1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
Wang Y, Liu S, Zhou Q, Feng Y, Xu Q, Luo L, Lv H. Bioinformatics for the Identification of STING-Related Genes in Diabetic Retinopathy. Curr Eye Res 2025; 50:320-333. [PMID: 39704112 DOI: 10.1080/02713683.2024.2430223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is the most common complication of diabetes mellitus. Stimulator of interferon genes (STING) plays an important regulatory role in the transcription of several genes. This study aimed to mine and identify hub genes relevant to STING in DR. METHODS The STING-related genes (STING-RGs) were extracted from MSigDB database. Differentially expressed STING-RGs (DE-STING-RGs) were filtered by overlapping differentially expressed genes (DEGs) between DR and NC specimens and STING-RGs. A PPI network was established to mine hub genes. The ability of the hub genes to differentiate between DR and NC specimens was evaluated. Additionally, a ceRNA network was established to investigate the regulatory mechanisms of hub genes. Subsequently, the discrepancies in immune infiltration between DR and NC specimens were further explored. Additionally, we performed drug predictions. Finally, RT-qPCR of peripheral blood samples was used to validate the bioinformatics results. RESULTS A grand total of four genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING were identified for DR. The AUC values of all four hub genes were greater than 0.7, which indicated that the diagnostic value was acceptable. The ceRNA network contained four hub genes, 170 miRNAs, and 135 lncRNAs. In addition, immunoinfiltration analysis demonstrated that the abundance of activated B cells was notably different between the DR and NC specimens. Moreover, 32 drugs were included in the drug-gene network, with twelve drugs targeting STAT6, nine drugs targeting NFKBIA, four drugs targeted IKBKG, and seven drugs targeted FCGR2A. The expression of the four hub genes in blood samples determined by RT-qPCR was consistent with our analysis. CONCLUSION In conclusion, four hub genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING with a diagnostic value for DR were identified by bioinformatics analysis, which might provide new insights into the evaluation and treatment of DR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Siyan Liu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qi Zhou
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Yalin Feng
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qin Xu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Linbi Luo
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| |
Collapse
|
3
|
Cheniti H, Kadi A, Agred R, Kadi Y, Djeradi MK, Melliti H, Chiheb N, Kherfi H, Messarah M. Fish Oil's Preventive Effect on Two-Stage Skin Carcinogenesis in Swiss Albino Mice: Involvement of NF-ҝB Pathways and Oxidative Stress in a Dose- and Route Dependent Manner. Mol Nutr Food Res 2025; 69:e202400630. [PMID: 39865914 DOI: 10.1002/mnfr.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
This study investigated the chemopreventive mechanisms of fish oil (FO) at different doses and administration routes in skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and croton oil (CO) in Swiss albino mice. Seventy mice were divided into 10 groups, including controls and those receiving FO either orally or topically, with or without the carcinogenesis protocol. Warts were morphologically analyzed. Anatomopathological analysis, qRT-PCR of nuclear factor kappa B (NF-қB) subunits' gene expression, and evaluation of oxidative parameters were conducted. Anatomopathological analysis revealed a presence of invasive squamous cell carcinoma (SCC) in DMBA group. Both oral (500 mg/kg/day) and topical FO treatment showed no signs of cancer, while oral administration at 50 mg/kg/day had no therapeutic effect, and 250 mg/kg/day resulted in low-grade malignancy. Both oral (250 and 500 mg/kg/day) and topical FO significantly reduced NF-кB1 gene expression, alleviated oxidative stress markers, and restored antioxidant enzyme activities compared to the DMBA group. FO shows dose-dependent chemopreventive effects, with oral administration potentially as effective as topical application when using an appropriate dosage. The development of SCC is linked to the stress status and the upregulation of the canonical NF-κB pathway, while FO's chemoprotective effects likely result from its downregulation.
Collapse
Affiliation(s)
- Hayeme Cheniti
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Assia Kadi
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Rym Agred
- Biotechnology Research Center (B.T.R.C), Constantine, Algeria
| | - Yacine Kadi
- Anatomical Pathology Unit, Public Hospital Establishment Azzaba, Skikda, Algeria
| | - Meriem Khadidja Djeradi
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Hanane Melliti
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Nadia Chiheb
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Hind Kherfi
- Anatomical Pathology Unit, Public Hospital Establishment Azzaba, Skikda, Algeria
| | - Mahfoud Messarah
- Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
4
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
5
|
Kaltschmidt B, Czaniera NJ, Schulten W, Kaltschmidt C. NF-κB in Alzheimer's Disease: Friend or Foe? Opposite Functions in Neurons and Glial Cells. Int J Mol Sci 2024; 25:11353. [PMID: 39518906 PMCID: PMC11545113 DOI: 10.3390/ijms252111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a devasting neurodegenerative disease afflicting mainly glutamatergic neurons together with a massive neuroinflammation mediated by the transcription factor NF-κB. A 65%-plus increase in Alzheimer's patients by 2050 might be a major threat to society. Hallmarks of AD are neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and amyloid beta (Aβ) plaques. Here, we review the potential involvement of transcription factor NF-κB by hereditary mutations of the tumor necrosis factor pathway in AD patients. One of the greatest genetic risk factors is APOE4. Recently, it was shown that the APOE4 allele functions as a null allele in human astrocytes not repressing NF-κB anymore. Moreover, NF-κB seems to be involved in the repair of DNA double-strand breaks during healthy learning and memory, a function blunted in AD. NF-κB could be a friend to healthy neurons by repressing apoptosis and necroptosis. But a loss of neuronal NF-κB and activation of glial NF-κB in AD makes it a foe of neuronal survival. Hopeful therapies include TNFR2 receptor bodies relieving the activation of glial NF-κB by TNFα.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| | - Nele Johanne Czaniera
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| |
Collapse
|
6
|
GUO Y, LI Z, CHENG N, JIA X, WANG J, MA H, ZHAO R, LI B, XUE Y, CAI Y, YANG Q. High-throughput sequencing analysis of differential microRNA expression in the process of blocking the progression of chronic atrophic gastritis to gastric cancer by Xianglian Huazhuo formula. J TRADIT CHIN MED 2024; 44:703-712. [PMID: 39066531 PMCID: PMC11337255 DOI: 10.19852/j.cnki.jtcm.20240617.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To explore the mechanism of Xianglian Huazhuo formula (, XLHZ) blocking the development of chronic atrophic gastritis (CAG) to gastric cancer (GC) through bioinformatics analysis and in vitro. METHODS Pathological morphology of gastric mucosa of rats were observed. High-throughput sequencing was used to analyze the miRNA expression profile of gastric mucosa. The miRanda, miRDB and miRWalk databases were used to predict the differential target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for differential target genes. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differentially expressed miRNAs and target genes. Western blot, EdU, wound healing and flow cytometry were used to observe the effect of XLHZ on epithelial-mesenchymal transition (EMT) markers, proliferation, migration, apoptosis and cell cycle of CAG cells in vitro. RESULTS A total of five differentially expressed miRNAs and four differential target genes were screened in this study. GO analysis showed that the target genes were enriched in regulation of neuron development, regulation of transcription factor activity and regulation of RNA polymerase. KEGG pathways database differences in gene enrichment of target genes in the Wnt signaling pathway, Phospholipase D signaling pathway and mitogen-activated protein kinase signaling pathway. qRT-PCR confirmed that miRNAs and its target genes were consistent with the screening results. In vitro, our study revealed that XLHZ could increase the expression of E-cadherin, decrease the expression of transforming growth factor β1, vimentin and β-catenin, inhibite the proliferation and migration of CAG cells, cause cell cycle arrest at G0/G1 and G2/M phase, induce the apoptosis of CAG cells, and prevent the progression of CAG to GC. CONCLUSION This study provided a new idea for the mechanism of blocking the progression of CAG to GC by XLHZ, which may be related to the expression of miR-20a-3p, miR-320-3p, miR-34b-5p, miR-483-3p and miR-883-3p and their target genes transferrin receptor, nuclear receptor subfamily 4 member 2, delta like canonical Notch ligand 1 and a kinase anchor protein 12 in CAG. In the future, we will continue to investigate the linkage between the active ingredients of XLHZ and the relevant miRNAs and their target genes, so as to provide more sufficient experimental basis for clinically effective prevention of CAG to GC.
Collapse
Affiliation(s)
- Yuxi GUO
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Ze LI
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Nan CHENG
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Xuemei JIA
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Jie WANG
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Hongyu MA
- 2 Department of Traditional Chinese Medicine, Hebei General Hospital, Shijiazhuang 050051, China
| | - Runyuan ZHAO
- 3 Department of Gastroenterology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bolin LI
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Yucong XUE
- 4 College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Yanru CAI
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Qian YANG
- 1 Department of spleen and stomach diseases, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, China
| |
Collapse
|
7
|
Li T, Shahabi S, Biswas T, Tsodikov OV, Pan W, Huang DB, Wang VYF, Wang Y, Ghosh G. Transient interactions modulate the affinity of NF-κB transcription factors for DNA. Proc Natl Acad Sci U S A 2024; 121:e2405555121. [PMID: 38805268 PMCID: PMC11161749 DOI: 10.1073/pnas.2405555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 μs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.
Collapse
Affiliation(s)
- Tianjie Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region999077, China
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY40536
| | - Wenfei Pan
- Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region999078, China
| | - De-Bin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region999078, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region999077, China
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
8
|
Feineis D, Bringmann G. Structural variety and pharmacological potential of naphthylisoquinoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 91:1-410. [PMID: 38811064 DOI: 10.1016/bs.alkal.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Yücer R, Fayez S, Feineis D, Klauck SM, Shan L, Bringmann G, Efferth T, Dawood M. Cytotoxicity of dioncophylline A and related naphthylisoquinolines in leukemia cells, mediated by NF-κB inhibition, angiogenesis suppression, G2/M cell cycle arrest, and autophagy induction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155267. [PMID: 38368795 DOI: 10.1016/j.phymed.2023.155267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.
Collapse
Affiliation(s)
- Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Home address: Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
10
|
Schmidt KE, Höving AL, Nowak K, an Mey N, Kiani Zahrani S, Nemeita B, Riedel L, Majewski A, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum Induces the Subunit-Specific Activation of NF-κB in Proliferating Human Cardiac Stem Cells. Int J Mol Sci 2024; 25:3593. [PMID: 38612406 PMCID: PMC11012129 DOI: 10.3390/ijms25073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Katja Nowak
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Nike an Mey
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Britta Nemeita
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Lena Riedel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Agnes Majewski
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| |
Collapse
|
11
|
Rajendran P, Renu K, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Rustagi Y, Abdelsalam SA, Ibrahim RIH, Al-Ramadan SY. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food Nutr Res 2024; 68:9650. [PMID: 38571915 PMCID: PMC10989234 DOI: 10.29219/fnr.v68.9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 04/05/2024] Open
Abstract
Background Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-β (Wnt-β)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-β), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yashika Rustagi
- Centre for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rashid Ismael Hag Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Saeed Yaseen Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
12
|
Zhou C, Xia Q, Hamezah HS, Fan Z, Tong X, Han R. Efficacy of Forsythia suspensa (Thunb.) Vahl on mouse and rat models of inflammation-related diseases: a meta-analysis. Front Pharmacol 2024; 15:1288584. [PMID: 38500762 PMCID: PMC10946063 DOI: 10.3389/fphar.2024.1288584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Objective: To evaluate the efficacy of the fruits of the medicinal plant Forsythia suspensa (Thunb.) Vahl (FS), in treating inflammation-associated diseases through a meta-analysis of animal models, and also probe deeply into the signaling pathways underlying the progression of inflammation. Materials and methods: All data analyses were performed using Review Manager 5.3 and the results are presented as flow diagrams, risk-of-bias summaries, forest plots, and funnel plots. Summary estimates were calculated using a random- or fixed-effect model, depending on the value of I2. Results: Of the 710 records identified in the initial search, 11 were selected for the final meta-analysis. Each study extracted data from the model and treatment groups for analysis, and the results showed that FS alleviated the inflammatory cytokine levels in serum; oxidant indicator: reactive oxygen species; enzymes of liver function; endotoxin and regulatory cells in blood; and improved the antioxidant enzyme superoxide dismutase. Conclusion: FS effectively reversed the change in acute or chronic inflammation indicators in animal models, and the regulation of multiple channel proteins in inflammatory signaling pathways suggests that FS is a good potential drug for inflammatory disease drug therapy.
Collapse
Affiliation(s)
- Chenyu Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Zheng Fan
- Affiliated Taihe Hospital of Chinese Medicine, Anhui University of Chinese Medicine, Taihe, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Jinzhai, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
13
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
14
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Tu J, Liang H, Li C, Huang Y, Wang Z, Chen X, Yuan X. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front Immunol 2023; 14:1198972. [PMID: 37334350 PMCID: PMC10272381 DOI: 10.3389/fimmu.2023.1198972] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Tumor immunotherapy, as the focus of scientific research and clinical tumor treatment in recent years, has received extensive attention. Due to its remarkable curative effect and fewer side effects than traditional treatments, it has significant clinical benefits for the treatment of various advanced cancers and can improve cancer patient survival in the long term. Currently, most patients cannot benefit from immunotherapy, and some patients may experience tumor recurrence and drug resistance even if they achieve remission overcome. Numerous studies have shown that the abnormal angiogenesis state of tumors can lead to immunosuppressive tumor microenvironment, which affects the efficacy of immunotherapy. Actually, to improve the efficacy of immunotherapy, the application of anti-angiogenesis drugs to normalize abnormal tumor vessel has been widely confirmed in basic and clinical research. This review not only discusses the risk factors, mechanisms, and effects of abnormal and normalized tumor angiogenesis state on the immune environment, but summarizes the latest progress of immunotherapy combined with anti-angiogenic therapy. We hope this review provides an applied reference for anti-angiogenesis drugs and synergistic immunotherapy therapy.
Collapse
Affiliation(s)
- Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Krawczyk P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules 2023; 28:molecules28114381. [PMID: 37298856 DOI: 10.3390/molecules28114381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the increasing availability of modern treatments, including personalized therapies, there is a strong need to search for new drugs that will be effective in the fight against cancer. The chemotherapeutics currently available to oncologists do not always yield satisfactory outcomes when used in systemic treatments, and patients experience burdensome side effects during their application. In the era of personalized therapies, doctors caring for non-small cell lung cancer (NSCLC) patients have been given a powerful weapon, namely molecularly targeted therapies and immunotherapies. They can be used when genetic variants of the disease qualifying for therapy are diagnosed. These therapies have contributed to the extension of the overall survival time in patients. Nevertheless, effective treatment may be hindered in the case of clonal selection of tumor cells with acquired resistance mutations. The state-of-the-art therapy currently used in NSCLC patients is immunotherapy targeting the immune checkpoints. Although it is effective, some patients have been observed to develop resistance to immunotherapy, but its cause is still unknown. Personalized therapies extend the lifespan and time to cancer progression in patients, but only those with a confirmed marker qualifying for the treatment (gene mutations/rearrangements or PD-L1 expression on tumor cells) can benefit from these therapies. They also cause less burdensome side effects than chemotherapy. The article is focused on compounds that can be used in oncology and produce as few side effects as possible. The search for compounds of natural origin, e.g., plants, bacteria, or fungi, exhibiting anticancer properties seems to be a good solution. This article is a literature review of research on compounds of natural origin that can potentially be used as part of NSCLC therapies.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Street 8, 20-704 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| |
Collapse
|
17
|
Niemann T, Greiner JFW, Kaltschmidt C, Kaltschmidt B. EPO regulates neuronal differentiation of adult human neural-crest derived stem cells in a sex-specific manner. BMC Neurosci 2023; 24:19. [PMID: 36879191 PMCID: PMC9990360 DOI: 10.1186/s12868-023-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Sexual differences in the biology of human stem cells are increasingly recognized to influence their proliferation, differentiation and maturation. Especially in neurodegenerative diseases such as Alzheimers disease (AD), Parkinson's disease (PD) or ischemic stroke, sex is a key player for disease progression and recovery of damaged tissue. Recently, the glycoprotein hormone erythropoietin (EPO) has been implicated as a regulator of neuronal differentiation and maturation in female rats. METHODS In this study, we used adult human neural crest-derived stem cells (NCSCs) as a model system for exploring potential sex specific effects of EPO on human neuronal differentiation. We started with expression validation of the specific EPO receptor (EPOR) by performing PCR analysis in the NCSCs. Next, EPO mediated activation of nuclear factor-κB (NF-κB) via Immunocytochemistry (ICC) was performed, followed by investigating the sex-specific effects of EPO on neuronal differentiation by determining morphological changes in axonal growth and neurite formation accompanied by ICC. RESULTS Undifferentiated male and female NCSCs showed a ubiquitous expression of the EPO receptor (EPOR). EPO treatment resulted in a statistically profound (male p = 0.0022, female p = 0.0012) nuclear translocation of NF-κB RELA in undifferentiated NCSCs of both sexes. But after one week of neuronal differentiation, we could show a highly significant (p = 0,0079) increase of nuclear NF-κB RELA in females only. In contrast, we observed a strong decrease (p = 0,0022) of RELA activation in male neuronal progenitors. Extending the view on the role of sex during human neuronal differentiation, here we demonstrate a significant increase of axon lengths in female NCSCs-derived neurons upon EPO-treatment (+ EPO: 167,73 (SD = 41,66) µm, w/o EPO: 77,68 (SD = 18,31) µm) compared to their male counterparts (+ EPO: 68,37 (SD = 11,97) µm, w/o EPO: 70,23 (SD = 12,89) µm). CONCLUSION Our present findings therefore show for the first time an EPO-driven sexual dimorphism in neuronal differentiation of human neural-crest derived stem cells and emphasize sex-specific variability as a crucial parameter in stem cell biology and for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tarek Niemann
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
18
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
19
|
Li T, Gao SJ. KSHV hijacks FoxO1 to promote cell proliferation and cellular transformation by antagonizing oxidative stress. J Med Virol 2023; 95:e28676. [PMID: 36929740 PMCID: PMC10285692 DOI: 10.1002/jmv.28676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Reactive oxygen species (ROS) are a group of a highly short-lived molecules that control diverse behaviors of cells. Normal cells maintain ROS balance to ensure their functions. Because of oncogenic stress, cancer cells often have excessive ROS, also known as oxidative stress, which are often counteracted by enhanced antioxidant systems to maintain redox homeostasis. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with Kaposi's sarcoma (KS), which manifests hyper inflammation and oxidative stress as the hallmarks. We have previously shown that excessive ROS can disrupt KSHV latency by inducing viral lytic replication, leading to cell death. Paradoxically, most KS tumor cells are latently infected by KSHV in a highly inflammatory and oxidative stress tumor microenvironment, which is in part due to the activation of alternative complement and TLR4 pathways, indicating the existence of an enhanced antioxidant defense system in KS tumor cells. In this study, we show that KSHV upregulates antioxidant genes, including SOD2 and CAT by hijacking the forkhead box protein O1 (FoxO1), to maintain intracellular ROS level. Moreover, the fine-tuned balance of ROS level in KSHV-transformed cells is essential for cell survival. Consequently, KSHV-transformed cells are extremely sensitive to exogenous ROS insult such as treatment with a low level of hydrogen peroxide (H2 O2 ). Either chemical inhibition or knockdown of FoxO1 by short interfering RNAs decreases the expression of antioxidant genes and subsequently increases the intracellular ROS level in KSHV-transformed cells, resulting in the inhibition of cell proliferation and colony formation in soft agar. Mechanistically, KSHV-encoded microRNAs and vFLIP upregulate FoxO1 by activating the NF-κB pathway. These results reveal a novel mechanism by which an oncogenic virus counteracts oxidative stress by upregulating FoxO1, which is essential for KSHV-induced cell proliferation and cellular transformation. Therefore, FoxO1 might be a potential therapeutic target for KSHV-related malignancies.
Collapse
Affiliation(s)
- Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Current address: Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
21
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11:3492. [PMID: 36359888 PMCID: PMC9656902 DOI: 10.3390/cells11213492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Over the past two decades, cancer stem cells (CSCs) have emerged as an immensely studied and experimental topic, however a wide range of questions concerning the topic still remain unanswered; in particular, the mechanisms underlying the regulation of tumor stem cells and their characteristics. Understanding the cancer stem-cell signaling pathways may pave the way towards a better comprehension of these mechanisms. Signaling pathways such as WNT, STAT, Hedgehog, NOTCH, PI3K/AKT/mTOR, TGF-β, and NF-κB are responsible not only for modulating various features of CSCs but also their microenvironments. Recently, the prominent roles of various non-coding RNAs such as small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) in developing and enhancing the tumor phenotypes have been unfolded. This review attempts to shed light on understanding the influence of long non- coding RNAs in the modulation of various CSC-signaling pathways and its impact on the CSCs and tumor properties; highlighting the protagonistic and antagonistic roles of lncRNAs.
Collapse
Affiliation(s)
| | | | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603202, India
| |
Collapse
|
23
|
Afshari AR, Sanati M, Mollazadeh H, Kesharwani P, Johnston TP, Sahebkar A. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol 2022; 86:860-872. [PMID: 35115226 DOI: 10.1016/j.semcancer.2022.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/16/2022]
Abstract
It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Helweg LP, Storm J, Witte KE, Schulten W, Wrachtrup L, Janotte T, Kitke A, Greiner JFW, Knabbe C, Kaltschmidt B, Simon M, Kaltschmidt C. Targeting Key Signaling Pathways in Glioblastoma Stem Cells for the Development of Efficient Chemo- and Immunotherapy. Int J Mol Sci 2022; 23:12919. [PMID: 36361720 PMCID: PMC9659205 DOI: 10.3390/ijms232112919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Kaya E. Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Lennart Wrachtrup
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Till Janotte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Matthias Simon
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Department of Neurosurgery and Epilepsy Surgery, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| |
Collapse
|
25
|
Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front Mol Neurosci 2022; 15:954541. [PMID: 35983068 PMCID: PMC9380593 DOI: 10.3389/fnmol.2022.954541] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NF-κB is commonly known to drive inflammation and cancer progression, but is also a crucial regulator of a broad range of cellular processes within the mammalian nervous system. In the present review, we provide an overview on the role of NF-κB in the nervous system particularly including its constitutive activity within cortical and hippocampal regions, neuroprotection as well as learning and memory. Our discussion further emphasizes the increasing role of human genetics in neurodegenerative disorders, namely, germline mutations leading to defects in NF-κB-signaling. In particular, we propose that loss of function mutations upstream of NF-κB such as ADAM17, SHARPIN, HOIL, or OTULIN affect NF-κB-activity in Alzheimer’s disease (AD) patients, in turn driving anatomical defects such as shrinkage of entorhinal cortex and the limbic system in early AD. Similarly, E3 type ubiquitin ligase PARKIN is positively involved in NF-κB signaling. PARKIN loss of function mutations are most frequently observed in Parkinson’s disease patients. In contrast to AD, relying on germline mutations of week alleles and a disease development over decades, somatic mutations affecting NF-κB activation are commonly observed in cells derived from glioblastoma multiforme (GBM), the most common malignant primary brain tumor. Here, our present review particularly sheds light on the mutual exclusion of either the deletion of NFKBIA or amplification of epidermal growth factor receptor (EGFR) in GBM, both resulting in constitutive NF-κB-activity driving tumorigenesis. We also discuss emerging roles of long non-coding RNAs such as HOTAIR in suppressing phosphorylation of IκBα in the context of GBM. In summary, the recent progress in the genetic analysis of patients, particularly those suffering from AD, harbors the potential to open up new vistas for research and therapy based on TNFα/NF-κB pathway and neuroprotection.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Department of Molecular Neurobiology, Bielefeld University, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
- *Correspondence: Barbara Kaltschmidt,
| | - Laureen P. Helweg
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
26
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
27
|
Chaiswing L, Xu F, Zhao Y, Thorson J, Wang C, He D, Lu J, Ellingson SR, Zhong W, Meyer K, Luo W, St. Clair W, Clair DS. The RelB-BLNK Axis Determines Cellular Response to a Novel Redox-Active Agent Betamethasone during Radiation Therapy in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23126409. [PMID: 35742868 PMCID: PMC9223669 DOI: 10.3390/ijms23126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant levels of reactive oxygen species (ROS) are potential mechanisms that contribute to both cancer therapy efficacy and the side effects of cancer treatment. Upregulation of the non-canonical redox-sensitive NF-kB family member, RelB, confers radioresistance in prostate cancer (PCa). We screened FDA-approved compounds and identified betamethasone (BET) as a drug that increases hydrogen peroxide levels in vitro and protects non-PCa tissues/cells while also enhancing radiation killing of PCa tissues/cells, both in vitro and in vivo. Significantly, BET increases ROS levels and exerts different effects on RelB expression in normal cells and PCa cells. BET induces protein expression of RelB and RelB target genes, including the primary antioxidant enzyme, manganese superoxide dismutase (MnSOD), in normal cells, while it suppresses protein expression of RelB and MnSOD in LNCaP cells and PC3 cells. RNA sequencing analysis identifies B-cell linker protein (BLNK) as a novel RelB complementary partner that BET differentially regulates in normal cells and PCa cells. RelB and BLNK are upregulated and correlate with the aggressiveness of PCa in human samples. The RelB-BLNK axis translocates to the nuclear compartment to activate MnSOD protein expression. BET promotes the RelB-BLNK axis in normal cells but suppresses the RelB-BLNK axis in PCa cells. Targeted disruptions of RelB-BLNK expressions mitigate the radioprotective effect of BET on normal cells and the radiosensitizing effect of BET on PCa cells. Our study identified a novel RelB complementary partner and reveals a complex redox-mediated mechanism showing that the RelB-BLNK axis, at least in part, triggers differential responses to the redox-active agent BET by stimulating adaptive responses in normal cells but pushing PCa cells into oxidative stress overload.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
- Correspondence: (L.C.); (D.S.C.)
| | - Fangfang Xu
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
| | - Yanming Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
| | - Jon Thorson
- Center for Pharmaceutical Research and Innovation, Lexington, KY 40536, USA;
- College of Pharmacy, Pharmaceutical Sciences Department, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Daheng He
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Jinpeng Lu
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Sally R. Ellingson
- Markey Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA; (C.W.); (D.H.); (J.L.); (S.R.E.)
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (W.Z.); (K.M.)
| | - Kristy Meyer
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (W.Z.); (K.M.)
| | - Wei Luo
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA; (W.L.); (W.S.C.)
| | - William St. Clair
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA; (W.L.); (W.S.C.)
| | - Daret St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, 452 Health Sciences Research Building, Lexington, KY 40536, USA; (F.X.); (Y.Z.)
- Correspondence: (L.C.); (D.S.C.)
| |
Collapse
|
28
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
29
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
30
|
Kaltschmidt B, Witte KE, Greiner JFW, Weissinger F, Kaltschmidt C. Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review. Biomedicines 2022; 10:biomedicines10020261. [PMID: 35203471 PMCID: PMC8869483 DOI: 10.3390/biomedicines10020261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
| | - Kaya E. Witte
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Florian Weissinger
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Hematology, Oncology, Internal Medicine, Bone Marrow and Stem Cell Transplantation, Palliative Medicine, and Tumor Center, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Schildescher Str. 99, 33611 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence: ; Tel.: +49-521-106-5625
| |
Collapse
|
31
|
Windmöller BA, Höving AL, Knabbe C, Greiner JFW. Inter- and Intrapopulational Heterogeneity of Characteristic Markers in Adult Human Neural Crest-derived Stem Cells. Stem Cell Rev Rep 2021; 18:1510-1520. [PMID: 34748196 PMCID: PMC9033708 DOI: 10.1007/s12015-021-10277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Adult human neural crest-derived stem cells (NCSCs) are found in a variety of adult tissues and show an extraordinary broad developmental potential. Despite their great differentiation capacity, increasing evidence suggest a remaining niche-dependent variability between different NCSC-populations regarding their differentiation behavior and expression signatures. In the present study, we extended the view on heterogeneity of NCSCs by identifying heterogeneous expression levels and protein amounts of characteristic markers even between NCSCs from the same niche of origin. In particular, populations of neural crest-derived inferior turbinate stem cells (ITSCs) isolated from different individuals showed significant variations in characteristic NCSC marker proteins Nestin, S100 and Slug in a donor-dependent manner. Notably, increased nuclear protein amounts of Slug were accompanied by a significantly elevated level of nuclear NF-κB-p65 protein, suggesting an NF-κB-dependent regulation of NCSC-makers. In addition to this interpopulational genetic heterogeneity of ITSC-populations from different donors, single ITSCs also revealed a strong heterogeneity regarding the protein amounts of Nestin, S100, Slug and NF-κB-p65 even within the same clonal culture. Our present findings therefor strongly suggest ITSC-heterogeneity to be at least partly based on an interpopulational genetic heterogeneity dependent on the donor accompanied by a stochastic intrapopulational heterogeneity between single cells. We propose this stochastic intrapopulational heterogeneity to occur in addition to the already described genetic variability between clonal NCSC-cultures and the niche-dependent plasticity of NCSCs. Our observations offer a novel perspective on NCSC-heterogeneity, which may build the basis to understand heterogeneous NCSC-behavior.
Collapse
Affiliation(s)
- Beatrice A Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.,Department of Cellular Neurophysiology, Faculty of Medicine, University of Bielefeld, Bielefeld, Germany
| | - Anna L Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.,Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany. .,Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.
| |
Collapse
|
32
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
33
|
Analysis of Several Pathways for Efficient Killing of Prostate Cancer Stem Cells: A Central Role of NF-κB RELA. Int J Mol Sci 2021; 22:ijms22168901. [PMID: 34445612 PMCID: PMC8396252 DOI: 10.3390/ijms22168901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a common cause of death worldwide. Here, we isolated cancer stem cells (CSCs) from four adenocarcinomas of the prostate (Gleason scores from 3 + 3 up to 4 + 5). CSCs were characterized by the expression of the stem cell markers TWIST, the epithelial cell adhesion molecule (EPCAM), the transcription factors SNAI1 (SNAIL) and SNAI2 (SLUG) and cancer markers such as CD44 and prominin-1 (CD133). All investigated CSC populations contained a fraction highly positive for aldehyde dehydrogenase (ALDH) function and displayed robust expressions of programmed cell death 1 (PD-1) ligands. Furthermore, we investigated immunotherapeutic approaches but had no success even with the clinically used PD-1 inhibitor pembrolizumab. In addition, we studied another death-inducing pathway via interferon gamma signaling and detected high-level upregulations of human leukocyte antigen A (HLA-A) and beta 2-microglobulin (B2M) with only moderate killing efficacy. To examine further killing mechanisms in prostate cancer stem cells (PCSCs), we analyzed NF-κB signaling. Surprisingly, two patient-specific populations of PCSCs were found: one with canonical NF-κB signaling and another one with blunted NF-κB activation, which can be efficiently killed by tumor necrosis factor (TNF). Thus, culturing of PCSCs and analysis of respective NF-κB induction potency after surgery might be a powerful tool for optimizing patient-specific treatment options, such as the use of TNF-inducing chemotherapeutics and/or NF-κB inhibitors.
Collapse
|
34
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Song A, Wang Y, Jiang F, Yan E, Zhou J, Ye J, Zhang H, Ding X, Li G, Wu Y, Zheng Y, Song X. Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling. Mol Cells 2021; 44:468-480. [PMID: 34230226 PMCID: PMC8334351 DOI: 10.14348/molcells.2021.2229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023] Open
Abstract
Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- An Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Feng Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Enshi Yan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210000, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221000, China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yunong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| |
Collapse
|
36
|
Davis JL, Thaler R, Cox L, Ricci B, Zannit HM, Wan F, Faccio R, Dudakovic A, van Wijnen AJ, Veis DJ. Constitutive activation of NF-κB inducing kinase (NIK) in the mesenchymal lineage using Osterix (Sp7)- or Fibroblast-specific protein 1 (S100a4)-Cre drives spontaneous soft tissue sarcoma. PLoS One 2021; 16:e0254426. [PMID: 34292968 PMCID: PMC8297882 DOI: 10.1371/journal.pone.0254426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/27/2021] [Indexed: 01/02/2023] Open
Abstract
Aberrant NF-κB signaling fuels tumor growth in multiple human cancer types including both hematologic and solid malignancies. Chronic elevated alternative NF-κB signaling can be modeled in transgenic mice upon activation of a conditional NF-κB-inducing kinase (NIK) allele lacking the regulatory TRAF3 binding domain (NT3). Here, we report that expression of NT3 in the mesenchymal lineage with Osterix (Osx/Sp7)-Cre or Fibroblast-Specific Protein 1 (FSP1)-Cre caused subcutaneous, soft tissue tumors. These tumors displayed significantly shorter latency and a greater multiple incidence rate in Fsp1-Cre;NT3 compared to Osx-Cre;NT3 mice, regardless of sex. Histological assessment revealed poorly differentiated solid tumors with some spindled patterns, as well as robust RelB immunostaining, confirming activation of alternative NF-κB. Even though NT3 expression also occurs in the osteolineage in Osx-Cre;NT3 mice, we observed no bony lesions. The staining profiles and pattern of Cre expression in the two lines pointed to a mesenchymal tumor origin. Immunohistochemistry revealed that these tumors stain strongly for alpha-smooth muscle actin (αSMA), although vimentin staining was uniform only in Osx-Cre;NT3 tumors. Negative CD45 and S100 immunostains precluded hematopoietic and melanocytic origins, respectively, while positive staining for cytokeratin 19 (CK19), typically associated with epithelia, was found in subpopulations of both tumors. Principal component, differential expression, and gene ontology analyses revealed that NT3 tumors are distinct from normal mesenchymal tissues and are enriched for NF-κB related biological processes. We conclude that constitutive activation of the alternative NF-κB pathway in the mesenchymal lineage drives spontaneous sarcoma and provides a novel mouse model for NF-κB related sarcomas.
Collapse
Affiliation(s)
- Jennifer L. Davis
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Linda Cox
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Biancamaria Ricci
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Heather M. Zannit
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Fei Wan
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Roberta Faccio
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, United States of America
- Shriners Hospitals for Children–St. Louis, St. Louis, MO, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Deborah J. Veis
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, United States of America
- Shriners Hospitals for Children–St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
37
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. NF-κB-An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021; 10:1799. [PMID: 34359968 PMCID: PMC8304139 DOI: 10.3390/cells10071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (E.J.); (W.R.-W.)
| | | | | |
Collapse
|
38
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
39
|
Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2021; 17:651-667. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years a considerable therapeutic progress in melanoma patients with the RAF V600E mutation via RAF/MEK pathway inhibition and immuno-therapeutic modalities has been witnessed. However, the majority of patients relapse after therapy. Therefore, a deeper understanding of the pathways driving oncogenicity and metastasis of melanoma is of paramount importance. In this review, we summarize microRNAs modulating tumor growth, metastasis, or both, in preclinical melanoma-related in vivo models and possible clinical impact in melanoma patients as modalities and targets for treatment of melanoma. We have identified miR-199a (ApoE, DNAJ4), miR-7-5p (RelA), miR-98a (IL6), miR-219-5p (BCL2) and miR-365 (NRP1) as possible targets to be scrutinized in further target validation studies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simon AuslÄnder
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
40
|
The Research on the Treatment of Metastatic Skin Cutaneous Melanoma by Huanglian Jiedu Decoction Based on the Analysis of Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9952060. [PMID: 34239596 PMCID: PMC8241506 DOI: 10.1155/2021/9952060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Objective To explore the potential mechanism of Huanglian Jiedu Decoction (HJD) treatment and prevention of metastatic Cutaneous Melanoma (CM) occurrence and metastasis based on network pharmacological methods and immune infiltration analysis. Methods The GEO database was used to obtain metastatic CM disease targets, the TCMSP database and the HERB database were used to obtain HJD action targets, core genes were screened by protein interaction network, and the potential mechanism of HJD in the treatment of metastatic CM was explored by enrichment analysis, prognostic analysis and immune infiltration analysis. Results HJD treatment of metastatic CM involved 60 targets, enrichment analysis showed that HJD treatment of metastatic CM involved Chemokine signaling pathway, NF-kappa B signaling pathway, and Fluid shear stress and atherosclerosis, etc. Prognostic analysis revealed that HJD had a certain ability to improve the prognosis of metastatic CM patients. Immune infiltration analysis showed that HJD could inhibit the immune cell infiltration of metastatic CM patients by acting on related targets. Conclusions Our study identified the potential mechanism of HJD in the treatment of metastatic CM through network pharmacology, and revealed the mechanism of HJD in the prevention of Skin Cutaneous Melanoma metastasis through immune infiltration analysis and prognostic analysis.
Collapse
|
41
|
Wolter M, Valenti D, Cossar PJ, Hristeva S, Levy LM, Genski T, Hoffmann T, Brunsveld L, Tzalis D, Ottmann C. An Exploration of Chemical Properties Required for Cooperative Stabilization of the 14-3-3 Interaction with NF-κB-Utilizing a Reversible Covalent Tethering Approach. J Med Chem 2021; 64:8423-8436. [PMID: 34076416 PMCID: PMC8237268 DOI: 10.1021/acs.jmedchem.1c00401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Protein–protein
modulation has emerged as a proven approach
to drug discovery. While significant progress has been gained in developing
protein–protein interaction (PPI) inhibitors, the orthogonal
approach of PPI stabilization lacks established methodologies for
drug design. Here, we report the systematic ″bottom-up″
development of a reversible covalent PPI stabilizer. An imine bond
was employed to anchor the stabilizer at the interface of the 14-3-3/p65
complex, leading to a molecular glue that elicited an 81-fold increase
in complex stabilization. Utilizing protein crystallography and biophysical
assays, we deconvoluted how chemical properties of a stabilizer translate
to structural changes in the ternary 14-3-3/p65/molecular glue complex.
Furthermore, we explore how this leads to high cooperativity and increased
stability of the complex.
Collapse
Affiliation(s)
- Madita Wolter
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dario Valenti
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Peter J Cossar
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stanimira Hristeva
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Laura M Levy
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Thorsten Genski
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Torsten Hoffmann
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dimitrios Tzalis
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
42
|
Windmöller BA, Beshay M, Helweg LP, Flottmann C, Beermann M, Förster C, Wilkens L, Greiner JFW, Kaltschmidt C, Kaltschmidt B. Novel Primary Human Cancer Stem-Like Cell Populations from Non-Small Cell Lung Cancer: Inhibition of Cell Survival by Targeting NF-κB and MYC Signaling. Cells 2021; 10:cells10051024. [PMID: 33925297 PMCID: PMC8145874 DOI: 10.3390/cells10051024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that cancer stem cells (CSCs), a small subpopulation of self-renewal cancer cells, are responsible for tumor growth, treatment resistance, and cancer relapse and are thus of enormous clinical interest. Here, we aimed to isolate new CSC-like cells derived from human primary non-small cell lung cancer (NSCLC) specimens and to analyze the influence of different inhibitors of NF-κB and MYC signaling on cell survival. CSC-like cells were established from three squamous cell carcinomas (SCC) and three adenocarcinomas (AC) of the lung and were shown to express common CSC markers such as Prominin-1, CD44-antigen, and Nestin. Further, cells gave rise to spherical cancer organoids. Inhibition of MYC and NF-κB signaling using KJ-Pyr-9, dexamethasone, and pyrrolidinedithiocarbamate resulted in significant reductions in cell survival for SCC- and AC-derived cells. However, inhibition of the protein–protein interaction of MYC/NMYC proto-oncogenes with Myc-associated factor X (MAX) using KJ-Pyr-9 revealed the most promising survival-decreasing effects. Next to the establishment of six novel in vitro models for studying NSCLC-derived CSC-like populations, the presented investigations might provide new insights into potential novel therapies targeting NF-κB/MYC to improve clinical outcomes in NSCLC patients. Nevertheless, the full picture of downstream signaling still remains elusive.
Collapse
Affiliation(s)
- Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Morris Beshay
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617 Bielefeld, Germany
| | - Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Clara Flottmann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Miriam Beermann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
43
|
Witte KE, Hertel O, Windmöller BA, Helweg LP, Höving AL, Knabbe C, Busche T, Greiner JFW, Kalinowski J, Noll T, Mertzlufft F, Beshay M, Pfitzenmaier J, Kaltschmidt B, Kaltschmidt C, Banz-Jansen C, Simon M. Nanopore Sequencing Reveals Global Transcriptome Signatures of Mitochondrial and Ribosomal Gene Expressions in Various Human Cancer Stem-like Cell Populations. Cancers (Basel) 2021; 13:cancers13051136. [PMID: 33800955 PMCID: PMC7962028 DOI: 10.3390/cancers13051136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death in the industrialized world. In particular, so-called cancer stem cells (CSCs) play a crucial role in disease progression, as they are known to contribute to tumor growth and metastasis. Thus, CSCs are heavily investigated in a broad range of cancers. Nevertheless, global transcriptomic profiling of CSC populations derived from different tumor types is rare. We established three CSC populations from tumors in the uterus, brain, lung, and prostate and assessed their global transcriptomes using nanopore full-length cDNA sequencing, a new technique to assess insights into global gene profile. We observed common expression in all CSCs for distinct genes encoding proteins for organelles, such as ribosomes, mitochondria, and proteasomes. Additionally, we detected high expressions of inflammation- and immunity-related genes. Conclusively, we observed high similarities between all CSCs independent of their tumor of origin, which may build the basis for identifying novel therapeutic strategies targeting CSCs. Abstract Cancer stem cells (CSCs) are crucial mediators of tumor growth, metastasis, therapy resistance, and recurrence in a broad variety of human cancers. Although their biology is increasingly investigated within the distinct types of cancer, direct comparisons of CSCs from different tumor types allowing comprehensive mechanistic insights are rarely assessed. In the present study, we isolated CSCs from endometrioid carcinomas, glioblastoma multiforme as well as adenocarcinomas of lung and prostate and assessed their global transcriptomes using full-length cDNA nanopore sequencing. Despite the expression of common CSC markers, principal component analysis showed a distinct separation of the CSC populations into three clusters independent of the specific type of tumor. However, GO-term and KEGG pathway enrichment analysis revealed upregulated genes related to ribosomal biosynthesis, the mitochondrion, oxidative phosphorylation, and glycolytic pathways, as well as the proteasome, suggesting a great extent of metabolic flexibility in CSCs. Interestingly, the GO term “NF-kB binding” was likewise found to be elevated in all investigated CSC populations. In summary, we here provide evidence for high global transcriptional similarities between CSCs from various tumors, which particularly share upregulated gene expression associated with mitochondrial and ribosomal activity. Our findings may build the basis for identifying novel therapeutic strategies targeting CSCs.
Collapse
Affiliation(s)
- Kaya E. Witte
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Correspondence: ; Tel.: +49-521-106-5629
| | - Oliver Hertel
- Department of Cell Culture Technology, Faculty of Technology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (O.H.); (T.N.)
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstrasse 27, 33699 Bielefeld, Germany; (T.B.); (J.K.)
| | - Beatrice A. Windmöller
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
| | - Laureen P. Helweg
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Tobias Busche
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstrasse 27, 33699 Bielefeld, Germany; (T.B.); (J.K.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
| | - Jörn Kalinowski
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstrasse 27, 33699 Bielefeld, Germany; (T.B.); (J.K.)
| | - Thomas Noll
- Department of Cell Culture Technology, Faculty of Technology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (O.H.); (T.N.)
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstrasse 27, 33699 Bielefeld, Germany; (T.B.); (J.K.)
| | - Fritz Mertzlufft
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Scientific Director of the Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Maraweg 21, 33699 Bielefeld, Germany
| | - Morris Beshay
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Department for Thoracic Surgery and Pneumology, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33699 Bielefeld, Germany
| | - Jesco Pfitzenmaier
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Department of Urology and Center for Computer-Assisted and Robotic Urology, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33699 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33699 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33699 Bielefeld, Germany; (B.A.W.); (L.P.H.); (A.L.H.); (J.F.W.G.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
| | - Constanze Banz-Jansen
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Department of Gynecology and Obstetrics, and Perinatal Center, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33699 Bielefeld, Germany
| | - Matthias Simon
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33699 Bielefeld, Germany; (C.K.); (F.M.); (M.B.); (J.P.); (C.B.-J.); (M.S.)
- Department of Neurosurgery and Epilepsy Surgery, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33699 Bielefeld, Germany
| |
Collapse
|
44
|
Geng H, Guo W, Feng L, Xie D, Bi L, Wang Y, Zhang T, Liang Z, Yu D. Diallyl trisulfide inhibited tobacco smoke-mediated bladder EMT and cancer stem cell marker expression via the NF-κB pathway in vivo. J Int Med Res 2021; 49:300060521992900. [PMID: 33730908 PMCID: PMC8166398 DOI: 10.1177/0300060521992900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This study examined the effect of the NF-κB pathway on tobacco smoke-elicited bladder epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) marker expression in vivo. The effect of diallyl trisulfide (DATS) treatment was also examined. METHODS BALB/c mice were exposed to tobacco smoke and treated with an NF-κB inhibitor and DATS. Western blotting, quantitative real-time PCR, and immunohistochemical staining were used to detect the changes of relevant indices. RESULTS Phosphorylated inhibitor of kappa-B kinase alpha/beta expression and p65 and p50 nuclear transcription were increased by tobacco smoke exposure, whereas inhibitor of kappa-B expression was decreased. In addition, tobacco smoke reduced the expression of epithelial markers but increased that of mesenchymal and CSC markers. Our study further demonstrated that tobacco smoke-mediated EMT and CSC marker expression were attenuated by inhibition of the NF-κB pathway. Moreover, DATS reversed tobacco smoke-induced NF-κB pathway activation, EMT, and the acquisition of CSC properties in bladder tissues. CONCLUSIONS These data suggested that the NF-κB pathway regulated tobacco smoke-induced bladder EMT, CSC marker expression, and the protective effects of DATS.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhao Guo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Feng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongdong Xie
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhaofeng Liang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dexin Yu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
STAT3 Stabilizes IKKα Protein through Direct Interaction in Transformed and Cancerous Human Breast Epithelial Cells. Cancers (Basel) 2020; 13:cancers13010082. [PMID: 33396715 PMCID: PMC7795115 DOI: 10.3390/cancers13010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) are two representative transcription factors that play a critical role in inflammation-associated tumorigenesis through multi-level cooperation. Unlike other types of tumors, breast carcinomas have shown a significant dependency on the non-classical NF-κB pathway as well as the classical one. The α subunit of the inhibitor of the κB kinase (IKK) complex, IKKα, is involved in both classical and non-classical activation of NF-κB. Although the cross-talk between STAT3 and NF-κB has been suggested in several studies, the interplay between STAT3 and the regulators of NF-κB including IKKα has not been fully clarified yet. In this study, we observed overexpression and co-localization of IKKα and STAT3 in human breast cancer tissues as well as in H-Ras transformed human breast epithelial (H-Ras MCF-10A) and breast cancer (MDA-MB-231) cells. By utilizing small interfering RNA (siRNA) technology, we were able to demonstrate that STAT3 up-regulated IKKα, but not IKKβ or IKKγ, in these cells. This was attributable to direct binding to and subsequent stabilization of IKKα protein by blocking the ubiquitin-proteasome system. Notably, we identified the lysine 44 residue of IKKα as a putative binding site for STAT3. Moreover, siRNA knockdown of IKKα attenuated viability, anchorage-independent growth and migratory capabilities of H-Ras MCF-10A cells. Taken together, these findings propose a novel mechanism responsible for NF-κB activation by STAT3 through stabilization of IKKα, which contributes to breast cancer promotion and progression. Thus, breaking the STAT3-IKKα alliance can be an alternative therapeutic strategy for the treatment of breast cancer.
Collapse
|
46
|
Witte KE, Slotta C, Lütkemeyer M, Kitke A, Coras R, Simon M, Kaltschmidt C, Kaltschmidt B. PLEKHG5 regulates autophagy, survival and MGMT expression in U251-MG glioblastoma cells. Sci Rep 2020; 10:21858. [PMID: 33318498 PMCID: PMC7736842 DOI: 10.1038/s41598-020-77958-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
A signalling pathway involving PLEKHG5 (guanine exchange factor) for the Ras superfamily member RAB26 to transcription factor NF-κB was discovered in autophagy. PLEKHG5 was reported in glioblastoma multiforme (GBM) and correlates with patient survival. Thus, the generation of a cellular model for understanding PLEKHG5 signalling is the study purpose. We generated a CRISPR/Cas9-mediated knockout of PLEKHG5 in U251-MG glioblastoma cells and analysed resulting changes. Next, we used a mRFP-GFP-LC3+ reporter for visualisation of autophagic defects and rescued the phenotype of PLEKHG5 wildtype via transduction of a constitutively active RAB26QL-plasmid. Effects of overexpressing RAB26 were investigated and correlated with the O6-methylguanine-DNA methyltransferase (MGMT) and cellular survival. PLEKHG5 knockout showed changes in morphology, loss of filopodia and higher population doubling times. Accumulation of autolysosomes was resulted by decreased LAMP-1 in PLEKHG5-deficient cells. Rescue of PLEKHG5-/- restored the downregulation of RhoA activity, showed faster response to tumour necrosis factor and better cellular fitness. MGMT expression was activated after RAB26 overexpression compared to non-transduced cells. Survival of PLEKHG5 knockout was rescued together with sensitivity to temozolomide by RAB26QL. This study provides new insights in the PLEKHG5/RAB26 signalling within U251-MG cells, which suggests potential therapeutic strategies in other glioma cells and further in primary GBM.
Collapse
Affiliation(s)
- Kaya Elisa Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany.
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Melanie Lütkemeyer
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Matthias Simon
- Department of Neurosurgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617, Bielefeld, Germany
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Research Association of BioMedicine Bielefeld, FBMB, Maraweg 21, 33617, Bielefeld, Germany.
| |
Collapse
|
47
|
Torrealba N, Vera R, Fraile B, Martínez-Onsurbe P, Paniagua R, Royuela M. TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in prostate cancer. Aging Male 2020; 23:801-811. [PMID: 30973040 DOI: 10.1080/13685538.2019.1597840] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer is one of the most common cancers in the male population. The objective of this investigation was to study the relationship of components of transforming growth factor-B (TGF-β)/phosphoinositide-3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR)/nuclear factor kappa B (NF-kB) transduction pathway with clinical-pathological markers. By immunohistochemical methods, we determined the expression of several factors [TGF-β, Transforming Growth Factor B Receptor I (TGFBRI), TGFBRII, PI3K, AKT-Ser, AKT-Thr, mTOR, p-mTOR, inhibitor kB kinase (IKK), pIKK, inhibitor kB (IkB), pIkB, NF-kBp50, and NF-kBp65]. To know their relationship with established classical markers (Preoperative serum prostate specific antigen, pathological tumor stage, clinical tumor stage, Gleason score, perineural invasion, node involvement, positive surgical margins, biochemical progression, and survival) and their importance in the prognosis of biochemical progression, Spearman test, survival analysis, Log-rang test, Kaplan-Meier curves, univariate and multivariate Cox proportional Hazard regression analyses were performed. Spearman analysis showed that there was at least one correlation between TGF-β, TGFBRI, PI3K, pAKT-Thr, p-mTOR, NF-kBp50, and classical markers. Cox multivariate analysis between the prognostic variables (pathological tumor stage, Gleason score, and node involvement) and inmunohistochemical parameters confirmed TGFBR1 and PI3K as a prognostic and independent marker of biochemical progression in prostate cancer. Our results suggest that TGFBR1 and PI3K could be used as useful biomarkers for early diagnosis and prognoses for biochemical recurrence in prostate cancer after radical prostatectomy.
Collapse
Affiliation(s)
- Norelia Torrealba
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Raúl Vera
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Benito Fraile
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | | | - Ricardo Paniagua
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| |
Collapse
|
48
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
49
|
Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell Mol Life Sci 2020; 77:4449-4458. [PMID: 32322927 PMCID: PMC11104960 DOI: 10.1007/s00018-020-03524-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
50
|
Liu J, Zhong F, Cao L, Zhu R, Qu J, Yang L, Chen T, Hu Y, Wang Y, Yao M, Xiao W, Li C, Li B, Yuan Y. 7-dehydrocholesterol suppresses melanoma cell proliferation and invasion via Akt1/NF-κB signaling. Oncol Lett 2020; 20:398. [PMID: 33193858 PMCID: PMC7656107 DOI: 10.3892/ol.2020.12261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the most lethal cutaneous cancer with a high metastatic rate worldwide, causing ~55,500 deaths annually. Although the selective B-Raf oncogene serine/threonine-kinase (BRAF) inhibitors, dabrafenib and vemurafenib, have been approved for the treatment of BRAF-mutant metastatic melanoma, the 5-year survival rate remains unfavorable due to acquired therapy resistance. Therefore, it is of great importance to develop alternative therapeutic drugs and uncover their mechanisms for the treatment of melanoma. 7-dehydrocholesterol (7-DHC) has been demonstrated to inhibit melanoma, but the mechanism is unclear. Therefore, the present study aimed to elucidate the mechanisms of the inhibitory effect of 7-DHC in melanoma cells via analyzing the proliferation, migration, apoptosis, cell cycle and transcriptional sequencing of melanoma cells treated with 7-DHC, as well as constructing a gene signature according to public data of patients with melanoma. In the present study, 7-DHC, the precursor of vitamin D3, was able to induce apoptosis and inhibit cell proliferation and invasion of melanoma cells in a dose-dependent manner. RNA sequencing of melanoma cells treated with different concentrations of 7-DHC revealed that, compared with untreated melanoma cells, 65 genes were downregulated, and genes involved in the regulation of NF-ĸB import into the nucleus and NF-ĸB signaling were significantly repressed. Consistently, the Akt kinase family was one of most common somatic mutation hotspots in patients with melanoma according to The Cancer Genome Atlas enrichment analysis. Furthermore, 7-DHC decreased the phosphorylation of Akt1-Ser473 rather than that of MEK1, and the decreased phosphorylation of Akt1 subsequently inhibited the translocation of free RELA proto-oncogene NF-κB subunit to the nucleus. Finally, by intersecting downregulated genes by 7-DHC treatment and upregulated genes in patients with melanoma, a 7-DHC gene signature was identified, which was negatively associated with the prognosis. Overall, the present results demonstrated that 7-DHC suppressed melanoma cell proliferation and invasion via the Akt1/NF-ĸB signaling pathway, and 7-DHC key target genes were negatively associated with the prognosis. These findings highlight the potential application of 7-DHC for the treatment of melanoma in the future.
Collapse
Affiliation(s)
- Jia Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Feiliang Zhong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Lei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Ruiying Zhu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Junze Qu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Lin Yang
- Centre for Reproductive Medicine, Tianjin Medical University General Hospital, Tianjin 300041, P.R. China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yunlong Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Health Sciences Center, Shenzhen University, Shenzhen, Guangdong 518055, P.R. China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Chun Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Bo Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|