1
|
Chang CC, Li YH, Chang ST, Chen HH. Impact of Intravenous Laser Irradiation of Blood on Cognitive Function and Molecular Pathways in Long COVID Patients: A Pilot Study. QJM 2025:hcaf050. [PMID: 39960888 DOI: 10.1093/qjmed/hcaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Long COVID presents persistent neurological symptoms, including brain fog, with limited therapeutic options. Intravenous Laser Irradiation of Blood (ILIB) has been proposed as a potential intervention. This pilot study explores the efficacy of ILIB in alleviating brain fog symptoms and examines the underlying molecular mechanisms. AIM To evaluate the effectiveness of ILIB in improving cognitive function in long COVID patients with brain fog and to investigate the molecular pathways involved. DESIGN A prospective, single-center pilot study involving six long COVID patients with brain fog who underwent ILIB therapy. METHODS Patients received 30 ILIB sessions over eight weeks. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), and Athens Insomnia Scale (AIS) at baseline, post-treatment, and one-month follow-up. RNA sequencing and pathway enrichment analyses (KEGG, Gene Ontology) identified differentially expressed genes and molecular pathways influenced by ILIB. RESULTS MoCA and AIS scores significantly improved post-ILIB, suggesting enhanced cognitive function and sleep quality. RNA sequencing revealed 141 upregulated and 130 downregulated genes. Upregulated pathways were associated with mitochondrial electron transport and oxidative phosphorylation, while immune response and inflammatory pathways were downregulated. Notably, the glutathione metabolism pathway was significantly altered, suggesting reduced oxidative stress. CONCLUSIONS ILIB shows potential in alleviating brain fog symptoms in long COVID patients, possibly through modulation of oxidative stress, mitochondrial function, and inflammation. However, larger randomized controlled trials are needed to confirm these findings and establish ILIB as a viable therapeutic option.
Collapse
Affiliation(s)
- Cheng-Chiang Chang
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-He Li
- Department of Laboratory Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| |
Collapse
|
2
|
Basaca DG, Jugănaru I, Belei O, Nicoară DM, Asproniu R, Stoicescu ER, Mărginean O. Long COVID in Children and Adolescents: Mechanisms, Symptoms, and Long-Term Impact on Health-A Comprehensive Review. J Clin Med 2025; 14:378. [PMID: 39860384 PMCID: PMC11766386 DOI: 10.3390/jcm14020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), is increasingly recognized as a condition affecting not only adults but also children and adolescents. While children often experience milder acute COVID-19 symptoms compared to adults, some develop persistent physical, psychological, and neurological symptoms lasting for weeks or months after initial infection. The most commonly reported symptoms include debilitating fatigue, respiratory issues, headaches, muscle pain, gastrointestinal disturbances, and cognitive difficulties, which significantly impact daily activities, schooling, and social interactions. Additionally, many children with long COVID experience psychological symptoms, such as anxiety, depression, mood swings, and irritability, likely exacerbated by prolonged illness and lifestyle disruptions. Risk factors for long COVID in children include pre-existing health conditions such as asthma, obesity, and neurological disorders, with adolescents and females seemingly more affected. Hypothesized mechanisms underlying long COVID include chronic immune dysregulation, persistent viral particles stimulating inflammation, autonomic nervous system dysfunction, and mitochondrial impairment, which may collectively contribute to the variety of observed symptoms. Long-term outcomes remain uncertain; however, long COVID can lead to school absenteeism, social withdrawal, and psychological distress, potentially affecting cognitive development. Severe cases may develop chronic conditions such as postural orthostatic tachycardia syndrome (POTS) and reduced exercise tolerance. This review synthesizes the existing literature on long COVID in children, examining its prevalence, symptomatology, risk factors, and potential mechanisms, with an emphasis on the need for further clinical studies. While existing research largely relies on surveys and self-reported data, clinical assessments are essential to accurately characterize long COVID in pediatric populations and to guide effective management strategies.
Collapse
Affiliation(s)
- Diana-Georgiana Basaca
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Ph.D. School Department, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Iulius Jugănaru
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Oana Belei
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Delia-Maria Nicoară
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Raluca Asproniu
- Ph.D. School Department, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Emil Robert Stoicescu
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Otilia Mărginean
- Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-G.B.); (O.B.); (O.M.)
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| |
Collapse
|
3
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
4
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
5
|
Akase IE, Agabi OP, Ojo OO, Anyanwu RA, Awodumila S, Ayilara S, Ede OJ, Ghajiga P, Kalejaiye O, Nwanmah C, Nwaokorie F, Ogbenna A, Olajide M, Perez-Giraldo GS, Orban ZS, Jimenez M, Koralnik IJ, Okubadejo NU. A systematic analysis of neurologic manifestations of Long COVID in Nigeria. J Neurovirol 2024; 30:524-533. [PMID: 39446250 DOI: 10.1007/s13365-024-01232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Long COVID, also called post-acute sequelae of SARS-CoV-2 infection (PASC) affects millions of people in the world. The neurologic manifestations of PASC (Neuro-PASC) are among the most debilitating but they are largely unreported in Africa. We sought to compare the demographics, symptoms and cognitive profile of post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients in Nigeria. In this cross-sectional study performed at the Lagos University Teaching Hospital, 106/2319 (4.6%) SARS-CoV-2 positive individuals contacted via telephone reported Neuro-PASC symptoms with a higher frequency in PNP than in NNP individuals ((23/200 (11.5%) vs. 83/2119 (3.9%), p = < 0.0001). The predominant neurologic symptoms at any time during the disease course were difficulty remembering / brain fog (63/106; 59.4%), fatigue (59/106; 55.7%), sleep problems (34/106; 32%), headache (33/106; 31%), paresthesia (12/106; 11.3%), and myalgia (10/106; 9.4%). Of 66 participants with Neuro-PASC who underwent in-person neurological evaluation and cognitive screening, all had normal scores on the Intervention for Dementia in Elderly Africans cognition screen, while 11/65 (16.9%) that completed the Montreal Cognitive Assessment had results consistent with mild cognitive impairment (3/16 PNP (18.8%) and 8/49 NNP (16.3%); p = 1.0). Finally, 47/66 (71.2%) had digit span test scores consistent with mild cognitive dysfunction (12/16 PNP (75%) and 35/50 (70%) NNP; p = 1.0). Our findings reveal the previously unrecognized occurrence of Neuro-PASC among COVID-19 survivors in Nigeria and highlight the need for improved screening and diagnosis of Neuro-PASC in our population. Development of cognitive support services for persons suffering from Neuro-PASC in Nigeria is warranted.
Collapse
Affiliation(s)
- Iorhen Ephraim Akase
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Osigwe Paul Agabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Oluwadamilola Omolara Ojo
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | | | - Samuel Awodumila
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Sodiq Ayilara
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Obiamaka Jane Ede
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Pheekanmilla Ghajiga
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Olufunto Kalejaiye
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Chibueze Nwanmah
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Francisca Nwaokorie
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ann Ogbenna
- Department of Hematology & Blood Transfusion, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Moyinoluwa Olajide
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Gina S Perez-Giraldo
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zachary Steven Orban
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Millenia Jimenez
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Igor Jerome Koralnik
- Division of Neuro-Infectious Diseases and Global Neurology, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Njideka Ulunma Okubadejo
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Department of Medicine, Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| |
Collapse
|
6
|
Finnigan LEM, Cassar MP, Jafarpour M, Sultana A, Ashkir Z, Azer K, Neubauer S, Tyler DJ, Raman B, Valkovič L. 1H and 31P MR Spectroscopy to Assess Muscle Mitochondrial Dysfunction in Long COVID. Radiology 2024; 313:e233173. [PMID: 39718498 DOI: 10.1148/radiol.233173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Background Emerging evidence suggests mitochondrial dysfunction may play a role in the fatigue experienced by individuals with post-COVID-19 condition (PCC), commonly called long COVID, which can be assessed using MR spectroscopy. Purpose To compare mitochondrial function between participants with fatigue-predominant PCC and healthy control participants using MR spectroscopy, and to investigate the relationship between MR spectroscopic parameters and fatigue using the 11-item Chalder fatigue questionnaire. Materials and Methods This prospective, observational, single-center study (June 2021 to January 2024) included participants with PCC who reported moderate to severe fatigue, with normal blood test and echocardiographic results, alongside control participants without fatigue symptoms. MR spectroscopy was performed using a 3-T MRI system, measuring hydrogen 1 (1H) and phosphorus 31 (31P) during exercise and recovery in the gastrocnemius muscle. General linear models were used to compare the phosphocreatine recovery rate time constant (hereafter, τPCr) and maximum oxidative flux, also known as mitochondrial capacity (hereafter, Qmax), between groups. Pearson correlations were used to assess the relationship between MR spectroscopic parameters and fatigue scores. Results A total of 41 participants with PCC (mean age, 44 years ± 9 [SD]; 23 male) (mean body mass index [BMI], 26 ± 4) and 29 healthy control participants (mean age, 34 years ± 11; 18 male) (mean BMI, 23 ± 3) were included in the study. Participants with PCC showed higher resting phosphocreatine levels (mean difference, 4.10 mmol/L; P = .03). Following plantar flexion exercise in situ (3-5 minutes), participants with PCC had a higher τPCr (92.5 seconds ± 35.3) compared with controls (51.9 seconds ± 31.9) (mean difference, 40.6; 95% CI: 24.3, 56.6; P ≤ .001), and Qmax was higher in the control group, with a mean difference of 0.16 mmol/L per second (95% CI: 0.07, 0.26; P = .008). There was no correlation between MR spectroscopic parameters and fatigue scores (r ≤ 0.25 and P ≥ .10 for all). Conclusion Participants with PCC showed differences in τPCr and Qmax compared with healthy controls, suggesting potential mitochondrial dysfunction. This finding did not correlate with fatigue scores. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Parraga and Eddy in this issue.
Collapse
Affiliation(s)
- Lucy E M Finnigan
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Mark Philip Cassar
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Mehrsa Jafarpour
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Antonella Sultana
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Zakariye Ashkir
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Karim Azer
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Stefan Neubauer
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Damian J Tyler
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Betty Raman
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| | - Ladislav Valkovič
- From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.)
| |
Collapse
|
7
|
Garbsch R, Schäfer H, Mooren FC, Schmitz B. Analysis of fat oxidation capacity during cardiopulmonary exercise testing indicates long-lasting metabolic disturbance in patients with post-covid-19 syndrome. Clin Nutr 2024; 43:26-35. [PMID: 39423759 DOI: 10.1016/j.clnu.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Post-COVID-19 Syndrome (PCS) is characterized by symptoms including fatigue, reduced physical performance, dyspnea, cognitive impairment, and psychological distress. The mechanisms underlying the onset and severity of PCS point to mitochondrial dysfunction as significant contributor. This study examined fat oxidation as a function of mitochondrial capacity during exercise. METHODS Single-center prospective cohort study during inpatient rehabilitation. Cardiopulmonary exercise testing and assessment of fatigue using questionnaires were performed at admission and discharge. Detailed spirometric breath-by-breath data were used to calculate substrate oxidation rates. RESULTS Patients (N = 187; 38 % women; 49.7 ± 11.4 years) were referred to rehabilitation 253.4 ± 130.6 days after infection. Lead symptoms included fatigue/exercise intolerance (79.9 %), shortness of breath (77.0 %), and cognitive dysfunction (55.1 %). Fat oxidation capacity was disturbed in PCS patients overall (AUC: 11.3 [10.7-11.9]) compared to healthy controls (p < 0.0001), with hospitalization during acute infection predicting the level of disturbance (p < 0.0001). Low exercise capacity and high fatigue scores resulted in reduced fat oxidation (both p < 0.0001). In particular, younger males were affected by significantly reduced fat oxidation capacity (sex: p = 0.002; age: p < 0.001). Metabolic disturbance was significantly improved during exercise-based rehabilitation (AUC: 14.9 [14.4-15.4]; p < 0.0001), even for the group of younger impaired males (+44.2 %; p < 0.0001). Carbohydrate oxidation was not impaired. CONCLUSIONS PCS-specific restrictions in fat oxidation may indicate persistent mitochondrial dysfunction. Clinical assessment of PCS patients should include detailed breath-by-breath analysis during exercise to identify metabolic alterations especially in the group of younger males identified in this report. Exercise-based rehabilitation results in improved exercise capacity and fat oxidation and thus likely mitochondrial function. CLINICAL TRIALS NCT06468722.
Collapse
Affiliation(s)
- René Garbsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Hendrik Schäfer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany.
| |
Collapse
|
8
|
Cataldo SA, Micciulli A, Margulis L, Cibeyra M, Defeo S, Horovitz SG, Martino A, Melano R, Mena M, Parisi F, Santoro D, Sarmiento F, Belzunce MA. Cognitive impact and brain structural changes in long COVID patients: a cross-sectional MRI study two years post infection in a cohort from Argentina. BMC Neurol 2024; 24:450. [PMID: 39558250 PMCID: PMC11572126 DOI: 10.1186/s12883-024-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Long COVID is a condition characterised by persistent symptoms after a SARS-CoV-2 infection, with neurological manifestations being particularly frequent. Existing research suggests that long COVID patients not only report cognitive symptoms but also exhibit measurable cognitive impairment. Neuroimaging studies have identified structural alterations in brain regions linked to cognitive functions. However, most of these studies have focused on patients within months of their initial infection. This study aims to explore the longer-term cognitive effects and brain structural changes in long COVID patients, approximately two years post-infection, in a cohort from San Martín, Buenos Aires, Argentina. METHODS We conducted a cross-sectional study involving 137 participants: 109 with long COVID symptoms and 28 healthy controls. The participants underwent an initial clinical assessment, completed a structured questionnaire and standardised scales, underwent a cognitive assessment, and had a brain MRI scan. Structural MRI images were processed via FreeSurfer and FSL to obtain volumetric measures for subcortical and cortical regions, along with regional cortical thickness. Differences between groups for these variables were analysed using ANCOVA, with permutation tests applied to correct for multiple comparisons. RESULTS Long COVID patients reported persistent cognitive symptoms such as memory problems and brain fog, with higher levels of fatigue and reduced quality of life compared to controls. Despite subjective cognitive complaints, cognitive tests did not reveal significant differences between groups, except for the TMT-A (p = 0.05). MRI analysis revealed decreased volume in the cerebellum (p = 0.03), lingual gyrus (p = 0.04), and inferior parietal regions (p = 0.03), and reduced cortical thickness in several areas, including the left and right postcentral gyri (p = 0.02, p = 0.03) and precuneus (p = 0.01, p = 0.02). CONCLUSIONS This study highlights the enduring impact of long COVID on quality of life and physical activity, with specific brain structural changes identified two years post-infection. Although cognitive tests did not show clear impairment, the observed brain atrophy and significant reduction in quality of life emphasize the need for comprehensive interventions and further longitudinal studies to understand the long-term effects of long COVID on cognition and brain health.
Collapse
Affiliation(s)
- Sol A Cataldo
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Andrea Micciulli
- Unidad de Neuropsicología, Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
| | - Laura Margulis
- Unidad de Neuropsicología, Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
- Facultad de Psicología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Cibeyra
- Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
| | - Sabrina Defeo
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Silvina G Horovitz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Analía Martino
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Raul Melano
- Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
| | - Milagros Mena
- Escuela de Humanidades, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina
| | - Francisco Parisi
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
- Instituto de Ciencias Físicas (ICIFI UNSAM-CONICET), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina
| | - Diego Santoro
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Florencia Sarmiento
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Martin A Belzunce
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina.
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas (ICIFI UNSAM-CONICET), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Godoy Cruz, Buenos Aires, 1425, Argentina.
| |
Collapse
|
9
|
Montes-Ibarra M, Godziuk K, Thompson RB, Chan CB, Pituskin E, Gross DP, Lam G, Schlögl M, Felipe Mota J, Ian Paterson D, Prado CM. Protocol for a pilot study: Feasibility of a web-based platform to improve nutrition, mindfulness, and physical function in people living with Post COVID-19 condition (BLEND). Methods 2024; 231:186-194. [PMID: 39389403 DOI: 10.1016/j.ymeth.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Individuals with Post COVID-19 condition (PCC), or long COVID, experience symptoms such as fatigue, muscle weakness, and psychological distress, including anxiety, depression, or sleep disorders that persist after recovery from COVID-19. These ongoing symptoms significantly compromise quality of life and diminish functional capacity and independence. Multimodal digital interventions targeting behavioural factors such as nutrition and mindfulness have shown promise in improving health outcomes of people with chronic health conditions and may be beneficial for those with PCC. The BLEND study (weB-based pLatform to improve nutrition, mindfulnEss, and physical function, in patients with loNg COVID) study is an 8-week pilot randomized controlled trial evaluating the feasibility of a digital wellness platform compared to usual care among individuals with PCC. The web-based wellness platform employed in this study, My Viva Plan (MVP)®, integrates a holistic, multicomponent approach to promote wellness. The intervention group receives access to the digital health platform for 8 weeks with encouragement for frequent interactions to improve dietary intake and mindfulness. The control group receives general content focusing on improvements in dietary intake and mindfulness. Assessments are conducted at baseline and week 8. The primary outcome is the feasibility of platform use. Secondary and exploratory outcomes include a between-group comparison of changes in body composition, nutritional status, quality of life, mindfulness, physical activity, and physical performance after 8 weeks. Findings of this study will inform the development of effective web-based wellness programs tailored for individuals with PCC to promote sustainable behavioural changes and improved health outcomes.
Collapse
Affiliation(s)
- Montserrat Montes-Ibarra
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 2-021 Li Ka Shing Centre for Health Innovation, Edmonton, AB, T6G 2E1, Canada.
| | - Kristine Godziuk
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 2-021 Li Ka Shing Centre for Health Innovation, Edmonton, AB, T6G 2E1, Canada.
| | - Richard B Thompson
- Department of Radiology and Diagnostic Imaging, University of Alberta, AB, T6G 2R7, Canada.
| | - Catherine B Chan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, AB, T6G 2E1, Canada; Department of Physiology, University of Alberta, AB, T6G 2H7, Canada.
| | - Edith Pituskin
- Department of Nursing, University of Alberta, AB, T6G 1C9, Canada.
| | - Douglas P Gross
- Department of Physical Therapy, University of Alberta, AB, T6G 2G4, Canada.
| | - Grace Lam
- Department of Medicine, University of Alberta, AB, T6G 2R7, Canada.
| | - Mathias Schlögl
- Department for Geriatric Medicine, Clinic Barmelweid, Barmelweid, AG, 5017, Switzerland.
| | - João Felipe Mota
- Faculty of Nutrition, Federal University of Goiás, Goiânia 74605-080, Brazil.
| | - D Ian Paterson
- Division of Cardiology, University of Ottawa Heart Institute, ON, K1Y 4W7, Canada.
| | - Carla M Prado
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 2-021 Li Ka Shing Centre for Health Innovation, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
10
|
Montoliu Nebot J, Iradi Casal A, Cepeda Madrigal S, Rissi G, Sanz Saz S, Molés Gimeno JD, Miravet Sorribes LM. [Physiological assessment and management of post-COVID patients with normal cardiopulmonary imaging and functional tests]. Semergen 2024; 50:102282. [PMID: 38936100 DOI: 10.1016/j.semerg.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Contributing to elucidate the pathophysiology of dyspnoea and exertion intolerance in post-COVID syndrome patients with normal cardiopulmonary imaging and functional tests at rest, while determining their fitness and level of endurance in order to individualize working parameters for physical rehabilitation. MATERIAL AND METHODS After an anamnesis and clinical examination at rest, 27 subjects (50±11.9 years) (14 women) with post-COVID syndrome of more than 6 months of evolution performed a continuous maximal-incremental graded cardiopulmonary exercise test (CPET) with breath-by-breath gas-exchange monitoring and continuous ECG registration, on an electromagnetically braked cycle ergometer. The values obtained were compared with those of reference, gender or controls, using the Chi-square, t-Student or ANOVA test. RESULTS The clinical examination at rest and the CPET were clinically normal and without adverse events. Reasons for stopping exercise were leg discomfort. It is only worth noting a BMI=29.9±5.8kg/m2 and a basal lactate concentration of 2.1±0.7mmol/L. The physiological assessment of endurance showed the following results relative to predicted VO2máx: 1)peakVO2=80.5±18.6%; 2)VO2 at ventilatory threshold1 (VO2VT1): 46.0±12.9%; 3)VO2VT2: 57.2±16.4%; 4)working time in acidosis: 5.6±3,0minutes; and 5)maximum lactate concentration: 5.1±2.2mmol/L. CONCLUSIONS The CPET identified limited aerobic metabolism and early increase in glycolytic metabolism as causes of dyspnoea and exercise intolerance, determined fitness for physical rehabilitation, and individualized it based on the level of endurance.
Collapse
Affiliation(s)
- J Montoliu Nebot
- Unidad de Medicina Deportiva, Servicio de Rehabilitación, Consorcio Hospitalario Provincial de Castellón, Castellón, España
| | - A Iradi Casal
- Departamento de Fisiología, Universitat de València, Valencia, España
| | - S Cepeda Madrigal
- Sección de Neumología, Hospital Universitari de La Plana, Vila-real, Castellón, España
| | - G Rissi
- Sección de Neumología, Hospital Universitari de La Plana, Vila-real, Castellón, España
| | - S Sanz Saz
- Unidad de Medicina Deportiva, Servicio de Rehabilitación, Consorcio Hospitalario Provincial de Castellón, Castellón, España
| | - J D Molés Gimeno
- Unidad de Medicina Deportiva, Servicio de Rehabilitación, Consorcio Hospitalario Provincial de Castellón, Castellón, España
| | - L M Miravet Sorribes
- Sección de Neumología, Hospital Universitari de La Plana, Vila-real, Castellón, España.
| |
Collapse
|
11
|
Zhang T, Li Y, Pan L, Sha J, Bailey M, Faure-Kumar E, Williams CK, Wohlschlegel J, Magaki S, Niu C, Lee Y, Su YC, Li X, Vinters HV, Geschwind DH. Brain-wide alterations revealed by spatial transcriptomics and proteomics in COVID-19 infection. NATURE AGING 2024; 4:1598-1618. [PMID: 39543407 PMCID: PMC11867587 DOI: 10.1038/s43587-024-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024]
Abstract
Understanding the pathophysiology of neurological symptoms observed after severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection is essential to optimizing outcomes and therapeutics. To date, small sample sizes and narrow molecular profiling have limited the generalizability of findings. In this study, we profiled multiple cortical and subcortical regions in postmortem brains of patients with coronavirus disease 2019 (COVID-19) and controls with matched pulmonary pathology (total n = 42) using spatial transcriptomics, bulk gene expression and proteomics. We observed a multi-regional antiviral response without direct active SARS-CoV2 infection. We identified dysregulation of mitochondrial and synaptic pathways in deep-layer excitatory neurons and upregulation of neuroinflammation in glia, consistent across both mRNA and protein. Remarkably, these alterations overlapped substantially with changes in age-related neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Our work, combining multiple experimental and analytical methods, demonstrates the brain-wide impact of severe acute/subacute COVID-19, involving both cortical and subcortical regions, shedding light on potential therapeutic targets within pathways typically associated with pathological aging and neurodegeneration.
Collapse
Affiliation(s)
- Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yunfeng Li
- Translational Pathology Core Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liuliu Pan
- Technology Access Program, Bruker Spatial Technology, Seattle, WA, USA
- Duality Biologics, Shanghai, China
| | - Jihui Sha
- Proteome Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Bailey
- Proof of Principle Team, Translational Science, Bruker Spatial Technology, Seattle, WA, USA
| | - Emmanuelle Faure-Kumar
- Center for Systems Biomedicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Kazu Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Proteome Research Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Niu
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yoojin Lee
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chyuan Su
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Brode WM, Melamed E. A practical framework for Long COVID treatment in primary care. Life Sci 2024; 354:122977. [PMID: 39142509 DOI: 10.1016/j.lfs.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Long COVID is a complex, multisystem illness with a poorly understood pathophysiology, absence of specific diagnostic tests or criteria, or evidence-based treatments. With over 200 identified symptoms and approximately 10% of COVID-19 cases resulting in Long COVID, it is a challenge to provide comprehensive treatment at a scale commensurate with the illness burden. The diverse manifestations of Long COVID, encompassing numerous medical specialties, typically place primary care providers (PCPs) at the forefront of management, navigating an evolving landscape of research and lack of evidence-based guidelines. This paper presents a pragmatic, structured framework for Long COVID management in primary care, integrating current knowledge and best practices. The approach is individualized, addressing Long COVID's broad symptomatology through a four-step framework. The first step focuses on energy management strategies, emphasizing the prevention of post-exertional malaise, a cardinal feature of Long COVID. The second step, intentional rehabilitation, employs carefully titrated multidisciplinary modalities to address physical, cognitive, and emotional domains. The third step utilizes symptomatic management through both pharmacological and non-pharmacological interventions, targeting debilitating symptoms like fatigue, insomnia, and chronic pain. The fourth step outlines an approach to trialing experimental, targeted therapies that may impact Long COVID's underlying pathophysiology. These treatments, while experimental and lacking quality evidence in Long COVID, may be available off-label on an individual basis following a thorough risk-benefit discussion. This stepwise framework can equip PCPs to effectively address the most common and disabling symptoms of Long COVID, individualize care, and remain attuned to the evolving scientific understanding of the condition.
Collapse
Affiliation(s)
- W Michael Brode
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, 1601 Trinity St, Austin, TX 78712, USA.
| | - Esther Melamed
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St, Austin, TX 78712, USA
| |
Collapse
|
13
|
Tan X, Gao X, Zheng H, Yuan H, Liu H, Ran Q, Luo M. Platelet dysfunction caused by differentially expressed genes as key pathogenic mechanisms in COVID-19. Minerva Cardiol Angiol 2024; 72:517-534. [PMID: 38804627 DOI: 10.23736/s2724-5683.24.06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became prevalent worldwide, which brought a heavy medical burden and tremendous economic losses to the world population. In addition to the common clinical respiratory symptoms such as fever, cough and headache, patients with COVID-19 often have hematological diseases, especially platelet dysfunction. Platelet dysfunction usually leads to multiple organ dysfunction, which is closely related to patient severity or mortality. In addition, studies have confirmed significant changes in the gene expression profile of circulating platelets under SARS-CoV-2 infection, which will further lead to changes in platelet function. At the same time, studies have shown that platelets may absorb SARS-COV-2 mRNA independently of ACE2, which further emphasizes the importance of the stability of platelet function in defense against SARS-CoV-2 infection. This study reviewed the relationship between COVID-19 and platelet and SARS-CoV-2 damage to the circulatory system, and further analyzed the significantly differentially expressed mRNA in platelets after infection with SARS-CoV-2 on the basis of previous studies. The top eight hub genes were identified as NLRP3, MT-CO1, CD86, ICAM1, MT-CYB, CASP8, CXCL8 and CXCR4. Subsequently, the effects of SARS-CoV-2 infection on platelet transcript abnormalities and platelet dysfunction were further explored on the basis of 8 hub genes. Finally, the treatment measures of complications caused by platelet dysfunction in patients with COVID-19 were discussed in detail, so as to provide reference for the prevention, diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyong Tan
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Huanhuan Zheng
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Yuan
- Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Qijun Ran
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China -
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Zhang L, Hu W, Li J, Li Y, Liu F, Xiao W, Jiang N, Xiao Z, Han L, Zhou W. Targeting NRP1 axis as a strategy for treating energy metabolism impairment induced by SARS-CoV-2 spike. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2277-2279. [PMID: 38902449 DOI: 10.1007/s11427-023-2568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Lihui Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wanting Hu
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Yuehan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Wenyi Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
15
|
Szarvas Z, Fekete M, Szollosi GJ, Kup K, Horvath R, Shimizu M, Tsuhiya F, Choi HE, Wu HT, Fazekas-Pongor V, Pete KN, Cserjesi R, Bakos R, Gobel O, Gyongyosi K, Pinter R, Kolozsvari D, Kovats Z, Yabluchanskiy A, Owens CD, Ungvari Z, Tarantini S, Horvath G, Muller V, Varga JT. Optimizing cardiopulmonary rehabilitation duration for long COVID patients: an exercise physiology monitoring approach. GeroScience 2024; 46:4163-4183. [PMID: 38771423 PMCID: PMC11336035 DOI: 10.1007/s11357-024-01179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
The presence of prolonged symptoms after COVID infection worsens the workability and quality of life. 200 adults with long COVID syndrome were enrolled after medical, physical, and mental screening, and were divided into two groups based on their performance. The intervention group (n = 100) received supervised rehabilitation at Department of Pulmonology, Semmelweis University with the registration number 160/2021 between 01/APR/2021-31/DEC/2022, while an age-matched control group (n = 100) received a single check-up. To evaluate the long-term effects of the rehabilitation, the intervention group was involved in a 2- and 3-month follow-up, carrying out cardiopulmonary exercise test. Our study contributes understanding long COVID rehabilitation, emphasizing the potential benefits of structured cardiopulmonary rehabilitation in enhancing patient outcomes and well-being. Significant difference was found between intervention group and control group at baseline visit in pulmonary parameters, as forced vital capacity, forced expiratory volume, forced expiratory volume, transfer factor for carbon monoxide, transfer coefficient for carbon monoxide, and oxygen saturation (all p < 0.05). Our follow-up study proved that a 2-week long, patient-centered pulmonary rehabilitation program has a positive long-term effect on people with symptomatic long COVID syndrome. Our data showed significant improvement between two and three months in maximal oxygen consumption (p < 0.05). Multidisciplinary, individualized approach may be a key element of a successful cardiopulmonary rehabilitation in long COVID conditions, which improves workload, quality of life, respiratory function, and status of patients with long COVID syndrome.
Collapse
Affiliation(s)
- Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergo Jozsef Szollosi
- Coordination Center for Research in Social Sciences, Faculty of Economics and Business, University of Debrecen, Debrecen, Hungary
| | - Katica Kup
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Rita Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Maya Shimizu
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Fuko Tsuhiya
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Ha Eun Choi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Huang-Tzu Wu
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Nedda Pete
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renata Cserjesi
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Regina Bakos
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Orsolya Gobel
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Kata Gyongyosi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Renata Pinter
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Dora Kolozsvari
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Kovats
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gabor Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Muller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Janos Tamas Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
16
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
17
|
Burton-Fisher W, Gordon K. Holding the hope? Therapist and client perspectives on long COVID recovery: A Q-methodology. Br J Health Psychol 2024; 29:746-770. [PMID: 38735864 DOI: 10.1111/bjhp.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE Long COVID is a global health concern which has debilitating effects on the individual experiencing it. In the United Kingdom, psychological therapies are being offered to people with long COVID, although the evidence for these therapies is yet to be demonstrated. This research aimed to understand how therapists and clients define and understand recovery from long COVID, and use hope theory to interpret the results. METHODS An online Q-methodology was employed, where participants sorted a range of statements pertaining to long COVID recovery based on their level of agreement with them. These arranged statements (Q-sorts) were collated and factor analysed to explore and compare underlying perspectives. RESULTS Sixteen participants were recruited for the study, including eleven clients, four IAPT therapists and one therapist working in the broader long COVID pathway. A four-factor model is reported, including (1) Psychological Pathways to Recovery, (2) Social Context and Agency, (3) Physiological Goals of Recovery and (4) Personal Meaning Making. All IAPT therapists loaded onto the psychological pathways factor, whereas the remaining participants shared more diverse perspectives. CONCLUSIONS The belief that long COVID recovery was possible, taken as an indicator of hopefulness, was rated highest for Factor 1, Psychological Pathways to Recovery, and Factor 3, Physiological Recovery Goals. This suggested that having a clear definition of recovery, or clear guidance on how to intervene, promoted hopefulness and, theoretically, well-being. However, clients reported experiences of being invalidated and disbelieved by health professionals, with psychological explanations sometimes being experienced as dismissive and invalidating. Clinical implications and future research directions are discussed.
Collapse
Affiliation(s)
| | - Kim Gordon
- Professional Doctorate in Clinical Psychology, Staffordshire University, Staffordshire, United Kingdom
| |
Collapse
|
18
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
19
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
20
|
Horowitz RI, Fallon J, Freeman PR. Combining Double-Dose and High-Dose Pulsed Dapsone Combination Therapy for Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome and Co-Infections, Including Bartonella: A Report of 3 Cases and a Literature Review. Microorganisms 2024; 12:909. [PMID: 38792737 PMCID: PMC11124288 DOI: 10.3390/microorganisms12050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Three patients with relapsing and remitting borreliosis, babesiosis, and bartonellosis, despite extended anti-infective therapy, were prescribed double-dose dapsone combination therapy (DDDCT) for 8 weeks, followed by one or several two-week courses of pulsed high-dose dapsone combination therapy (HDDCT). We discuss these patients' cases to illustrate three important variables required for long-term remission. First, diagnosing and treating active co-infections, including Babesia and Bartonella were important. Babesia required rotations of multiple anti-malarial drug combinations and herbal therapies, and Bartonella required one or several 6-day HDDCT pulses to achieve clinical remission. Second, all prior oral, intramuscular (IM), and/or intravenous (IV) antibiotics used for chronic Lyme disease (CLD)/post-treatment Lyme disease syndrome (PTLDS), irrespective of the length of administration, were inferior in efficacy to short-term pulsed biofilm/persister drug combination therapy i.e., dapsone, rifampin, methylene blue, and pyrazinamide, which improved resistant fatigue, pain, headaches, insomnia, and neuropsychiatric symptoms. Lastly, addressing multiple factors on the 16-point multiple systemic infectious disease syndrome (MSIDS) model was important in achieving remission. In conclusion, DDDCT with one or several 6-7-day pulses of HDDCT, while addressing abnormalities on the 16-point MSIDS map, could represent a novel effective clinical and anti-infective strategy in CLD/PTLDS and associated co-infections including Bartonella.
Collapse
Affiliation(s)
- Richard I. Horowitz
- New York State Department of Health Tick-Borne Working Group, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
21
|
Igwe JK, Alaribe U. Cannabis use associated with lower mortality among hospitalized Covid-19 patients using the national inpatient sample: an epidemiological study. J Cannabis Res 2024; 6:18. [PMID: 38582889 PMCID: PMC10998318 DOI: 10.1186/s42238-024-00228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Prior reports indicate that modulation of the endocannabinoid system (ECS) may have a protective benefit for Covid-19 patients. However, associations between cannabis use (CU) or CU not in remission (active cannabis use (ACU)), and Covid-19-related outcomes among hospitalized patients is unknown. METHODS In this multicenter retrospective observational cohort analysis of adults (≥ 18 years-old) identified from 2020 National Inpatient Sample database, we utilize multivariable regression analyses and propensity score matching analysis (PSM) to analyze trends and outcomes among Covid-19-related hospitalizations with CU and without CU (N-CU) for primary outcome of interest: Covid-19-related mortality; and secondary outcomes: Covid-19-related hospitalization, mechanical ventilation (MV), and acute pulmonary embolism (PE) compared to all-cause admissions; for CU vs N-CU; and for ACU vs N-ACU. RESULTS There were 1,698,560 Covid-19-related hospitalizations which were associated with higher mortality (13.44% vs 2.53%, p ≤ 0.001) and worse secondary outcomes generally. Among all-cause hospitalizations, 1.56% of CU and 6.29% of N-CU were hospitalized with Covid-19 (p ≤ 0.001). ACU was associated with lower odds of MV, PE, and death among the Covid-19 population. On PSM, ACU(N(unweighted) = 2,382) was associated with 83.97% lower odds of death compared to others(N(unweighted) = 282,085) (2.77% vs 3.95%, respectively; aOR:0.16, [0.10-0.25], p ≤ 0.001). CONCLUSIONS These findings suggest that the ECS may represent a viable target for modulation of Covid-19. Additional studies are needed to further explore these findings.
Collapse
Affiliation(s)
- Joseph-Kevin Igwe
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Ugo Alaribe
- Caribbean Medical University School of Medicine, 5600 N River Rd Suite 800, Rosemont, IL, 60018, USA
| |
Collapse
|
22
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
23
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
24
|
Azargoonjahromi A. Role of the SARS-CoV-2 Virus in Brain Cells. Viral Immunol 2024; 37:61-78. [PMID: 38315740 DOI: 10.1089/vim.2023.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, can have neurological effects, including cognitive symptoms like brain fog and memory problems. Research on the neurological effects of COVID-19 is ongoing, and factors such as inflammation, disrupted blood flow, and damage to blood vessels may contribute to cognitive symptoms. Notably, some authors and existing evidence suggest that the SARS-CoV-2 virus can enter the central nervous system through different routes, including the olfactory nerve and the bloodstream. COVID-19 infection has been associated with neurological symptoms such as altered consciousness, headaches, dizziness, and mental disorders. The exact mechanisms and impact on memory formation and brain shrinkage are still being studied. This review will focus on pathways such as the olfactory nerve and blood-brain barrier disruption, and it will then highlight the interactions of the virus with different cell types in the brain, namely neurons, astrocytes, oligodendrocytes, and microglia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Researcher in Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Faghy MA, Duncan R, Hume E, Gough L, Roscoe C, Laddu D, Arena R, Asthon REM, Dalton C. Developing effective strategies to optimize physical activity and cardiorespiratory fitness in the long Covid population- The need for caution and objective assessment. Prog Cardiovasc Dis 2024; 83:62-70. [PMID: 38460898 DOI: 10.1016/j.pcad.2024.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
The Post Covid-19 Condition (commonly known as Long Covid) has been defined by the World Health Organisation as occurring in individuals with a history of probable or confirmed SARS CoV 2 infection, usually within 3 months from the onset of acute Covid-19 infection with symptoms that last for at least two months which cannot be explained by an alternative diagnosis. Long Covid is associated with over two hundred recognised symptoms and affects tens of millions of people worldwide. Widely reported reductions in quality of life(QoL) and functional status are caused by extremely sensitive and cyclical symptom profiles that are augmented following exposure to physical, emotional, orthostatic, and cognitive stimuli. This manifestation prevents millions of people from engaging in routine activities of daily living (ADLs) and has important health and well-being, social and economic impacts. Post-exertional symptom exacerbation (PESE) (also known as post-exertional malaise) is an exacerbation in the severity of fatigue and other symptoms following physical, emotional, orthostatic and cognitive tasks. Typically, this will occur 24-72 h after "over-exertion" and can persist for several days and even weeks. It is a hallmark symptom of Long Covid with a reported prevalence of 86%. The debilitating nature of PESE prevents patients from engaging in physical activity which impacts functional status and QoL. In this review, the authors present an update to the literature relating to PESE in Long Covid and make the case for evidence-based guidelines that support the design and implementation of safe rehabilitation approaches for people with Long Covid. This review also considers the role of objective monitoring to quantify a patient's response to external stimuli which can be used to support the safe management of Long Covid and inform decisions relating to engagement with any stimuli that could prompt an exacerbation of symptoms.
Collapse
Affiliation(s)
- Mark A Faghy
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA.
| | - Rae Duncan
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Emily Hume
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Lewis Gough
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | - Clare Roscoe
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK
| | - Deepika Laddu
- Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA; Department of Physical Therapy, University of Illinois at Chicago, Chicago, USA
| | - Ross Arena
- Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA; Department of Physical Therapy, University of Illinois at Chicago, Chicago, USA
| | - Ruth E M Asthon
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA
| | - Caroline Dalton
- Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
26
|
Casoli T, Bonfigli AR, Di Rosa M, Giorgetti B, Balietti M, Giacconi R, Cardelli M, Piacenza F, Marchegiani F, Marcheselli F, Recchioni R, Galeazzi R, Vaiasicca S, Lamedica AM, Fumagalli A, Ferrara L, Lattanzio F. Association of Inflammatory Mediators with Mitochondrial DNA Variants in Geriatric COVID-19 Patients. Aging Dis 2024; 15:2665-2681. [PMID: 38377022 PMCID: PMC11567249 DOI: 10.14336/ad.2023.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/23/2023] [Indexed: 02/22/2024] Open
Abstract
COVID-19 remains a serious concern for elderly individuals with underlying comorbidities. SARS-CoV-2 can target and damage mitochondria, potentially leading to mutations in mitochondrial DNA (mtDNA). This study aimed to evaluate single nucleotide substitutions in mtDNA and analyze their correlation with inflammatory biomarkers in elderly COVID-19 patients. A total of 30 COVID-19 patients and 33 older adult controls without COVID-19 (aged over 65 years) were enrolled. mtDNA was extracted from buffy coat samples and sequenced using a chip-based resequencing system (MitoChip v2.0) which detects both homoplasmic and heteroplasmic mtDNA variants (40-60% heteroplasmy) and allows the assessment of low-level heteroplasmy (<10% heteroplasmy). Serum concentrations of IL-6, IFN-α, TNF-α and IL-10 were determined in patients by a high-sensitivity immunoassay. We found a higher burden of total heteroplasmic variants in COVID-19 patients compared to controls with a selective increment in ND1 and COIII genes. Low-level heteroplasmy was significantly elevated in COVID-19 patients, especially in genes of the respiratory complex I. Both heteroplasmic variant burden and low-level heteroplasmy were associated with increased levels of IL-6, TNF-α, and IFN-α. These findings suggest that SARS-CoV-2 may induce mtDNA mutations that are related to the degree of inflammation.
Collapse
Affiliation(s)
- Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | | | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona, Italy.
| | | | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | | | | | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Chang YY, Wei AC. Transcriptome and machine learning analysis of the impact of COVID-19 on mitochondria and multiorgan damage. PLoS One 2024; 19:e0297664. [PMID: 38295140 PMCID: PMC10830027 DOI: 10.1371/journal.pone.0297664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
The effects of coronavirus disease 2019 (COVID-19) primarily concern the respiratory tract and lungs; however, studies have shown that all organs are susceptible to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 may involve multiorgan damage from direct viral invasion through angiotensin-converting enzyme 2 (ACE2), through inflammatory cytokine storms, or through other secondary pathways. This study involved the analysis of publicly accessible transcriptome data from the Gene Expression Omnibus (GEO) database for identifying significant differentially expressed genes related to COVID-19 and an investigation relating to the pathways associated with mitochondrial, cardiac, hepatic, and renal toxicity in COVID-19. Significant differentially expressed genes were identified and ranked by statistical approaches, and the genes derived by biological meaning were ranked by feature importance; both were utilized as machine learning features for verification. Sample set selection for machine learning was based on the performance, sample size, imbalanced data state, and overfitting assessment. Machine learning served as a verification tool by facilitating the testing of biological hypotheses by incorporating gene list adjustment. A subsequent in-depth study for gene and pathway network analysis was conducted to explore whether COVID-19 is associated with cardiac, hepatic, and renal impairments via mitochondrial infection. The analysis showed that potential cardiac, hepatic, and renal impairments in COVID-19 are associated with ACE2, inflammatory cytokine storms, and mitochondrial pathways, suggesting potential medical interventions for COVID-19-induced multiorgan damage.
Collapse
Affiliation(s)
- Yu-Yu Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
29
|
Bustos-Viviescas BJ, Lozano Zapata RE, García Yerena CE. [Acid-base balance and long COVID: comments on metabolic-respiratory alterations]. REVISTA DE LA FACULTAD DE CIENCIAS MÉDICAS 2023; 80:568-573. [PMID: 38150196 PMCID: PMC10851397 DOI: 10.31053/1853.0605.v80.n4.42580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 12/28/2023] Open
Abstract
Long COVID is a multi-organ pathology with important sequelae that affect the health and welfare of survivors from the cellular bioenergetics, in this case, the importance of considering the acid-base balance within the processes of evaluation and treatment of long COVID by health and sports professionals was addressed, given that different investigations have found important modifications in mitochondrial function that result in ventilation failures, causing alterations in the compensation-decompensation of respiratory and renal pH control (metabolic-respiratory acidosis and alkalosis).
Collapse
|
30
|
Zhang M, Xu G, Zhou X, Luo M, Ma N, Wang X, Wang Z, Tang H, Wang X, Li Y, Yuan X, Li Y. Mesenchymal stem cells ameliorate H9N2-induced acute lung injury by inhibiting caspase-3-GSDME-mediated pyroptosis of lung alveolar epithelial cells. Eur J Pharmacol 2023; 960:176148. [PMID: 37866742 DOI: 10.1016/j.ejphar.2023.176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Influenza A virus infection mediates the host's excessive immune response, wherein caspase-3-GSDME-mediated pyroptosis of lung alveolar epithelial cells can contribute to inducing cytokine storm, leading to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Numerous studies have shown that mesenchymal stem cells (MSCs) possess potent immunomodulatory abilities and can mitigate virus-induced cytokine storm and lung injury. However, the role of MSCs in lung pyroptosis remains poorly understood. In this study, we established an ALI model using a mouse-adapted strain of avian influenza virus H9N2 (MA01) and intervened by injecting appropriate bone marrow-derived mesenchymal stem cells (BMMSCs) into the mouse's trachea. The results obtained from animal experiments demonstrated that BMMSCs prevented and ameliorated ALI by inhibiting Caspase-3-GSDME-mediated pyroptosis of lung epithelial cells as well as hypercytokinemia. Similarly, corresponding results were observed in vitro, where BMMSCs and the lung epithelial cell line MLE-12 cells were co-cultured in a transwell compartment. Additionally, the caspase-3 inhibitor Z-DEVD-FMK could block MA01-induced GSDME activation. Furthermore, by combining RNA-Seq data with in vitro and in vivo results, we also discovered that MA01-induced pyroptosis is associated with the BAK/BAX-dependent mitochondrial apoptosis pathway. Notably, BMMSCs exhibit the ability to interfere with this signaling pathway. In conclusion, this study provides novel theoretical support for the utilization of BMMSCs in the treatment of ALI induced by influenza.
Collapse
Affiliation(s)
- Mengwei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Zhou
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Min Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuejiao Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuying Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
31
|
Pan JQ, Tian ZM, Xue LB. Hyperbaric Oxygen Treatment for Long COVID: From Molecular Mechanism to Clinical Practice. Curr Med Sci 2023; 43:1061-1065. [PMID: 37924387 DOI: 10.1007/s11596-023-2799-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 11/06/2023]
Abstract
Long COVID symptoms typically occur within 3 months of an initial COVID-19 infection, last for more than 2 months, and cannot be explained by other diagnoses. The most common symptoms include fatigue, dyspnea, coughing, and cognitive impairment. The mechanisms of long COVID are not fully understood, but several hypotheses have been put forth. These include coagulation and fibrosis pathway activation, inflammatory and autoimmune manifestations, persistent virus presence, and Epstein-Barr virus reactivation. Hyperbaric oxygen therapy (HBOT) is a therapeutic method in which a person inhales 100% oxygen under pressure greater than that of the atmosphere. HBOT has some therapeutic effects, including improvement of microcirculation, inhibition of cytokine release leading to a reduction in inflammatory responses, inhibition of autoimmune responses, and promotion of neurological repair. Several clinical trials have been carried out using HBOT to treat long COVID. The results suggest that HBOT helps to improve symptom severity, reduce symptom duration, and enhance patients' quality of life. It is believed that HBOT is an effective option for patients with long COVID, which is worth actively promoting.
Collapse
Affiliation(s)
- Jian-Qing Pan
- Department of Hyperbaric Oxygen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | | | - Lian-Bi Xue
- Department of Hyperbaric Oxygen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| |
Collapse
|
32
|
Hanson BA, Visvabharathy L, Orban ZS, Jimenez M, Batra A, Liotta EM, DeLisle RK, Klausner JD, Cohen P, Padhye AS, Tachas G, Koralnik IJ. Plasma proteomics show altered inflammatory and mitochondrial proteins in patients with neurologic symptoms of post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun 2023; 114:462-474. [PMID: 37704012 PMCID: PMC10718560 DOI: 10.1016/j.bbi.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Persistent symptoms of COVID-19 survivors constitute long COVID syndrome, also called post-acute sequelae of SARS-CoV-2 infection (PASC). Neurologic manifestations of PASC (Neuro-PASC) are particularly debilitating, long lasting, and poorly understood. To gain insight into the pathogenesis of PASC, we leveraged a well-characterized group of Neuro-PASC (NP) patients seen at our Neuro-COVID-19 clinic who had mild acute COVID-19 and never required hospitalization to investigate their plasma proteome. Using the SomaLogic platform, SomaScan, the plasma concentration of >7000 proteins was measured from 92 unvaccinated individuals, including 48 NP patients, 20 COVID-19 convalescents (CC) without lingering symptoms, and 24 unexposed healthy controls (HC) to interrogate underlying pathobiology and potential biomarkers of PASC. We analyzed the plasma proteome based on post-COVID-19 status, neurologic and non-neurologic symptoms, as well as subjective and objective standardized tests for changes in quality-of-life (QoL) and cognition associated with Neuro-PASC. The plasma proteome of NP patients differed from CC and HC subjects more substantially than post-COVID-19 groups (NP and CC combined) differed from HC. Proteomic differences in NP patients 3-9 months following acute COVID-19 showed alterations in inflammatory proteins and pathways relative to CC and HC subjects. Proteomic associations with Neuro-PASC symptoms of brain fog and fatigue included changes in markers of DNA repair, oxidative stress, and neutrophil degranulation. Furthermore, we discovered a correlation between NP patients lower subjective impression of recovery to pre-COVID-19 baseline with an increase in the concentration of the oxidative phosphorylation protein COX7A1, which was also associated with neurologic symptoms and fatigue, as well as impairment in QoL and cognitive dysfunction. Finally, we identified other oxidative phosphorylation-associated proteins correlating with central nervous system symptoms. Our results suggest ongoing inflammatory changes and mitochondrial involvement in Neuro-PASC and pave the way for biomarker validation for use in monitoring and development of therapeutic intervention for this debilitating condition.
Collapse
Affiliation(s)
- Barbara A Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zachary S Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ayush Batra
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric M Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - George Tachas
- Antisense Therapeutics Limited, Toorak, Victoria, Australia
| | - Igor J Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Koleničová V, Vňuková MS, Anders M, Fišerová M, Raboch J, Ptáček R. A Review Article on Exercise Intolerance in Long COVID: Unmasking the Causes and Optimizing Treatment Strategies. Med Sci Monit 2023; 29:e941079. [PMID: 37897034 PMCID: PMC10619330 DOI: 10.12659/msm.941079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 10/29/2023] Open
Abstract
There is a growing body of research on SARS-CoV-2 (PASC), previously known as the post-COVID syndrome, a chronic condition characterized by symptoms that persist after SARS-CoV-2 infection. Among these symptoms, feelings of physical exhaustion and prolonged fatigue are particularly prevalent and can significantly impact patients' quality of life. These symptoms are associated with reduced overall physical capacity, decreased daily physical activity, malaise after intense training, and intolerance to physical activity (IFA). IFA, described as a reduced ability to perform physical activities typical for the patient's age, can often lead to a sedentary lifestyle. Prolonged physical inactivity can cause deterioration in the overall physical condition and disrupt mitochondrial function, triggering a vicious cycle of gradual symptom worsening. The underlying causes of PASC remain unclear; however, several biochemical mechanisms have been discussed to explain the body's energy depletion, and a multidisciplinary approach that combines physical and cognitive rehabilitation and lifestyle interventions such as exercise and diet modifications has been suggested to improve the overall health and well-being of PASC patients. This critical review aims to review the existing research on the possible causes and links among chronic fatigue, reduced physical activity, and exercise intolerance in patients with PASC. Further research into the underlying causes and treatment of PASC and the importance of developing individualized treatment is needed to address each patient's unique health requirements.
Collapse
|
34
|
Figueirêdo Leite GG, Colo Brunialti MK, Peçanha-Pietrobom PM, Abrão Ferreira PR, Ota-Arakaki JS, Cunha-Neto E, Ferreira BL, Ronsein GE, Tashima AK, Salomão R. Understanding COVID-19 progression with longitudinal peripheral blood mononuclear cell proteomics: Changes in the cellular proteome over time. iScience 2023; 26:107824. [PMID: 37736053 PMCID: PMC10509719 DOI: 10.1016/j.isci.2023.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological processes is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the peripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples were collected at different stages of the disease, including hospital admission, after 7 days of hospitalization, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-related proteins were observed in patients. Patients progressing to critical illness had significantly low-abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting clinical recovery. Important biological processes, such as fatty acid concentration and glucose metabolism disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes revealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persistent protein changes post-hospitalization.
Collapse
Affiliation(s)
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula M. Peçanha-Pietrobom
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo R. Abrão Ferreira
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jaquelina Sonoe Ota-Arakaki
- Division of Respiratory Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bianca Lima Ferreira
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Graziella E. Ronsein
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Georgieva E, Ananiev J, Yovchev Y, Arabadzhiev G, Abrashev H, Abrasheva D, Atanasov V, Kostandieva R, Mitev M, Petkova-Parlapanska K, Karamalakova Y, Koleva-Korkelia I, Tsoneva V, Nikolova G. COVID-19 Complications: Oxidative Stress, Inflammation, and Mitochondrial and Endothelial Dysfunction. Int J Mol Sci 2023; 24:14876. [PMID: 37834324 PMCID: PMC10573237 DOI: 10.3390/ijms241914876] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
SARS-CoV-2 infection, discovered and isolated in Wuhan City, Hubei Province, China, causes acute atypical respiratory symptoms and has led to profound changes in our lives. COVID-19 is characterized by a wide range of complications, which include pulmonary embolism, thromboembolism and arterial clot formation, arrhythmias, cardiomyopathy, multiorgan failure, and more. The disease has caused a worldwide pandemic, and despite various measures such as social distancing, various preventive strategies, and therapeutic approaches, and the creation of vaccines, the novel coronavirus infection (COVID-19) still hides many mysteries for the scientific community. Oxidative stress has been suggested to play an essential role in the pathogenesis of COVID-19, and determining free radical levels in patients with coronavirus infection may provide an insight into disease severity. The generation of abnormal levels of oxidants under a COVID-19-induced cytokine storm causes the irreversible oxidation of a wide range of macromolecules and subsequent damage to cells, tissues, and organs. Clinical studies have shown that oxidative stress initiates endothelial damage, which increases the risk of complications in COVID-19 and post-COVID-19 or long-COVID-19 cases. This review describes the role of oxidative stress and free radicals in the mediation of COVID-19-induced mitochondrial and endothelial dysfunction.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Yovcho Yovchev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Georgi Arabadzhiev
- Department of Surgery and Anesthesiology, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria; (Y.Y.); (G.A.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Despina Abrasheva
- II Department of Internal Medicine Therapy: Cardiology, Rheumatology, Hematology and Gastroenterology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 G. Sofiiski, 1606 Sofia, Bulgaria; (V.A.); (R.K.)
| | - Mitko Mitev
- Department of Diagnostic Imaging, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (Y.K.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (Y.K.)
| | - Iliana Koleva-Korkelia
- Department of Obstetrics and Gynaecology Clinic, University Hospital “Prof. St. Kirkovich”, 6000 Stara Zagora, Bulgaria;
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (Y.K.)
| |
Collapse
|
36
|
Horowitz RI, Fallon J, Freeman PR. Comparison of the Efficacy of Longer versus Shorter Pulsed High Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome with Bartonellosis and Associated Coinfections. Microorganisms 2023; 11:2301. [PMID: 37764145 PMCID: PMC10537894 DOI: 10.3390/microorganisms11092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Twenty-five patients with relapsing and remitting Borreliosis, Babesiosis, and bartonellosis despite extended anti-infective therapy were prescribed double-dose dapsone combination therapy (DDDCT), followed by one or several courses of High Dose Dapsone Combination Therapy (HDDCT). A retrospective chart review of these 25 patients undergoing DDDCT therapy and HDDCT demonstrated that 100% improved their tick-borne symptoms, and patients completing 6-7 day pulses of HDDCT had superior levels of improvement versus 4-day pulses if Bartonella was present. At the completion of treatment, 7/23 (30.5%) who completed 8 weeks of DDDCT followed by a 5-7 day pulse of HDDCT remained in remission for 3-9 months, and 3/23 patients (13%) who recently finished treatment were 1 ½ months in full remission. In conclusion, DDDCT followed by 6-7 day pulses of HDDCT could represent a novel, effective anti-infective strategy in chronic Lyme disease/Post Treatment Lyme Disease Syndrome (PTLDS) and associated co-infections, including Bartonella, especially in individuals who have failed standard antibiotic protocols.
Collapse
Affiliation(s)
- Richard I. Horowitz
- Lyme and Tick-Borne Diseases Working Group, New York State Department of Health, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
37
|
Owen R, Ashton RE, Ferraro FV, Skipper L, Bewick T, Leighton P, Phillips BE, Faghy MA. Forming a consensus opinion to inform long COVID support mechanisms and interventions: a modified Delphi approach. EClinicalMedicine 2023; 62:102145. [PMID: 37599906 PMCID: PMC10432807 DOI: 10.1016/j.eclinm.2023.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background Current approaches to support patients living with post-COVID condition, also known as Long COVID, are highly disparate with limited success in managing or resolving a well-documented and long-standing symptom burden. With approximately 2.1 million people living with the condition in the UK alone and millions more worldwide, there is a desperate need to devise support strategies and interventions for patients. Methods A three-round Delphi consensus methodology was distributed internationally using an online survey and was completed by healthcare professionals (including clinicians, physiotherapists, and general practitioners), people with long COVID, and long COVID academic researchers (round 1 n = 273, round 2 n = 186, round 3 n = 138). Across the three rounds, respondents were located predominantly in the United Kingdom (UK), with 17.3-15.2% (round 1, n = 47; round 2 n = 32, round 2 n = 21) of respondents located elsewhere (United States of America (USA), Austria, Malta, United Arab Emirates (UAE), Finland, Norway, Malta, Netherlands, Iceland, Canada, Tunisie, Brazil, Hungary, Greece, France, Austrailia, South Africa, Serbia, and India). Respondents were given ∼5 weeks to complete the survey following enrolment, with round one taking place from 02/15/2022 to 03/28/22, round two; 05/09/2022 to 06/26/2022, and round 3; 07/14/2022 to 08/09/2022. A 5-point Likert scale of agreement was used and the opportunity to include free text responses was provided in the first round. Findings Fifty-five statements reached consensus (defined as >80% agree and strongly agree), across the domains of i) long COVID as a condition, ii) current support and care available for long COVID, iii) clinical assessments for long COVID, and iv) support mechanisms and rehabilitation interventions for long COVID, further sub-categorised by consideration, inclusion, and focus. Consensus reached proposes that long COVID requires specialised, comprehensive support mechanisms and that interventions should form a personalised care plan guided by the needs of the patients. Supportive approaches should focus on individual symptoms, including but not limited to fatigue, cognitive dysfunction, and dyspnoea, utilising pacing, fatigue management, and support returning to daily activities. The mental impact of living with long COVID, tolerance to physical activity, emotional distress and well-being, and research of pre-existing conditions with similar symptoms, such as myalgic encephalomyelitis, should also be considered when supporting people with long COVID. Interpretation We provide an outline that achieved consensus with stakeholders that could be used to inform the design and implementation of bespoke long COVID support mechanisms. Funding None.
Collapse
Affiliation(s)
- Rebecca Owen
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
| | - Ruth E.M. Ashton
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection Network (HL-Pivot), USA
| | - Francesco V. Ferraro
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
| | - Lindsay Skipper
- Patient and Public Involvement and Engagement Representative, UK
| | - Tom Bewick
- Department of Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Road, Derby DE22 3NE, UK
| | - Paul Leighton
- School of Medicine, University of Nottingham, Nottingham and Derby, UK
| | | | - Mark A. Faghy
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection Network (HL-Pivot), USA
| |
Collapse
|
38
|
Del Carpio-Orantes L. [Proposal for a diagnostic approach to long COVID]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:403-405. [PMID: 37535946 PMCID: PMC10484538 DOI: 10.5281/zenodo.8200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 08/05/2023]
Abstract
The objective of this communication is to provide a proposal for a diagnostic approach to persistent COVID based on the various current etiopathogenic theories and to serve as a guide on how to start the diagnostic process in a patient affected by this syndrome according to the prevailing symptomatology and the basic studies and of extension that can be requested and even assisted by commercial kits that would help a better diagnosis.
Collapse
Affiliation(s)
- Luis Del Carpio-Orantes
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 71, Departamento de Medicina Interna. Veracruz, Veracruz, MéxicoInstituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
39
|
Fernández-de-Las-Peñas C, Cancela-Cilleruelo I, Rodríguez-Jiménez J, Fuensalida-Novo S, Martín-Guerrero JD, Pellicer-Valero OJ, de-la-Llave-Rincón AI. Trajectory of Post-COVID Self-Reported Fatigue and Dyspnoea in Individuals Who Had Been Hospitalized by COVID-19: The LONG-COVID-EXP Multicenter Study. Biomedicines 2023; 11:1863. [PMID: 37509504 PMCID: PMC10376654 DOI: 10.3390/biomedicines11071863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Fatigue and dyspnoea are common post-COVID symptoms. The aim of this study was to apply Sankey plots and exponential bar plots for visualizing the evolution and trajectory of post-COVID fatigue and dyspnoea symptoms in a cohort of previously hospitalized COVID-19 survivors. A total of 1266 previously hospitalized patients due to COVID-19 participated in this multicentre study. They were assessed at hospital admission (T0), 8.4 months (T1), 13.2 months (T2) and 18.3 months (T3) after hospital discharge and were asked about the presence of self-reported fatigue or dyspnoea symptoms. Fatigue was defined as a self-perceived feeling of constant tiredness and/or weakness whereas dyspnoea was defined as a self-perceived feeling of shortness of breath at rest. We specifically asked for fatigue and dyspnoea that participants attributed to the infection. Clinical/hospitalization data were collected from hospital medical records. The prevalence of post-COVID fatigue was 56.94% (n = 721) at T1, 52.31% (n = 662) at T2 and 42.66% (n = 540) at T3. The prevalence of dyspnoea at rest decreased from 28.71% (n = 363) at hospital admission (T0), to 21.29% (n = 270) at T1, to 13.96% (n = 177) at T2 and 12.04% (n = 153) at T3. The Sankey plots revealed that 469 (37.08%) and 153 (12.04%) patients exhibited fatigue and dyspnoea at all follow-up periods. The recovery exponential curves show a decreased prevalence trend, showing that fatigue and dyspnoea recover the following three years after hospitalization. The regression models revealed that the female sex and experiencing the symptoms (e.g., fatigue, dyspnoea) at T1 were factors associated with the presence of post-COVID fatigue or dyspnoea at T2 and T3. The use of Sankey plots shows a fluctuating evolution of post-COVID fatigue and dyspnoea during the first two years after infection. In addition, exponential bar plots revealed a decreased prevalence of these symptoms during the first years after. The female sex is a risk factor for the development of post-COVID fatigue and dyspnoea.
Collapse
Affiliation(s)
- César Fernández-de-Las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Ignacio Cancela-Cilleruelo
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Jorge Rodríguez-Jiménez
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Stella Fuensalida-Novo
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - José D Martín-Guerrero
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, ETSE (Engineering School), Universitat de València (UV), 46100 Valencia, Spain
| | - Oscar J Pellicer-Valero
- Image Processing Laboratory (IPL), Universitat de València, Parc Científic, 46980 València, Spain
| | - Ana I de-la-Llave-Rincón
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| |
Collapse
|
40
|
Siekacz K, Kumor-Kisielewska A, Miłkowska-Dymanowska J, Pietrusińska M, Bartczak K, Majewski S, Stańczyk A, Piotrowski WJ, Białas AJ. Oxidative Biomarkers Associated with the Pulmonary Manifestation of Post-COVID-19 Complications. J Clin Med 2023; 12:4253. [PMID: 37445288 DOI: 10.3390/jcm12134253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The role of mitochondria in post coronavirus disease 2019 (post-COVID-19) complications is unclear, especially in the long-term pulmonary complications. This study aims to investigate the association between post-COVID-19 pulmonary complications and mitochondrial regulatory proteins in the context of oxidative stress. METHODOLOGY Patients who had recovered from COVID-19 were enrolled. According to the evidence of persistent interstitial lung lesions on computed tomography (CT), patients were divided into a long-term pulmonary complications group (P(+)) and a control group without long-term pulmonary complications (P(-)). We randomly selected 80 patients for investigation (40 subjects for each group). Biomarkers levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS The serum concentrations of mitochondrial regulatory proteins were significantly higher in the P(+) group, including PTEN-induced kinase 1 (PINK1): 1.62 [1.02-2.29] ng/mL vs. 1.34 [0.94-1.74] ng/mL (p = 0.046); Dynamin-1-like protein (DNM1L): 1.6 [0.9-2.4] ng/mL IQR vs. 0.9 [0.5-1.6] ng/mL (p = 0.004); and Mitofusin-2 (MFN2): 0.3 [0.2-0.5] ng/mL vs. 0.2 [0.1-0.3] ng/mL IQR (p = 0.001). Patients from the P(+) group also had higher serum levels of chemokine ligand 18 (PARC, CCL18), IL-6, and tumour necrosis factor-alpha (TNF-α) cytokines than the P(-) group. The concentration of interferon alpha (IFN-α) was decreased in the P(+) group. Furthermore, we observed statistically significant correlations between the advanced glycation end product (sRAGE) and TNF-α (Pearson's factor R = 0.637; p < 0.001) and between serum levels of DNM1L and IFN-α (Pearson's factor R = 0.501; p = 0.002) in P(+) patients. CONCLUSIONS Elevated concentrations of mitochondrial biomarkers in post-COVID-19 patients with long-term pulmonary complications indicate their possible role in the pathobiology of COVID-19 pulmonary sequelae. Oxidative stress is associated with the immune response and inflammation after COVID-19. TNF-α could be a promising biomarker for predicting pulmonary complications and may be a potential target for therapeutic intervention in patients with post-COVID-19 complications.
Collapse
Affiliation(s)
- Kamil Siekacz
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | | | - Krystian Bartczak
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Sebastian Majewski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Adam Stańczyk
- Department of Clinical Pharmacology, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Adam J Białas
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Pulmonary Rehabilitation, Regional Medical Center for Lung Diseases and Rehabilitation, Blessed Rafal Chylinski Memorial Hospital for Lung Diseases, 91-520 Lodz, Poland
| |
Collapse
|
41
|
Koh YC, Ho CT, Pan MH. The Role of Mitochondria in Phytochemically Mediated Disease Amelioration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6775-6788. [PMID: 37125676 PMCID: PMC10178808 DOI: 10.1021/acs.jafc.2c08921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Mitochondrial dysfunction may cause cell death, which has recently emerged as a cancer prevention and treatment strategy mediated by chemotherapy drugs or phytochemicals. However, most existing drugs cannot target cancerous cells and may adversely affect normal cells via side effects. Mounting studies have revealed that phytochemicals such as resveratrol could ameliorate various diseases with dysfunctional or damaged mitochondria. For instance, resveratrol can regulate mitophagy, inhibit oxidative stress and preserve membrane potential, induce mitochondrial biogenesis, balance mitochondrial fusion and fission, and enhance the functionality of the electron transport chain. However, there are only a few studies suggesting that phytochemicals could potentially protect against the cytotoxicity of some current cancer drugs, especially those that damage mitochondria. Besides, COVID-19 and long COVID have also been reported to be correlated to mitochondrial dysfunction. Curcumin has been reported bringing a positive impact on COVID-19 and long COVID. Therefore, in this study, the benefits of resveratrol and curcumin to be applied for cancer treatment/prevention and disease amelioration were reviewed. Besides, this review also provides some perspectives on phytochemicals to be considered as a treatment adjuvant for COVID-19 and long COVID by targeting mitochondrial rescue. Hopefully, this review can provide new insight into disease treatment with phytochemicals targeting mitochondria.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
42
|
Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int J Mol Sci 2023; 24:ijms24098290. [PMID: 37175995 PMCID: PMC10179575 DOI: 10.3390/ijms24098290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
| | - Ornella Fiorillo Moreno
- Clínica Iberoamerica, Barranquilla 080001, Colombia
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Eloina Zarate Peñata
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Lisandro Pacheco Lugo
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Antonio Acosta Hoyos
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Roberto Navarro Quiroz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, 08028 Barcelona, Spain
| | | | - Gustavo Aroca Martinez
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
- School of Medicine, Universidad del Norte, Barranquilla 080001, Colombia
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
43
|
Chen TH, Chang CJ, Hung PH. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int J Mol Sci 2023; 24:8034. [PMID: 37175745 PMCID: PMC10179190 DOI: 10.3390/ijms24098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Life and Health Science, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
44
|
Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
|