traction as a possible therapeutic target for neurodegeneration, however, the precise function of microglia in specific neurodegenerative disorders is an ongoing area of research. Genetic studies offer valuable insights into understanding causality, rather than merely observing a correlation. Genome-wide association studies (GWAS) have identified many genetic loci that are linked to susceptibility to neurodegenerative disorders. (Post)-GWAS studies have determined that microglia likely play an important role in the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The process of understanding how individual GWAS risk loci affect microglia function and mediate susceptibility is complex. A rapidly growing number of publications with genomic datasets and computational tools have formulated new hypotheses that guide the biological interpretation of AD and PD genetic risk. In this review, we discuss the key concepts and challenges in the post-GWAS interpretation of AD and PD GWAS risk alleles. Post-GWAS challenges include the identification of target cell (sub)type(s), causal variants, and target genes. Crucially, the prediction of GWAS-identified disease-risk cell types, variants and genes require validation and functional testing to understand the biological consequences within the pathology of the disorders. Many AD and PD risk genes are highly pleiotropic and perform multiple important functions that might not be equally relevant for the mechanisms by which GWAS risk alleles exert their effect(s). Ultimately, many GWAS risk alleles exert their effect by changing microglia function, thereby altering the pathophysiology of these disorders, and hence, we believe that modelling this context is crucial for a deepened understanding of these disorders.
Collapse
Affiliation(s)
- Alexi Nott
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Inge R. Holtman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Yazdan-Panah A, Schmidt-Mengin M, Ricigliano VAG, Soulier T, Stankoff B, Colliot O. Automatic segmentation of the choroid plexuses: Method and validation in controls and patients with multiple sclerosis. Neuroimage Clin 2023; 38:103368. [PMID: 36913908 PMCID: PMC10011049 DOI: 10.1016/j.nicl.2023.103368] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Choroid Plexuses (ChP) are structures located in the ventricles that produce the cerebrospinal fluid (CSF) in the central nervous system. They are also a key component of the blood-CSF barrier. Recent studies have described clinically relevant ChP volumetric changes in several neurological diseases including Alzheimer's, Parkinson's disease, and multiple sclerosis (MS). Therefore, a reliable and automated tool for ChP segmentation on images derived from magnetic resonance imaging (MRI) is a crucial need for large studies attempting to elucidate their role in neurological disorders. Here, we propose a novel automatic method for ChP segmentation in large imaging datasets. The approach is based on a 2-step 3D U-Net to keep preprocessing steps to a minimum for ease of use and to lower memory requirements. The models are trained and validated on a first research cohort including people with MS and healthy subjects. A second validation is also performed on a cohort of pre-symptomatic MS patients having acquired MRIs in routine clinical practice. Our method reaches an average Dice coefficient of 0.72 ± 0.01 with the ground truth and a volume correlation of 0.86 on the first cohort while outperforming FreeSurfer and FastSurfer-based ChP segmentations. On the dataset originating from clinical practice, the method reaches a Dice coefficient of 0.67 ± 0.01 (being close to the inter-rater agreement of 0.64 ± 0.02) and a volume correlation of 0.84. These results demonstrate that this is a suitable and robust method for the segmentation of the ChP both on research and clinical datasets.
Collapse
Affiliation(s)
- Arya Yazdan-Panah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Marius Schmidt-Mengin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Vito A G Ricigliano
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Théodore Soulier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Bruno Stankoff
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France.
| |
Collapse
|
24
|
Klistorner S, Van der Walt A, Barnett MH, Butzkueven H, Kolbe S, Parratt J, Yiannikas C, Klistorner A. Choroid plexus volume is enlarged in clinically isolated syndrome patients with optic neuritis. Mult Scler 2023; 29:540-548. [PMID: 36876595 DOI: 10.1177/13524585231157206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVES We investigated choroid plexus (CP) volume in patients presenting with optic neuritis (ON) as a clinically isolated syndrome (CIS), compared to a cohort with established relapsing-remitting multiple sclerosis (RRMS) and healthy controls (HCs). METHODS Three-dimensional (3D) T1, T2-FLAIR and diffusion-weighted sequences were acquired from 44 ON CIS patients at baseline, 1, 3, 6 and 12 months after the onset of ON. Fifty RRMS patients and 50 HCs were also included for comparison. RESULTS CP volumes was larger in both ON CIS and RRMS groups compared to HCs, but not significantly different between ON CIS and RRMS patients (analysis of covariance (ANCOVA) adjusted for multiple comparisons). Twenty-three ON CIS patients who converted to clinically definite MS (MS) demonstrated CP volume similar to RRMS patients, but significantly larger compared to HCs. In this sub-group, CP volume was not associated with the severity of optic nerve inflammation or long-term axonal loss, not with brain lesion load. A transient increase of CP volume was observed following an occurrence of new MS lesions on brain magnetic resonance imaging (MRI). INTERPRETATION Enlarged CP can be observed very early in a disease. It transiently reacts to acute inflammation, but not associated with the degree of tissue destruction.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, AustraliaScott Kolbe Monash University, Melbourne, VIC, Australia
| | - Michael H Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia/Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Scott Kolbe
- Monash University, Melbourne, VIC, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
NLRP3-dependent lipid droplet formation contributes to posthemorrhagic hydrocephalus by increasing the permeability of the blood-cerebrospinal fluid barrier in the choroid plexus. Exp Mol Med 2023; 55:574-586. [PMID: 36869068 PMCID: PMC10073156 DOI: 10.1038/s12276-023-00955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023] Open
Abstract
Hydrocephalus is a severe complication that can result from intracerebral hemorrhage, especially if this hemorrhage extends into the ventricles. Our previous study indicated that the NLRP3 inflammasome mediates cerebrospinal fluid hypersecretion in the choroid plexus epithelium. However, the pathogenesis of posthemorrhagic hydrocephalus remains unclear, and therapeutic strategies for prevention and treatment are lacking. In this study, an Nlrp3-/- rat model of intracerebral hemorrhage with ventricular extension and primary choroid plexus epithelial cell culture were used to investigate the potential effects of NLRP3-dependent lipid droplet formation and its role in the pathogenesis of posthemorrhagic hydrocephalus. The data indicated that NLRP3-mediated dysfunction of the blood-cerebrospinal fluid barrier (B-CSFB) accelerated neurological deficits and hydrocephalus, at least in part, through the formation of lipid droplets in the choroid plexus; these lipid droplets interacted with mitochondria and increased the release of mitochondrial reactive oxygen species that destroyed tight junctions in the choroid plexus after intracerebral hemorrhage with ventricular extension. This study broadens the current understanding of the relationship among NLRP3, lipid droplets and the B-CSFB and provides a new therapeutic target for the treatment of posthemorrhagic hydrocephalus. Strategies to protect the B-CSFB may be effective therapeutic approaches for posthemorrhagic hydrocephalus.
Collapse
|
26
|
Shi F, Yang H, Sun G, Cui J, Li Z, Wang W, Zhang Y. Pb induces ferroptosis in choroid plexus epithelial cells via Fe metabolism. Neurotoxicology 2023; 95:107-116. [PMID: 36642386 DOI: 10.1016/j.neuro.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Pb can enhance blood-cerebrospinal fluid barrier (BCSFB) permeability and accumulate in brain tissue, leading to central nervous system (CNS) dysfunction. Choroid plexus (CP) epithelial cells are the main components of the BCSFB with crucial functions in BCSFB maintenance. However, the mechanism by which Pb exposure affects CP epithelial cells remains unclear. Here, ferroptosis was identified as the major programmed cell death modality by sophisticated high-throughput sequencing and biochemical investigations in primary cultured CP epithelial cells following Pb exposure. Bioinformatics analysis using the ferroptosis database revealed that 16 ferroptosis-related genes were differentially expressed in primary cultured CP epithelial cells following Pb exposure. Among them, Gpx4, Slc7a11, Tfrc, and Slc40a1 were hub ferroptosis-related genes. In addition, CP epithelial cells can be impaired when the concentration of the Pb2+ reached 2050 μg/L (10 μM PbAc), which included the decrease of cell viability, Gpx4 and Slc7a11 proteins expression, etc. Moreover, inhibition of ferroptosis enhanced CP epithelial cell viability and reduced BCSFB permeability in vitro following Pb exposure. In summary, ferroptosis of CP epithelial cells is involved in BCSFB dysfunction following Pb exposure. Gpx4, Slc7a11, Tfrc, and Slc40a1 are hub ferroptosis-related genes in CP epithelial cells.
Collapse
Affiliation(s)
- Fan Shi
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China; Laboratory Animal Center, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Haohui Yang
- Department of General Medicine, the Second Hospital of Tangshan, 063001 Hebei, China.
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Jianmei Cui
- Traditional Chinese Medical College, North China University of Science of Technology, Tangshan 063210, Hebei, China.
| | - Zejin Li
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China.
| | - Weixuan Wang
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China; Laboratory Animal Center, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Yanshu Zhang
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China; Laboratory Animal Center, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| |
Collapse
|
27
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
28
|
Bondareva O, Rodríguez-Aguilera JR, Oliveira F, Liao L, Rose A, Gupta A, Singh K, Geier F, Schuster J, Boeckel JN, Buescher JM, Kohli S, Klöting N, Isermann B, Blüher M, Sheikh BN. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat Metab 2022; 4:1591-1610. [PMID: 36400935 PMCID: PMC9684070 DOI: 10.1038/s42255-022-00674-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022]
Abstract
Obesity promotes diverse pathologies, including atherosclerosis and dementia, which frequently involve vascular defects and endothelial cell (EC) dysfunction. Each organ has distinct EC subtypes, but whether ECs are differentially affected by obesity is unknown. Here we use single-cell RNA sequencing to analyze transcriptomes of ~375,000 ECs from seven organs in male mice at progressive stages of obesity to identify organ-specific vulnerabilities. We find that obesity deregulates gene expression networks, including lipid handling, metabolic pathways and AP1 transcription factor and inflammatory signaling, in an organ- and EC-subtype-specific manner. The transcriptomic aberrations worsen with sustained obesity and are only partially mitigated by dietary intervention and weight loss. For example, dietary intervention substantially attenuates dysregulation of liver, but not kidney, EC transcriptomes. Through integration with human genome-wide association study data, we further identify a subset of vascular disease risk genes that are induced by obesity. Our work catalogs the impact of obesity on the endothelium, constitutes a useful resource and reveals leads for investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesús Rafael Rodríguez-Aguilera
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabiana Oliveira
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Longsheng Liao
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Alina Rose
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Florian Geier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jenny Schuster
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, University of Leipzig, Leipzig, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany.
- Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
29
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
30
|
Chavda VP, Jogi G, Paiva-Santos AC, Kaushik A. Biodegradable and removable implants for controlled drug delivery and release application. Expert Opin Drug Deliv 2022; 19:1177-1181. [PMID: 35929995 DOI: 10.1080/17425247.2022.2110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Conventional drug delivery route has several limitations such as hepatic first-pass metabolism, gastric issues, hypersensitivity reactions, etc. Additionally, such approaches are not found to be patient compliant, especially for chronic diseases. Conversely, implantable, polymeric drug delivery systems provide prolonged as well as controlled release of drug from the device implanted in the body. This editorial summarizes various types of implantable drug delivery systems along with their associated advantages and challenges. Additionally, recent advances in this field such as shape memory-based polymeric implants and 3-D printed implants are also discussed carefully and critically.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ajeet Kaushik
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
| |
Collapse
|
31
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang GY, Tian H, Tang Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging Dis 2022; 14:468-483. [PMID: 37008045 PMCID: PMC10017161 DOI: 10.14336/ad.2022.0826-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ependymal cells are indispensable components of the central nervous system (CNS). They originate from neuroepithelial cells of the neural plate and show heterogeneity, with at least three types that are localized in different locations of the CNS. As glial cells in the CNS, accumulating evidence demonstrates that ependymal cells play key roles in mammalian CNS development and normal physiological processes by controlling the production and flow of cerebrospinal fluid (CSF), brain metabolism, and waste clearance. Ependymal cells have been attached to great importance by neuroscientists because of their potential to participate in CNS disease progression. Recent studies have demonstrated that ependymal cells participate in the development and progression of various neurological diseases, such as spinal cord injury and hydrocephalus, raising the possibility that they may serve as a potential therapeutic target for the disease. This review focuses on the function of ependymal cells in the developmental CNS as well as in the CNS after injury and discusses the underlying mechanisms of controlling the functions of ependymal cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Tang
- Correspondence should be addressed to: Dr. Yaohui Tang, Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, China. .
| |
Collapse
|