1
|
Liu C, Chen X, Ene J, Esmonde C, Kanekiyo T, Zeng C, Sun L, Li Y. Engineering Extracellular Vesicles Secreted by Human Brain Organoids with Different Regional Identity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15145-15162. [PMID: 40030083 DOI: 10.1021/acsami.4c22692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanovesicles that show significance in intercellular communications and high therapeutic potential. In this study, a novel type of EV subpopulation, matrix-bound nanovesicles (MBVs), was identified from a decellularized extracellular matrix of brain organoids that were derived from human pluripotent stem cells to compare with supernatant EVs (SuEVs) isolated from spent media. The organoids generated 10-fold more MBVs than did SuEVs. SuEVs contained more enriched microRNA cargo than MBVs, and the microRNA relative abundance changed during organoid maturation. The forebrain and hindbrain organoid SuEVs had a highly overlapped protein cargo based on proteomics analysis. More membrane proteins, including integrins, were identified in MBVs than SuEVs, which could contribute to MBV retention in matrices. Lipidomics data showed that MBVs were enriched in glycerophospholipids and sphingolipids, which affect the lipid membrane rigidity and recruitment of integral membrane proteins. To mimic ischemic stroke, in vitro oxygen and glucose deprivation model results revealed stronger recovery effects of MBVs than SuEVs at the same dose. The effects were exerted by regulating autophagy, reactive oxygen species scavenging, and anti-inflammatory ability. This study laid the foundation for advancing our knowledge of intercellular communication and for developing cell-free based therapies for treating neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | | | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
2
|
Zhuo Y, Zhao YG, Zhang Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules 2024; 29:4854. [PMID: 39459222 PMCID: PMC11510236 DOI: 10.3390/molecules29204854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Biological variability poses significant challenges in the development of effective therapeutics, particularly when it comes to drug solubility and bioavailability. Poor solubility across varying physiological conditions often leads to reduced absorption and inconsistent therapeutic outcomes. This review examines how nanotechnology, especially through the use of nanomaterials and magnetic nanoparticles, offers innovative solutions to enhance drug solubility and bioavailability. This comprehensive review focuses on recent advancements and approaches in nanotechnology. We highlight both the successes and remaining challenges in this field, emphasizing the role of continued innovation. Future research should prioritize developing universal therapeutic solutions, conducting interdisciplinary research, and leveraging personalized nanomedicine to address biological variability.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yun Zhang
- School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
3
|
Liu C, Sun L, Worden H, Ene J, Zeng OZ, Bhagu J, Grant SC, Bao X, Jung S, Li Y. Profiling biomanufactured extracellular vesicles of human forebrain spheroids in a Vertical-Wheel Bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70002. [PMID: 39211409 PMCID: PMC11350274 DOI: 10.1002/jex2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Extracellular vesicles (EVs) secreted by human brain cells have great potential as cell-free therapies in various diseases, including stroke. However, because of the significant amount of EVs needed in preclinical and clinical trials, EV application is still challenging. Vertical-Wheel Bioreactors (VWBRs) have designed features that allow for scaling up the generation of human forebrain spheroid EVs under low shear stress. In this study, EV secretion by human forebrain spheroids derived from induced pluripotent stem cells as 3D aggregates and on Synthemax II microcarriers in VWBRs were investigated with static aggregate culture as a control. The spheroids were characterized by metabolite and transcriptome analysis. The isolated EVs were characterized by nanoparticle tracking analysis, electron microscopy, and Western blot. The EV cargo was analyzed using proteomics and miRNA sequencing. The in vitro functional assays of an oxygen and glucose-deprived stroke model were conducted. Proof of concept in vivo study was performed, too. Human forebrain spheroid differentiated on microcarriers showed a higher growth rate than 3D aggregates. Microcarrier culture had lower glucose consumption per million cells and lower glycolysis gene expression but higher EV biogenesis genes. EVs from the three culture conditions showed no differences in size, but the yields from high to low were microcarrier cultures, dynamic aggregates, and static aggregates. The cargo is enriched with proteins (proteomics) and miRNAs (miRNA-seq), promoting axon guidance, reducing apoptosis, scavenging reactive oxygen species, and regulating immune responses. Human forebrain spheroid EVs demonstrated the ability to improve recovery in an in vitro stroke model and in vivo. Human forebrain spheroid differentiation in VWBR significantly increased the EV yields (up to 240-750 fold) and EV biogenesis compared to static differentiation due to the dynamic microenvironment and metabolism change. The biomanufactured EVs from VWBRs have exosomal characteristics and more therapeutic cargo and are functional in in vitro assays, which paves the way for future in vivo stroke studies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | | | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Jamini Bhagu
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Xiaoping Bao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
4
|
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn BC. Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2009. [PMID: 39439198 DOI: 10.1002/wnan.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs), nanosized lipid bilayer vesicles released by nearly all types of cells, play pivotal roles as intercellular signaling mediators with diverse biological activities. Their adaptability has attracted interest in exploring their role as disease biomarker theranostics. However, the in vivo biodistribution and pharmacokinetic profiles of EVs, particularly following administration into living subjects, remain unclear. Thus, in vivo imaging is vital to enhance our understanding of the homing and retention patterns, blood and tissue half-life, and excretion pathways of exogenous EVs, thereby advancing real-time monitoring within biological systems and their therapeutic applications. This review examines state-of-the-art methods including EV labeling with various agents, including optical imaging, magnetic resonance imaging, and nuclear imaging. The strengths and weaknesses of each technique are comprehensively explored, emphasizing their clinical translation. Despite the potential of EVs as cancer theranostics, achieving a thorough understanding of their in vivo behavior is challenging. This review highlights the urgency of addressing current questions in the biology and therapeutic applications of EVs. It underscores the need for continued research to unravel the complexities surrounding EVs and their potential clinical implications. By identifying these challenges, this review contributes to ongoing efforts to optimize EV imaging techniques for clinical use. Ultimately, bridging the gap between research advancements and clinical applications will facilitate the integration of EV-based theranostics, marking a crucial step toward harnessing the full potential of EVs in medical practice.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
5
|
Nazari H, Cho AN, Goss D, Thiery JP, Ebrahimi Warkiani M. Impact of brain organoid-derived sEVs on metastatic adaptation and invasion of breast carcinoma cells through a microphysiological system. LAB ON A CHIP 2024; 24:3434-3455. [PMID: 38888211 DOI: 10.1039/d4lc00296b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Brain metastases are common in triple-negative breast cancer (TNBC), suggesting a complex process of cancer spread. The mechanisms enabling TNBC cell adaptation and proliferation in the brain remain unclear. Small extracellular vesicles (sEVs) play a crucial role in communication between breast carcinoma cells and the brain. However, the lack of relevant models hinders understanding of sEV-mediated communication. The present study assesses the impact of brain organoid-derived sEVs (BO-sEVs) on various behaviours of the MDA-MB-231 cell line, chosen as a representative of TNBC in a 3D microfluidic model. Our results demonstrate that 150-200 nm sEVs expressing CD63, CD9, and CD81 from brain organoid media decrease MDA-MB-231 cell proliferation, enhance their wound-healing capacity, alter their morphology into more mesenchymal mode, and increase their stemness. BO-sEVs led to heightened PD-L1, CD49f, and vimentin levels of expression in MDA-MB-231 cells, suggesting an amplified immunosuppressive, stem-like, and mesenchymal phenotype. Furthermore, these sEVs also induced the expression of neural markers such as GFAP in carcinoma cells. The cytokine antibody profiling array also showed that BO-sEVs enhanced the secretion of MCP-1, IL-6, and IL-8 by MDA-MB-231 cells. Moreover, sEVs significantly enhance the migration and invasion of carcinoma cells toward brain organoids in a 3D organoid-on-a-chip system. Our findings emphasize the potential significance of metastatic site-derived sEVs as pivotal mediators in carcinoma progression and adaptation to the brain microenvironment, thereby unveiling novel therapeutic avenues.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.
| | - Ann-Na Cho
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Dale Goss
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.
| | - Jean Paul Thiery
- UMR 7057 CNRS Matter and Complex Systems, Université Paris Cité, Paris, France
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Wu X, Chen Y, Kreutz A, Silver B, Tokar EJ. Pluripotent stem cells for target organ developmental toxicity testing. Toxicol Sci 2024; 199:163-171. [PMID: 38547390 PMCID: PMC11131012 DOI: 10.1093/toxsci/kfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Prenatal developmental toxicity research focuses on understanding the potential adverse effects of environmental agents, drugs, and chemicals on the development of embryos and fetuses. Traditional methods involve animal testing, but ethical concerns and the need for human-relevant models have prompted the exploration of alternatives. Pluripotent stem cells (PSCs) are versatile cells with the unique ability to differentiate into any cell type, serving as a foundational tool for studying human development. Two-dimensional (2D) PSC models are often chosen for their ease of use and reproducibility for high-throughput screening. However, they lack the complexity of an in vivo environment. Alternatively, three-dimensional (3D) PSC models, such as organoids, offer tissue architecture and intercellular communication more reminiscent of in vivo conditions. However, they are complicated to produce and analyze, usually requiring advanced and expensive techniques. This review discusses recent advances in the use of human PSCs differentiated into brain and heart lineages and emerging tools and methods that can be combined with PSCs to help address important scientific questions in the area of developmental toxicology. These advancements and new approach methods align with the push for more relevant and predictive developmental toxicity assessment, combining innovative techniques with organoid models to advance regulatory decision-making.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Yichang Chen
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Inotiv, Research Triangle Park, North Carolina 27560, USA
| | - Brian Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
7
|
Muok L, Sun L, Esmonde C, Worden H, Vied C, Duke L, Ma S, Zeng O, Driscoll T, Jung S, Li Y. Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel Vertical-Wheel bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e133. [PMID: 38938678 PMCID: PMC11080838 DOI: 10.1002/jex2.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood-brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17-23 fold higher EV secretion, and EV collection in mTeSR had 2.7-3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Cynthia Vied
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Leanne Duke
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
8
|
Liu H, Su J. Organoid extracellular vesicle-based therapeutic strategies for bone therapy. BIOMATERIALS TRANSLATIONAL 2023; 4:199-212. [PMID: 38282702 PMCID: PMC10817793 DOI: 10.12336/biomatertransl.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
With the rapid development of population ageing, bone-related diseases seriously affecting the life of the elderly. Over the past few years, organoids, cell clusters with specific functions and structures that are self-induced from stem cells after three-dimensional culture in vitro, have been widely used for bone therapy. Moreover, organoid extracellular vesicles (OEVs) have emerging as promising cell-free nanocarriers due to their vigoroso physiological effects, significant biological functions, stable loading capacity, and great biocompatibility. In this review, we first provide a comprehensive overview of biogenesis, internalisation, isolation, and characterisation of OEVs. We then comprehensively highlight the differences between OEVs and traditional EVs. Subsequently, we present the applications of natural OEVs in disease treatment. We also summarise the engineering modifications of OEVs, including engineering parental cells and engineering OEVs after isolation. Moreover, we provide an outlook on the potential of natural and engineered OEVs in bone-related diseases. Finally, we critically discuss the advantages and challenges of OEVs in the treatment of bone diseases. We believe that a comprehensive discussion of OEVs will provide more innovative and efficient solutions for complex bone diseases.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Shi Y, Wang X, Zhang S, Yin H, Fan H, Tang Y, Yang N. Research progress in in vivo tracing technology for extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:684-697. [PMID: 39697802 PMCID: PMC11648465 DOI: 10.20517/evcna.2023.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2024]
Abstract
Cells have the capability to discharge extracellular vesicles (EVs) into a range of bodily fluids. Extracellular vesicles (EVs) encapsulate biological molecules such as proteins and nucleic acids, playing a role in facilitating cell-cell communication. They actively engage in a myriad of physiological and pathological processes. In vivo tracing of EVs in organisms significantly contributes to elucidating the biological mechanisms of EV-based therapy. The development of molecular imaging technology makes it possible to trace EVs in vivo. Experiments frequently employ a range of molecular imaging techniques, encompassing bioluminescence imaging, fluorescence imaging, magnetic resonance imaging, single photon emission computed tomography, positron emission tomography, photoacoustic imaging, and multimodal imaging. These methods have their own advantages and disadvantages. In this review, typical applications of in vivo tracing of EVs are reviewed.
Collapse
Affiliation(s)
- Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang 261053, Shandong, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang 261053, Shandong, China
- Authors contributed equally
| | - Xianghui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200030, Shanghai, China
- Authors contributed equally
| | - Shifang Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Hao Yin
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Huaju Fan
- School of Psychology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200030, Shanghai, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang 261053, Shandong, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang 261053, Shandong, China
| |
Collapse
|
10
|
Muok L, Liu C, Chen X, Esmonde C, Arthur P, Wang X, Singh M, Driscoll T, Li Y. Inflammatory Response and Exosome Biogenesis of Choroid Plexus Organoids Derived from Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:7660. [PMID: 37108817 PMCID: PMC10146825 DOI: 10.3390/ijms24087660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3β inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|