1
|
Ji J, Gong C, Lu G, Zhang J, Liu B, Liu X, Lin J, Wang P, Thomas BB, Humayun MS, Zhou Q. Potential of ultrasound stimulation and sonogenetics in vision restoration: a narrative review. Neural Regen Res 2025; 20:3501-3516. [PMID: 39688549 PMCID: PMC11974640 DOI: 10.4103/nrr.nrr-d-24-00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Vision restoration presents a considerable challenge in the realm of regenerative medicine, while recent progress in ultrasound stimulation has displayed potential as a non-invasive therapeutic approach. This narrative review offers a comprehensive overview of current research on ultrasound-stimulated neuromodulation, emphasizing its potential as a treatment modality for various nerve injuries. By examining of the efficacy of different types of ultrasound stimulation in modulating peripheral and optic nerves, we can delve into their underlying molecular mechanisms. Furthermore, the review underscores the potential of sonogenetics in vision restoration, which involves leveraging pharmacological and genetic manipulations to inhibit or enhance the expression of related mechanosensitive channels, thereby modulating the strength of the ultrasound response. We also address how methods such as viral transcription can be utilized to render specific neurons or organs highly responsive to ultrasound, leading to significantly improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Baoqiang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xunan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Junhao Lin
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | | | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Tohda C. Pharmacological intervention for chronic phase of spinal cord injury. Neural Regen Res 2025; 20:1377-1389. [PMID: 38934397 PMCID: PMC11624870 DOI: 10.4103/nrr.nrr-d-24-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury-specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research ( in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc (AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide, (-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
Collapse
Affiliation(s)
- Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Schenone A, Massucco S, Schenone C, Venturi CB, Nozza P, Prada V, Pomili T, Di Patrizi I, Capodivento G, Nobbio L, Grandis M. Basic Pathological Mechanisms in Peripheral Nerve Diseases. Int J Mol Sci 2025; 26:3377. [PMID: 40244242 PMCID: PMC11989557 DOI: 10.3390/ijms26073377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in select conditions, offering a unique window into the pathophysiological processes of peripheral neuropathies. Evidence highlights the symbiotic relationship between axons and myelinating Schwann cells, wherein disruptions in axo-glial interactions contribute to neuropathogenesis. This review synthesizes recent insights into the pathological and molecular underpinnings of axonopathy and myelinopathy. Axonopathy encompasses Wallerian degeneration, axonal atrophy, and dystrophy. Although extensively studied in traumatic nerve injury, the mechanisms of axonal degeneration and Schwann cell-mediated repair are increasingly recognized as pivotal in non-traumatic disorders, including dying-back neuropathies. We briefly outline key transcription factors, signaling pathways, and epigenetic changes driving axonal regeneration. For myelinopathy, we discuss primary segmental demyelination and dysmyelination, characterized by defective myelin development. We describe paranodal demyelination in light of recent findings in nodopathies, emphasizing that it is not an exclusive indicator of demyelinating disorders. This comprehensive review provides a framework to enhance our understanding of peripheral nerve pathology and its implications for developing targeted therapies.
Collapse
Affiliation(s)
- Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Cristina Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Consuelo Barbara Venturi
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Paolo Nozza
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Valeria Prada
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149 Genoa, Italy;
| | - Tania Pomili
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Irene Di Patrizi
- IRCCS Ospedale Policlinico San Martino, UO Radiologia, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Giovanna Capodivento
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| |
Collapse
|
4
|
Li XL, Zhao YQ, Miao L, An YX, Wu F, Han JY, Han JY, Tay FR, Mu Z, Jiao Y, Wang J. Strategies for promoting neurovascularization in bone regeneration. Mil Med Res 2025; 12:9. [PMID: 40025573 PMCID: PMC11874146 DOI: 10.1186/s40779-025-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025] Open
Abstract
Bone tissue relies on the intricate interplay between blood vessels and nerve fibers, both are essential for many physiological and pathological processes of the skeletal system. Blood vessels provide the necessary oxygen and nutrients to nerve and bone tissues, and remove metabolic waste. Concomitantly, nerve fibers precede blood vessels during growth, promote vascularization, and influence bone cells by secreting neurotransmitters to stimulate osteogenesis. Despite the critical roles of both components, current biomaterials generally focus on enhancing intraosseous blood vessel repair, while often neglecting the contribution of nerves. Understanding the distribution and main functions of blood vessels and nerve fibers in bone is crucial for developing effective biomaterials for bone tissue engineering. This review first explores the anatomy of intraosseous blood vessels and nerve fibers, highlighting their vital roles in bone embryonic development, metabolism, and repair. It covers innovative bone regeneration strategies directed at accelerating the intrabony neurovascular system over the past 10 years. The issues covered included material properties (stiffness, surface topography, pore structures, conductivity, and piezoelectricity) and acellular biological factors [neurotrophins, peptides, ribonucleic acids (RNAs), inorganic ions, and exosomes]. Major challenges encountered by neurovascularized materials during their clinical translation have also been highlighted. Furthermore, the review discusses future research directions and potential developments aimed at producing bone repair materials that more accurately mimic the natural healing processes of bone tissue. This review will serve as a valuable reference for researchers and clinicians in developing novel neurovascularized biomaterials and accelerating their translation into clinical practice. By bridging the gap between experimental research and practical application, these advancements have the potential to transform the treatment of bone defects and significantly improve the quality of life for patients with bone-related conditions.
Collapse
Affiliation(s)
- Xin-Ling Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Qing Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xin An
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Fan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Yu Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Yuan Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- Graduate School of Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Chen YQ, Zhang YX, Zhang X, Lyu YM, Miao ZL, Liu XY, Duan XC. Mechanism and Application of Chinese Herb Medicine in Treatment of Peripheral Nerve Injury. Chin J Integr Med 2025; 31:270-280. [PMID: 39617868 DOI: 10.1007/s11655-024-4004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 02/26/2025]
Abstract
Peripheral nerve injury (PNI) encompasses damage to nerves located outside the central nervous system, adversely affecting both motor and sensory functions. Although peripheral nerves possess an intrinsic capacity for self-repair, severe injuries frequently result in significant tissue loss and erroneous axonal junctions, thereby impeding complete recovery and potentially causing neuropathic pain. Various therapeutic strategies, including surgical interventions, biomaterials, and pharmacological agents, have been developed to enhance nerve repair processes. While preclinical studies in animal models have demonstrated the efficacy of certain pharmacological agents in promoting nerve regeneration and mitigating inflammation, only a limited number of these agents have been translated into clinical practice to expedite nerve regeneration. Chinese herb medicine (CHM) possesses a longstanding history in the treatment of various ailments and demonstrates potential efficacy in addressing PNI through its distinctive, cost-effective, and multifaceted methodologies. This review critically examines the advancements in the application of CHM for PNI treatment and nerve regeneration. In particular, we have summarized the most commonly employed and rigorously investigated CHM prescriptions, individual herbs, and natural products, elucidating their respective functions and underlying mechanisms in the context of PNI treatment. Furthermore, we have deliberated on the prospective development of CHM in both clinical practice and fundamental research.
Collapse
Affiliation(s)
- Yu-Qing Chen
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
- Department of Pharmacy, Department of Endocrine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226006, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Yan-Xian Zhang
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
- Department of Pharmacy, Department of Endocrine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226006, China
| | - Xu Zhang
- Clinical Medical Research Center, Department of Neurosurgery, Wuxi No. 2 Peolpe's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, 214002, China
| | - Yong-Mei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224007, China
| | - Zeng-Li Miao
- Clinical Medical Research Center, Department of Neurosurgery, Wuxi No. 2 Peolpe's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, 214002, China
| | - Xiao-Yu Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
| | - Xu-Chu Duan
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China.
| |
Collapse
|
6
|
Frostadottir D, Welinder C, Perez R, Dahlin LB. Refinement of Protein Extraction Protocols for Human Peripheral Nerve Tissue. ACS OMEGA 2025; 10:5111-5118. [PMID: 39959086 PMCID: PMC11822717 DOI: 10.1021/acsomega.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
Our aim was to establish an effective method for protein extraction from freshly frozen human peripheral nerves, determine the minimum amount required for consistent protein extraction outcomes, and assess which method produced the highest number of protein identities. Five extraction methods were compared using 8 M urea and Ripa buffer using either the Bullet Blender or Bioruptor. Out of the total 2619 identified proteins, protein extraction using the Ripa buffer combined with either Bioruptor or Bullet Blender resulted in the identification of 1582 (60%) and 1615 (62%) proteins, respectively. In contrast, using 8 M urea and Bioruptor for protein extraction resulted in 1022 proteins (39%), whereas employing Bullet Blender yielded 1446 proteins (55%). Sample amounts, ranging from 0.6 to 10 mg, were prepared with consistent protein extraction outcome obtained for samples ≥1.2 mg. Combining Ripa and 8 M urea with Bullet Blender increased protein identification to 2126 (81%). Proteins were classified by their cell components, molecular functions, and biological processes. Furthermore, a subclassification of proteins involved in the extracellular matrix (ECM) was introduced. We recommend the use of Ripa buffer, in combination with 8 M urea and Bullet Blender for extracting proteins from fresh-frozen human nerves weighing ≥1.2 mg.
Collapse
Affiliation(s)
- Drifa Frostadottir
- Department
of Translational Medicine − Hand Surgery, Lund University, Malmö S-20502, Sweden
- Department
of Hand Surgery, Skane University Hospital, Malmö S-20502, Sweden
| | - Charlotte Welinder
- Faculty of
Medicine, Department of Clinical Sciences Lund, Mass Spectrometry, Lund University, Lund S-20502, Sweden
| | - Raquel Perez
- Department
of Translational Medicine − Hand Surgery, Lund University, Malmö S-20502, Sweden
- Unit for
Social Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö S-20502, Sweden
| | - Lars B. Dahlin
- Department
of Translational Medicine − Hand Surgery, Lund University, Malmö S-20502, Sweden
- Department
of Hand Surgery, Skane University Hospital, Malmö S-20502, Sweden
- Department
of Biomedical and Clinical Sciences, Linköping
University, SE-581 83 Linköping, Sweden
| |
Collapse
|
7
|
Gu CL, Zhang L, Zhu Y, Bao TY, Zhu YT, Chen YT, Pang HQ. Exploring the cellular and molecular basis of nerve growth factor in cerebral ischemia recovery. Neuroscience 2025; 566:190-197. [PMID: 39742942 DOI: 10.1016/j.neuroscience.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Vascular obstruction often causes inadequate oxygen and nutrient supply to the brain. This deficiency results in cerebral ischemic injury, which significantly impairs neurological function. This review aimed to explore the neuroprotective and regenerative effects of nerve growth factor (NGF) in cerebral ischemic injury. NGF, a crucial neurotrophic factor, could inhibit neuronal apoptosis, reduce inflammatory responses, and promote axon regeneration and angiogenesis through its interaction with TrkA, a high-affinity receptor. These functions were closely related to the activation of Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) and Mitogen-Activated Protein Kinase (MAPK) pathways. Moreover, the mechanisms of NGF in the acute and recovery phases, along with the strategies to enhance its therapeutic effects using delivery systems (such as intranasal administration, nanovesicles, and gene therapy) were also summarized. Although NGF shows great potential for clinical application, its delivery efficiency and long-term safety still need more research and improvements. Future research should focus on exploring the specific action mechanism of NGF, optimizing the delivery strategy, and evaluating its long-term efficacy and safety to facilitate its clinical transformation in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chen-Lin Gu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Lu Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yan Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Ting-Yu Bao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ting Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yu-Tong Chen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Siebert JR, Kennedy K, Osterhout DJ. Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury. ASN Neuro 2025; 17:2440299. [PMID: 39819292 DOI: 10.1080/17590914.2024.2440299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
Collapse
Affiliation(s)
- Justin R Siebert
- Physician Assistant Studies Program, Department of Health Care and Administration, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Kiersten Kennedy
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donna J Osterhout
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
9
|
Ren J, Bai W, Guo Y, Liu Q, Wang Y, Wang C. Maternal Bisphenol A Exposure Induces Hippocampal-Dependent Learning and Memory Deficits Through the PI3K/Akt/mTOR Pathway in Male Offspring Rats. J Biochem Mol Toxicol 2025; 39:e70100. [PMID: 39799553 DOI: 10.1002/jbt.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 01/15/2025]
Abstract
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear. In this study, pregnant female Sprague Dawley rats were orally exposed to BPA at a low dose of 0, 0.04, 0.4, or 4 mg per kg·of body weight per day from embryonic Day 0 (ED 0) to postnatal Day 21 (PND 21). Spatial learning and memory were measured via a Morris water maze test on PND 22. PI3K/Akt/mTOR signaling pathway protein expression was detected in the hippocampi of male offspring using a western blot. The water maze test demonstrated that BPA exposure considerably reduced the learning and memory capacities of the male offspring exposure groups when compared to the control group. The male offspring rats' latency to escape increased significantly, the time taken to traverse a platform reduced, and latency to find a hidden platform showed an increasing trend. Meanwhile, maternal exposure to BPA downregulated the expression of PI3K/Akt/mTOR/p70S6K pathway in the hippocampi of the offspring. Moreover, BPA exposure improved the GSK3β and phosphorylated tau protein (T231) levels, increased malondialdehyde levels, and activated caspase-3 expression in the hippocampi of the male offspring rats. Taken together, these findings indicate that maternal exposure to BPA causes learning and memory impairment and that the PI3K/Akt/mTOR pathway participates in the mechanism of BPA-induced neurocognitive decline.
Collapse
Affiliation(s)
- Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
- Nursing College, Shanxi Datong University, Datong, China
| | - Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
10
|
Ji S, Chen D, Ding F, Gu X, Xue Q, Zhou C, Cao M, Yu S. Salidroside exerts neuroprotective effects on retrograde neuronal death following neonatal axotomy via activation of PI3K/Akt pathway and deactivation of p38 MAPK pathway. Toxicol Appl Pharmacol 2025; 494:117178. [PMID: 39617258 DOI: 10.1016/j.taap.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Salidroside, a glucoside of tyrosol, is a powerful active ingredient extracted from the Chinese herb medicine Rhodiola rosea L.. As a neuroprotective agent, the application of salidroside in combination with neural tissue engineering has recently attracted much attention in peripheral nerve repair and reconstruction. However, the cellular and molecular mechanisms by which salidroside promotes nerve regeneration remain to be elucidated. We aim to evaluate the long-term neuroprotective potential of salidroside in an experimental rat model of neonatal sciatic nerve crush injury, with a focus on target-deprived neuronal death and the mechanisms involved. Behavioral analysis showed that salidroside dose-dependently improved voluntary hindlimb behavior and rod rotation ability following neonatal axotomy during an 8-week observation period. According to electrophysiology, Fluoro-Gold retrograde tracing, histological and immunohistochemical analyses, salidroside significantly improved nerve regeneration and reinnervation. Nissle and TUNEL staining, as well as caspase-3 activation assay indicated a beneficial effect of salidroside on retrograde loss and apoptosis of motoneurons within 2 weeks after axotomy. qPCR, ELISA and oxidative stress experiments revealed that salidroside improved the imbalance of spinal microenvironment, including oxidative stress and down-regulation of neurotrophic factors. Western blotting analysis showed that salidroside enhanced the activation of PI3K/Akt and inhibited the p38 MAPK signaling pathway following axotomy. The oxidative stress and axonal disconnection/regeneration models of primary motoneurons in vitro further confirmed the involvement of these two pathways in the neuroprotective effects of salidroside. These data provide a theoretical basis for the application of salidroside in peripheral nerve repair and reconstruction.
Collapse
Affiliation(s)
- Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China; Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chun Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| | - Maohong Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
11
|
Zhai X, Wang Y. Physical modulation and peripheral nerve regeneration: a literature review. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:32. [PMID: 39710804 DOI: 10.1186/s13619-024-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
Peripheral nerve injury (PNI) usually causes severe motor, sensory and autonomic dysfunction. In addition to direct surgical repair, rehabilitation exercises, and traditional physical stimuli, for example, electrical stimulation, have been applied in promoting the clinical recovery of PNI for a long time but showed low efficiency. Recently, significant progress has been made in new physical modulation to promote peripheral nerve regeneration. We hereby review current progress on the mechanism of peripheral nerve regeneration after injury and summarize the new findings and evidence for the application of physical modulation, including electrical stimulation, light, ultrasound, magnetic stimulation, and mechanical stretching in experimental studies and the clinical treatment of patients with PNI.
Collapse
Affiliation(s)
- Xiangwen Zhai
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong Province, China.
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
12
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
13
|
Khaitin AM, Guzenko VV, Bachurin SS, Demyanenko SV. c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration. Int J Mol Sci 2024; 25:12621. [PMID: 39684331 DOI: 10.3390/ijms252312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative processes, yet their interaction in neurological disorders remains largely unexplored. In contrast, much of the available information about their relationship comes from cancer research. While it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic understanding of a far more complex dynamic, which includes exceptions under specific conditions and the involvement of additional regulatory factors. Given the critical need to address this gap for the treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge on the joint roles of these two factors in neuropathology. It also highlights their conformational flexibility, post-translational modifications, and outlines potential directions for future research.
Collapse
Affiliation(s)
- Andrey M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Valeria V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Stanislav S Bachurin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| |
Collapse
|
14
|
Song W, Li Y, Jia Y, Xu L, Kang L, Yang Y, Wang S, Zhang Q, Wu Q. Quercetin Alleviates Diabetic Peripheral Neuropathy by Regulating Axon Guidance Factors and Inhibiting the Rho/ROCK Pathway in vivo and in vitro. Diabetes Metab Syndr Obes 2024; 17:4339-4354. [PMID: 39582785 PMCID: PMC11585991 DOI: 10.2147/dmso.s491175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose The axon guidance factors and Rho/ROCK pathway play crucial roles in axon protection and nerve repair and has been implicated in the development of diabetic peripheral neuropathy (DPN). This study investigates the protective effects of quercetin against DPN, focusing on axon guidance factors and Rho/ROCK pathway. Methods DPN was induced by intraperitoneal injection of streptozotocin (STZ) to Sprague-Dawley rats. The DPN model rats were allocated into three groups and administered quercetin at two different doses (30 mg/kg/day and 60 mg/kg/day) or a placebo. Concurrently, healthy rats were divided into two groups and administered either a placebo or quercetin (60 mg/kg/day). Administration was initiated 8 weeks post-STZ injection and continued for a duration of six weeks. To assess quercetin's neuroprotective effects, biochemical analyses, neurological function tests (mechanical threshold, thermal response latency, motor nerve conduction velocity), and morphological assessments via transmission electron microscopy were conducted. Immunofluorescence and immunohistochemical assays were performed on sciatic nerve tissue and high glucose-induced RSC96 rat Schwann cells to explore quercetin's pharmacological effects on DPN. Results Quercetin exhibited neuroprotective effects on both DPN rats and RSC96 cells exposed to high-glucose. A six-week administration of quercetin at both doses significantly improved the peripheral neurological functions and alleviated the pathological changes in sciatic nerve of DPN rats (P<0.05). Mechanistically, quercetin markedly upregulated the expressions of axonal growth factors, Slit-2 and Netrin-1 in vivo and in vitro (P<0.05), while inhibiting the aberrant activation of Rho/ROCK signaling pathway in the sciatic nerve of DPN rats. Conclusion Our findings suggest that quercetin improves DPN through a novel mechanism, indicating its potential as a therapeutic agent for DPN therapy.
Collapse
Affiliation(s)
- Wei Song
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yaoyang Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Lingling Xu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Lin Kang
- Department of Geriatric, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing, 100010, People’s Republic of China
| | - Shuyu Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| |
Collapse
|
15
|
Zylberberg B, Suburo AM, Coronel MF, Mazzone GL. Excitotoxic spinal damage induced by kainic acid impairs locomotion, alters nociception, and reduces CREB nuclear translocation. Behav Brain Res 2024; 475:115219. [PMID: 39209120 DOI: 10.1016/j.bbr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Our previous in vitro studies showed that excitotoxicity evoked by glutamate analogue kainate (KA) significantly decreased the number of rat spinal neurons and triggered high release of glutamate leading to locomotor network block. Our current objective was to assess the role of CREB as a predictive marker of damage following chemically-induced spinal cord injury by using in vivo and in vitro models. Thus, in vivo excitotoxicity in Balb/c adult mice was induced by KA intraspinal injection, while in vitro spinal cord excitotoxicity was produced by bath-applied KA. KA application evoked significant neuronal loss, deterioration in hindlimb motor coordination and thermal allodynia. In addition, immunohistochemical analysis showed that KA application resulted in decreased number of CREB positive nuclei in the ventral horn and in dorsal layers III-IV. Our data suggests that excitotoxic-induced neuronal loss may be potentially predicted by altered CREB nuclear translocation.
Collapse
Affiliation(s)
- Benjamín Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina.
| | - Angela M Suburo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina.
| | - M Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina.
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires B1629AHJ, Argentina.
| |
Collapse
|
16
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
17
|
An C, Gao L, Xiang L, Qi J. IGF-1 and Glucocorticoid Receptors Are Potential Target Proteins for the NGF-Mimic Effect of β-Cyclocitral from Lavandula angustifolia Mill. in PC12 Cells. Int J Mol Sci 2024; 25:9763. [PMID: 39337253 PMCID: PMC11432015 DOI: 10.3390/ijms25189763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, the PC12 cells as a bioassay system were used to screen the small molecules with nerve growth factor (NGF)- mimic effect from Lavandula angustifolia Mill. The β-Cyclocitral (β-cyc) as an active compound was discovered, and its chemical structure was also determined. Furthermore, we focused on the bioactive and action mechanism of this compound to do an intensive study with specific protein inhibitors and Western blotting analysis. The β-cyc had novel NGF-mimic and NGF-enhancer effects on PC12 cells, while the insulin-like growth factor-1 receptor (IGF-1R)/phosphatidylinositol 3 kinase, (PI3K)/serine/threonine-protein kinase (AKT), and glucocorticoid receptor (GR)/phospholipase C (PLC)/protein kinase C (PKC) signaling pathways were involved in the bioactivity of β-cyc. In addition, the important role of the rat sarcoma (Ras)/protooncogene serine-threonine protein kinase (Raf) signaling pathway was observed, although it was independent of tyrosine kinase (Trk) receptors. Moreover, the non-label target protein discovery techniques, such as the cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS), were utilized to make predictions of its target protein. The stability of IGF-R and GR, proteins for temperature and protease, was dose-dependently increased after treatment of β-cyc compared with control groups, respectively. These findings indicated that β-cyc promoted the neuron differentiation of PC12 cells via targeting IGF-1R and GR and modification of downstream signaling pathways.
Collapse
Affiliation(s)
| | | | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China; (C.A.); (L.G.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China; (C.A.); (L.G.)
| |
Collapse
|
18
|
Shen J, Sun Y, Liu X, Chai Y, Wang C, Xu J. Nerve Regeneration Potential of Antioxidant-Modified Black Phosphorus Quantum Dots in Peripheral Nerve Injury. ACS NANO 2024; 18:23518-23536. [PMID: 39150909 DOI: 10.1021/acsnano.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Peripheral nerve injury is a major societal concern. Black phosphorus (BP) has inherent advantages over cell-based therapies in regenerative medicine. However, controlling spontaneous degradation and size-dependent cytotoxicity remains challenging and poses difficulties for clinical translation. In this study, we constructed zero-dimensional BP quantum dots (QDs) modified with antioxidant β-carotene and comprehensively investigated them in Schwann cells (SCs) to elucidate their potential for peripheral nerve repair. In vitro experiments demonstrated that BPQD@β-carotene has an inappreciable toxicity and good biocompatibility, favoring neural regrowth, angiogenesis, and inflammatory regulation of SCs. Furthermore, the PI3K/Akt and Ras/ERK1/2 signaling pathways were activated in SCs at the genetic, protein, and metabolite levels. The BPQD@β-carotene-embedded GelMA/PEGDA scaffold enhanced functional recovery by promoting axon remyelination and regeneration and facilitating intraneural angiogenesis in peripheral nerve injury models of rats and beagle dogs. These results contribute to advancing knowledge of BP nanomaterials in tissue regeneration and show significant potential for application in translational medicine.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Chinese National Center for Orthopaedics, Shanghai 200233, PR China
| |
Collapse
|
19
|
AbuQeis I, Zou Y, Ba YC, Teeti AA. Neuroscience of cancer: Research progress and emerging of the field. IBRAIN 2024; 10:305-322. [PMID: 39346791 PMCID: PMC11427805 DOI: 10.1002/ibra.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
Cancer cells immediately expand and penetrate adjoining tissues, as opposed to metastasis, that is the spread of cancer cells through the circulatory or lymphatic systems to more distant places via the invasion process. We found that a lack of studies discussed tumor development with the nervous system, by the aspects of cancer-tissue invasion (biological) and chemical modulation of growth that cascades by releasing neural-related factors from the nerve endings via chemical substances known as neurotransmitters. In this review, we aimed to carefully demonstrate and describe the cancer invasion and interaction with the nervous system, as well as reveal the research progress and the emerging neuroscience of cancer. An initial set of 160 references underwent systematic review and summarization. Through a meticulous screening process, these data were refined, ultimately leading to the inclusion of 98 studies that adhered to predetermined criteria. The outcomes show that one formidable challenge in the realm of cancer lies in its intrinsic heterogeneity and remarkable capacity for rapid adaptation. Despite advancements in genomics and precision medicine, there is still a need to identify new molecular targets. Considering cancer within its molecular and cellular environment, including neural components, is crucial for addressing this challenge. In conclusion, this review provides good referential data for direct, indirect, biological, and chemical interaction for nerve tissue-tumor interaction, suggesting the establishment of new therapy techniques and mechanisms by controlling and modifying neuron networks that supply signals to tumors.
Collapse
Affiliation(s)
- Issam AbuQeis
- Department of Radiology Palestinian Ministry of Health Ramallah Palestine
- Department of Anatomy, Institute of Neuroscience, School of Basic Medicine Kunming Medical University Kunming China
| | - Yu Zou
- Department of Anatomy, Institute of Neuroscience, School of Basic Medicine Kunming Medical University Kunming China
| | - Ying-Chun Ba
- Department of Anatomy, Institute of Neuroscience, School of Basic Medicine Kunming Medical University Kunming China
| | - Abeer A Teeti
- Department of Chemistry, School of Science Hebron University Hebron Palestine
- Department of Epidemiology, School of Public Health Kunming Medical University Kunming China
| |
Collapse
|
20
|
Arriero-Cabañero A, García-Vences E, Sánchez-Torres S, Aristizabal-Hernandez S, García-Rama C, Pérez-Rizo E, Fernández-Mayoralas A, Grijalva I, Buzoianu-Anguiano V, Doncel-Pérez E, Mey J. Transplantation of Predegenerated Peripheral Nerves after Complete Spinal Cord Transection in Rats: Effect of Neural Precursor Cells and Pharmacological Treatment with the Sulfoglycolipid Tol-51. Cells 2024; 13:1324. [PMID: 39195214 PMCID: PMC11352494 DOI: 10.3390/cells13161324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections. Previously, we discovered that the synthetic sulfoglycolipid Tol-51 inhibits astrogliosis. The objective was to evaluate axonal regeneration and locomotor function improvement after SCI in rats treated with a combination of PPN, NPC, and Tol-51. One month after SCI, the scar tissue was removed and replaced with segments of PPN or PPN+Tol-51; PPN+NPC+Tol-51. The transplantation of a PPN segment favors regenerative axonal growth; in combination with Tol-51 and NPC, 30% of the labeled descending corticospinal axons were able to grow through the PPN and penetrate the caudal spinal cord. The animals treated with PPN showed significantly better motor function. Our data demonstrate that PPN implants plus NPC and Tol-51 allow successful axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Alejandro Arriero-Cabañero
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Elisa García-Vences
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de Méxcio 11200, Mexico
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico; (S.S.-T.); (I.G.)
| | - Sergio Aristizabal-Hernandez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Concepción García-Rama
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Enrique Pérez-Rizo
- Unidad de Ingeniería y Evaluación Motora del Hospital Nacional de Parapléjicos, 45071 Toledo, Spain;
| | | | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico; (S.S.-T.); (I.G.)
| | - Vinnitsa Buzoianu-Anguiano
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Ernesto Doncel-Pérez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Jörg Mey
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
- EURON Graduate School of Neuroscience, 6229ER Maastricht, The Netherlands
| |
Collapse
|
21
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
22
|
Xu X, Zhang L, He Y, Qi C, Li F. Progress in Research on the Role of the Thioredoxin System in Chemical Nerve Injury. TOXICS 2024; 12:510. [PMID: 39058162 PMCID: PMC11280602 DOI: 10.3390/toxics12070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Various factors, such as oxidative stress, mitochondrial dysfunction, tumors, inflammation, trauma, immune disorders, and neuronal toxicity, can cause nerve damage. Chemical nerve injury, which results from exposure to toxic chemicals, has garnered increasing research attention. The thioredoxin (Trx) system, comprising Trx, Trx reductase, nicotinamide adenine dinucleotide phosphate, and Trx-interacting protein (TXNIP; endogenous Trx inhibitor), helps maintain redox homeostasis in the central nervous system. The dysregulation of this system can cause dementia, cognitive impairment, nerve conduction disorders, movement disorders, and other neurological disorders. Thus, maintaining Trx system homeostasis is crucial for preventing or treating nerve damage. (2) Objective: In this review study, we explored factors influencing the homeostasis of the Trx system and the involvement of its homeostatic imbalance in chemical nerve injury. In addition, we investigated the therapeutic potential of the Trx system-targeting active substances against chemical nerve injury. (3) Conclusions: Chemicals such as morphine, metals, and methylglyoxal interfere with the activity of TXNIP, Trx, and Trx reductase, disrupting Trx system homeostasis by affecting the phosphatidylinositol-3-kinase/protein kinase B, extracellular signal-regulated kinase, and apoptotic signaling-regulated kinase 1/p38 mitogen-activated protein kinase pathways, thereby leading to neurological disorders. Active substances such as resveratrol and lysergic acid sulfide mitigate the symptoms of chemical nerve injury by regulating the Ras/Raf1/extracellular signal-regulated kinase pathway and the miR-146a-5p/TXNIP axis. This study may guide the development of Trx-targeting modulators for treating neurological disorders and chemical nerve injuries.
Collapse
Affiliation(s)
- Xinwei Xu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Lan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Yuyun He
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Cong Qi
- Department of Pharmacy, Jurong People’s Hospital, Jurong 212400, China;
| | - Fang Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| |
Collapse
|
23
|
Du X, Zhang S, Khabbaz A, Cohen KL, Zhang Y, Chakraborty S, Smith GM, Wang H, Yadav AP, Liu N, Deng L. Regeneration of Propriospinal Axons in Rat Transected Spinal Cord Injury through a Growth-Promoting Pathway Constructed by Schwann Cells Overexpressing GDNF. Cells 2024; 13:1160. [PMID: 38995011 PMCID: PMC11240522 DOI: 10.3390/cells13131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210005, China
| | - Shengqi Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Aytak Khabbaz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kristen Lynn Cohen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samhita Chakraborty
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing 210009, China;
| | - Amol P. Yadav
- Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Naikui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.D.); (S.Z.); (A.K.); (K.L.C.); (Y.Z.); (S.C.)
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Dias C, Nylandsted J. Neural membrane repair at the core of regeneration. Neural Regen Res 2024; 19:1399-1400. [PMID: 38051866 PMCID: PMC10883513 DOI: 10.4103/1673-5374.386408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/06/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Catarina Dias
- Danish Cancer Institute, Membrane Integrity, Copenhagen, Denmark
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jesper Nylandsted
- Danish Cancer Institute, Membrane Integrity, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Huang Y, Hu R, Wu L, He K, Ma R. Immunoregulation of Glia after spinal cord injury: a bibliometric analysis. Front Immunol 2024; 15:1402349. [PMID: 38938572 PMCID: PMC11208308 DOI: 10.3389/fimmu.2024.1402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Objective Immunoregulation is a complex and critical process in the pathological process of spinal cord injury (SCI), which is regulated by various factors and plays an important role in the functional repair of SCI. This study aimed to explore the research hotspots and trends of glial cell immunoregulation after SCI from a bibliometric perspective. Methods Data on publications related to glial cell immunoregulation after SCI, published from 2004 to 2023, were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, and keywords in the topic were quantitatively analyzed using the R package "bibliometrix", VOSviewer, Citespace, and the Bibliometrics Online Analysis Platform. Results A total of 613 papers were included, with an average annual growth rate of 9.39%. The papers came from 36 countries, with the United States having the highest output, initiating collaborations with 27 countries. Nantong University was the most influential institution. We identified 3,177 authors, of whom Schwartz, m, of the Weizmann Institute of Science, was ranked first regarding both field-specific H-index (18) and average number of citations per document (151.44). Glia ranked first among journals with 2,574 total citations. The keywords "microglia," "activation," "macrophages," "astrocytes," and "neuroinflammation" represented recent hot topics and are expected to remain a focus of future research. Conclusion These findings strongly suggest that the immunomodulatory effects of microglia, astrocytes, and glial cell interactions may be critical in promoting nerve regeneration and repair after SCI. Research on the immunoregulation of glial cells after SCI is emerging, and there should be greater cooperation and communication between countries and institutions to promote the development of this field and benefit more SCI patients.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Wu
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelin He
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Yang XY, Yang CJ, Wang XF, Zhang L, Shi ZY, Jiang DC, Li MZ. Berberine improves cognitive impairment by alleviating brain atrophy and promoting white matter reorganization in diabetic db/db mice: a magnetic resonance imaging-based study. Metab Brain Dis 2024; 39:941-952. [PMID: 38801506 DOI: 10.1007/s11011-024-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3β (GSK-3β) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3β at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xin-Yu Yang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Chun-Jing Yang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Xiao-Fang Wang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Lei Zhang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zheng-Yuan Shi
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - De-Chun Jiang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China.
| | - Man-Zhong Li
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China.
| |
Collapse
|
27
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
28
|
Mushtaq M, Zineldeen DH, Mateen MA, Haider KH. Mesenchymal stem cells' "garbage bags" at work: Treating radial nerve injury with mesenchymal stem cell-derived exosomes. World J Stem Cells 2024; 16:467-478. [PMID: 38817330 PMCID: PMC11135253 DOI: 10.4252/wjsc.v16.i5.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
Unlike central nervous system injuries, peripheral nerve injuries (PNIs) are often characterized by more or less successful axonal regeneration. However, structural and functional recovery is a senile process involving multifaceted cellular and molecular processes. The contemporary treatment options are limited, with surgical intervention as the gold-standard method; however, each treatment option has its associated limitations, especially when the injury is severe with a large gap. Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI. The recent pilot study is a leap forward in the field, which is expected to pave the way for more enormous, systematic, and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach, in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
Collapse
Affiliation(s)
- Mazhar Mushtaq
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
| | - Doaa Hussein Zineldeen
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta 6632110, Egypt
| | - Muhammad Abdul Mateen
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia.
| |
Collapse
|
29
|
Wang Y, Lu J, Xiao H, Ding L, He Y, Chang C, Wang W. Iridoids rich fraction from Valeriana jatamansi Jones promotes axonal regeneration and motor functional recovery after spinal cord injury through activation of the PI3K/Akt signaling pathway. Front Mol Neurosci 2024; 17:1400927. [PMID: 38756705 PMCID: PMC11097773 DOI: 10.3389/fnmol.2024.1400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Valeriana jatamansi Jones (VJJ), renowned for its extensive history in traditional Chinese medicine and ethnomedicine within China, is prevalently utilized to alleviate ailments such as epigastric distension and pain, gastrointestinal disturbances including food accumulation, diarrhea, and dysentery, as well as insomnia and other diseases. Moreover, the Iridoid-rich fraction derived from Valeriana jatamansi Jones (IRFV) has demonstrated efficacy in facilitating the recuperation of motor functions after spinal cord injury (SCI). This study is aimed to investigate the therapeutic effect of IRFV on SCI and its underlying mechanism. Initially, a rat model of SCI was developed to assess the impact of IRFV on axonal regeneration. Subsequently, employing the PC12 cell model of oxidative damage, the role and mechanism of IRFV in enhancing axonal regeneration were explored using the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway inhibitor LY294002. Ultimately, the same inhibitor was administered to SCI rats to confirm the molecular mechanism through which IRFV promotes axonal regeneration by activating the PI3K/Akt signaling pathway. The results showed that IRFV significantly enhanced motor function recovery, reduced pathological injury, and facilitated axonal regeneration in SCI rats. In vitro experiments revealed that IRFV improved PC12 cell viability, augmented axonal regeneration, and activated the PI3K/Akt signaling pathway. Notably, the inhibition of this pathway negated the therapeutic benefits of IRFV in SCI rats. In conclusion, IRFV promote promotes axonal regeneration and recovery of motor function after SCI through activation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yunyun Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiachun Lu
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, Sichuan, China
| | - Hua Xiao
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lijuan Ding
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yongzhi He
- North Sichuan Medical College, Chengdu, Sichuan, China
| | - Cong Chang
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, Sichuan, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
31
|
Zhang X, Duan X, Liu X. The role of kinases in peripheral nerve regeneration: mechanisms and implications. Front Neurol 2024; 15:1340845. [PMID: 38689881 PMCID: PMC11058862 DOI: 10.3389/fneur.2024.1340845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Peripheral nerve injury disease is a prevalent traumatic condition in current medical practice. Despite the present treatment approaches, encompassing surgical sutures, autologous nerve or allograft nerve transplantation, tissue engineering techniques, and others, an effective clinical treatment method still needs to be discovered. Exploring novel treatment methods to improve peripheral nerve regeneration requires more effort in investigating the cellular and molecular mechanisms involved. Many factors are associated with the regeneration of injured peripheral nerves, including the cross-sectional area of the injured nerve, the length of the nerve gap defect, and various cellular and molecular factors such as Schwann cells, inflammation factors, kinases, and growth factors. As crucial mediators of cellular communication, kinases exert regulatory control over numerous signaling cascades, thereby participating in various vital biological processes, including peripheral nerve regeneration after nerve injury. In this review, we examined diverse kinase classifications, distinct nerve injury types, and the intricate mechanisms involved in peripheral nerve regeneration. Then we stressed the significance of kinases in regulating autophagy, inflammatory response, apoptosis, cell cycle, oxidative processes, and other aspects in establishing conductive microenvironments for nerve tissue regeneration. Finally, we briefly discussed the functional roles of kinases in different types of cells involved in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
- Clinical Medical Research Center, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
32
|
Cao G, Kang T, Li N, Li P. Programmed cell death 4 blocks autophagy and promotes dopaminergic neuronal injury in Parkinson's disease. Exp Ther Med 2024; 27:135. [PMID: 38476886 PMCID: PMC10928848 DOI: 10.3892/etm.2024.12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/17/2023] [Indexed: 03/14/2024] Open
Abstract
Dysregulation of autophagy has previously been associated with the formation of toxic proteins, such as α-synuclein, in patients with Parkinson's disease (PD). In addition, it has been indicated that programmed cell death 4 (PDCD4) can inhibit autophagy in certain conditions, such as diabetic nephropathy, atherosclerosis and cardiac hypertrophy. Therefore, the hypothesis that PDCD4 can promote dopaminergic neuron damage through autophagy was proposed. To explore this hypothesis, the present study treated human neuroblastoma SK-N-SH cells with 1-methyl-4-phenylpyridinium (MPP+) to establish an in vitro model of PD. The potential effects of PDCD4 knockdown on lactate dehydrogenase (LDH) release, cell apoptosis, inflammatory response, oxidative stress and autophagy were then evaluated in this model of PD using an LDH assay kit, flow cytometry, western blotting, ELISA and immunofluorescence. The autophagy inhibitor 3-methyladenine (3-MA) was also applied to treat these cells, and its effects on these aforementioned parameters following PDCD4 knockdown were assessed. MPP+ was shown to increase the expression levels of PDCD4 in SK-N-SH cells. PDCD4 knockdown was revealed to suppress LDH release, cell apoptosis, secretion of inflammatory factors and oxidative stress. In addition, PDCD4 knockdown was demonstrated to enhance autophagy in cells treated with MPP+. By contrast, 3-MA treatment reversed the aforementioned effects of PDCD4 knockdown on cells, suggesting autophagy to be among the processes regulated by PDCD4 in SK-N-SH cells. The results of the present study suggested the existence of regulatory effects mediated by PDCD4 on autophagy in MPP+-induced SK-N-SH cells, offering potential future targets for PD therapy.
Collapse
Affiliation(s)
- Guiling Cao
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Tao Kang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Nini Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
33
|
Berardo A, Bacaglio CR, Báez BB, Sambuelli R, Sheikh KA, Lopez PHH. Blockade of Rho-associated kinase prevents inhibition of axon regeneration of peripheral nerves induced by anti-ganglioside antibodies. Neural Regen Res 2024; 19:895-899. [PMID: 37843226 PMCID: PMC10664126 DOI: 10.4103/1673-5374.382258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrè syndrome, mostly related to halted axon regeneration. Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration. These effects involve the activation of the small GTPase RhoA/ROCK signaling pathways, which negatively modulate growth cone cytoskeleton, similarly to well stablished inhibitors of axon regeneration described so far. The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632, a selective pharmacological inhibitor of ROCK, in a mouse model of axon regeneration of peripheral nerves, where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers. Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632. Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity. In contrast, the same dose showed toxic effects on the regeneration of myelinated fibers. Interestingly, scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632. Overall, these findings confirm the in vivo participation of RhoA/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody. Our findings open the possibility of therapeutic pharmacological intervention targeting RhoA/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.
Collapse
Affiliation(s)
- Andrés Berardo
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian R. Bacaglio
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Bárbara B. Báez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Sambuelli
- Servicio de Anatomía Patológica, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Kazim A. Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX, USA
| | - Pablo H. H. Lopez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Cs. Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
34
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
35
|
Wang C, Cui Y, Xu T, Zhou Y, Yang R, Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem Pharmacol 2023; 218:115923. [PMID: 37981175 DOI: 10.1016/j.bcp.2023.115923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role in a wide variety of cellular processes to coordinate catabolic and anabolic pathways and regulate cell growth and fate. There is increasing evidence showing that abnormal glycogen synthase kinase 3 (GSK-3) is associated with the pathogenesis and progression of many disorders, such as cancer, diabetes, psychiatric diseases, and neurodegenerative diseases. In this review, we summarize recent findings about the regulatory role of GSK-3 in the occurrence and development of multiple neurodegenerative diseases, mainly focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The aim of this study is to provide new insight into the shared working mechanism of GSK-3 as a therapeutic target of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chengfeng Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Tong Xu
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China; Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China; Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China.
| | - Rong Yang
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China.
| | - Ting Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
36
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
37
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
38
|
Maqbool J, Anwar H, Rasul A, Imran A, Saadullah M, Malik SA, Shabbir A, Akram R, Sajid F, Zafar S, Saeed S, Akram MN, Islam F, Hussain G, Islam S. Comparative evaluation of ethyl acetate and n-Hexane extracts of Cannabis sativa L. leaves for muscle function restoration after peripheral nerve lesion. Food Sci Nutr 2023; 11:2767-2775. [PMID: 37324902 PMCID: PMC10261791 DOI: 10.1002/fsn3.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Peripheral nerve injuries are one of those complex medical conditions for which a highly effective first-line treatment is currently missing. The use of natural compound as medicines to treat various disorders has a long history. Our previous research explored that crude Cannabis sativa L. accelerated the recovery of sensorimotor functions following nerve injury. The purpose of the current study was to investigate the effects of n-Hexane and ethyl acetate extracts of C. sativa L. leaves on the muscle function restoration in a mouse model after sciatic nerve injury. For this purpose, albino mice (n = 18) were equally divided into control and two treatment groups. The control group was fed on a plain diet while treatment groups were given a diet having n-Hexane (treatment 1) and ethyl acetate (treatment 2) extracts of C. sativa L. (10 mg/kg body weight), respectively. The hot plate test (M = 15.61, SD = 2.61, p = .001), grip strength (M = 68.32, SD = 3.22, p < .001), and sciatic functional index (SFI) (M = 11.59, SD = 6.54, p = .012) assessment indicated significant amelioration in treatment 1 as compared to treatment 2 group. Furthermore, muscle fiber cross-sectional area revealed a noticeable improvement (M = 182,319, SD = 35.80, p = .013) in treatment 1 while muscle mass ratio of Gastrocnemius (M = 0.64, SD = 0.08, p = .427) and Tibialis anterior (M = 0.57, SD = 0.04, p = .209) indicated nonsignificant change. A prominent increase in total antioxidant capacity (TAC) (M = 3.76, SD = 0.38, p < .001) and momentous decrease in total oxidant status (TOS) (M = 11.28, SD = 5.71, p < .001) along with blood glucose level indicated significant difference (M = 105.5, SD = 9.12, p < 0.001) in treatment 1 group. These results suggest that treatment 1 has the ability to speed up functional recovery after a peripheral nerve lesion. Further research is necessary, nevertheless, to better understand the extract's actual curative properties and the mechanisms that improve functional restoration.
Collapse
Affiliation(s)
- Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Laboratorie of Neuroimmunologia, Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College UniversityFaisalabadPakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical CollegeUniversity of SargodhaSargodhaPakistan
| | - Asghar Shabbir
- Department of BiosciencesCOMSATS UniversityIslamabadPakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Suman Saeed
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Numan Akram
- Department of Neurology, Allied HospitalFaisalabad Medical UniversityFaisalabadPakistan
| | - Fakhar Islam
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
39
|
Thomas S, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright D. Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol 2023; 14:1161077. [PMID: 37153658 PMCID: PMC10157176 DOI: 10.3389/fneur.2023.1161077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 73 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6% and -34.7%, respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Douglas Wright
- Sensory Nerve Disorder Lab, Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
40
|
Thomas SJ, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright DE. Abnormal Intraepidermal Nerve Fiber Density in Disease: A Scoping Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.08.23285644. [PMID: 36798392 PMCID: PMC9934806 DOI: 10.1101/2023.02.08.23285644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 74 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6 % and - 34.7% respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
- SJ Thomas
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - J Enders
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Kaiser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Rovenstine
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Heslop
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - W Hauser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Chadwick
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - DE Wright
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| |
Collapse
|