1
|
Liu X, Huang J, Zhou H, Wang S, Guo X, Mao J, Li X, Lu Y, Du Y, Yang F, Luo L, You J. Inhibition of PDT-induced PGE2 surge for enhanced photo-immunotherapy. Biomaterials 2025; 317:123116. [PMID: 39848004 DOI: 10.1016/j.biomaterials.2025.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Nowadays, photodynamic therapy (PDT) offers a non-invasive tumor treatment with high safety profiles and minimal side effects, implying a promising clinical application for patients with malignant tumors. However, the lack of efficacy in metastasis and recurrence still notably limits its application. To solve this problem, one promising strategy is to improve the immune response activated by PDT. Unfortunately, tumor cells derived PGE2 could create immunosuppressive microenvironments and impair the function of multiple immune cells, leading to a failure of immune system activation. Moreover, our research revealed the up-regulation of Ptgs2 in tumor cells after the PDT process, which is associated with a series of pro-tumor effects, including proliferation, invasion, metastasis, apoptotic resistance, and immune evasion. Consequently, controlling the PGE2 surge induced by PDT is crucial for optimizing the efficacy of photo-immunotherapy. Therefore, we combined the regulation of the COX2-PGE2 axis with PDT. The addition of COX inhibitors (COX-Is) could improve the efficiency of PDT, reduce the immunosuppressive effect of PGE2, and help dying tumor cells activate the immune system. Herein, a tumor-targeted nano-delivery platform (FI@T-Lipo) was developed using advanced microfluidic technology. FI@T-Lipo based PDT showed a systemic therapeutic effect in triple negative breast cancer through reclaiming the anti-tumor effect of the immune system under COX2-PGE2 blockage. In a word, we developed an in-situ tumor vaccination strategy based on COX-Is enhanced PDT, which could alleviate intra-tumoral immune suppression and boost immune system activation. Our study offers a promising modality for advancing clinical treatment strategies for metastatic malignant tumors.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yichao Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| |
Collapse
|
2
|
Singh P, Doshi G, Bagwe Parab S. The intersection of GRK2 and PGE2 in rheumatoid arthritis: a comprehensive update on pathophysiology and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04163-2. [PMID: 40261352 DOI: 10.1007/s00210-025-04163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Rheumatoid arthritis (RA) has made significant progress in the treatment zone passing on from traditional disease-modifying anti-rheumatic drugs (DMARDs) to novel biologics and targeted synthetic agents with the goal of individualized therapy regimens. However, these novel biological treatments necessitate careful evaluation due to their effectiveness and side effects. In recent decades, new therapy methods have emerged to understand the underlying causes of RA better, highlighting the need to update current treatments. It is observed that in the context of RA pathophysiology, there was prolonged stimulation of the human prostaglandin E2 receptor 4 (EP4) by prostaglandin E2(PGE2), and also M2 macrophage polarization is promoted by PGE2 through the cyclic adenosine monophosphate - response element binding protein (cAMP-CREB) pathway which leads to the recruitment of G protein-coupled receptor kinase 2 (GRK2) to the membrane and, as a result, there is under expression of membrane-associated EP4. This review emphasizes the significant role of GRK2 in the pathophysiology of RA by regulating the PGE2-EP4 pathway, fibroblast-like synoviocyte (FLS) proliferation, and peroxisome proliferator-activated receptor gamma (PPAR γ) - Tyr473(Flt-1 transcription). Recent research has highlighted the regulatory function of PGE2 and its receptor, EP4, in initiating RA pathogenesis. Additionally, it discusses the mechanism of action supported by current literature, existing therapies, and novel drugs undergoing pre-clinical and clinical trials, which could help future researchers explore them in treating this ancient autoimmune disorder RA.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Siddhi Bagwe Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Hao W, Luo Y, Tian J, Lu Y, Cui Y, Zhang Y, Jin X, Ye H, Lu M, Song J, Zhou W, Zhang W, He Z. Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408581. [PMID: 39804851 PMCID: PMC11923953 DOI: 10.1002/advs.202408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Indexed: 01/16/2025]
Abstract
Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture. The results showed that the proliferation of hAECs is associated with epithelial-mesenchymal plasticity (EMP) during amniogenesis. Freshly isolated, full-term hAECs are identified as mature epithelial cells. Once cultured in vitro, they are observed to rapidly undergo epithelial-mesenchymal transition (EMT) and enter a partial epithelial-mesenchymal transition (pEMT) state to regain their EMP properties and proliferation capacities. With the continuous development of EMT, hAECs eventually enter a senescent state. The addition of SB431542 and microcarrier screening enabled the effective 3D expansion of hAECs by 50 fold while maintaining the EMP status in hAECs for further proliferation. This study not only elucidated the central proliferation mechanism of hAECs during development and expansion but also optimized the in vitro culture system so that it is sufficient to generate hAECs for 50 patients from a single donor amniotic membrane.
Collapse
Affiliation(s)
- Wangping Hao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
| | - Jia Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Yuefeng Lu
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Yangyang Cui
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Ying Zhang
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Xiao Jin
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Hongjuan Ye
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
| | - Mengqi Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, P. R. China
| | - Jinjia Song
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
| | - Weiqing Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, P. R. China
| |
Collapse
|
4
|
Lee J, Roh JL. Lipid metabolism in ferroptosis: Unraveling key mechanisms and therapeutic potential in cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189258. [PMID: 39746458 DOI: 10.1016/j.bbcan.2024.189258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has emerged as a critical area of research for cancer therapy. This review delves into the intricate relationship between lipid metabolism and ferroptosis, emphasizing the impact of lipidome remodeling on cancer cell susceptibility. We explore key mechanisms, such as the role of polyunsaturated fatty acids and phosphatidylethanolamines in ferroptosis induction, alongside the protective effects of monounsaturated fatty acids and their regulatory enzymes. We also discuss the influence of dietary fatty acids, lipid droplets, and the epithelial-to-mesenchymal transition on ferroptosis and cancer resistance. By integrating current findings on enzymatic regulation, lipid peroxidation pathways, and metabolic adaptations, this review highlights potential therapeutic strategies targeting lipid metabolism to enhance ferroptosis-based cancer treatments. Our goal is to provide a comprehensive overview that underscores the significance of lipid metabolic pathways in ferroptosis and their implications for developing novel cancer therapies.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
5
|
Zhu Y, Jiang L, Sun C, Li Y, Xie H. A Prediction Model for Postoperative Nausea and Vomiting After Laparoscopic Surgery for Gynecologic Cancers. Clin Ther 2025; 47:143-147. [PMID: 39645472 DOI: 10.1016/j.clinthera.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Postoperative nausea and vomiting (PONV) is among the most common adverse events, accompanied with impaired prognosis. This study aimed to investigate independent predictors for PONV after laparoscopic surgery for gynecologic cancers and identify a nomogram model. METHODS Elderly patients who underwent laparoscopic surgery for gynecologic cancers between 2021 and 2024 were retrospectively enrolled. The primary observational endpoint was set as the occurrence of PONV within 72 h after surgery. Independent risk factors associated with PONV were identified by binary logistic regression, and further incorporated into the nomogram prediction mode by R. RESULTS Of 337 enrolled patients, 104 experienced PONV with an overall incidence of 30.9%. Multivariate logistic regression analysis indicated body mass index (BMI) ≥ 24.0 (OR: 2.67, 95% CI: 1.37-5.23, P = 0.004), Afpel score (OR: 6.54, 95% CI: 3.52-12.15, P < 0.001), anxiety (OR: 3.14, 95% CI: 1.16-8.50, P = 0.025), 5-hydroxytryptamine (5-HT) (OR: 1.05, 95% CI: 1.02-1.07, P < 0.001), prostaglandin E2 (PGE2) (OR: 1.05, 95% CI: 1.01-1.08, P = 0.007), and albumin/fibrinogen ratio (AFR) (OR: 0.40, 95% CI: 0.28-0.56, P < 0.001) were six independent risk factors for PONV. The nomogram model based on these factors has good predictive value for PONV, with an AUC of 0.898. CONCLUSIONS This study identified an individual nomogram prediction model to visually represent the regression model for predicting PONV after laparoscopic surgery for gynecologic cancers.
Collapse
Affiliation(s)
- Yabin Zhu
- Department of anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lin Jiang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Canlin Sun
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Yunxiang Li
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Hong Xie
- Department of anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
6
|
Zapata-Morales JR, Alonso-Castro AJ, González-Rivera ML, González Prado HI, Barragán-Gálvez JC, Hernández-Flores A, Juárez-Vázquez MDC, Domínguez F, Carranza-Álvarez C, de Jesús Pozos-Guillén A, López-Rodríguez JF, Aguirre-Bañuelos P, Ramírez-Morales MA. Synergistic Interaction Between Justicia spicigera Extract and Analgesics on the Formalin Test in Rats. Pharmaceuticals (Basel) 2025; 18:187. [PMID: 40006001 PMCID: PMC11859130 DOI: 10.3390/ph18020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Combining antinociceptive drugs with different mechanisms of action can reduce the doses and the adverse effects, with a possible increase in the antinociceptive effect. This work evaluated the antinociceptive effect of the combination of an ethanol extract of Justicia spicigera (JSE) with naproxen (NPX) or tramadol (TML) using the formalin test in rats. Methods: Rats received JSE (30-200 mg/kg p.o.), NPX (50-300 mg/kg p.o.), or TML (5-50 mg/kg p.o.) 60 min before paw administration with formalin (5%). Different proportions of the combination between NPX and JSE, as well as TML and JSE, were used in the formalin test to obtain the dose-response curve of each drug and the experimental effective dose 50 (ED50). The levels of IL-1β and COX2 were assessed using a Western blot analysis as a possible mechanism of action for the combination of JSE and analgesics. A pharmacokinetic study was conducted to evaluate the effect of JSE on the pharmacokinetic parameters of NPX. Results: The ED50 values for the proportions NPX:JSE were 107.09 mg/kg (1:1), 102.44 mg/kg (3:1), and 73.82 mg/kg (1:3). The ED50 values for the proportions TML:JSE were 66 mg/kg (1:1), 29.5 mg/kg (1:3), and 78 mg/kg (3:1). The combination NPX:JSE (1:3) showed the best synergistic interaction index (0.501). The pharmacokinetic study revealed that there were no significant changes in the pharmacokinetic parameters of NPX administered individually and the combination NPX:JSE. Conclusions: In this preclinical study, the combination NPX:JSE showed antinociceptive effects by decreasing the levels of COX2 and IL-1β without affecting NPX's pharmacokinetics.
Collapse
Affiliation(s)
- Juan Ramón Zapata-Morales
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - Angel Josabad Alonso-Castro
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - María Leonor González-Rivera
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - Hugo Israel González Prado
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - Juan Carlos Barragán-Gálvez
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - Araceli Hernández-Flores
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - María del Carmen Juárez-Vázquez
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| | - Fabiola Domínguez
- Eastern Biomedical Research Center of Mexican Social Security Institute (IMSS), Metepec 74360, Mexico;
| | - Candy Carranza-Álvarez
- School of Professional Studies Huasteca Zone, Autonomous University of San Luis Potosí, Ciudad Valles 79060, Mexico;
| | - Amaury de Jesús Pozos-Guillén
- Basics Sciences Laboratory, School of Dentistry, Autonomous University of San Luis Potosi (UASLP), San Luis Potosí 78290, Mexico;
| | - Juan F. López-Rodríguez
- Animal Laboratory, School of Medicine Autonomous University of San Luis Potosi, San Luis Potosi 78290, Mexico;
| | - Patricia Aguirre-Bañuelos
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava Martínez 6 Avenue, San Luis Potosí 78210, Mexico;
| | - Marco Antonio Ramírez-Morales
- Department of Pharmacy, Natural and Exact Sciences Division, University of Guanajuato (UG), Guanajuato 36050, Mexico; (A.J.A.-C.); (M.L.G.-R.); (H.I.G.P.); (J.C.B.-G.); (A.H.-F.); (M.d.C.J.-V.); (M.A.R.-M.)
| |
Collapse
|
7
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
8
|
Gao X, Cui Y, Zhang G, Ruzbarsky JJ, Wang B, Layne JE, Xiao X, Huard J. Targeting EP2 Receptor Improves Muscle and Bone Health in Dystrophin -/-/Utrophin -/- Double-Knockout Mice. Cells 2025; 14:116. [PMID: 39851544 PMCID: PMC11763967 DOI: 10.3390/cells14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophin-/-utrophin-/- (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox-2, 15-Pgdh mRNA, and PGE2 were significantly increased in DKO-Hom mice compared to wild-type (WT) mice. The EP2 and EP4 receptors were mainly expressed in CD68+ macrophages and were significantly increased in the muscle tissues of both dystrophin-/- (mdx) and DKO-Hom mice compared to WT mice. Osteogenic and osteoclastogenic gene expression in skeletal muscle also increased in DKO-Hom mice, which correlates with severe muscle heterotopic ossification (HO). Treatment of DKO-Hom mice with the EP2 antagonist PF04418948 for 2 weeks increased body weight and reduced HO and muscle pathology by decreasing both total macrophages (CD68+) and senescent macrophages (CD68+P21+), while increasing endothelial cells (CD31+). PF04418948 also increased bone volume/total volume (BV/TV), the trabecular thickness (Tb.Th) of the tibia trabecular bone, and the cortical bone thickness of both the femur and tibia without affecting spine trabecular bone microarchitecture. In summary, our results indicate that targeting EP2 improves muscle pathology and improves bone mass in DKO mice.
Collapse
MESH Headings
- Animals
- Dystrophin/genetics
- Dystrophin/metabolism
- Dystrophin/deficiency
- Utrophin/genetics
- Utrophin/metabolism
- Utrophin/deficiency
- Mice, Knockout
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Bone and Bones/pathology
- Bone and Bones/metabolism
- Bone and Bones/diagnostic imaging
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Mice, Inbred mdx
- Osteogenesis
- Macrophages/metabolism
- Male
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/metabolism
- Ossification, Heterotopic/pathology
- Mice, Inbred C57BL
- Dinoprostone/metabolism
- Disease Models, Animal
- Cyclooxygenase 2/metabolism
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| | - Greg Zhang
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| | - Joseph J. Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
| | - Bing Wang
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Pittsburgh VA Healthcare System, Pittsburgh, PA 15240, USA
| | - Jonathan E. Layne
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
| | - Xiang Xiao
- Glassell School of Art, The Museum of Fine Arts, Houston, TX 77006, USA;
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| |
Collapse
|
9
|
Park SY, Truong VL, Jeon SG, Choe SY, Rarison RHG, Yoon BH, Park JW, Jeong HJ, Jeong WS. Anti-Inflammatory and Prebiotic Potential of Ethanol Extracts and Mucilage Polysaccharides from Korean Yams ( Dioscorea polystachya and Dioscorea bulbifera). Foods 2025; 14:173. [PMID: 39856842 PMCID: PMC11764955 DOI: 10.3390/foods14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Korean yams are abundant in bioactive compounds with significant health-promoting properties. This study evaluated the anti-inflammatory potential of ethanol and water extracts from Dioscorea polystachya and Dioscorea bulbifera in RAW 264.7 macrophage cells. Among the extracts, the 95% ethanol extract exhibited the most potent inhibition of reactive oxygen species (ROS) and nitric oxide (NO) production, warranting further exploration of its mechanisms of action. Further analysis revealed that the ethanol extract modulated key inflammatory signaling pathways, including MAPK and NF-κB, contributing to its anti-inflammatory activity. Additionally, mucilage polysaccharides, a key bioactive component of Korean yams, were extracted and characterized for their structural and functional properties. These polysaccharides demonstrated immune-enhancing effects by reducing ROS and NO production while increasing phagocytic activity in the RAW 264.7 cells. Their prebiotic potential was also assessed through microbial growth assays, which showed an enhanced proliferation of beneficial bacteria such as Lactobacillus and Bifidobacterium. Furthermore, the adhesion assays using Caco-2 intestinal epithelial cells revealed that these polysaccharides promoted probiotic adhesion while inhibiting the adhesion of pathogenic bacteria. These findings highlight the bioactive potential of ethanol extracts and mucilage polysaccharides from Korean yams, emphasizing their promising applications as anti-inflammatory, immune-modulating, and prebiotic agents for functional food and nutraceutical development.
Collapse
Affiliation(s)
- So-Yoon Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Van-Long Truong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Gyeong Jeon
- Institute for Bioresources Research, Gyeongsangbuk-do Agricultural Research and Extension Services, Andong 36614, Republic of Korea; (S.-G.J.); (S.-Y.C.)
| | - So-Young Choe
- Institute for Bioresources Research, Gyeongsangbuk-do Agricultural Research and Extension Services, Andong 36614, Republic of Korea; (S.-G.J.); (S.-Y.C.)
| | - Razanamanana H. G. Rarison
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Byoung-Hoon Yoon
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Ji-Won Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Hye-Jeong Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Jo SH, Park SY, Lee J, Gwon Y, Kim JY. Antithrombic effects of Piper retrofractum in a rat model of acute thrombosis: modulation of endothelial adhesion molecules and inflammatory factors. Food Sci Biotechnol 2025; 34:269-276. [PMID: 39758728 PMCID: PMC11695558 DOI: 10.1007/s10068-024-01625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 01/07/2025] Open
Abstract
Piper retrofractum (PR) is a tropical plant used as a spice in Southeast Asia. This study investigated the antithrombotic effect of PR in rats with acute thrombosis induced by collagen and epinephrine (CE). The rats were divided into four groups, control (CON), CE, PR15, and PR30, with PR administered at 15 and 30 mg/kg body weight. PR treatment significantly reduced paralysis time compared to the CE. The activated partial thromboplastin time in the PR15 group tended to decrease compared to the CE. Histologically, the both sample groups exhibited reduced blood clots within lung tissues and decreased E-selectin expression in aortic tissue. PR also tended to decrease cyclooxygenase levels and significantly reduce intracellular adhesion molecule 1 levels. PR has demonstrated potential for inhibiting thrombosis by regulating coagulation factors, adhesion molecules, and cyclooxygenase. This finding suggests its potential application as a therapeutic agent for lowering the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Seon Ha Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Jinhee Lee
- Global Leaders College, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Yuri Gwon
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-daero 7-gil, Gwacheon-si, Gyeonggi-do 13840 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
11
|
Huang Z, Zhang W, Shu Q, Guo XC, Zheng X, Lu YJ. Synergistic Anti-Inflammatory Effects of Dibenzoylmethane and Silibinin: Insights From LPS-Induced RAW 264.7 Cells and TPA-Induced Mouse Model. Chem Biodivers 2025:e202402567. [PMID: 39743480 DOI: 10.1002/cbdv.202402567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Inflammation is an important predisposing factor for many chronic diseases. The dietary flavonoid silibinin (SB) has excellent anti-inflammatory properties in cells, but its low bioavailability in the blood compromises its therapeutic potential. This study aims to investigate the potential of dibenzoylmethane (DBM) to synergistically enhance the anti-inflammatory benefits of SB. The synergistic effects of DBM and SB in combination were evaluated in lipopolysaccharide (LPS)-induced RAW264.7 cells and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced mice. In addition, a network pharmacology approach and molecular docking were used to explore the key targets and signaling pathways of DBM and SB in combination. The results showed that DBM and SB synergistically inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in a 1:1 concentration ratio. These two compounds may exert their synergistic effects by modulating the nuclear factor kappa-B (NF-κB) and HIF-1 signaling pathways, among others. Molecular docking revealed that both compounds exhibited high binding affinities to inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compared with single-compound use, the two compounds in combination significantly reduced ear edema and inflammatory cell infiltration and inhibited the protein expression of iNOS and COX-2 in TPA-induced mice. This research provides a rationale for the combination of DBM and SB as an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- Zebin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wanying Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qi Shu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xi Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- Guangdong Xianlingtong Biopharmaceutical Technology Co., Ltd, Meizhou, China
| |
Collapse
|
12
|
Mgwenya TN, Abrahamse H, Houreld NN. Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing. Wound Repair Regen 2025; 33:e13239. [PMID: 39610015 PMCID: PMC11628774 DOI: 10.1111/wrr.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.
Collapse
Affiliation(s)
- Tintswalo N. Mgwenya
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Nicolette N. Houreld
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| |
Collapse
|
13
|
Kim HM, Yoo DH, Kang JW, Lee IC, Bae JS. Anti-Inflammatory Effect of Extract from Fragaria ananassa Duch. Calyx via MAPK and NF-κB Signaling Pathway. J Microbiol Biotechnol 2024; 34:2662-2674. [PMID: 39604003 PMCID: PMC11733547 DOI: 10.4014/jmb.2409.09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Currently, Fragaria ananassa Duch. are discarded as by-products except for the fruit part, so we developed a natural material using the top (= calyx), one of the by-products, and prepared an extract using 70% ethanol to investigate its effects on anti-inflammatory mechanisms. The polyphenol content of 70% ethanol extracts from Fragaria ananassa Duch. calyx was measured to be 265.86 ± 0.85 mg TAE/100 g, respectively. The antioxidant activity was confirmed through the electron donating ability and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging ability measurements. When extracts from Fragaria ananassa Duch. calyx was treated to LPS-induced RAW 264.7 cells, it was confirmed that the production of inflammation-related factors, NO, PGE2, iNOS, COX-2, TNF-a, and IL-6, was inhibited. In addition, it was confirmed that extracts from Fragaria ananassa Duch. calyx affected the MAPK signaling pathway by reducing the protein expression of p-ERK, p-JNK, and p-p38, which are the upper signaling pathways. In addition, it was confirmed to reduce the protein expression of p-p65 and p-IκB, which are NF-κB signaling pathways. Therefore, this study suggests that extracts from Fragaria ananassa Duch. calyx affect the regulation of the production of major inflammation-related factors by inhibiting the MAPK and NF-κB signaling pathway. These results confirmed that extracts from Fragaria ananassa Duch. calyx have the potential to be developed as a new natural material with anti-inflammatory activity.
Collapse
Affiliation(s)
- Hyo-Min Kim
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dan-Hee Yoo
- College of Fusion and Convergence, Seowon University, Cheongju 28674, Republic of Korea
| | - Jung-Wook Kang
- College of Fusion and Convergence, Seowon University, Cheongju 28674, Republic of Korea
| | - In-Chul Lee
- Department of Bio-Cosmetic Science, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Lee HJ, Kim DY, Noh HJ, Lee SY, Yoo JA, Won SJ, Jeon YS, Baek JH, Ryu DJ. Elevated IL-6 Expression in Autologous Adipose-Derived Stem Cells Regulates RANKL Mediated Inflammation in Osteoarthritis. Cells 2024; 13:2046. [PMID: 39768138 PMCID: PMC11674629 DOI: 10.3390/cells13242046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Interleukin-6 (IL-6) expression in mesenchymal stem cells (MSCs) has been shown to play a pivotal role in modulating cartilage regeneration and immune responses, particularly in the context of diseases that involve both degenerative processes and inflammation, such as osteoarthritis (OA). However, the precise mechanism through which IL-6 and other immune-regulatory factors influence the therapeutic efficacy of autologous adipose-derived stem cells (ASCs) transplantation in OA treatment remains to be fully elucidated. This study aims to investigate the relationship between IL-6 expression in autologous ASCs isolated from OA patients and their impact on immune modulation, particularly focusing on the regulation of Receptor Activator of Nuclear factor Kappa-Β Ligand (RANKL), a key mediator of immune-driven cartilage degradation in OA. Autologous ASCs were isolated from the stromal vascular fraction (SVF) of adipose tissue obtained from 22 OA patients. The isolated ASCs were cultured and characterized using reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to the phenotype and immune regulatory factors of MSCs. Based on IL-6 expression levels, ASCs were divided into high and low IL-6 expression groups. These groups were then co-cultured with activated peripheral blood mononuclear cells (PBMCs) to evaluate their immune-modulatory capacity, including the induction of regulatory T cells, inhibition of immune cell proliferation, and regulation of key cytokines, such as interferon-gamma (IFN-γ). Additionally, RANKL expression, a critical factor in osteoclastogenesis and cartilage degradation, was assessed in both ASC groups. High IL-6-expressing ASCs demonstrated a significantly greater capacity to inhibit immune cell proliferation and IFN-γ production compared to their low IL-6-expressing counterparts under co-culture conditions. Moreover, the group of ASCs with high IL-6 expression showed a marked reduction in RANKL expression, suggesting enhanced potential to control osteoclast activity and subsequent cartilage defect in OA. Conclusion: Autologous ASCs with elevated IL-6 expression exhibit enhanced immunomodulatory properties, particularly in regulating over-activated immune response and reducing osteoclastogenesis through RANKL suppression. These findings indicate that selecting ASCs based on IL-6 expression could enhance the therapeutic efficacy of ASC-based treatments for OA by mitigating immune-driven joint inflammation and cartilage degradation, potentially slowing disease progression.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
| | - Dae-Yong Kim
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
- N-BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Republic of Korea
| | - Hyeon jeong Noh
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
- N-BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Republic of Korea
| | - Song Yi Lee
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
| | - Ji Ae Yoo
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
| | - Samuel Jaeyoon Won
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Yoon Sang Jeon
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
- School of Medicine, Inha University, Incheon 22013, Republic of Korea
| | - Ji Hoon Baek
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
- School of Medicine, Inha University, Incheon 22013, Republic of Korea
| |
Collapse
|
15
|
Lee HK, Kim HK, Kim JY, Kim JS, Park J, Kim MS, Lee TY, Lim KH, Park H, Son DJ, Hong JT, Han SB. Ingenol-3-Angelate Enhances the B Cell Inhibitory Potential of Mesenchymal Stem Cells, Leading to Marked Alleviation of Lupus Symptoms in MRL. faslpr Mice. Int J Mol Sci 2024; 25:12625. [PMID: 39684336 DOI: 10.3390/ijms252312625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by autoantibody production by hyper-activated B cells. Although mesenchymal stem cells (MSCs) relieve lupus symptoms by inhibiting mainly T cells, whether MSCs also inhibit B cells has been controversial. Here, we found that naïve MSCs inhibited IFN-γ production by T cells, but not IgM production by B cells. We used a chemical approach to prime MSCs to inhibit B cells. We found that ingenol-3-angelate (I3A), a non-tumor-promoting phorbol ester, activated MSCs to inhibit B cells in a TGF-β1-dependent manner. We also showed that IL-1β induced MSCs to continuously secrete TGF-β1, which directly inhibited IgM production by B cells, whereas IL-1β did not. I3A-treated MSCs were better than naïve MSCs at ameliorating SLE symptoms in MRL.faslpr mice. In summary, our data provide information on how to generate MSCs that are effective for the treatment of SLE characterized by excessive B cell activation.
Collapse
Affiliation(s)
- Hong Kyung Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
- Bioengineering Institute, CorestemChemon Inc., Gyeonggi 13486, Republic of Korea
| | - Hwa Kyung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Ji Su Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - JinKyung Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
- Bioengineering Institute, CorestemChemon Inc., Gyeonggi 13486, Republic of Korea
| | - Min Sung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
- Bioengineering Institute, CorestemChemon Inc., Gyeonggi 13486, Republic of Korea
| | - Tae Yong Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
- Bioengineering Institute, CorestemChemon Inc., Gyeonggi 13486, Republic of Korea
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Hanseul Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| |
Collapse
|
16
|
Ben Attia T, Nahdi A, Horchani M, Elmay MV, Ksentini M, Ben Jannet H, Mhamdi A. Olea europaea L. leaf extract mitigates pulmonary inflammation and tissue destruction in Wistar rats induced by concurrent exposure to noise and toluene. Drug Chem Toxicol 2024; 47:1072-1086. [PMID: 38508716 DOI: 10.1080/01480545.2024.2330014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
This study aimed to investigate the effects of combined exposure to noise (85 dB(A)) and inhaled Toluene (300 ± 10 ppm) on rat lung health. It also aimed to assess the potential therapeutic effects of Olea europaea L. leaves extract (OLE) (40 mg/kg/day) using biochemical, histopathological, and immunohistochemical (IHC) analyses, as well as determination of pro-inflammatory cytokines (TNF-α and IL-1β), and in silico Docking studies. The experiment involved forty-two male Wistar rats divided into seven groups, each exposed to a 6-week/6-hour/day regimen of noise and Toluene. The groups included a control group, rats co-exposed to noise and Toluene, and rats co-exposed to noise and Toluene treated with OLE for different durations. The results indicated that noise and Toluene exposure led to structural damage in lung tissue, oxidative harm, and increased levels of pro-inflammatory cytokines (TNF-α and IL-1β). However, the administration of OLE extract demonstrated positive effects in mitigating these adverse outcomes. OLE treatment reduced lipid peroxidation and enhanced the activities of catalase and superoxide dismutase, indicating its anti-oxidant properties. Furthermore, OLE significantly decreased the levels of pro-inflammatory cytokines compared to the groups exposed to noise and Toluene without OLE treatment. Moreover, the in silico investigation substantiated a robust affinity between COX-2 and OLE components, affirming the anti-inflammatory activity. Overall, our findings suggest that OLE possesses anti-inflammatory and anti-oxidative properties that mitigate the adverse effects of concurrent exposure to noise and Toluene.
Collapse
Affiliation(s)
- Takoua Ben Attia
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| | - Afef Nahdi
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| | - Mabrouk Horchani
- Department of Chemistry, University of Monastir, Monastir, Tunisia
| | | | - Meriem Ksentini
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| | | | - Abada Mhamdi
- Department of Biology, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
17
|
Anbazhagan M, Sharma G, Murthy S, Maddipatla SC, Kolachala VL, Dodd A, Randunne A, Cutler DJ, Kugathasan S, Matthews JD. PTGER4 signaling regulates class IIa HDAC function and SPINK4 mRNA levels in rectal epithelial cells. Cell Commun Signal 2024; 22:493. [PMID: 39396982 PMCID: PMC11472582 DOI: 10.1186/s12964-024-01879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The prostaglandin receptor PTGER4 facilitates homeostasis in the gut. Previous reports indicate that goblet cells, marked by SPINK4 expression, might be affected by PTGER4 activity. Current evidence suggests that prostaglandin E2 (PGE2) produced by mesenchymal stromal cells (MSC) stimulates PTGER4 in epithelial cells during inflammatory conditions. Here, we investigate the subcellular mechanisms and mRNA levels downstream of PTGER4 activity in epithelial cells. METHODS Mucosal cells, organoids, and MSC were obtained from patient biopsies harvested by endoscopy. Using independent and co-cultures, we manipulated the activity of PTGER4, the downstream enzymes, and mRNA levels, by using PGE2, in combination with chemical inhibitors, L-161982, H89, LB100, DAPT, LMK-235, or with butyrate. Immunofluorescence, single cell sequencing, RNAscope, ELISA, real time PCR, and Western blotting were used to examine these samples. RESULTS SPINK4 mRNA levels were increased in organoids by co-culture with MSC or exogenous stimulation with PGE2 that could be blocked by L-161982 or LMK-235, PTGER4 or HDAC4 inhibitors, respectively. Expression of PTGER4 was co-localized with JAM-A in the basolateral surfaces in rectal epithelial cells grown as organoids. PGE2 treatment of rectal organoids decreased HDAC4, 5, and 7 phosphorylation levels that could be blocked by L-161982 treatment. Butyrate treatment, or addition of L-161982, increased the phosphorylated levels of HDAC4, 5, and 7. CONCLUSIONS These findings suggest a mechanism during mucosal injury whereby MSC production of PGE2 increases HDAC4, 5, and 7 activities in epithelial cells by upregulating PTGER4 signaling, ultimately increasing SPINK4 mRNA levels and extracellular release of SPINK4.
Collapse
Affiliation(s)
- Murugadas Anbazhagan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Garima Sharma
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Shanta Murthy
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Sushma Chowdary Maddipatla
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Amanda Randunne
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Department of Pediatrics and Pediatric Research Institute, Division of Pediatric Gastroenterology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Jason D Matthews
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Health Science Research Building, 1760 Haygood Dr, E-246, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Tolstova T, Dotsenko E, Luzgina N, Rusanov A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer's Disease In Vitro Model. Biomedicines 2024; 12:2243. [PMID: 39457556 PMCID: PMC11504366 DOI: 10.3390/biomedicines12102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl2, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD. METHODS We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells. RESULTS This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of IL-10 and TGF-β by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under H2O2-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells. CONCLUSIONS TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after H2O2-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | | | | | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
19
|
Tjahjono Y, Caroline, Foe K, Wijaya H, Dewi BDN, Karnati S, Esar SY, Karel P, Partana FR, Henrikus MA, Wiyanto CA, Wilianto YR, Hadinugroho W, Nugraha J, Nugrahaningsih DAA, Kusindarta DL, Wihadmadyatami H. 2-(3-(Chloromethyl)benzoyloxy)benzoic Acid reduces prostaglandin E-2 concentration, NOX2 and NFKB expression, ROS production, and COX-2 expression in lipopolysaccharide-induced mice. Prostaglandins Other Lipid Mediat 2024; 174:106866. [PMID: 38960027 DOI: 10.1016/j.prostaglandins.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Inflammation is a fundamental response to various insults, including microbial invasion and tissue injury. While aspirin (ASA) has been widely used for its anti-inflammatory properties, its adverse effects and limitations highlight the need for novel therapeutic alternatives. Recently, a novel salicylic acid derivative, 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid (3-CH2Cl), has emerged as a potential substitute for ASA, offering a simpler, environmentally friendly synthesis and a promising safety profile. AIM OF THE STUDY This research aims to evaluate the anti-inflammatory mechanism of 3-CH2Cl in a lipopolysaccharide (LPS)-induced mouse model, focusing on its effects on prostaglandin E-2 (PGE-2) concentration, NOX2 and NFkB expression, ROS production, and COX-2 expression. MATERIAL AND METHODS Utilizing BALB/C mice subjected to LPS-induced inflammation, we investigated the therapeutic potential of 3-CH2Cl. The study included synthesis and tablet preparation, experimental design, peripheral blood plasma PGE-2 measurement, splenocyte isolation and COX-2 expression analysis, nitric oxide and ROS measurement, and immunohistochemical analysis of NOX2 and NFkB expression. RESULTS 3-CH2Cl significantly reduced PGE-2 levels (p = 0.005), NO concentration in liver homogenates (p = 0.005) and plasma (p = 0.0011), and expression of NOX2 and NFkB in liver (p < 0.0001) and splenocytes (p = 0.0036), demonstrating superior anti-inflammatory activity compared to ASA. Additionally, it showed potential in decreasing COX-2 expression in splenocytes. CONCLUSION 3-CH2Cl exhibits potent anti-inflammatory properties, outperforming ASA in several key inflammatory markers in an LPS-induced inflammation model. The reduction of COX-2 expression, alongside the reduction of pro-inflammatory cytokines and oxidative stress markers, suggest it as a promising therapeutic agent for various inflammatory conditions.
Collapse
Affiliation(s)
- Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia; Study Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No.2 Karangmalang, Yogyakarta 55281, Indonesia
| | - Caroline
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Kuncoro Foe
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Hendy Wijaya
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Bernadette Dian Novita Dewi
- Faculty of Medicine, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Philipus Karel
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Fransiskus Regis Partana
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Michelle Angelina Henrikus
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Claritta Angelina Wiyanto
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Yufita Ratnasari Wilianto
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Wuryanto Hadinugroho
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Jusak Nugraha
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, 60132, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No.2 Karangmalang, Yogyakarta 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No.2 Karangmalang, Yogyakarta 55281, Indonesia.
| |
Collapse
|
20
|
Zhang X, Xiao Y, Tao Z, Zhang Y, Cheng X, Liu X, Li Y, Yin W, Tian J, Wang S, Zhang T, Yang X, Liu S. Myeloid Cells and Sensory Nerves Mediate Peritendinous Adhesion Formation via Prostaglandin E2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405367. [PMID: 39207041 PMCID: PMC11516151 DOI: 10.1002/advs.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Peritendinous adhesion that forms after tendon injury substantially limits daily life. The pathology of adhesion involves inflammation and the associated proliferation. However, the current studies on this condition are lacking, previous studies reveal that cyclooxygenase-2 (COX2) gene inhibitors have anti-adhesion effects through reducing prostaglandin E2 (PGE2) and the proliferation of fibroblasts, are contrary to the failure in anti-adhesion through deletion of EP4 (prostaglandin E receptor 4) gene in fibroblasts in mice of another study. In this study, single-cell RNA sequencing analysis of human and mouse specimens are combined with eight types of conditional knockout mice and further reveal that deletion of COX2 in myeloid cells and deletion of EP4 gene in sensory nerves decrease adhesion and impair the biomechanical properties of repaired tendons. Furthermore, the COX2 inhibitor parecoxib reduces PGE2 but impairs the biomechanical properties of repaired tendons. Interestingly, PGE2 local treatment improves the biomechanical properties of the repaired tendons. These findings clarify the complex role of PGE2 in peritendinous adhesion formation (PAF) and tendon repair.
Collapse
Affiliation(s)
- Xinshu Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yao Xiao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Zaijin Tao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yizhe Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuan Cheng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuanzhe Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yanhao Li
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Weiguang Yin
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jian Tian
- Department of OrthopaedicsWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxi214062P. R. China
| | - Shuo Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Tianyi Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xiao Yang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Shen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
21
|
Akl MM, Ahmed A. Cytobiological Alterations Induced by Celecoxib as an Anticancer Agent for Breast and Metastatic Breast Cancer. Adv Pharm Bull 2024; 14:604-612. [PMID: 39494258 PMCID: PMC11530885 DOI: 10.34172/apb.2024.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 11/05/2024] Open
Abstract
Breast cancer remains a formidable public health challenge worldwide, characterized by its initiation within the breast's diverse tissues, particularly the ducts and lobules. This malignancy is predominantly categorized into three subtypes based on receptor status and genetic markers: hormone receptor-positive, HER2-positive, and triple-negative. Each subtype exhibits distinct biological behaviors and responses to treatment, which significantly influence the prognosis and management strategies. The development and metastatic spread of breast cancer are complex processes mediated by interactions between tumor cells and the host microenvironment, involving various cellular and molecular mechanisms. This review highlights the potential therapeutic role of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in addressing the multifaceted aspects of breast cancer progression. Specifically, celecoxib modulates angiogenesis by reducing the levels of vascular endothelial growth factor (VEGF) through decreased PGE2 production, enhances the immune response by alleviating PGE2-mediated immunosuppression, and inhibits metastasis by limiting the activity of matrix metalloproteinases (MMPs). These mechanisms collectively hinder tumor growth, immune evasion, and metastatic spread. By synthesizing recent findings and analyzing the impact of celecoxib on these pathways, this paper seeks to delineate the integrated approaches necessary for managing metastatic breast cancer effectively.
Collapse
Affiliation(s)
- Maher Monir. Akl
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amr Ahmed
- The Public Health Department, Riyadh First Health Cluster, Ministry of Health, Saudi Arabia
| |
Collapse
|
22
|
Xu S, Zhang Y, Zheng Z, Sun J, Wei Y, Ding G. Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome. Hum Cell 2024; 37:1276-1289. [PMID: 38985391 DOI: 10.1007/s13577-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
23
|
Medrano-Padial C, Pérez-Novas I, Domínguez-Perles R, García-Viguera C, Medina S. Bioaccessible Phenolic Alkyl Esters of Wine Lees Decrease COX-2-Catalyzed Lipid Mediators of Oxidative Stress and Inflammation in a Time-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19016-19027. [PMID: 39145698 PMCID: PMC11363137 DOI: 10.1021/acs.jafc.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 μg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.
Collapse
Affiliation(s)
- Concepción Medrano-Padial
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Irene Pérez-Novas
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
24
|
Wang S, Yang Z, Zhai M, Guo P, Sun G. A comprehensive study of Tianma Toutong Tablets from the dual dimensions of quality and efficacy using fingerprint techniques and network pharmacology. Anal Chim Acta 2024; 1318:342928. [PMID: 39067933 DOI: 10.1016/j.aca.2024.342928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The quality of traditional Chinese medicine (TCM) is the prerequisite for ensuring its safe and effective clinical application. With the increasing popularity of TCM worldwide, the quality control of TCM products has become increasingly crucial. Tianma toutong tablet (TMTTT) is mainly used for migraine caused by external wind and cold, blood stasis, or deficiency of blood and nourishment. However, the mechanism of action of TMTTT is still unclear, and there has been a lack of in vitro antioxidant activity research and migraine treatment mechanism research. Therefore, it is urgent to establish a set of comprehensive and effective evaluation methods. RESULTS three fingerprint profiles were established using HPLC, UV, and DSC analysis methods, and established three digital parameters simple complexity index (SX), simple clarity index (SY), simple complexity clarity ratio (Sω), 22 batches of samples were evaluated using a comprehensive linear quantitative fingerprint method (CLQFM). In addition, the antioxidant activity of the samples was determined using the DPPH method, and the relationship between fingerprint peaks in different fingerprints and antioxidant capacity was explored using Pearson correlation coefficients. Finally, network pharmacological research was conducted to investigate the potential targets, compounds, and pathways involved in the treatment of migraines with TMTTT. The results showed that the 22 batches of samples were classified into different quality grades. TMTTT exhibited good antioxidant activity, the fingerprint-efficacy relationship showed that gastrodin, chlorogenic acid, ferulic acid, imperatorin and isoimperatorin had strong antioxidant capacity, providing directions for the identification of active compounds. A total of 36 core targets were identified and screened by network pharmacology, which AKT serine/threonine kinase 1 (AKT1), albumin (ALB), insulin (INS), tumor necrosis factor (TNF), prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin-6 (IL-6), and compounds such as β-sitosterol, chrysophanol, vanillin are the key to the treatment of migraine, providing references for subsequent clinical research and new drug development. SIGNIFICANCE This study examined the consistency of the quality of TMTTT and the mechanism of action in treating migraines from both quality and efficacy perspectives, providing a favorable direction for further research on TMTTT and offering new ideas for the quality control of TCM compound formulations.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ziyu Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Manhuayun Zhai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Ping Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
25
|
Prencipe G, Cerveró-Varona A, Perugini M, Sulcanese L, Iannetta A, Haidar-Montes AA, Stöckl J, Canciello A, Berardinelli P, Russo V, Barboni B. Amphiregulin orchestrates the paracrine immune-suppressive function of amniotic-derived cells through its interplay with COX-2/PGE 2/EP4 axis. iScience 2024; 27:110508. [PMID: 39156643 PMCID: PMC11326934 DOI: 10.1016/j.isci.2024.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
The paracrine crosstalk between amniotic-derived membranes (AMs)/epithelial cells (AECs) and immune cells is pivotal in tissue healing following inflammation. Despite evidence collected to date, gaps in understanding the underlying molecular mechanisms have hindered clinical applications. The present study represents a significant step forward demonstrating that amphiregulin (AREG) orchestrates the native immunomodulatory functions of amniotic derivatives via the COX-2/PGE2/EP4 axis. The results highlight the immunosuppressive efficacy of PGE2-dependent AREG release, dampening PBMCs' activation, and NFAT pathway in Jurkat reporter cells via TGF-β signaling. Moreover, AREG emerges as a key protein mediator by attenuating acute inflammatory response in Tg(lysC:DsRed2) zebrafish larvae. Notably, the interplay of diverse COX-2/PGE2 pathway activators enables AM/AEC to adapt rapidly to external stimuli (LPS and/or stretching) through a responsive positive feedback loop on the AREG/EGFR axis. These findings offer valuable insights for developing innovative cell-free therapies leveraging the potential of amniotic derivatives in immune-mediated diseases and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Arlette Alina Haidar-Montes
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
26
|
Burdzinska A, Szopa IM, Majchrzak-Kuligowska K, Roszczyk A, Zielniok K, Zep P, Dąbrowski FA, Bhale T, Galanty M, Paczek L. The Comparison of Immunomodulatory Properties of Canine and Human Wharton Jelly-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:8926. [PMID: 39201612 PMCID: PMC11354339 DOI: 10.3390/ijms25168926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFβ at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFβ in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.
Collapse
Affiliation(s)
- Anna Burdzinska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha Str. 1B, 02-097 Warsaw, Poland;
| | - Paweł Zep
- Veterinary Clinic “ochWET”, Pruszkowska Str. 19/21, 02-119 Warsaw, Poland
| | - Filip Andrzej Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Education CMKP, Marymoncka Str. 99/103, 00-416 Warsaw, Poland;
| | - Tanushree Bhale
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Marek Galanty
- Department of Small Animal Diseases and Clinic, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Leszek Paczek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| |
Collapse
|
27
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
28
|
Bassetti M, Andreoni M, Santus P, Scaglione F. NSAIDs for early management of acute respiratory infections. Curr Opin Infect Dis 2024; 37:304-311. [PMID: 38779903 PMCID: PMC11213495 DOI: 10.1097/qco.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
PURPOSE OF REVIEW To review the rationale for and the potential clinical benefits of an early approach to viral acute respiratory infections with NSAIDs to switch off the inflammatory cascade before the inflammatory process becomes complicated. RECENT FINDINGS It has been shown that in COVID-19 as in other viral respiratory infections proinflammatory cytokines are produced, which are responsible of respiratory and systemic symptoms. There have been concerns that NSAIDs could increase susceptibility to SARS-CoV-2 infection or aggravate COVID-19. However, recent articles reviewing experimental research, observational clinical studies, randomized clinical trials, and meta-analyses conclude that there is no basis to limit the use of NSAIDs, which may instead represent effective self-care measures to control symptoms. SUMMARY The inflammatory response plays a pivotal role in the early phase of acute respiratory tract infections (ARTIs); a correct diagnosis of the cause and a prompt therapeutic approach with NSAIDs may have the potential to control the pathophysiological mechanisms that can complicate the condition, while reducing symptoms to the benefit of the patient. A timely treatment with NSAIDs may limit the inappropriate use of other categories of drugs, such as antibiotics, which are useless when viral cause is confirmed and whose inappropriate use is responsible for the development of resistance.
Collapse
Affiliation(s)
- Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova
- IRCCS Ospedale Policlinico San Martino, Genova
| | - Massimo Andreoni
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital
- Department of System Medicine Tor Vergata, University of Rome, Rome, Italy
| | - Pierachille Santus
- Division of Respiratory Diseases, Ospedale Luigi Sacco, Polo Universitario, ASST Fatebenefratelli-Sacco
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Aleynik DY, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Specific Features of the Functional Activity of Human Adipose Stromal Cells in the Structure of a Partial Skin-Equivalent. Int J Mol Sci 2024; 25:6290. [PMID: 38927998 PMCID: PMC11203524 DOI: 10.3390/ijms25126290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
30
|
Coutinho LL, Femino EL, Gonzalez AL, Moffat RL, Heinz WF, Cheng RYS, Lockett SJ, Rangel MC, Ridnour LA, Wink DA. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int J Mol Sci 2024; 25:6103. [PMID: 38892290 PMCID: PMC11173351 DOI: 10.3390/ijms25116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.
Collapse
Affiliation(s)
- Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - M. Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| |
Collapse
|
31
|
Hong L, Zahradka P, Taylor CG. Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/ fa Zucker Rats. Nutrients 2024; 16:1311. [PMID: 38732558 PMCID: PMC11085824 DOI: 10.3390/nu16091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.
Collapse
Affiliation(s)
- Lena Hong
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
32
|
Moellerberndt J, Niebert S, Fey K, Hagen A, Burk J. Impact of platelet lysate on immunoregulatory characteristics of equine mesenchymal stromal cells. Front Vet Sci 2024; 11:1385395. [PMID: 38725585 PMCID: PMC11079816 DOI: 10.3389/fvets.2024.1385395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) play an increasing role in the treatment of immune-mediated diseases and inflammatory processes. They regulate immune cells via cell-cell contacts and by secreting various anti-inflammatory molecules but are in turn influenced by many factors such as cytokines. For MSC culture, platelet lysate (PL), which contains a variety of cytokines, is a promising alternative to fetal bovine serum (FBS). We aimed to analyze if PL with its cytokines improves MSC immunoregulatory characteristics, with the perspective that PL could be useful for priming the MSC prior to therapeutic application. MSC, activated peripheral blood mononuclear cells (PBMC) and indirect co-cultures of both were cultivated in media supplemented with either PL, FBS, FBS+INF-γ or FBS+IL-10. After incubation, cytokine concentrations were measured in supernatants and control media. MSC were analyzed regarding their expression of immunoregulatory genes and PBMC regarding their proliferation and percentage of FoxP3+ cells. Cytokines, particularly IFN-γ and IL-10, remained at high levels in PL control medium without cells but decreased in cytokine-supplemented control FBS media without cells during incubation. PBMC released IFN-γ and IL-10 in various culture conditions. MSC alone only released IFN-γ and overall, cytokine levels in media were lowest when MSC were cultured alone. Stimulation of MSC either by PBMC or by PL resulted in an altered expression of immunoregulatory genes. In co-culture with PBMC, the MSC gene expression of COX2, TNFAIP6, IDO1, CXCR4 and MHC2 was upregulated and VCAM1 was downregulated. In the presence of PL, COX2, TNFAIP6, VCAM1, CXCR4 and HIF1A were upregulated. Functionally, while no consistent changes were found regarding the percentage of FoxP3+ cells, MSC decreased PBMC proliferation in all media, with the strongest effect in FBS media supplemented with IL-10 or IFN-γ. This study provides further evidence that PL supports MSC functionality, including their immunoregulatory mechanisms. The results justify to investigate functional effects of MSC cultured in PL-supplemented medium on different types of immune cells in more detail.
Collapse
Affiliation(s)
- Julia Moellerberndt
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Institute of Physiology, Pathophysiology, and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin Fey
- Equine Clinic (Internal Medicine), Justus-Liebig-University Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Institute of Physiology, Pathophysiology, and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
33
|
Kottwitz J, Bechert U, Cruz-Espindola C, Christensen JM, Boothe D. SINGLE-DOSE, MULTIPLE-DOSE, AND THERAPEUTIC DRUG MONITORING PHARMACOKINETICS OF FIROCOXIB IN ASIAN ELEPHANTS ( ELEPHAS MAXIMUS). J Zoo Wildl Med 2024; 55:73-85. [PMID: 38453490 DOI: 10.1638/2022-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 03/09/2024] Open
Abstract
Firocoxib is a COX-2-selective nonsteroidal anti-inflammatory drug (NSAID) with limited effects on COX-1, which means it likely has fewer side effects than typically associated with other NSAIDs. This study determined possible doses of firocoxib based on single- and multidose pharmacokinetic trials conducted in 10 Asian elephants (Elephas maximus). Initially, two single oral dose trials (0.01 and 0.1 mg/kg) of a commercially available tablet (n = 6) and paste (n = 4) formulation were used to determine a preferred dose. The 0.1 mg/kg dose was further evaluated via IV single dose (n = 3) and oral multidose trials (tablets n = 6; paste n = 4). Serum peak and trough firocoxib concentrations were also evaluated in Asian elephants (n = 4) that had been being treated for a minimum of 90 consecutive days. Key pharmacokinetic parameters for the 0.1 mg/kg single-dose trials included mean peak serum concentrations of 49 ± 3.3 ng/ml for tablets and 62 ± 14.8 ng/ml for paste, area under the curve (AUC) of 1,332 ± 878 h*mg/ml for tablets and 1,455 ± 634 h*mg/ml for paste, and half-life (T1/2) of 34.3 ± 30.3 h for tablets and 19.9 ± 12.8 h for paste. After 8 d of dosing at 0.1 mg/kg every 24 h, pharmacokinetic parameters stabilized to an AUC of 6,341 ± 3,003 h*mg/ml for tablets and 5,613 ± 2,262 for paste, and T1/2 of 84.4 ± 32.2 h for tablets and 62.9 ± 2.3 h for paste. Serum COX inhibition was evaluated in vitro and ex vivo in untreated elephant plasma, where firocoxib demonstrated preferential inhibition of COX-2. No adverse effects from firocoxib administration were identified in this study. Results suggest administering firocoxib to Asian elephants at a dose of 0.1 mg/kg orally, using either tablet or paste formulations, every 24 h.
Collapse
Affiliation(s)
- Jack Kottwitz
- Clinical Pharmacology Laboratory, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA,
| | - Ursula Bechert
- University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Crisanta Cruz-Espindola
- Clinical Pharmacology Laboratory, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | - Dawn Boothe
- Clinical Pharmacology Laboratory, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
34
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
35
|
Al-Hawary SIS, Saleh RO, Taher SG, Ahmed SM, Hjazi A, Yumashev A, Ghildiyal P, Qasim MT, Alawadi A, Ihsan A. Tumor-derived lncRNAs: Behind-the-scenes mediators that modulate the immune system and play a role in cancer pathogenesis. Pathol Res Pract 2024; 254:155123. [PMID: 38277740 DOI: 10.1016/j.prp.2024.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Having been involved in complex cellular regulatory networks and cell-to-cell communications, non-coding RNAs (lncRNAs) have become functional carriers that transmit information between cells and tissues, modulate tumor microenvironments, encourage angiogenesis and invasion, and make tumor cells more resistant to drugs. Immune cells' exosomal lncRNAs may be introduced into tumor cells to influence the tumor's course and the treatment's effectiveness. Research has focused on determining if non-coding RNAs affect many target genes to mediate regulating recipient cells. The tumor microenvironment's immune and cancer cells are influenced by lncRNAs, which may impact a treatment's efficacy. The lncRNA-mediated interaction between cancer cells and immune cells invading the tumor microenvironment has been the subject of numerous recent studies. On the other hand, tumor-derived lncRNAs' control over the immune system has not gotten much attention and is still a relatively new area of study. Tumor-derived lncRNAs are recognized to contribute to tumor immunity, while the exact mechanism is unclear.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Ahmed Alawadi
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq; College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
| | - Ali Ihsan
- College of Technical Engineering, the Islamic University of Babylon, Iraq; Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Medical Laboratory Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
36
|
Mahmoud ME, Farooq M, Isham IM, Ali A, Hassan MSH, Herath-Mudiyanselage H, Ranaweera HA, Najimudeen SM, Abdul-Careem MF. Cyclooxygenase-2/prostaglandin E2 pathway regulates infectious bronchitis virus replication in avian macrophages. J Gen Virol 2024; 105. [PMID: 38189432 DOI: 10.1099/jgv.0.001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a significant respiratory pathogen that affects chickens worldwide. As an avian coronavirus, IBV leads to productive infection in chicken macrophages. However, the effects of IBV infection in macrophages on cyclooxygenase-2 (COX-2) expression are still to be elucidated. Therefore, we investigated the role of IBV infection on the production of COX-2, an enzyme involved in the synthesis of prostaglandin E2 (PGE2) in chicken macrophages. The chicken macrophage cells were infected with two IBV strains, and the cells and culture supernatants were harvested at predetermined time points to measure intracellular and extracellular IBV infection. IBV infection was quantified as has been the COX-2 and PGE2 productions. We found that IBV infection enhances COX-2 production at both mRNA and protein levels in chicken macrophages. When a selective COX-2 antagonist was used to reduce the COX-2 expression in macrophages, we observed that IBV replication decreased. When IBV-infected macrophages were treated with PGE2 receptor (EP2 and EP4) inhibitors, IBV replication was reduced. Upon utilizing a selective COX-2 antagonist to diminish PGE2 expression in macrophages, a discernible decrease in IBV replication was observed. Treatment of IBV-infected macrophages with a PGE2 receptor (EP2) inhibitor resulted in a reduction in IBV replication, whereas the introduction of exogenous PGE2 heightened viral replication. Additionally, pretreatment with a Janus-kinase two antagonist attenuated the inhibitory effect of recombinant chicken interferon (IFN)-γ on viral replication. The evaluation of immune mediators, such as inducible nitric oxide (NO) synthase (iNOS), NO, and interleukin (IL)-6, revealed enhanced expression following IBV infection of macrophages. In response to the inhibition of COX-2 and PGE2 receptors, we observed a reduction in the expressions of iNOS and IL-6 in macrophages, correlating with reduced IBV infection. Overall, IBV infection increased COX-2 and PGE2 production in addition to iNOS, NO, and IL-6 expression in chicken macrophages in a time-dependent manner. Inhibition of the COX-2/PGE2 pathway may lead to increased macrophage defence mechanisms against IBV infection, resulting in a reduction in viral replication and iNOS and IL-6 expressions. Understanding the molecular mechanisms underlying these processes may shed light on potential antiviral targets for controlling IBV infection.
Collapse
Affiliation(s)
- Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 84524, Egypt
| | - Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ishara M Isham
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hiruni A Ranaweera
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Shahnas M Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | | |
Collapse
|
37
|
Tajdari M, Peyrovinasab A, Bayanati M, Ismail Mahboubi Rabbani M, Abdolghaffari AH, Zarghi A. Dual COX-2/TNF-α Inhibitors as Promising Anti-inflammatory and Cancer Chemopreventive Agents: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e151312. [PMID: 39830670 PMCID: PMC11742592 DOI: 10.5812/ijpr-151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 01/22/2025]
Abstract
Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2. These COX isoforms are involved in multiple physiological and pathological pathways throughout the body. Overproduction of tumor necrosis factor-alpha (TNF-α) plays a role in COX-2's inflammatory activity. Tumor necrosis factor-alpha can contribute to cardiac fibrosis, heart failure, and various cancers by upregulating the COX-2/PGE2 axis. Therefore, suppressing COX activity has emerged as a potentially effective treatment for chronic inflammatory disorders and cancer. This review explores the mechanisms of TNF-α-induced COX-2/PGE2 expression, a significant pathophysiological feature of cancer development. Furthermore, we summarize chemical compounds with dual COX-2/TNF-α inhibitory actions, providing an overview of their structure-activity relationship. These insights may contribute to the development of new generations of dual-acting COX-2/TNF-α inhibitors with enhanced efficacy.
Collapse
Affiliation(s)
- Mobina Tajdari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
39
|
Ahmad V, Khan MI, Jamal QMS, Alzahrani FA, Albiheyri R. Computational Molecular Docking and Simulation-Based Assessment of Anti-Inflammatory Properties of Nyctanthes arbor-tristis Linn Phytochemicals. Pharmaceuticals (Basel) 2023; 17:18. [PMID: 38256852 PMCID: PMC10820488 DOI: 10.3390/ph17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1β, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of -9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: -10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of -8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of -277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Faisal A. Alzahrani
- Embryonic Stem Cell Unit, Department of Biochemistry, Faculty of Science, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
40
|
Zwierz M, Chabowski A, Sztolsztener K. α-Lipoic acid - a promising agent for attenuating inflammation and preventing steatohepatitis in rats fed a high-fat diet. Arch Biochem Biophys 2023; 750:109811. [PMID: 37926405 DOI: 10.1016/j.abb.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder affecting a significant part of the global population. This study aimed to investigate the potential therapeutic effects of α-lipoic acid (α-LA) on the inflammatory response during simple steatosis development and progression into steatohepatitis. The study used the MASLD model in male Wistar rats that were fed a standard diet or a high-fat diet (HFD) for 8 weeks. Throughout the entire experiment, half of the animals received α-LA supplementation. The hepatic activity of pro-inflammatory n-6 and anti-inflammatory n-3 polyunsaturated fatty acid (PUFA) pathways and the concentration of arachidonic acid (AA) in selected lipid fractions were determined by the gas-liquid chromatography (GLC). The hepatic expression of proteins from inflammatory pathway was measured by the Western blot technique. The level of eicosanoids, cytokines and chemokines was assessed by the ELISA or multiplex assay kits. The results showed that α-LA supplementation attenuated the activity of n-6 PUFA pathway in FFA and DAG and increased the activity of n-3 PUFA pathway in PL, TAG and DAG. In addition, the administration of α-LA decreased the concentration of AA in DAG and FFA, indicating its potential protective effect on the deterioration of simple hepatic steatosis. The supplementation of α-LA also increased the expression of COX-1 and COX-2 with the lack of significant changes in prostaglandins profile. We observed an increase in the expression of 12/15-LOX, which was reflected in an increase in lipoxin A4 (LXA4) level. A decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines was also noticed in the liver of rats treated with HFD and α-LA. Our observations confirm that α-LA treatment has potential protective effects on inflammation development in the MASLD model. We believe that α-LA has a preventive impact when it comes to the progression of simple steatosis lesions to steatohepatitis.
Collapse
Affiliation(s)
- Mateusz Zwierz
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| | - Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| |
Collapse
|
41
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
42
|
Hawthorne IJ, Dunbar H, Tunstead C, Schorpp T, Weiss DJ, Enes SR, Dos Santos CC, Armstrong ME, Donnelly SC, English K. Human macrophage migration inhibitory factor potentiates mesenchymal stromal cell efficacy in a clinically relevant model of allergic asthma. Mol Ther 2023; 31:3243-3258. [PMID: 37735872 PMCID: PMC10638061 DOI: 10.1016/j.ymthe.2023.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).
Collapse
Affiliation(s)
- Ian J Hawthorne
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Tamara Schorpp
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
43
|
Li J, Lv X, Ge T, Shi J, Verwoerd G, Lin H, Yu Y. Improved Cell Properties of Human Dental Pulp Stem Cells (hDPSCs) Isolated and Expanded in a GMP Compliant and Xenogeneic Serum-free Medium. In Vivo 2023; 37:2564-2576. [PMID: 37905631 PMCID: PMC10621445 DOI: 10.21873/invivo.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Human dental pulp mesenchymal stem cells (hDPSCs) are considered to be a good cell source for cell-based clinical therapy, due to the advantages of high proliferation capacity, multilineage differentiation potential, immune regulation abilities, less ethnic concerns and non-invasive access. However, hDPSCs were traditionally isolated and expanded in medium containing fetal bovine serum (FBS), which is a barrier for clinical application due to the safety issues (virus transmission and allergy). Although many studies make efforts to screen out a suitable culture medium, the results are not promising so far. Therefore, a standard good manufacturing practice (GMP) compliant culture system is urgently required for the large-scale cell production. This study aimed to find suitable culture conditions for producing clinical grade hDPSCs to meet the requirements for clinical cell-based therapy and further to promote the application of hDPSCs into tissue regeneration or disease cure. MATERIALS AND METHODS We derived hDPSCs from nine orthodontic teeth expanded in two different media: a GMP compliant and xenogeneic serum-free medium (AMMS) and a serum containing medium (SCM). Cell propterties including morphology, proliferation, marker expression, differentiation, stemness, senescence and cytokine secretion between these two media were systematically compared. RESULTS hDPSCs cultured in both media exhibited the typical characteristics of mesenchymal stem cells (MSCs). However, we found that more cell colonies formed in the primary culture in AMMS, and the hDPSCs displayed higher proliferation capacity, differentiation potential and better stemness maintenance during sub-culturing in AMMS. CONCLUSION Cell properties of hDPSCs could be improved when they were isolated and expanded in AMMS, which might provide a good candidate of culture medium for large-scale cell manufacturing.
Collapse
Affiliation(s)
- Juan Li
- Basic Medicine School, Zhejiang Academy of Medical Science, Hangzhou Medical College, Hangzhou, P.R. China
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Xuewei Lv
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Tingting Ge
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Jiaman Shi
- Edinburgh Medical School, University of Edinburgh, Edinburgh, U.K
| | - Gideon Verwoerd
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
- Bourn Hall Reproductive Medical Center, Kunming City Maternal and Child Health Hospital, Kunming, P.R. China
| | - Haiyan Lin
- Hangzhou Stomatological Hospital, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Yuansong Yu
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China;
- Bourn Hall Reproductive Medical Center, Kunming City Maternal and Child Health Hospital, Kunming, P.R. China
| |
Collapse
|
44
|
Čolić M, Miljuš N, Đokić J, Bekić M, Krivokuća A, Tomić S, Radojević D, Radanović M, Eraković M, Ismaili B, Škrbić R. Pomegranate Peel Extract Differently Modulates Gene Expression in Gingiva-Derived Mesenchymal Stromal Cells under Physiological and Inflammatory Conditions. Int J Mol Sci 2023; 24:15407. [PMID: 37895087 PMCID: PMC10607867 DOI: 10.3390/ijms242015407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pomegranate has shown a favorable effect on gingivitis/periodontitis, but the mechanisms involved are poorly understood. The aim of this study was to test the effect of pomegranate peel extract (PoPEx) on gingiva-derived mesenchymal stromal cells (GMSCs) under physiological and inflammatory conditions. GMSC lines from healthy (H) and periodontitis (P) gingiva (n = 3 of each) were established. The lines were treated with two non-toxic concentrations of PoPEX (low-10; high-40 µg/mL), with or without additional lipopolysaccharide (LPS) stimulation. Twenty-four genes in GMSCs involved in different functions were examined using real-time polymerase chain reaction (RT-PCR). PoPEx (mostly at higher concentrations) inhibited the basal expression of IL-6, MCP-1, GRO-α, RANTES, IP-10, HIF-1α, SDF-1, and HGF but increased the expression of IL-8, TLR3, TGF-β, TGF-β/LAP ratio, IDO-1, and IGFB4 genes in H-GMSCs. PoPEx increased IL-6, RANTES, MMP3, and BMP2 but inhibited TLR2 and GRO-α gene expression in P-GMSCs. LPS upregulated genes for proinflammatory cytokines and chemokines, tissue regeneration/repair (MMP3, IGFBP4, HGF), and immunomodulation (IP-10, RANTES, IDO-1, TLR3, COX-2), more strongly in P-GMSCs. PoPEx also potentiated most genes' expression in LPS-stimulated P-GMSCs, including upregulation of osteoblastic genes (RUNX2, BMP2, COL1A1, and OPG), simultaneously inhibiting cell proliferation. In conclusion, the modulatory effects of PoPEx on gene expression in GMSCs are complex and dependent on applied concentrations, GMSC type, and LPS stimulation. Generally, the effect is more pronounced in inflammation-simulating conditions.
Collapse
Grants
- 451-03-68/2020-14/200019 Ministry of Education, Science and Technological Development, Republic of Serbia
- MFVMA/03/20-22 University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
- UIS/MFF: I.1.20-22 University of East Sarajevo, Medical Faculty Foča, Foča, Bosnia and Herzegovina
- N/A Medical Faculty Banja Luka, University of Banja Luka, Bosnia and Herzegovina
Collapse
Affiliation(s)
- Miodrag Čolić
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
| | - Nataša Miljuš
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (N.M.); (A.K.); (R.Š.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.)
| | - Aleksandra Krivokuća
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (N.M.); (A.K.); (R.Š.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Marina Radanović
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
| | - Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia;
| | - Bashkim Ismaili
- Faculty of Dental Medicine, International Balkan University, 1000 Skopje, North Macedonia;
| | - Ranko Škrbić
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (N.M.); (A.K.); (R.Š.)
| |
Collapse
|
45
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
46
|
Kinoshita N, Gessho M, Torii T, Ashida Y, Akamatsu M, Guo AK, Lee S, Katsuno T, Nakajima W, Budirahardja Y, Miyoshi D, Todokoro T, Ishida H, Nishikata T, Kawauchi K. The iron chelator deferriferrichrysin induces paraptosis via extracellular signal-related kinase activation in cancer cells. Genes Cells 2023; 28:653-662. [PMID: 37264202 DOI: 10.1111/gtc.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.
Collapse
Affiliation(s)
- Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Masaya Gessho
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Yukako Ashida
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Minori Akamatsu
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sunmin Lee
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yemima Budirahardja
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | | | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd, Kyoto, Japan
| | - Takahito Nishikata
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| |
Collapse
|
47
|
Medina JP, Bermejo-Álvarez I, Pérez-Baos S, Yáñez R, Fernández-García M, García-Olmo D, Mediero A, Herrero-Beaumont G, Largo R. MSC therapy ameliorates experimental gouty arthritis hinting an early COX-2 induction. Front Immunol 2023; 14:1193179. [PMID: 37533852 PMCID: PMC10391650 DOI: 10.3389/fimmu.2023.1193179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The specific effect of Adipose-Derived Mesenchymal Stem Cells (Ad-MSC) on acute joint inflammation, where the response mostly depends on innate immunity activation, remains elusive. The pathogenesis of gouty arthritis, characterized by the deposition of monosodium urate (MSU) crystals in the joints, associated to acute flares, has been associated to NLRP3 inflammasome activation and subsequent amplification of the inflammatory response. Our aim was to study the effect of human Ad-MSC administration in the clinical inflammatory response of rabbits after MSU injection, and the molecular mechanisms involved. Methods Ad-MSC were administered by intraarterial route shortly after intraarticular MSU crystal injections. Joint and systemic inflammation was sequentially studied, and the mechanisms involved in NLRP3 inflammasome activation, and the synthesis of inflammatory mediators were assessed in the synovial membranes 72h after insult. Ad-MSC and THP-1-derived macrophages stimulated with MSU were co-cultured in transwell system. Results A single systemic dose of Ad-MSC accelerated the resolution of local and systemic inflammatory response. In the synovial membrane, Ad-MSC promoted alternatively M2 macrophage presence, inhibiting NLRP3 inflammasome and inducing the production of anti-inflammatory cytokines, such as IL-10 or TGF-β, and decreasing nuclear factor-κB activity. Ad-MSC induced a net anti-inflammatory balance in MSU-stimulated THP-1 cells, with a higher increase in IL-10 and IDO expression than that observed for IL-1β and TNF. Conclusion Our in vivo and in vitro results showed that a single systemic dose of Ad-MSC decrease the intensity and duration of the inflammatory response by an early local COX-2 upregulation and PGE2 release. Ad-MSCs suppressed NF-kB activity, NLRP3 inflammasome, and promoted the presence of M2 alternative macrophages in the synovium. Therefore, this therapeutic approach could be considered as a pharmacological alternative in patients with comorbidities that preclude conventional treatment.
Collapse
Affiliation(s)
- Juan Pablo Medina
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Ismael Bermejo-Álvarez
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Sandra Pérez-Baos
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Rosa Yáñez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapies Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - María Fernández-García
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapies Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Department of Surgery, School of Medicine UAM, Madrid, Spain
| | - Aránzazu Mediero
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
48
|
Kouroupis D, Kaplan LD, Huard J, Best TM. CD10-Bound Human Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles Possess Immunomodulatory Cargo and Maintain Cartilage Homeostasis under Inflammatory Conditions. Cells 2023; 12:1824. [PMID: 37508489 PMCID: PMC10377825 DOI: 10.3390/cells12141824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA;
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| |
Collapse
|
49
|
Wautier JL, Wautier MP. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int J Mol Sci 2023; 24:ijms24119647. [PMID: 37298597 DOI: 10.3390/ijms24119647] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation has been described for two millennia, but cellular aspects and the paradigm involving different mediators have been identified in the recent century. Two main groups of molecules, the prostaglandins (PG) and the cytokines, have been discovered and play a major role in inflammatory processes. The activation of prostaglandins PGE2, PGD2 and PGI2 results in prominent symptoms during cardiovascular and rheumatoid diseases. The balance between pro- and anti-inflammatory compounds is nowadays a challenge for more targeted therapeutic approaches. The first cytokine was described more than a century ago and is now a part of different families of cytokines (38 interleukins), including the IL-1 and IL-6 families and TNF and TGFβ families. Cytokines can perform a dual role, being growth promotors or inhibitors and having pro- and anti-inflammatory properties. The complex interactions between cytokines, vascular cells and immune cells are responsible for dramatic conditions and lead to the concept of cytokine storm observed during sepsis, multi-organ failure and, recently, in some cases of COVID-19 infection. Cytokines such as interferon and hematopoietic growth factor have been used as therapy. Alternatively, the inhibition of cytokine functions has been largely developed using anti-interleukin or anti-TNF monoclonal antibodies in the treatment of sepsis or chronic inflammation.
Collapse
Affiliation(s)
- Jean-Luc Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| | - Marie-Paule Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| |
Collapse
|
50
|
Gędek A, Szular Z, Antosik AZ, Mierzejewski P, Dominiak M. Celecoxib for Mood Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2023; 12:jcm12103497. [PMID: 37240605 DOI: 10.3390/jcm12103497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of celecoxib on a broad spectrum of mood disorders and on inflammatory parameters have not yet been comprehensively evaluated. The aim of this study was to systematically summarize the available knowledge on this topic. Data from both preclinical and clinical studies were analyzed, considering the efficacy and safety of celecoxib in the treatment of mood disorders, as well as the correlation of inflammatory parameters with the effect of celecoxib treatment. Forty-four studies were included. We found evidence supporting the antidepressant efficacy of celecoxib in a dose of 400 mg/day used for 6 weeks as an add-on treatment in major depression (SMD = -1.12 [95%Cl: -1.71,-0.52], p = 0.0002) and mania (SMD = -0.82 [95% CI:-1.62,-0.01], p = 0.05). The antidepressant efficacy of celecoxib in the above dosage used as sole treatment was also confirmed in depressed patients with somatic comorbidity (SMD = -1.35 [95% CI:-1.95,-0.75], p < 0.0001). We found no conclusive evidence for the effectiveness of celecoxib in bipolar depression. Celecoxib at a dose of 400 mg/d used for up to 12 weeks appeared to be a safe treatment in patients with mood disorders. Although an association between celecoxib response and inflammatory parameters has been found in preclinical studies, this has not been confirmed in clinical trials. Further studies are needed to evaluate the efficacy of celecoxib in bipolar depression, as well as long-term studies evaluating the safety and efficacy of celecoxib in recurrent mood disorders, studies involving treatment-resistant populations, and assessing the association of celecoxib treatment with inflammatory markers.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
- Praski Hospital, Aleja Solidarności 67, 03-401 Warsaw, Poland
| | - Zofia Szular
- Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Anna Z Antosik
- Department of Psychiatry, Faculty of Medicine, Collegium Medicum, Cardinal Wyszynski University in Warsaw, Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|