1
|
Mahmoudi SK, Abdolahi S, Saniee P, Zali MR, Hatami B, Baghaei K. Limosilactobacillus fermentum role in combination with human mesenchymal stem cell-derived secretome: A novel approach to alleviate inflammation in NASH pathogenesis. Int Immunopharmacol 2025; 156:114686. [PMID: 40250073 DOI: 10.1016/j.intimp.2025.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is caused by the accumulation of excess fat in the liver, chronic inflammation, and cell death. The role of the secretome derived from Wharton's jelly and mesenchymal stem cells (WJ-MSC) in reducing inflammation and apoptosis has been investigated in several studies. Also, the strain Limosilactobacillus fermentum (L.fermentum) was identified as an antimicrobial and antioxidant probiotic. This study looked into the role of a combination of secretome and L.fermentum on cellular stress, apoptosis, and inflammation-related pathways in an NASH in-vitro model. METHODS Oil Red O staining confirmed the NASH model was induced using oleic acid and palmitic acid. Then, the 3 different groups were treated with two concentrations of WJ-MSCs-derived secretome, cell-free extract (CFE) of L.fermentum, and their combination. Oxidative stress was evaluated, and western blotting was used to identify the protein. Gene expression and protein quantity were assessed using real-time PCR and ELISA. RESULT The analysis revealed the secretome, L.fermentum, and their combination decreased oxidative stress. Additionally, the low levels of Caspase 3 and 9 led to a reduction in apoptosis. The combined treatment significantly impacted inflammation by increasing IL-10 and decreasing IL-6. The expression of STAT3 was also confirmed to be reduced using western blotting. Despite the significant modulation of TNF-alpha and STAT3 by L. fermentum at a high dose, the combined approach led to enhanced performance and restored the cell proliferation. CONCLUSION This enhancement has the potential to substantially influence the treatment of NASH disease by impacting inflammation, apoptosis, and oxidative stress, thereby revealing therapeutic potential for NASH disease.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xian MF, Lan WT, Zhang Z, Li MD, Lin XX, Huang Y, Huang H, Chen LD, Huang QH, Wang W. Enhancing hepatocellular carcinoma diagnosis in non-high-risk patients: a customized ChatGPT model integrating contrast-enhanced ultrasound. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-01994-0. [PMID: 40232657 DOI: 10.1007/s11547-025-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE This study aims to improve hepatocellular carcinoma (HCC) diagnostic accuracy in non-high-risk populations by utilizing GPTs that incorporate integrated risk coefficients, and to explore its feasibility. MATERIAL AND METHODS Between August 2016 and June 2019, patients with focal liver lesions (FLLs) in non-high-risk populations, confirmed by histopathology or clinical/imaging evidence, were retrospectively included. A logistic regression model was developed using baseline characteristics and contrast-enhanced ultrasound (CEUS) features to identify independent HCC risk factors. Three ChatGPT-based models were evaluated: ChatGPT 4o (a general-purpose model developed by OpenAI), BaseGPT (a customized model with HCC diagnostic knowledge), and RiskGPT (a further customized model integrating HCC knowledge and identified risk factors). Their intra-agreement and diagnostic performance were compared. RESULTS Logistic regression identified male, obesity, HBcAb or HBeAb positivity, elevated alpha-fetoprotein, and mild washout on CEUS as associated with HCC. RiskGPT achieved the highest area under a receiver operating characteristic curve (AUC) (0.89) and demonstrated superior accuracy (90.3%) in HCC identification; significantly outperforming both ChatGPT 4o (AUC 0.79, P = 0.002; accuracy 83.1%, P = 0.02) and BaseGPT (AUC 0.81, P = 0.008; accuracy 80.6%, P = 0.002). RiskGPT demonstrated superior sensitivity compared to ChatGPT 4o (85.5% vs. 66.3%) and outperformed BaseGPT in specificity (92.7% vs. 80.6%) and positive predictive value (85.5% vs. 67.7%) (all P < 0.001). Additionally, RiskGPT showed substantial intra-consistency in diagnosing FLLs, with a κ value of 0.78. CONCLUSION RiskGPT improves HCC diagnostic accuracy in non-high-risk patients by integrating clinical, imaging features, and risk coefficients, demonstrating significant diagnostic potential.
Collapse
Affiliation(s)
- Meng-Fei Xian
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Laboratory, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Wen-Tong Lan
- Department of Endoscopy Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhe Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Ming-De Li
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Laboratory, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xin-Xin Lin
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Laboratory, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yang Huang
- Department of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hui Huang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Laboratory, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Li-Da Chen
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Laboratory, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qing-Hua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, 710072, China.
| | - Wei Wang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Laboratory, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Chen J, Diao H, Zhang Y, Hu B, Qian K, Zhang K, Zhang T, Song J. Associations of healthy eating index 2020 and its components with non-alcoholic fatty liver disease in type 2 diabetes patients and the mediating roles of metabolic indicators: NHANES 2007-2018. Front Nutr 2025; 12:1564197. [PMID: 40271435 PMCID: PMC12014457 DOI: 10.3389/fnut.2025.1564197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) represents a major public health issue, especially among individuals diagnosed with Type 2 diabetes mellitus (T2DM), where its prevalence can reach up to 70%. This research examines the relationship between the Healthy Eating Index 2020 (HEI-2020) and its individual components with the occurrence of NAFLD in T2DM patients, while also investigating the potential mediating effects of various metabolic indicators. Methods Data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2018 were utilized. This cross-section study included 1,770 T2DM patients, who were divided into NAFLD and non-NAFLD groups using the Fatty Liver Index as a diagnostic tool. The HEI-2020, which assesses diet quality, was computed based on 24-h dietary recall data. Key metabolic indicators such as the triglyceride-glucose (TyG) index, metabolic score (MS), mean arterial pressure, uric acid levels, and total cholesterol were evaluated. Results The findings indicated that higher HEI-2020 scores were associated with a lower likelihood of NAFLD (odds ratio 0.978, 95% confidence interval: 0.959-0.998), with the strongest inverse associations observed in the top quartiles of diet quality. Whole fruits, greens and beans, and saturated fat were crucial dietary factors. Mediation analysis demonstrated that the TyG index and MS accounted for 5.11 and 36.94% of the relationship between HEI-2020 and NAFLD, respectively. Conclusion Greater adherence to the HEI-2020 is associated with a lower likelihood of NAFLD in T2DM patients, with metabolic indicators partially mediating this association. Enhancing diet quality, particularly by increasing the consumption of whole fruits and greens while reducing saturated fat intake, may be important in managing metabolic health and liver function in this vulnerable population.
Collapse
Affiliation(s)
- Jingxiong Chen
- Department of Postgraduates, Bengbu Medical University, Bengbu, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuling Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ben Hu
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Kai Qian
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengyue Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jizhong Song
- Department of Postgraduates, Bengbu Medical University, Bengbu, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Caturano A, Erul E, Nilo R, Nilo D, Russo V, Rinaldi L, Acierno C, Gemelli M, Ricotta R, Sasso FC, Giordano A, Conte C, Ürün Y. Insulin resistance and cancer: molecular links and clinical perspectives. Mol Cell Biochem 2025:10.1007/s11010-025-05245-8. [PMID: 40089612 DOI: 10.1007/s11010-025-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
The association between insulin resistance (IR), type 2 diabetes mellitus (T2DM), and cancer is increasingly recognized and poses an escalating global health challenge, as the incidence of these conditions continues to rise. Studies indicate that individuals with T2DM have a 10-20% increased risk of developing various solid tumors, including colorectal, breast, pancreatic, and liver cancers. The relative risk (RR) varies depending on cancer type, with pancreatic and liver cancers showing a particularly strong association (RR 2.0-2.5), while colorectal and breast cancers demonstrate a moderate increase (RR 1.2-1.5). Understanding these epidemiological trends is crucial for developing integrated management strategies. Given the global rise in T2DM and cancer cases, exploring the complex relationship between these conditions is critical. IR contributes to hyperglycemia, chronic inflammation, and altered lipid metabolism. Together, these factors create a pro-tumorigenic environment conducive to cancer development and progression. In individuals with IR, hyperinsulinemia triggers the insulin-insulin-like growth factor (IGF1R) signaling pathway, activating cancer-associated pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PIK3CA), which promote cell proliferation and survival, thereby supporting tumor growth. Both IR and T2DM are linked to increased morbidity and mortality in patients with cancer. By providing an in-depth analysis of the molecular links between insulin resistance and cancer, this review offers valuable insights into the role of metabolic dysfunction in tumor progression. Addressing insulin resistance as a co-morbidity may open new avenues for risk assessment, early intervention, and the development of integrated treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Enes Erul
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100, Potenza, Italy
| | - Maria Gemelli
- Medical Oncology Unit, IRCCS MultiMedica, Milan, Italy
| | | | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099, Milan, Italy
| | - Yüksel Ürün
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey.
| |
Collapse
|
5
|
Misra A, Kumar A, Kuchay MS, Ghosh A, Gulati S, Choudhary NS, Dutta D, Sharma P, Vikram NK. Consensus guidelines for the diagnosis and management of metabolic dysfunction-associated steatotic liver disease in adult Asian Indians with type 2 diabetes. Diabetes Metab Syndr 2025; 19:103209. [PMID: 40222341 DOI: 10.1016/j.dsx.2025.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 04/15/2025]
Affiliation(s)
- Anoop Misra
- Fortis CDOC Center of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation India, New Delhi, India.
| | - Ashish Kumar
- Gastroenterology & Hepatology,Sir Ganga Ram Hospital, Rajinder Nagar New Delhi, India
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta, The Medicity, Gurugram, 122001, Haryana, India
| | - Amerta Ghosh
- Fortis CDOC Center of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
| | - Seema Gulati
- National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation India, New Delhi, India
| | | | - Deep Dutta
- Department of Endocrinology, Center for Endocrinology, Diabetes, Arthritis & Rheumatism (CEDAR) Super speciality Clinics, New Delhi, India
| | - Praveen Sharma
- Gastroenterology & Hepatology,Sir Ganga Ram Hospital, Rajinder Nagar New Delhi, India
| | - Naval K Vikram
- Department of Internal Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
6
|
Bhardwaj M, Mazumder PM. An insight on the additive impact of type 2 diabetes mellitus and nonalcoholic fatty liver disease on cardiovascular consequences. Mol Biol Rep 2025; 52:169. [PMID: 39873861 DOI: 10.1007/s11033-025-10249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences. METHOD Literature was collected from PubMed, Medline, Embase, Web of Science and Google scholar from inception to June, 2024. For surveying literature different combinations and formats of terms including NAFLD, NASH, T2DM and CVDs were used. RESULTS In the recent decade, clinical and epidemiological studies have been conducted and provide strong evidence that NAFLD is closely linked with CVD progression along with associated morbidity and mortality in both patients with and without T2DM. Several mechanistic approaches contribute to cardiovascular consequences and abnormalities in cardiac biomarkers in T2DM and NAFLD patients, including adipose tissue malfunction, mitochondrial dysfunction, the microbiota, genetic and epigenetic alterations contributing to insulin resistance, glucotoxicity and lipotoxicity. CONCLUSION The study reveals a complex interplay between diabetes, hepatic and cardiovascular complications, leading to significant morbidity and mortality in diabetic and NAFLD patients. This pandemic necessitates further research to identify mitigating variables and develop effective treatment approaches.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
7
|
Yan W, Cui X, Guo T, Liu N, Wang Z, Sun Y, Shang Y, Liu J, Zhu Y, Zhang Y, Chen L. ALOX15 Aggravates Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice with Type 2 Diabetes via Activating the PPARγ/CD36 Axis. Antioxid Redox Signal 2025. [PMID: 39815992 DOI: 10.1089/ars.2024.0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD. Results: In this study, we observed upregulation of ALOX15 in the liver of high-fat diet (HFD)- and streptozotocin (STZ)-induced mice. Metabolomic analysis revealed elevated levels of ALOX15 metabolites, 12(S)-hydroperoxyeicosatetraenoic acid and 15(S)-hydroperoxyeicosatetraenoic acid. Transcriptomic analysis showed that the increased fatty acid uptake regulated by the PPARγ/CD36 pathway predominated in lipid accumulation. To elucidate the mechanism underlying ALOX15-induced lipid accumulation, HepG2 cells were transfected with a lentivirus expressing ALOX15 or small interfering RNA targeting ALOX15 and exposed to palmitic acid (PA). Both ALOX15 overexpression and PA exposure led to increased intracellular free fatty acid and triglyceride, resulting in lipotoxicity. ALOX15 overexpression aggravated the effect of PA, while the knockdown of ALOX15 attenuated PA-induced lipotoxicity. Moreover, the treatment with PPARγ antagonist GW9662 or CD36 inhibitor sulfosuccinimidyl oleate sodium effectively reduced lipid accumulation and lipotoxicity resulting from ALOX15 overexpression and PA exposure, indicating the involvement of the PPARγ/CD36 pathway in ALOX15-mediated lipid accumulation. Furthermore, liraglutide, a widely used glucagon-like peptide 1 receptor (GLP-1R) agonist (GLP-1RA), improved hepatic lipid accumulation in HFD/STZ-induced mice by suppressing the ALOX15/PPARγ/CD36 pathway. Innovation and Conclusion: Our study underscores the potential of ALOX15 as an emerging therapeutic target for MASLD. In addition, the GLP-1RA may confer hepatoprotection by regulating ALOX15, enhancing our comprehension of the mechanisms underpinning their protection on MASLD. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhuanzhuan Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuanrui Shang
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
- International Obesity and Metabolic Disease Research Center (IIOMC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Marginean CM, Pirscoveanu D, Cazacu SM, Popescu MS, Marginean IC, Iacob GA, Popescu M. Non-Alcoholic Fatty Liver Disease, Awareness of a Diagnostic Challenge—A Clinician’s Perspective. GASTROENTEROLOGY INSIGHTS 2024; 15:1028-1053. [DOI: 10.3390/gastroent15040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease globally. NAFLD is a complex pathology, considered to be the hepatic expression of metabolic syndrome (MetS). It is supposed to become the main indication for liver transplantation in the coming years and is estimated to affect 57.5–74.0% of obese people, 22.5% of children and 52.8% of obese children, with 50% of individuals with type 2 diabetes being diagnosed with NAFLD. Recent research has proved that an increase in adipose tissue insulin resistance index is an important marker of liver injury in patients with NAFLD. Despite being the main underlying cause of incidental liver damage and a growing worldwide health problem, NAFLD is mostly under-appreciated. Currently, NAFLD is considered a multifactorial disease, with various factors contributing to its pathogenesis, associated with insulin resistance and diabetes mellitus, but also with cardiovascular, kidney and endocrine disorders (polycystic ovary syndrome, hypothyroidism, growth hormone deficiency). Hepatitis B and hepatitis C, sleep apnea, inflammatory bowel diseases, cystic fibrosis, viral infections, autoimmune liver diseases and malnutrition are some other conditions in which NAFLD can be found. The aim of this review is to emphasize that, from the clinician’s perspective, NAFLD is an actual and valuable key diagnosis factor for multiple conditions; thus, efforts need to be made in order to increase recognition of the disease and its consequences. Although there is no global consensus, physicians should consider screening people who are at risk of NAFLD. A large dissemination of current concepts on NAFLD and an extensive collaboration between physicians, such as gastroenterologists, internists, cardiologists, diabetologists, nutritionists and endocrinologists, is equally needed to ensure we have the knowledge and resources to address this public health challenge.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Denisa Pirscoveanu
- Neurology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sergiu Marian Cazacu
- Research Center of Gastroenterology and Hepatology, Gastroenterology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marian Sorin Popescu
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Endocrinology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
9
|
Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction-associated steatotic liver disease, a hepatic expression of metabolic syndrome - current insights and future directions. Clin Diabetes Endocrinol 2024; 10:39. [PMID: 39617908 PMCID: PMC11610122 DOI: 10.1186/s40842-024-00187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing health concern and the risk of its development is connected with the increasing prevalence of metabolic syndrome (MetS) which occurs as a result of some complex obesity-induced metabolic changes. It is a common chronic liver disease characterized by excessive fat accumulation in the liver, the tendency to progress to more severe forms, and a corresponding increase in morbidity and mortality. Thus, effectively addressing the rising burden of the disease requires a thorough understanding of its complex interrelationship with obesity and MetS. MAIN BODY MASLD results from complex interactions involving obesity, insulin resistance, and dyslipidaemia, leading to hepatic lipid accumulation, and is influenced by several genetic and environmental factors such as diet and gut microbiota dysbiosis. It has extensive metabolic and non-metabolic implications, including links to MetS components like hyperglycaemia, hypertension, and dyslipidaemia, and progresses to significant liver damage and other extra-hepatic risks like cardiovascular disease and certain cancers. Diagnosis often relies on imaging and histology, with non-invasive methods preferred over liver biopsies. Emerging biomarkers and OMIC technologies offer improved diagnostic capabilities but face practical challenges. Advancements in artificial intelligence (AI), lifestyle interventions, and pharmacological treatments show promise, with future efforts focusing on precision medicine and novel diagnostic tools to improve patient outcome. CONCLUSION Understanding the pathogenic mechanisms underlying the development of MASLD within the context of metabolic syndrome (MetS) is essential for identifying potential therapeutic targets. Advancements in non-invasive diagnostic tools and novel pharmacological treatments, hold promise for improving the management of MASLD. Future research should focus on precision medicine and innovative therapies to effectively address the disease and its consequences.
Collapse
Affiliation(s)
- Bruno Basil
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria.
- Department of Nursing, Central Washington College, Enugu, Nigeria.
| | - Blessing K Myke-Mbata
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria
- Department of Chemical Pathology, Bingham University, Jos, Nigeria
| | - Onyinye E Eze
- Department of Nursing, Central Washington College, Enugu, Nigeria
- Department of Haematology and Blood Transfusion, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
10
|
Chen J, Yang S, Luo H, Fu X, Li W, Li B, Fu C, Chen F, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/MyD88/NF-κB pathway. Int Immunopharmacol 2024; 141:113014. [PMID: 39191120 DOI: 10.1016/j.intimp.2024.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.
Collapse
Affiliation(s)
- Junyi Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuzhan Yang
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Hanxia Luo
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Feiyue Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
11
|
Liu R, Li Z, Zhang Y, Du M, Wang X, Zhang S, Li C. Association of Serum Uric Acid with Indices of Insulin Resistance: Proposal of a New Model with Reference to Gender Differences. Diabetes Metab Syndr Obes 2024; 17:3783-3793. [PMID: 39430137 PMCID: PMC11491090 DOI: 10.2147/dmso.s481233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Background Insulin resistance (IR) is a key feature of type 2 diabetes (T2D) and an independent risk factor for metabolic syndrome. Previous studies have linked elevated serum uric acid (SUA) to an increased risk of T2D. Aim The purpose of this study was to investigate the relationship between SUA and IR. At the same time, the correlation between New model and SUA compared with other IR alternatives was compared, so as to provide a simple and effective new indicator for early detection and prediction of IR risk and early prevention of T2D. Methods The first cohort was the Discovery Cohort, which included 318 obese patients. And the second cohort was the Verification Cohort, which included a total of 4333 subjects who underwent a routine health checkup at our hospital. Spearman correlation analysis and binary logistic regression analysis were used to discuss the correlation between SUA and IR. Results Regardless of sex, fasting insulin (FINS) and IR replacement markers increased with SUA (P<0.001). In both cohorts, SUA was associated with IR alternatives, especially with New model, and differed between men and women in all correlation analyses. After adjusting for confounding factors, SUA was still associated with IR (P<0.001). Conclusion The correlation between SUA and IR was significantly stronger in women than in men. And the correlation between SUA and New model is stronger than other IR replacement models. However, the causal relationship between SUA and IR has not been clearly established.
Collapse
Affiliation(s)
- Renjiao Liu
- Graduate School, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Zhouhuiling Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yanju Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Meiyang Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Xincheng Wang
- Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Shi Zhang
- Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Chunjun Li
- Graduate School, Tianjin Medical University, Tianjin, People’s Republic of China
- Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Caturano A, Vetrano E, Galiero R, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Advances in the Insulin-Heart Axis: Current Therapies and Future Directions. Int J Mol Sci 2024; 25:10173. [PMID: 39337658 PMCID: PMC11432093 DOI: 10.3390/ijms251810173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The insulin-heart axis plays a pivotal role in the pathophysiology of cardiovascular disease (CVD) in insulin-resistant states, including type 2 diabetes mellitus. Insulin resistance disrupts glucose and lipid metabolism, leading to systemic inflammation, oxidative stress, and atherogenesis, which contribute to heart failure (HF) and other CVDs. This review was conducted by systematically searching PubMed, Scopus, and Web of Science databases for peer-reviewed studies published in the past decade, focusing on therapeutic interventions targeting the insulin-heart axis. Studies were selected based on their relevance to insulin resistance, cardiovascular outcomes, and the efficacy of pharmacologic treatments. Key findings from the review highlight the efficacy of lifestyle modifications, such as dietary changes and physical activity, which remain the cornerstone of managing insulin resistance and improving cardiovascular outcomes. Moreover, pharmacologic interventions, such as metformin, sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors, have shown efficacy in reducing cardiovascular risk by addressing metabolic dysfunction, reducing inflammation, and improving endothelial function. Furthermore, emerging treatments, such as angiotensin receptor-neprilysin inhibitors, and mechanical interventions like ventricular assist devices offer new avenues for managing HF in insulin-resistant patients. The potential of these therapies to improve left ventricular ejection fraction and reverse pathological cardiac remodeling highlights the importance of early intervention. However, challenges remain in optimizing treatment regimens and understanding the long-term cardiovascular effects of these agents. Future research should focus on personalized approaches that integrate lifestyle and pharmacologic therapies to effectively target the insulin-heart axis and mitigate the burden of cardiovascular complications in insulin-resistant populations.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
13
|
Caturano A, Galiero R, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Sardu C, Vetrano E, Monda M, Marfella R, Rinaldi L, Sasso FC. Modern Challenges in Type 2 Diabetes: Balancing New Medications with Multifactorial Care. Biomedicines 2024; 12:2039. [PMID: 39335551 PMCID: PMC11429233 DOI: 10.3390/biomedicines12092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder characterized by insulin resistance and progressive beta cell dysfunction, presenting substantial global health and economic challenges. This review explores recent advancements in diabetes management, emphasizing novel pharmacological therapies and their physiological mechanisms. We highlight the transformative impact of Sodium-Glucose Cotransporter 2 inhibitor (SGLT2i) and Glucagon-Like Peptide 1 Receptor Agonist (GLP-1RA), which target specific physiological pathways to enhance glucose regulation and metabolic health. A key focus of this review is tirzepatide, a dual agonist of the glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptors. Tirzepatide illustrates how integrating innovative mechanisms with established physiological pathways can significantly improve glycemic control and support weight management. Additionally, we explore emerging treatments such as glimins and glucokinase activators (GKAs), which offer novel strategies for enhancing insulin secretion and reducing glucose production. We also address future perspectives in diabetes management, including the potential of retatrutide as a triple receptor agonist and evolving guidelines advocating for a comprehensive, multifactorial approach to care. This approach integrates pharmacological advancements with essential lifestyle modifications-such as dietary changes, physical activity, and smoking cessation-to optimize patient outcomes. By focusing on the physiological mechanisms of these new therapies, this review underscores their role in enhancing T2DM management and highlights the importance of personalized care plans to address the complexities of the disease. This holistic perspective aims to improve patient quality of life and long-term health outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
14
|
Holt D, Contu L, Wood A, Chadwick H, Alborelli I, Insilla AC, Crea F, Hawkes CA. Both Maternal High-Fat and Post-Weaning High-Carbohydrate Diets Increase Rates of Spontaneous Hepatocellular Carcinoma in Aged-Mouse Offspring. Nutrients 2024; 16:2805. [PMID: 39203941 PMCID: PMC11357072 DOI: 10.3390/nu16162805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Both maternal obesity and postnatal consumption of obesogenic diets contribute to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). However, there is no consensus as to whether diets that are high in fat or carbohydrates/sugars differentially influence the development of HCC. Moreover, the long-term effects of prenatal HF exposure on HCC and whether this is influenced by postnatal diet has not yet been evaluated. C57BL/6 dams were fed either a low-fat, high-carbohydrate control (C) or low-carbohydrate, high-fat (HF) diet. At weaning, male and female offspring were fed the C or HF diet, generating four diet groups: C/C, C/HF, HF/C and HF/HF. Tissues were collected at 16 months of age and livers were assessed for MASLD and HCC. Glucose regulation and pancreatic morphology were also evaluated. Liver tissues were assessed for markers of glycolysis and fatty acid metabolism and validated using a human HCC bioinformatic database. Both C/HF and HF/HF mice developed obesity, hyperinsulinemia and a greater degree of MASLD than C/C and HF/C offspring. However, despite significant liver and pancreas pathology, C/HF mice had the lowest incidence of HCC while tumour burden was highest in HF/C male offspring. The molecular profile of HCC mouse samples suggested an upregulation of the pentose phosphate pathway and a downregulation of fatty acid synthesis and oxidation, which was largely validated in the human dataset. Both pre-weaning HF diet exposure and post-weaning consumption of a high-carbohydrate diet increased the risk of developing spontaneous HCC in aged mice. However, the influence of pre-weaning HF feeding on HCC development appeared to be stronger in the context of post-weaning obesity. As rates of maternal obesity continue to rise, this has implications for the future incidence of HCC and possible dietary manipulation of offspring carbohydrate intake to counteract this risk.
Collapse
Affiliation(s)
- Daniel Holt
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Laura Contu
- School of Psychological Sciences, Bristol University, Bristol BS8 1QU, UK;
| | - Alice Wood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Hannah Chadwick
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Ilaria Alborelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland;
| | - Andrea Cacciato Insilla
- Morphological Diagnostic and Biomolecular Characterization Area, Complex Unit of Pathological Anatomy Empoli and Prato, Usl Toscana Centro, 50122 Florence, Italy
| | - Francesco Crea
- Cancer Research Group, Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK;
| | - Cheryl A. Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| |
Collapse
|
15
|
Yagüe-Caballero C, Casas-Deza D, Pascual-Oliver A, Espina-Cadena S, Arbones-Mainar JM, Bernal-Monterde V. MASLD-Related Hepatocarcinoma: Special Features and Challenges. J Clin Med 2024; 13:4657. [PMID: 39200802 PMCID: PMC11354930 DOI: 10.3390/jcm13164657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic-associated steatohepatitis liver disease (MASLD) currently impacts a quarter of the global population, and its incidence is expected to increase in the future. As a result, hepatocellular carcinoma associated with MASLD is also on the rise. Notably, this carcinoma does not always develop alongside liver cirrhosis, often leading to a more advanced stage at diagnosis. The challenge lies in accurately identifying patients who are at a higher risk to tailor screening processes effectively. Additionally, several therapeutic approaches are being explored to prevent hepatocellular carcinoma, although there are no universally accepted guidelines yet.
Collapse
Affiliation(s)
- Carmen Yagüe-Caballero
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (C.Y.-C.); (D.C.-D.); (A.P.-O.); (S.E.-C.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (C.Y.-C.); (D.C.-D.); (A.P.-O.); (S.E.-C.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Andrea Pascual-Oliver
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (C.Y.-C.); (D.C.-D.); (A.P.-O.); (S.E.-C.); (V.B.-M.)
| | - Silvia Espina-Cadena
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (C.Y.-C.); (D.C.-D.); (A.P.-O.); (S.E.-C.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (C.Y.-C.); (D.C.-D.); (A.P.-O.); (S.E.-C.); (V.B.-M.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
16
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
17
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
18
|
Jeong Y, Lee BJ, Hur W, Lee M, Han SH. Associations of Insulin Resistance and High-Sensitivity C-Reactive Protein with Metabolic Abnormalities in Korean Patients with Type 2 Diabetes Mellitus: A Preliminary Study. Metabolites 2024; 14:371. [PMID: 39057694 PMCID: PMC11279201 DOI: 10.3390/metabo14070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted this single-center, retrospective, cohort study to examine whether insulin resistance (IR) and high-sensitivity C-reactive protein (hsCRP) have a relationship with metabolic abnormalities in patients with type 2 diabetes mellitus (T2DM). In a total of 3758 patients (n = 3758) with T2DM, we analyzed medical records and thereby evaluated their baseline characteristics such as age, sex, duration of T2DM, systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference, body mass index (BMI), visceral fat thickness (VFT), fasting plasma insulin levels, C-peptide levels, glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), postprandial plasma glucose (PPG), homeostatic model assessment of insulin resistance (HOMA-IR), homeostatic model assessment of β-cell function (HOMA-β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), albuminuria, intima-media thickness (IMT) and hsCRP. The patients were stratified according to the tertile of the K index of the insulin tolerance test (KITT) or hsCRP. Thus, they were divided into the lowest (≥2.37), middle (1.54-2.36) and highest tertile (0-1.53) of KITT and the lowest (0.00-0.49), middle (0.50-1.21) and highest tertile (≥1.22) of hsCRP. Moreover, associations of KITT and hsCRP with metabolic abnormalities, such as steatotic liver disease (SLD), metabolic syndrome (MetS), albuminuria, diabetic retinopathy and carotid atherosclerosis, were also analyzed. There was a significant positive correlation between the prevalence of SLD, MetS, albuminuria and diabetic retinopathy and KITT (p < 0.001). Moreover, there was a significant positive association between the prevalence of SLD, MetS and albuminuria and hsCRP (p < 0.001). In conclusion, our results indicate that clinicians should consider the relationships of IR and hsCRP with metabolic abnormalities in the management of patients with T2DM. However, further large-scale, prospective, multi-center studies are warranted to confirm our results.
Collapse
Affiliation(s)
- Yuchul Jeong
- Department of Internal Medicine, Chungna Good Hospital, Incheon 22738, Republic of Korea
| | - Beom Jun Lee
- St. Mary’s Best ENT Clinic, Seoul 08849, Republic of Korea
| | - Wonjai Hur
- Department of Internal Medicine, Sejong General Hospital, Bucheon 14754, Republic of Korea
| | - Minjoon Lee
- Department of Internal Medicine, BS General Hospital, Incheon 23037, Republic of Korea
| | - Se-Hyeon Han
- Department of Companion Animal Industry, College of Health Science, Honam University, Gwangju 62399, Republic of Korea
| |
Collapse
|
19
|
Wu B, Zhang J, Chen Y, Chen S, Liu H. Association between non-alcoholic fatty liver disease and the risk of pulmonary nodules in patients with intestinal polyps. J Thorac Dis 2024; 16:3990-3999. [PMID: 38983169 PMCID: PMC11228712 DOI: 10.21037/jtd-24-754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Background Associations between metabolic risk factors and lung cancer remain elusive, and evidence on the linkage between non-alcoholic fatty liver disease (NAFLD) and pulmonary nodules is limited. This study sought to examine the independent association between NAFLD and the risk of pulmonary nodules. Methods Cross-sectional analyses of 1,119 patients with intestinal polyps hospitalized at the Department of Gastroenterology, Minhang District Central Hospital of Shanghai, China, were conducted. NAFLD was diagnosed based on hepatic ultrasonography or computed tomography (CT) findings of hepatic steatosis, with exclusion criteria ensuring patients had no history of significant alcohol consumption, viral infections, or hepatic autoimmune diseases. The currently accepted definition of a pulmonary nodule is a solid or sub-solid shadow ≤3 cm in diameter that appears as a solid or semi-solid pattern on a chest CT scan (our specific treatment is pulmonary nodule size: 5 mm to 3 cm). Adjusted 95% confidence intervals (CIs) and odds ratios (ORs) for NAFLD and the clinical features connected with pulmonary nodule risk were determined using a multivariable logistic regression analysis. Results Among the 979 intestinal polyp patients, the prevalence rates of NAFLD and pulmonary nodules were 25.9% and 32.8%, respectively. Patients with pulmonary nodules exhibited higher rates of NAFLD (31.5% vs. 23.3%, P=0.006) and obesity (41.4% vs. 32.5%, P=0.006) compared to those without pulmonary nodules. After removing all the possible confounding variables, the adjusted ORs for NAFLD, an older age, smoking, and obesity were 1.370 (95% CI: 1.006-1.867, P=0.04), 1.022 (95% CI: 1.010-1.033), 1.599 (95% CI: 1.033-2.475), and 1.410 (95% CI: 1.057-1.880), respectively (all P values <0.05). NAFLD showed a significant association with an increased risk of pulmonary nodules. Conclusions NAFLD was independently linked to an increased incidence of pulmonary nodules in intestinal polyp patients, which emphasizes the importance of screening and managing these conditions in lung cancer prevention.
Collapse
Affiliation(s)
- Bing Wu
- Department of Gastroenterology, Minhang District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Junpei Zhang
- Department of Gastroenterology, Minhang District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Minhang District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shiyao Chen
- Department of Gastroenterology, Minhang District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hailing Liu
- Department of Gastroenterology, Minhang District Central Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Keingeski MB, Longo L, Brum da Silva Nunes V, Figueiró F, Dallemole DR, Pohlmann AR, Vier Schmitz TM, da Costa Lopez PL, Álvares-da-Silva MR, Uribe-Cruz C. Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction. Metab Syndr Relat Disord 2024; 22:394-401. [PMID: 38498801 DOI: 10.1089/met.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.
Collapse
Affiliation(s)
- Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitória Brum da Silva Nunes
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabrício Figueiró
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danieli Rosane Dallemole
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thalia Michele Vier Schmitz
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Luciana da Costa Lopez
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Investigación de la Facultad de Ciencias de la Salud, (UCAMI) Universidad Católica de las Misiones, Posadas, Argentina
| |
Collapse
|
21
|
Habib S. Metabolic dysfunction-associated steatotic liver disease heterogeneity: Need of subtyping. World J Gastrointest Pathophysiol 2024; 15:92791. [PMID: 38845820 PMCID: PMC11151879 DOI: 10.4291/wjgp.v15.i2.92791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread global disease with significant health burden. Unhealthy lifestyle, obesity, diabetes mellitus (DM), insulin resistance, and genetics have been implicated in the pathogenesis of MASLD. A significant degree of heterogeneity exists among each of above-mentioned risk factors. Heterogeneity of these risk factors translates into the heterogeneity of MASLD. On the other hand, MASLD can itself lead to insulin resistance and DM. Such heterogeneity makes it difficult to assess the natural course of an individual with MASLD in clinical practice. At present MASLD is considered as one disease despite the variability of etiopathogenic processes, and we lack the consensus definitions of unique subtypes of MASLD. In this review, pathogenic processes of MASLD are discussed and a need of subtyping is recommended.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85716, United States
| |
Collapse
|
22
|
Lin YH, Zhang ZJ, Zhong JQ, Wang ZY, Peng YT, Lin YM, Zhang HP, Tian JQ. Semaglutide combined with empagliflozin vs. monotherapy for non-alcoholic fatty liver disease in type 2 diabetes: Study protocol for a randomized clinical trial. PLoS One 2024; 19:e0302155. [PMID: 38701096 PMCID: PMC11068176 DOI: 10.1371/journal.pone.0302155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/23/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Lifestyle intervention remains a preferred treatment modality for NAFLD. The glucagon-like peptide (GLP-1) receptor agonists and sodium-glucose cotransporter-2 (SGLT-2) inhibitors have been developed as new glucose-lowering drugs, which can improve fatty liver via an insulin-independent glucose-lowering effect. However, studies exploring the efficacy of GLP-1 receptor agonists combined with SGLT-2 inhibitors in patients with NAFLD and T2DM are scanty. Thus, the present randomised controlled trial aims at comparing the efficacy and safety of semaglutide plus empagliflozin with each treatment alone in patients with NAFLD and T2DM. METHODS This 52-week double-blinded, randomised, parallel-group, active-controlled trial evaluates the effects of semaglutide, empagliflozin and semaglutide + empagliflozin in 105 eligible overweight/obese subjects with NAFLD and T2DM. The primary outcome will be a change from baseline to week 52 in the controlled attenuation parameter, free fatty acid and glucagon. Secondary endpoints include changes in liver stiffness measurement, liver enzymes, blood glucose, lipid levels, renal function, electrolyte balances, minerals and bone metabolism, cytokines, high-sensitivity C-reactive protein, ferritin, anthropometric indicators, nonalcoholic fatty liver fibrosis score, fibrosis 4 score and homeostatic model assessment for insulin resistance. In addition, intention-to-treat, interim analysis and safety analysis will be performed. DISCUSSION This double-blinded, randomised, clinical trial involves a multi-disciplinary approach and aims to explore the synergistic effects of the combination of semaglutide and empagliflozin. The results can provide important insights into mechanisms of GLP-1 receptor agonists and/or SGLT-2 inhibitors in patients with NAFLD and T2DM. TRIAL REGISTRATION This study has been registered with Chinese Clinical Trial Registry (ChiCTR2300070674).
Collapse
Affiliation(s)
- Yu-Hao Lin
- Department of Endocrinology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Zhi-Jun Zhang
- Department of Endocrinology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Jin-Qing Zhong
- Department of Laboratory Medicine, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Zhi-Yi Wang
- Department of Endocrinology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Yi-Ting Peng
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Yan-Mei Lin
- Department of Endocrinology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Huo-Ping Zhang
- Department of Ultrasound, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Jian-Qing Tian
- Department of Endocrinology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Wang T, Wang D, Kuang G, Gong X, Zhang L, Wan J, Li K. Derlin-1 promotes diet-induced non-alcoholic fatty liver disease via increasing RIPK3-mediated necroptosis. Free Radic Biol Med 2024; 217:29-47. [PMID: 38522486 DOI: 10.1016/j.freeradbiomed.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND & AIMS Unrestricted endoplasmic reticulum (ER) stress and the continuous activation of ER associated protein degradation (ERAD) pathway might lead to the aggravation of non-alcoholic steatohepatitis (NASH). Derlin-1 has been considered to be an integral part of the ERAD pathway, which is involved in the regulation of the transport and excretion of protein degradation products within ER. However, the regulatory role and mechanism of Derlin-1 in NASH remains unclear. METHODS The expression of Derlin-1 was firstly detected in the liver of normal and NASH animal model and patient. Then, western diet (WD)-induced NASH mice were administrated with the lentivirus-mediated Derlin-1 knockdown or overexpression. Finally, RIPK3 knockout mice were used to explore the mechanism. The liver injury, hepatic steatosis, inflammation, and fibrosis as well as ER stress signal pathway were evaluated. RESULTS The levels of Derlin-1 were significantly elevated in the liver of WD-fed mice and NASH patients when compared to the control group. Furthermore, Derlin-1 knockdown attenuated WD-induced liver injury, lipid accumulation, inflammatory response, and fibrosis. Conversely, overexpression of Derlin-1 presented the completely opposite results. Mechanistically, Derlin-1 enhanced ER stress pathways and led to necroptosis, and RIPK3 knockout dramatically reduced Derlin-1 expression and reversed the progression of NASH aggravated by Derlin-1. CONCLUSIONS Notably, Derlin-1 is a critical modulator in NASH. It may accelerate the progression of NASH by regulating the activation of the ERAD pathway and further aggravating the ER stress, which might be involved in RIPK3-mediated necroptosis. Therefore, targeting Derlin-1 as a novel intervention point holds the potential to delay or even reverse NASH.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Dehua Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| | - Ke Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Abaturov O, Nikulina A. Metabolic dysfunction-associated fatty liver disease/metabolic dysfunction-associated steatotic liver disease: general provisions. CHILD`S HEALTH 2024; 19:107-116. [DOI: 10.22141/2224-0551.19.2.2024.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The literature review deals with the problem of metabolic dysfunction-associated fatty liver disease that is poorly studied in pediatric gastroenterology. Until recently, primary hepatic steatosis not associated with alcohol intake was defined as non-alcoholic fatty liver disease. Given the unity of the pathogenetic mechanisms underlying primary steatosis, associated steatohepatitis, liver fibrosis with metabolic disorders, such as visceral obesity, insulin resistance, meta-inflammation of adipose tissue, it was proposed to change the terminology. The authors present data on modern nomenclature definitions, etiological factors, prevalence, criteria of metabolic disorders and meta-inflammation associated with this nosology and specific to childhood. Metabolic dysfunction-associated fatty liver disease and nonalcoholic fatty liver disease are characterized by the development of hepatosteatosis. However, a distinguishing feature of metabolic dysfunction-associated fatty liver disease is the presence of metabolic disorders in a patient. It is believed that the use of the term “metabolic dysfunction-associated fatty liver disease” in clinical practice allows doctors to make a diagnosis more reliably and more accurately modify the patient’s lifestyle. Much attention is paid to the description of the heterogeneity of metabolic dysfunction-associated fatty liver disease in clinical practice, and a concise list of therapeutic options for metabolic dysfunction-associated fatty liver disease in childhood is presented.
Collapse
|
25
|
Capasso M, Cossiga V, Guarino M, Ranieri L, Morisco F. The Role of Hepatitis Viruses as Drivers of Hepatocancerogenesis. Cancers (Basel) 2024; 16:1505. [PMID: 38672587 PMCID: PMC11048534 DOI: 10.3390/cancers16081505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, metabolic associated steatotic liver disease (MASLD) became the leading cause of chronic liver disease worldwide and one of the most frequent causes of hepatocellular carcinoma (HCC). Nonetheless, in this epidemiological trend, viral hepatitis remains the major driver in hepatic carcinogenesis. Globally, hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma, with an overall attributable risk of approximately 40%, followed by hepatitis C virus (HCV), which accounts for 28-30% of cases, with significant geographic variations between the Eastern and Western world. Considering all the etiologies, HCC risk increases proportionally with the progression of liver disease, but the risk is consistently higher in patients with viral triggers. This evidence indicates that both direct (due to the oncogenic properties of the viruses) and indirect (through the mechanisms of chronic inflammation that lead to cirrhosis) mechanisms are involved, alongside the presence of co-factors contributing to liver damage (smoking, alcohol, and metabolic factors) that synergistically enhance the oncogenic process. The aim of this review is to analyze the oncogenic role of hepatitis viruses in the liver, evaluating epidemiological changes and direct and indirect viral mechanisms that lead to liver cancer.
Collapse
Affiliation(s)
| | - Valentina Cossiga
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.G.); (L.R.); (F.M.)
| | | | | | | |
Collapse
|
26
|
Szydlowska-Gladysz J, Gorecka AE, Stepien J, Rysz I, Ben-Skowronek I. IGF-1 and IGF-2 as Molecules Linked to Causes and Consequences of Obesity from Fetal Life to Adulthood: A Systematic Review. Int J Mol Sci 2024; 25:3966. [PMID: 38612776 PMCID: PMC11012406 DOI: 10.3390/ijms25073966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
This study examines the impact of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) on various aspects of children's health-from the realms of growth and puberty to the nuanced characteristics of metabolic syndrome, diabetes, liver pathology, carcinogenic potential, and cardiovascular disorders. A comprehensive literature review was conducted using PubMed, with a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method employing specific keywords related to child health, obesity, and insulin-like growth factors. This study reveals associations between insulin-like growth factor 1 and birth weight, early growth, and adiposity. Moreover, insulin-like growth factors play a pivotal role in regulating bone development and height during childhood, with potential implications for puberty onset. This research uncovers insulin-like growth factor 1 and insulin-like growth factor 2 as potential biomarkers and therapeutic targets for metabolic dysfunction-associated liver disease and hepatocellular carcinoma, and it also highlights the association between insulin-like growth factors (IGFs) and cancer. Additionally, this research explores the impact of insulin-like growth factors on cardiovascular health, noting their role in cardiomyocyte hypertrophy. Insulin-like growth factors play vital roles in human physiology, influencing growth and development from fetal stages to adulthood. The impact of maternal obesity on children's IGF levels is complex, influencing growth and carrying potential metabolic consequences. Imbalances in IGF levels are linked to a range of health conditions (e.g., insulin resistance, glucose intolerance, metabolic syndrome, and diabetes), prompting researchers to seek novel therapies and preventive strategies, offering challenges and opportunities in healthcare.
Collapse
Affiliation(s)
- Justyna Szydlowska-Gladysz
- Department of Pediatric Endocrinology and Diabetology with Endocrine-Metabolic Laboratory, Medical University in Lublin, 20-093 Lublin, Poland
| | | | | | | | - Iwona Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology with Endocrine-Metabolic Laboratory, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
27
|
Hoseini Z, Behpour N, Hoseini R. Aerobic training with moderate or high doses of vitamin D improve liver enzymes, LXRα and PGC-1α levels in rats with T2DM. Sci Rep 2024; 14:6409. [PMID: 38494538 PMCID: PMC10944841 DOI: 10.1038/s41598-024-57023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Dysregulation of key transcription factors involved in hepatic energy metabolism, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and liver X receptor alpha (LXRα), has been observed in T2DM. The present study aims to investigate the effects of aerobic training and vitamin D supplementation on liver enzyme levels and the levels of PGC-1α and LXRα proteins in hepatocytes, in a rat model of T2DM. The study involved 56 male Wistar rats, divided into two groups: one was non-diabetic and acted as a control group (n = 8), and the other had induced diabetes (n = 48). The diabetic rats were then split into six subgroups: two groups received high or moderate doses of vitamin D and aerobic training (D + AT + HD and D + AT + MD); two groups received high or moderate doses of vitamin D alone (D + HD and D + MD); one group underwent aerobic training with vehicle (sesame oil; D + AT + oil), and one group was a diabetic control receiving only sesame oil (oil-receiving). The D + AT + HD and D + HD groups received 10,000 IU of vitamin D, while the D + AT + MD and D + MD groups received 5000 IU of vitamin D once a week by injection. The D + AT + oil group and the sham group received sesame oil. After eight weeks of treatment, body weight, BMI, food intake, serum insulin, glucose, 25-hydroxyvitamin D, ALT, AST, and visceral fat were measured. The levels of PGC-1α and LXRα proteins in the liver was assessed by western blotting. Statistical analysis was performed using the paired t-test, one-way analysis of variance (ANOVA), and the Tukey post hoc test at a significance level of P < 0.05. Body weight, food intake, and BMI decreased significantly in the D + AT + HD, D + AT + MD, D + AT + oil, D + HD, and D + MD groups with the highest reduction being observed in body weight and BMI in the D + AT + HD group. The D + AT + HD group exhibited the lowest levels of insulin, glucose, and HOMA-IR while the D + C group exhibited the highest levels among the diabetic groups. The D + AT + HD and D + AT + MD groups had lower levels of ALT and AST enzymes compared to the other groups with no significant difference between D + AT + HD and D + AT + MD. D + AT + HD (p = 0.001), D + AT + MD (p = 0.001), D + HD (p = 0.023), D + MD (p = 0.029), and D + AT + oil (p = 0.011) upregulated LXRα compared to D + C. Among these groups, D + AT + HD exhibited a more profound upregulation of LXRα than D + AT + MD, D + AT + oil, D + HD, and D + MD (p = 0.005; p = 0.002, p = 0.001, and p = 0.001, respectively). Similarly, D + AT + HD showed a more notable upregulation of PGC-1α compared to D + AT + oil, D + HD, and D + MD (p = 0.002; p = 0.001, and p = 0.001, respectively). Pearson correlation tests showed significant and negative correlations between serum 25-hydroxyvitamin levels and both visceral fat (r = - 0.365; p = 0.005) and HOMA-IR (r = - 0.118; p = 0.009); while positive and significant correlations between the liver-to-bodyweight ratio with both ALT and AST enzymes and also between QUICKI levels with LXRα (r = 0.578; p = 0.001) and PGC-1α (r = 0.628; p = 0.001). Combined administration of aerobic training and vitamin D supplementation potentially improves liver enzymes in type-2 diabetic rats that were simultaneous with upregulating the levels of PGC-1α and LXRα proteins in hepatocytes. These improvements were more significant when combining exercise with high-dose vitamin D supplementation. This study highlights the potential of this combination therapy as a new diabetes treatment strategy.
Collapse
Affiliation(s)
- Zahra Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran
| | - Nasser Behpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran.
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran
| |
Collapse
|
28
|
Elkattawy HA, Mahmoud SM, Hassan AES, Behiry A, Ebrahim HA, Ibrahim AM, Zaghamir DEF, El-Sherbiny M, El-Sayed SF. Vagal Stimulation Ameliorates Non-Alcoholic Fatty Liver Disease in Rats. Biomedicines 2023; 11:3255. [PMID: 38137476 PMCID: PMC10741668 DOI: 10.3390/biomedicines11123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The harmful consequences of non-alcoholic fatty liver disease (NAFLD) are posing an increasing threat to public health as the incidence of diabetes and obesity increases globally. A non-invasive treatment with a range of autonomic and metabolic benefits is transcutaneous vagus nerve stimulation (tVNS). AIM OF THE STUDY To investigate the possible preventive impacts of VNS against adult rats' NAFLD caused by a high-fat diet (HFD) and to clarify the underlying mechanisms. METHODS A total of thirty-two adult male rats were split into two groups: the HFD-induced NAFLD group (n = 24) and the control normal group (n = 8). The obesogenic diet was maintained for 12 weeks to induce hepatic steatosis. The HFD-induced NAFLD group (n = 24) was separated into three groups: the group without treatment (n = 8), the group with sham stimulation (n = 8), and the group with VNS treatment (n = 8). VNS was delivered for 30 min per day for 6 weeks after the establishment of NAFLD using a digital TENS device. The subsequent assessments included hepatic triglyceride, cholesterol content, serum lipid profile, and liver function testing. In this context, inflammatory biomarkers (TNF-α, IL-6) and hepatic oxidative stress (MDA, SOD, and GPx) were also assessed. To clarify the possible mechanisms behind the protective benefits of VNS, additional histological inspection and immunohistochemistry analysis of TNF-α and Caspase-3 were performed. RESULTS In the NAFLD-affected obese rats, VNS markedly decreased the rats' body mass index (BMI) and abdominal circumference (AC). Liver function markers (albumin, ALT, and AST) and the serum lipid profile-which included a notable decrease in the amounts of hepatic triglycerides and cholesterol-were both markedly improved. Additionally, oxidative stress and inflammatory indicators showed a considerable decline with VNS. Notably, the liver tissues examined by histopathologists revealed that there is evidence of the protective impact of VNS on the oxidative and inflammatory states linked to HFD-induced NAFLD while maintaining the architectural and functional condition of the liver. CONCLUSIONS Our findings suggest that VNS may represent a promising therapeutic candidate for managing NAFLD induced by obesity. It can be considered to be an effective adjuvant physiological intervention for the obese population with NAFLD to spare the liver against obesity-induced deleterious injury.
Collapse
Affiliation(s)
- Hany A. Elkattawy
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| | - Samar Mortada Mahmoud
- Department of Human Anatomy and Embryology, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Ahmed El-Sayed Hassan
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
- Department of Basic Medical Sciences, College of Medicine, Sulaiman Al-Rajhi University, Bukayriah 51941, Saudi Arabia
| | - Ahmed Behiry
- Department of Tropical Medicine and Endemic Diseases, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Donia Elsaid Fathi Zaghamir
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
| | - Sherein F. El-Sayed
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| |
Collapse
|
29
|
Cuesta ÁM, Palao N, Bragado P, Gutierrez-Uzquiza A, Herrera B, Sánchez A, Porras A. New and Old Key Players in Liver Cancer. Int J Mol Sci 2023; 24:17152. [PMID: 38138981 PMCID: PMC10742790 DOI: 10.3390/ijms242417152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
Collapse
Affiliation(s)
- Ángel M. Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Blanca Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
30
|
Galiero R, Caturano A, Vetrano E, Monda M, Marfella R, Sardu C, Salvatore T, Rinaldi L, Sasso FC. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab Syndr Obes 2023; 16:3669-3689. [PMID: 38028995 PMCID: PMC10658811 DOI: 10.2147/dmso.s390752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases in Western countries, and its incidence is constantly increasing. Epidemiological studies have shown that in the next 20 years. The number of subjects affected by T2DM will double. In recent years, owing to the development and improvement in methods for studying the genome, several authors have evaluated the association between monogenic or polygenic genetic alterations and the development of metabolic diseases and complications. In addition, sedentary lifestyle and socio-economic and pandemic factors have a great impact on the habits of the population and have significantly contributed to the increase in the incidence of metabolic disorders, obesity, T2DM, metabolic syndrome, and liver steatosis. Moreover, patients with type 2 diabetes appear to respond to antihyperglycemic drugs. Only a minority of patients could be considered true non-responders. Thus, it appears clear that the main aim of precision medicine in T2DM is to identify patients who can benefit most from a specific drug class more than from the others. Precision medicine is a discipline that evaluates the applicability of genetic, lifestyle, and environmental factors to disease development. In particular, it evaluated whether these factors could affect the development of diseases and their complications, response to diet, lifestyle, and use of drugs. Thus, the objective is to find prevention models aimed at reducing the incidence of pathology and mortality and therapeutic personalized approaches, to obtain a greater probability of response and efficacy. This review aims to evaluate the applicability of precision medicine for T2DM, a healthcare burden in many countries.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
31
|
Moghtadaie A, Mahboobi H, Fatemizadeh S, Kamal MA. Emerging role of nanotechnology in treatment of non-alcoholic fatty liver disease (NAFLD). EXCLI JOURNAL 2023; 22:946-974. [PMID: 38023570 PMCID: PMC10630531 DOI: 10.17179/excli2023-6420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevailing health challenge that requires urgent innovative interventions. This review explores the role of nanotechnology as a promising potential in the treatment of NAFLD. It delineates the limitations of the current management strategies for NAFLD and highlights the new nanotechnology-based treatments including nanoemulsions, liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanoparticles, and zinc oxide nanoparticles. Despite the optimism surrounding the nanotechnological approach, the review underscores the need to address the limitations such as technical challenges, potential toxicity, and ethical considerations that impede the practical application of nanotechnology in NAFLD management. It advocates for collaborative efforts from researchers, clinicians, ethicists, and policymakers to achieve safe, effective, and equitable nanotechnology-based treatments for NAFLD. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Atie Moghtadaie
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahboobi
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Fatemizadeh
- Department of Gastroenterology and Hepatology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
32
|
Chaudhry A, Noor J, Batool S, Fatima G, Noor R. Advancements in Diagnostic and Therapeutic Interventions of Non-alcoholic Fatty Liver Disease: A Literature Review. Cureus 2023; 15:e44924. [PMID: 37814734 PMCID: PMC10560588 DOI: 10.7759/cureus.44924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases of the liver globally. Non-alcoholic steatohepatitis (NASH) has a complicated pathophysiology which includes lipid buildup, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. Recently, there has been tremendous improvement in understanding of NASH pathogenesis due to advancements in the scientific field. It is being investigated how non-invasive circulating and imaging biomarkers can help in NAFLD and NASH diagnosis and monitoring the progress. Multiple medications are now undergoing clinical trials for the treatment of NASH, and lifestyle changes have been acknowledged as one of the main treatment methods. The purpose of this review article is to discuss the incidence of NAFLD globally, management issues with NASH, and its relation to the metabolic syndrome. It explains pathophysiology as well as therapeutic strategies using natural items, dietary changes, and pharmaceutical treatments. While emphasizing the necessity for surrogate endpoints to facilitate medication development for NASH, the study also considers the potential of non-invasive imaging biomarkers including magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE).
Collapse
Affiliation(s)
| | - Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Medical Unit, Abbasi Shaheed Hospital, Karachi, PAK
| | - Riwad Noor
- Public Health, Nishtar Hospital, Multan, PAK
| |
Collapse
|
33
|
Niu S, Ren Q, Chen S, Pan X, Yue L, Chen X, Li Z, Zhen R. Metabolic and Hepatic Effects of Empagliflozin on Nonalcoholic Fatty Liver Mice. Diabetes Metab Syndr Obes 2023; 16:2549-2560. [PMID: 37645238 PMCID: PMC10461752 DOI: 10.2147/dmso.s422327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose Among chronic liver diseases, non-alcoholic fatty liver disease (NAFLD) is one of the commonest. Although empagliflozin has several therapeutic uses in treating cardiovascular and renal disorders, its impacts and mechanisms on NAFLD are poorly understood. This research aimed to examine the metabolic regulatory mechanism through which empagliflozin protects against NAFLD. Methods Equal grouping of twenty-seven male C57BL/6J mice into those fed a normal diet (NCD), those fed a high-fat diet (HFD), and those fed an HFD with empagliflozin (Empa) was approached. HE, oil red O staining, and Masson staining were utilized for evaluating the pathological damage to the liver and the mice's liver and body weights. Lipids, blood glucose, and inflammation index were compared across the three groups. Liquid chromatography/mass spectrometry (LC-MS) has been employed for identifying liver metabolomics. Results The findings suggested that empagliflozin mitigated the inflammatory and oxidative stress response associated with the buildup of lipids caused by HFD. Differentially expressed metabolites (DEMs) were identified by metabonomics analysis as present in both the HFD/NCD and Empa/HFD groups. These DEMs were primarily found in lipids and organic acids like lysophosphatidylcholine (lysoPC), lecithin (PC), triglyceride (TG), palmitic acid, and L-isoleucine. Among the enriched pathways that were shown to be important were those involved in the metabolism of histidine, arachidonic acid, the control of lipolysis in adipocytes, and insulin resistance. There was a strong correlation between inflammation and oxidative stress in most of the metabolites. The inflammation and oxidative stress unbalance were ameliorated by empagliflozin. Conclusion NAFLD mice model showed considerable improvement in metabolic abnormalities and liver protection after treatment with empagliflozin. The process may include the overexpression of L-isoleucine and the downregulation of lysoPC, PC, TG, and palmitic acid to reduce liver harm caused by lipotoxicity.
Collapse
Affiliation(s)
- Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Qingjuan Ren
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, People’s Republic of China
| | - Xing Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
34
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| | | | - Nicolino Esposito
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (P.P.); (D.M.); (N.E.); (E.C.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (L.R.); (S.I.); (M.L.M.); (G.D.L.); (M.A.); (M.R.); (C.R.); (K.G.); (F.C.S.); (R.M.); (A.M.); (D.C.)
| |
Collapse
|
35
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
36
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
37
|
Zhu Y, Zhang H, Jiang P, Xie C, Luo Y, Chen J. Transcriptional and Epigenetic Alterations in the Progression of Non-Alcoholic Fatty Liver Disease and Biomarkers Helping to Diagnose Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:970. [PMID: 36979950 PMCID: PMC10046227 DOI: 10.3390/biomedicines11030970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH), and its global prevalence continues to rise. NASH, the progressive form of NAFLD, has higher risks of liver and non-liver related adverse outcomes compared with those patients with NAFL alone. Therefore, the present study aimed to explore the mechanisms in the progression of NAFLD and to develop a model to diagnose NASH based on the transcriptome and epigenome. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) among the three groups (normal, NAFL, and NASH) were identified, and the functional analysis revealed that the development of NAFLD was primarily related to the oxidoreductase-related activity, PPAR signaling pathway, tight junction, and pathogenic Escherichia coli infection. The logistic regression (LR) model, consisting of ApoF, THOP1, and BICC1, outperformed the other five models. With the highest AUC (0.8819, 95%CI: 0.8128-0.9511) and a sensitivity of 97.87%, as well as a specificity of 64.71%, the LR model was determined as the diagnostic model, which can differentiate NASH from NAFL. In conclusion, several potential mechanisms were screened out based on the transcriptome and epigenome, and a diagnostic model was built to help patient stratification for NAFLD populations.
Collapse
Affiliation(s)
| | | | | | | | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Ge XY, Sun MC, Wang TY, Wang XM, Liu G, Yang T, Lu YM, Wang W. Analysis of risk factors of hepatocellular carcinoma and establishment of a clinical prognosis model. Front Oncol 2023; 13:1067353. [PMID: 37035138 PMCID: PMC10073455 DOI: 10.3389/fonc.2023.1067353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Liver cancer is a common malignancy of the digestive system. Hepatocellular carcinoma (HCC) accounts for the most majority of these tumors and it has brought a heavy medical burden to underdeveloped countries and regions. Many factors affect the prognosis of HCC patients, however, there is no specific statistical model to predict the survival time of clinical patients. This study derived a risk factor signature of HCC and reliable clinical prediction model by statistically analyzing The Surveillance, Epidemiology, and End Results (SEER) database patient information using an open source package in the python environment.
Collapse
Affiliation(s)
- Xin-Yu Ge
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ming-Chen Sun
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tian-Yi Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xi-Min Wang
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gang Liu
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tao Yang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yi-Ming Lu
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Wei Wang,
| |
Collapse
|